LLVM  8.0.1
ARMAsmParser.cpp
Go to the documentation of this file.
1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ARMFeatures.h"
12 #include "Utils/ARMBaseInfo.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCInst.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCInstrInfo.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/Support/ARMEHABI.h"
48 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/SMLoc.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <string>
65 #include <utility>
66 #include <vector>
67 
68 #define DEBUG_TYPE "asm-parser"
69 
70 using namespace llvm;
71 
72 namespace {
73 
74 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
75 
76 static cl::opt<ImplicitItModeTy> ImplicitItMode(
77  "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
78  cl::desc("Allow conditional instructions outdside of an IT block"),
79  cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
80  "Accept in both ISAs, emit implicit ITs in Thumb"),
81  clEnumValN(ImplicitItModeTy::Never, "never",
82  "Warn in ARM, reject in Thumb"),
83  clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
84  "Accept in ARM, reject in Thumb"),
85  clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
86  "Warn in ARM, emit implicit ITs in Thumb")));
87 
88 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
89  cl::init(false));
90 
91 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
92 
93 class UnwindContext {
94  using Locs = SmallVector<SMLoc, 4>;
95 
96  MCAsmParser &Parser;
97  Locs FnStartLocs;
98  Locs CantUnwindLocs;
99  Locs PersonalityLocs;
100  Locs PersonalityIndexLocs;
101  Locs HandlerDataLocs;
102  int FPReg;
103 
104 public:
105  UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
106 
107  bool hasFnStart() const { return !FnStartLocs.empty(); }
108  bool cantUnwind() const { return !CantUnwindLocs.empty(); }
109  bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
110 
111  bool hasPersonality() const {
112  return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
113  }
114 
115  void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
116  void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
117  void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
118  void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
119  void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
120 
121  void saveFPReg(int Reg) { FPReg = Reg; }
122  int getFPReg() const { return FPReg; }
123 
124  void emitFnStartLocNotes() const {
125  for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
126  FI != FE; ++FI)
127  Parser.Note(*FI, ".fnstart was specified here");
128  }
129 
130  void emitCantUnwindLocNotes() const {
131  for (Locs::const_iterator UI = CantUnwindLocs.begin(),
132  UE = CantUnwindLocs.end(); UI != UE; ++UI)
133  Parser.Note(*UI, ".cantunwind was specified here");
134  }
135 
136  void emitHandlerDataLocNotes() const {
137  for (Locs::const_iterator HI = HandlerDataLocs.begin(),
138  HE = HandlerDataLocs.end(); HI != HE; ++HI)
139  Parser.Note(*HI, ".handlerdata was specified here");
140  }
141 
142  void emitPersonalityLocNotes() const {
143  for (Locs::const_iterator PI = PersonalityLocs.begin(),
144  PE = PersonalityLocs.end(),
145  PII = PersonalityIndexLocs.begin(),
146  PIE = PersonalityIndexLocs.end();
147  PI != PE || PII != PIE;) {
148  if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
149  Parser.Note(*PI++, ".personality was specified here");
150  else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
151  Parser.Note(*PII++, ".personalityindex was specified here");
152  else
153  llvm_unreachable(".personality and .personalityindex cannot be "
154  "at the same location");
155  }
156  }
157 
158  void reset() {
159  FnStartLocs = Locs();
160  CantUnwindLocs = Locs();
161  PersonalityLocs = Locs();
162  HandlerDataLocs = Locs();
163  PersonalityIndexLocs = Locs();
164  FPReg = ARM::SP;
165  }
166 };
167 
168 class ARMAsmParser : public MCTargetAsmParser {
169  const MCRegisterInfo *MRI;
170  UnwindContext UC;
171 
172  ARMTargetStreamer &getTargetStreamer() {
173  assert(getParser().getStreamer().getTargetStreamer() &&
174  "do not have a target streamer");
175  MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
176  return static_cast<ARMTargetStreamer &>(TS);
177  }
178 
179  // Map of register aliases registers via the .req directive.
180  StringMap<unsigned> RegisterReqs;
181 
182  bool NextSymbolIsThumb;
183 
184  bool useImplicitITThumb() const {
185  return ImplicitItMode == ImplicitItModeTy::Always ||
186  ImplicitItMode == ImplicitItModeTy::ThumbOnly;
187  }
188 
189  bool useImplicitITARM() const {
190  return ImplicitItMode == ImplicitItModeTy::Always ||
191  ImplicitItMode == ImplicitItModeTy::ARMOnly;
192  }
193 
194  struct {
195  ARMCC::CondCodes Cond; // Condition for IT block.
196  unsigned Mask:4; // Condition mask for instructions.
197  // Starting at first 1 (from lsb).
198  // '1' condition as indicated in IT.
199  // '0' inverse of condition (else).
200  // Count of instructions in IT block is
201  // 4 - trailingzeroes(mask)
202  // Note that this does not have the same encoding
203  // as in the IT instruction, which also depends
204  // on the low bit of the condition code.
205 
206  unsigned CurPosition; // Current position in parsing of IT
207  // block. In range [0,4], with 0 being the IT
208  // instruction itself. Initialized according to
209  // count of instructions in block. ~0U if no
210  // active IT block.
211 
212  bool IsExplicit; // true - The IT instruction was present in the
213  // input, we should not modify it.
214  // false - The IT instruction was added
215  // implicitly, we can extend it if that
216  // would be legal.
217  } ITState;
218 
219  SmallVector<MCInst, 4> PendingConditionalInsts;
220 
221  void flushPendingInstructions(MCStreamer &Out) override {
222  if (!inImplicitITBlock()) {
223  assert(PendingConditionalInsts.size() == 0);
224  return;
225  }
226 
227  // Emit the IT instruction
228  unsigned Mask = getITMaskEncoding();
229  MCInst ITInst;
230  ITInst.setOpcode(ARM::t2IT);
231  ITInst.addOperand(MCOperand::createImm(ITState.Cond));
232  ITInst.addOperand(MCOperand::createImm(Mask));
233  Out.EmitInstruction(ITInst, getSTI());
234 
235  // Emit the conditonal instructions
236  assert(PendingConditionalInsts.size() <= 4);
237  for (const MCInst &Inst : PendingConditionalInsts) {
238  Out.EmitInstruction(Inst, getSTI());
239  }
240  PendingConditionalInsts.clear();
241 
242  // Clear the IT state
243  ITState.Mask = 0;
244  ITState.CurPosition = ~0U;
245  }
246 
247  bool inITBlock() { return ITState.CurPosition != ~0U; }
248  bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
249  bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
250 
251  bool lastInITBlock() {
252  return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
253  }
254 
255  void forwardITPosition() {
256  if (!inITBlock()) return;
257  // Move to the next instruction in the IT block, if there is one. If not,
258  // mark the block as done, except for implicit IT blocks, which we leave
259  // open until we find an instruction that can't be added to it.
260  unsigned TZ = countTrailingZeros(ITState.Mask);
261  if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
262  ITState.CurPosition = ~0U; // Done with the IT block after this.
263  }
264 
265  // Rewind the state of the current IT block, removing the last slot from it.
266  void rewindImplicitITPosition() {
267  assert(inImplicitITBlock());
268  assert(ITState.CurPosition > 1);
269  ITState.CurPosition--;
270  unsigned TZ = countTrailingZeros(ITState.Mask);
271  unsigned NewMask = 0;
272  NewMask |= ITState.Mask & (0xC << TZ);
273  NewMask |= 0x2 << TZ;
274  ITState.Mask = NewMask;
275  }
276 
277  // Rewind the state of the current IT block, removing the last slot from it.
278  // If we were at the first slot, this closes the IT block.
279  void discardImplicitITBlock() {
280  assert(inImplicitITBlock());
281  assert(ITState.CurPosition == 1);
282  ITState.CurPosition = ~0U;
283  }
284 
285  // Return the low-subreg of a given Q register.
286  unsigned getDRegFromQReg(unsigned QReg) const {
287  return MRI->getSubReg(QReg, ARM::dsub_0);
288  }
289 
290  // Get the encoding of the IT mask, as it will appear in an IT instruction.
291  unsigned getITMaskEncoding() {
292  assert(inITBlock());
293  unsigned Mask = ITState.Mask;
294  unsigned TZ = countTrailingZeros(Mask);
295  if ((ITState.Cond & 1) == 0) {
296  assert(Mask && TZ <= 3 && "illegal IT mask value!");
297  Mask ^= (0xE << TZ) & 0xF;
298  }
299  return Mask;
300  }
301 
302  // Get the condition code corresponding to the current IT block slot.
303  ARMCC::CondCodes currentITCond() {
304  unsigned MaskBit;
305  if (ITState.CurPosition == 1)
306  MaskBit = 1;
307  else
308  MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
309 
310  return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond);
311  }
312 
313  // Invert the condition of the current IT block slot without changing any
314  // other slots in the same block.
315  void invertCurrentITCondition() {
316  if (ITState.CurPosition == 1) {
317  ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
318  } else {
319  ITState.Mask ^= 1 << (5 - ITState.CurPosition);
320  }
321  }
322 
323  // Returns true if the current IT block is full (all 4 slots used).
324  bool isITBlockFull() {
325  return inITBlock() && (ITState.Mask & 1);
326  }
327 
328  // Extend the current implicit IT block to have one more slot with the given
329  // condition code.
330  void extendImplicitITBlock(ARMCC::CondCodes Cond) {
331  assert(inImplicitITBlock());
332  assert(!isITBlockFull());
333  assert(Cond == ITState.Cond ||
334  Cond == ARMCC::getOppositeCondition(ITState.Cond));
335  unsigned TZ = countTrailingZeros(ITState.Mask);
336  unsigned NewMask = 0;
337  // Keep any existing condition bits.
338  NewMask |= ITState.Mask & (0xE << TZ);
339  // Insert the new condition bit.
340  NewMask |= (Cond == ITState.Cond) << TZ;
341  // Move the trailing 1 down one bit.
342  NewMask |= 1 << (TZ - 1);
343  ITState.Mask = NewMask;
344  }
345 
346  // Create a new implicit IT block with a dummy condition code.
347  void startImplicitITBlock() {
348  assert(!inITBlock());
349  ITState.Cond = ARMCC::AL;
350  ITState.Mask = 8;
351  ITState.CurPosition = 1;
352  ITState.IsExplicit = false;
353  }
354 
355  // Create a new explicit IT block with the given condition and mask. The mask
356  // should be in the parsed format, with a 1 implying 't', regardless of the
357  // low bit of the condition.
358  void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
359  assert(!inITBlock());
360  ITState.Cond = Cond;
361  ITState.Mask = Mask;
362  ITState.CurPosition = 0;
363  ITState.IsExplicit = true;
364  }
365 
366  void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
367  return getParser().Note(L, Msg, Range);
368  }
369 
370  bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
371  return getParser().Warning(L, Msg, Range);
372  }
373 
374  bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
375  return getParser().Error(L, Msg, Range);
376  }
377 
378  bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
379  unsigned ListNo, bool IsARPop = false);
380  bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
381  unsigned ListNo);
382 
383  int tryParseRegister();
384  bool tryParseRegisterWithWriteBack(OperandVector &);
385  int tryParseShiftRegister(OperandVector &);
386  bool parseRegisterList(OperandVector &);
387  bool parseMemory(OperandVector &);
388  bool parseOperand(OperandVector &, StringRef Mnemonic);
389  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
390  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
391  unsigned &ShiftAmount);
392  bool parseLiteralValues(unsigned Size, SMLoc L);
393  bool parseDirectiveThumb(SMLoc L);
394  bool parseDirectiveARM(SMLoc L);
395  bool parseDirectiveThumbFunc(SMLoc L);
396  bool parseDirectiveCode(SMLoc L);
397  bool parseDirectiveSyntax(SMLoc L);
398  bool parseDirectiveReq(StringRef Name, SMLoc L);
399  bool parseDirectiveUnreq(SMLoc L);
400  bool parseDirectiveArch(SMLoc L);
401  bool parseDirectiveEabiAttr(SMLoc L);
402  bool parseDirectiveCPU(SMLoc L);
403  bool parseDirectiveFPU(SMLoc L);
404  bool parseDirectiveFnStart(SMLoc L);
405  bool parseDirectiveFnEnd(SMLoc L);
406  bool parseDirectiveCantUnwind(SMLoc L);
407  bool parseDirectivePersonality(SMLoc L);
408  bool parseDirectiveHandlerData(SMLoc L);
409  bool parseDirectiveSetFP(SMLoc L);
410  bool parseDirectivePad(SMLoc L);
411  bool parseDirectiveRegSave(SMLoc L, bool IsVector);
412  bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
413  bool parseDirectiveLtorg(SMLoc L);
414  bool parseDirectiveEven(SMLoc L);
415  bool parseDirectivePersonalityIndex(SMLoc L);
416  bool parseDirectiveUnwindRaw(SMLoc L);
417  bool parseDirectiveTLSDescSeq(SMLoc L);
418  bool parseDirectiveMovSP(SMLoc L);
419  bool parseDirectiveObjectArch(SMLoc L);
420  bool parseDirectiveArchExtension(SMLoc L);
421  bool parseDirectiveAlign(SMLoc L);
422  bool parseDirectiveThumbSet(SMLoc L);
423 
424  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
425  bool &CarrySetting, unsigned &ProcessorIMod,
426  StringRef &ITMask);
427  void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
428  bool &CanAcceptCarrySet,
429  bool &CanAcceptPredicationCode);
430 
431  void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
432  OperandVector &Operands);
433  bool isThumb() const {
434  // FIXME: Can tablegen auto-generate this?
435  return getSTI().getFeatureBits()[ARM::ModeThumb];
436  }
437 
438  bool isThumbOne() const {
439  return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
440  }
441 
442  bool isThumbTwo() const {
443  return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
444  }
445 
446  bool hasThumb() const {
447  return getSTI().getFeatureBits()[ARM::HasV4TOps];
448  }
449 
450  bool hasThumb2() const {
451  return getSTI().getFeatureBits()[ARM::FeatureThumb2];
452  }
453 
454  bool hasV6Ops() const {
455  return getSTI().getFeatureBits()[ARM::HasV6Ops];
456  }
457 
458  bool hasV6T2Ops() const {
459  return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
460  }
461 
462  bool hasV6MOps() const {
463  return getSTI().getFeatureBits()[ARM::HasV6MOps];
464  }
465 
466  bool hasV7Ops() const {
467  return getSTI().getFeatureBits()[ARM::HasV7Ops];
468  }
469 
470  bool hasV8Ops() const {
471  return getSTI().getFeatureBits()[ARM::HasV8Ops];
472  }
473 
474  bool hasV8MBaseline() const {
475  return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
476  }
477 
478  bool hasV8MMainline() const {
479  return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
480  }
481 
482  bool has8MSecExt() const {
483  return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
484  }
485 
486  bool hasARM() const {
487  return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
488  }
489 
490  bool hasDSP() const {
491  return getSTI().getFeatureBits()[ARM::FeatureDSP];
492  }
493 
494  bool hasD16() const {
495  return getSTI().getFeatureBits()[ARM::FeatureD16];
496  }
497 
498  bool hasV8_1aOps() const {
499  return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
500  }
501 
502  bool hasRAS() const {
503  return getSTI().getFeatureBits()[ARM::FeatureRAS];
504  }
505 
506  void SwitchMode() {
507  MCSubtargetInfo &STI = copySTI();
508  uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
509  setAvailableFeatures(FB);
510  }
511 
512  void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
513 
514  bool isMClass() const {
515  return getSTI().getFeatureBits()[ARM::FeatureMClass];
516  }
517 
518  /// @name Auto-generated Match Functions
519  /// {
520 
521 #define GET_ASSEMBLER_HEADER
522 #include "ARMGenAsmMatcher.inc"
523 
524  /// }
525 
526  OperandMatchResultTy parseITCondCode(OperandVector &);
527  OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
528  OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
529  OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
530  OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
531  OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
532  OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
533  OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
534  OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
535  OperandMatchResultTy parseBankedRegOperand(OperandVector &);
536  OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
537  int High);
538  OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
539  return parsePKHImm(O, "lsl", 0, 31);
540  }
541  OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
542  return parsePKHImm(O, "asr", 1, 32);
543  }
544  OperandMatchResultTy parseSetEndImm(OperandVector &);
545  OperandMatchResultTy parseShifterImm(OperandVector &);
546  OperandMatchResultTy parseRotImm(OperandVector &);
547  OperandMatchResultTy parseModImm(OperandVector &);
548  OperandMatchResultTy parseBitfield(OperandVector &);
549  OperandMatchResultTy parsePostIdxReg(OperandVector &);
550  OperandMatchResultTy parseAM3Offset(OperandVector &);
551  OperandMatchResultTy parseFPImm(OperandVector &);
552  OperandMatchResultTy parseVectorList(OperandVector &);
553  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
554  SMLoc &EndLoc);
555 
556  // Asm Match Converter Methods
557  void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
558  void cvtThumbBranches(MCInst &Inst, const OperandVector &);
559 
560  bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
561  bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
562  bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
563  bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
564  bool isITBlockTerminator(MCInst &Inst) const;
565  void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
566  bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
567  bool Load, bool ARMMode, bool Writeback);
568 
569 public:
570  enum ARMMatchResultTy {
571  Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
572  Match_RequiresNotITBlock,
573  Match_RequiresV6,
574  Match_RequiresThumb2,
575  Match_RequiresV8,
576  Match_RequiresFlagSetting,
577 #define GET_OPERAND_DIAGNOSTIC_TYPES
578 #include "ARMGenAsmMatcher.inc"
579 
580  };
581 
582  ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
583  const MCInstrInfo &MII, const MCTargetOptions &Options)
584  : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
586 
587  // Cache the MCRegisterInfo.
588  MRI = getContext().getRegisterInfo();
589 
590  // Initialize the set of available features.
591  setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
592 
593  // Add build attributes based on the selected target.
594  if (AddBuildAttributes)
595  getTargetStreamer().emitTargetAttributes(STI);
596 
597  // Not in an ITBlock to start with.
598  ITState.CurPosition = ~0U;
599 
600  NextSymbolIsThumb = false;
601  }
602 
603  // Implementation of the MCTargetAsmParser interface:
604  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
605  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
606  SMLoc NameLoc, OperandVector &Operands) override;
607  bool ParseDirective(AsmToken DirectiveID) override;
608 
609  unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
610  unsigned Kind) override;
611  unsigned checkTargetMatchPredicate(MCInst &Inst) override;
612 
613  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
614  OperandVector &Operands, MCStreamer &Out,
615  uint64_t &ErrorInfo,
616  bool MatchingInlineAsm) override;
617  unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
618  SmallVectorImpl<NearMissInfo> &NearMisses,
619  bool MatchingInlineAsm, bool &EmitInITBlock,
620  MCStreamer &Out);
621 
622  struct NearMissMessage {
623  SMLoc Loc;
624  SmallString<128> Message;
625  };
626 
627  const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
628 
629  void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
630  SmallVectorImpl<NearMissMessage> &NearMissesOut,
631  SMLoc IDLoc, OperandVector &Operands);
632  void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
633  OperandVector &Operands);
634 
635  void doBeforeLabelEmit(MCSymbol *Symbol) override;
636 
637  void onLabelParsed(MCSymbol *Symbol) override;
638 };
639 
640 /// ARMOperand - Instances of this class represent a parsed ARM machine
641 /// operand.
642 class ARMOperand : public MCParsedAsmOperand {
643  enum KindTy {
644  k_CondCode,
645  k_CCOut,
646  k_ITCondMask,
647  k_CoprocNum,
648  k_CoprocReg,
649  k_CoprocOption,
650  k_Immediate,
651  k_MemBarrierOpt,
652  k_InstSyncBarrierOpt,
653  k_TraceSyncBarrierOpt,
654  k_Memory,
655  k_PostIndexRegister,
656  k_MSRMask,
657  k_BankedReg,
658  k_ProcIFlags,
659  k_VectorIndex,
660  k_Register,
661  k_RegisterList,
662  k_DPRRegisterList,
663  k_SPRRegisterList,
664  k_VectorList,
665  k_VectorListAllLanes,
666  k_VectorListIndexed,
667  k_ShiftedRegister,
668  k_ShiftedImmediate,
669  k_ShifterImmediate,
670  k_RotateImmediate,
671  k_ModifiedImmediate,
672  k_ConstantPoolImmediate,
673  k_BitfieldDescriptor,
674  k_Token,
675  } Kind;
676 
677  SMLoc StartLoc, EndLoc, AlignmentLoc;
678  SmallVector<unsigned, 8> Registers;
679 
680  struct CCOp {
681  ARMCC::CondCodes Val;
682  };
683 
684  struct CopOp {
685  unsigned Val;
686  };
687 
688  struct CoprocOptionOp {
689  unsigned Val;
690  };
691 
692  struct ITMaskOp {
693  unsigned Mask:4;
694  };
695 
696  struct MBOptOp {
697  ARM_MB::MemBOpt Val;
698  };
699 
700  struct ISBOptOp {
702  };
703 
704  struct TSBOptOp {
706  };
707 
708  struct IFlagsOp {
709  ARM_PROC::IFlags Val;
710  };
711 
712  struct MMaskOp {
713  unsigned Val;
714  };
715 
716  struct BankedRegOp {
717  unsigned Val;
718  };
719 
720  struct TokOp {
721  const char *Data;
722  unsigned Length;
723  };
724 
725  struct RegOp {
726  unsigned RegNum;
727  };
728 
729  // A vector register list is a sequential list of 1 to 4 registers.
730  struct VectorListOp {
731  unsigned RegNum;
732  unsigned Count;
733  unsigned LaneIndex;
734  bool isDoubleSpaced;
735  };
736 
737  struct VectorIndexOp {
738  unsigned Val;
739  };
740 
741  struct ImmOp {
742  const MCExpr *Val;
743  };
744 
745  /// Combined record for all forms of ARM address expressions.
746  struct MemoryOp {
747  unsigned BaseRegNum;
748  // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
749  // was specified.
750  const MCConstantExpr *OffsetImm; // Offset immediate value
751  unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
752  ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
753  unsigned ShiftImm; // shift for OffsetReg.
754  unsigned Alignment; // 0 = no alignment specified
755  // n = alignment in bytes (2, 4, 8, 16, or 32)
756  unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
757  };
758 
759  struct PostIdxRegOp {
760  unsigned RegNum;
761  bool isAdd;
762  ARM_AM::ShiftOpc ShiftTy;
763  unsigned ShiftImm;
764  };
765 
766  struct ShifterImmOp {
767  bool isASR;
768  unsigned Imm;
769  };
770 
771  struct RegShiftedRegOp {
772  ARM_AM::ShiftOpc ShiftTy;
773  unsigned SrcReg;
774  unsigned ShiftReg;
775  unsigned ShiftImm;
776  };
777 
778  struct RegShiftedImmOp {
779  ARM_AM::ShiftOpc ShiftTy;
780  unsigned SrcReg;
781  unsigned ShiftImm;
782  };
783 
784  struct RotImmOp {
785  unsigned Imm;
786  };
787 
788  struct ModImmOp {
789  unsigned Bits;
790  unsigned Rot;
791  };
792 
793  struct BitfieldOp {
794  unsigned LSB;
795  unsigned Width;
796  };
797 
798  union {
799  struct CCOp CC;
800  struct CopOp Cop;
801  struct CoprocOptionOp CoprocOption;
802  struct MBOptOp MBOpt;
803  struct ISBOptOp ISBOpt;
804  struct TSBOptOp TSBOpt;
805  struct ITMaskOp ITMask;
806  struct IFlagsOp IFlags;
807  struct MMaskOp MMask;
808  struct BankedRegOp BankedReg;
809  struct TokOp Tok;
810  struct RegOp Reg;
811  struct VectorListOp VectorList;
812  struct VectorIndexOp VectorIndex;
813  struct ImmOp Imm;
814  struct MemoryOp Memory;
815  struct PostIdxRegOp PostIdxReg;
816  struct ShifterImmOp ShifterImm;
817  struct RegShiftedRegOp RegShiftedReg;
818  struct RegShiftedImmOp RegShiftedImm;
819  struct RotImmOp RotImm;
820  struct ModImmOp ModImm;
821  struct BitfieldOp Bitfield;
822  };
823 
824 public:
825  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
826 
827  /// getStartLoc - Get the location of the first token of this operand.
828  SMLoc getStartLoc() const override { return StartLoc; }
829 
830  /// getEndLoc - Get the location of the last token of this operand.
831  SMLoc getEndLoc() const override { return EndLoc; }
832 
833  /// getLocRange - Get the range between the first and last token of this
834  /// operand.
835  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
836 
837  /// getAlignmentLoc - Get the location of the Alignment token of this operand.
838  SMLoc getAlignmentLoc() const {
839  assert(Kind == k_Memory && "Invalid access!");
840  return AlignmentLoc;
841  }
842 
843  ARMCC::CondCodes getCondCode() const {
844  assert(Kind == k_CondCode && "Invalid access!");
845  return CC.Val;
846  }
847 
848  unsigned getCoproc() const {
849  assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
850  return Cop.Val;
851  }
852 
853  StringRef getToken() const {
854  assert(Kind == k_Token && "Invalid access!");
855  return StringRef(Tok.Data, Tok.Length);
856  }
857 
858  unsigned getReg() const override {
859  assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
860  return Reg.RegNum;
861  }
862 
863  const SmallVectorImpl<unsigned> &getRegList() const {
864  assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
865  Kind == k_SPRRegisterList) && "Invalid access!");
866  return Registers;
867  }
868 
869  const MCExpr *getImm() const {
870  assert(isImm() && "Invalid access!");
871  return Imm.Val;
872  }
873 
874  const MCExpr *getConstantPoolImm() const {
875  assert(isConstantPoolImm() && "Invalid access!");
876  return Imm.Val;
877  }
878 
879  unsigned getVectorIndex() const {
880  assert(Kind == k_VectorIndex && "Invalid access!");
881  return VectorIndex.Val;
882  }
883 
884  ARM_MB::MemBOpt getMemBarrierOpt() const {
885  assert(Kind == k_MemBarrierOpt && "Invalid access!");
886  return MBOpt.Val;
887  }
888 
889  ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
890  assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
891  return ISBOpt.Val;
892  }
893 
894  ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
895  assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
896  return TSBOpt.Val;
897  }
898 
899  ARM_PROC::IFlags getProcIFlags() const {
900  assert(Kind == k_ProcIFlags && "Invalid access!");
901  return IFlags.Val;
902  }
903 
904  unsigned getMSRMask() const {
905  assert(Kind == k_MSRMask && "Invalid access!");
906  return MMask.Val;
907  }
908 
909  unsigned getBankedReg() const {
910  assert(Kind == k_BankedReg && "Invalid access!");
911  return BankedReg.Val;
912  }
913 
914  bool isCoprocNum() const { return Kind == k_CoprocNum; }
915  bool isCoprocReg() const { return Kind == k_CoprocReg; }
916  bool isCoprocOption() const { return Kind == k_CoprocOption; }
917  bool isCondCode() const { return Kind == k_CondCode; }
918  bool isCCOut() const { return Kind == k_CCOut; }
919  bool isITMask() const { return Kind == k_ITCondMask; }
920  bool isITCondCode() const { return Kind == k_CondCode; }
921  bool isImm() const override {
922  return Kind == k_Immediate;
923  }
924 
925  bool isARMBranchTarget() const {
926  if (!isImm()) return false;
927 
928  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
929  return CE->getValue() % 4 == 0;
930  return true;
931  }
932 
933 
934  bool isThumbBranchTarget() const {
935  if (!isImm()) return false;
936 
937  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
938  return CE->getValue() % 2 == 0;
939  return true;
940  }
941 
942  // checks whether this operand is an unsigned offset which fits is a field
943  // of specified width and scaled by a specific number of bits
944  template<unsigned width, unsigned scale>
945  bool isUnsignedOffset() const {
946  if (!isImm()) return false;
947  if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
948  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
949  int64_t Val = CE->getValue();
950  int64_t Align = 1LL << scale;
951  int64_t Max = Align * ((1LL << width) - 1);
952  return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
953  }
954  return false;
955  }
956 
957  // checks whether this operand is an signed offset which fits is a field
958  // of specified width and scaled by a specific number of bits
959  template<unsigned width, unsigned scale>
960  bool isSignedOffset() const {
961  if (!isImm()) return false;
962  if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
963  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
964  int64_t Val = CE->getValue();
965  int64_t Align = 1LL << scale;
966  int64_t Max = Align * ((1LL << (width-1)) - 1);
967  int64_t Min = -Align * (1LL << (width-1));
968  return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
969  }
970  return false;
971  }
972 
973  // checks whether this operand is a memory operand computed as an offset
974  // applied to PC. the offset may have 8 bits of magnitude and is represented
975  // with two bits of shift. textually it may be either [pc, #imm], #imm or
976  // relocable expression...
977  bool isThumbMemPC() const {
978  int64_t Val = 0;
979  if (isImm()) {
980  if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
981  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
982  if (!CE) return false;
983  Val = CE->getValue();
984  }
985  else if (isMem()) {
986  if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
987  if(Memory.BaseRegNum != ARM::PC) return false;
988  Val = Memory.OffsetImm->getValue();
989  }
990  else return false;
991  return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
992  }
993 
994  bool isFPImm() const {
995  if (!isImm()) return false;
996  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
997  if (!CE) return false;
998  int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
999  return Val != -1;
1000  }
1001 
1002  template<int64_t N, int64_t M>
1003  bool isImmediate() const {
1004  if (!isImm()) return false;
1005  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1006  if (!CE) return false;
1007  int64_t Value = CE->getValue();
1008  return Value >= N && Value <= M;
1009  }
1010 
1011  template<int64_t N, int64_t M>
1012  bool isImmediateS4() const {
1013  if (!isImm()) return false;
1014  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1015  if (!CE) return false;
1016  int64_t Value = CE->getValue();
1017  return ((Value & 3) == 0) && Value >= N && Value <= M;
1018  }
1019 
1020  bool isFBits16() const {
1021  return isImmediate<0, 17>();
1022  }
1023  bool isFBits32() const {
1024  return isImmediate<1, 33>();
1025  }
1026  bool isImm8s4() const {
1027  return isImmediateS4<-1020, 1020>();
1028  }
1029  bool isImm0_1020s4() const {
1030  return isImmediateS4<0, 1020>();
1031  }
1032  bool isImm0_508s4() const {
1033  return isImmediateS4<0, 508>();
1034  }
1035  bool isImm0_508s4Neg() const {
1036  if (!isImm()) return false;
1037  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1038  if (!CE) return false;
1039  int64_t Value = -CE->getValue();
1040  // explicitly exclude zero. we want that to use the normal 0_508 version.
1041  return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1042  }
1043 
1044  bool isImm0_4095Neg() const {
1045  if (!isImm()) return false;
1046  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1047  if (!CE) return false;
1048  // isImm0_4095Neg is used with 32-bit immediates only.
1049  // 32-bit immediates are zero extended to 64-bit when parsed,
1050  // thus simple -CE->getValue() results in a big negative number,
1051  // not a small positive number as intended
1052  if ((CE->getValue() >> 32) > 0) return false;
1053  uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1054  return Value > 0 && Value < 4096;
1055  }
1056 
1057  bool isImm0_7() const {
1058  return isImmediate<0, 7>();
1059  }
1060 
1061  bool isImm1_16() const {
1062  return isImmediate<1, 16>();
1063  }
1064 
1065  bool isImm1_32() const {
1066  return isImmediate<1, 32>();
1067  }
1068 
1069  bool isImm8_255() const {
1070  return isImmediate<8, 255>();
1071  }
1072 
1073  bool isImm256_65535Expr() const {
1074  if (!isImm()) return false;
1075  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1076  // If it's not a constant expression, it'll generate a fixup and be
1077  // handled later.
1078  if (!CE) return true;
1079  int64_t Value = CE->getValue();
1080  return Value >= 256 && Value < 65536;
1081  }
1082 
1083  bool isImm0_65535Expr() const {
1084  if (!isImm()) return false;
1085  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1086  // If it's not a constant expression, it'll generate a fixup and be
1087  // handled later.
1088  if (!CE) return true;
1089  int64_t Value = CE->getValue();
1090  return Value >= 0 && Value < 65536;
1091  }
1092 
1093  bool isImm24bit() const {
1094  return isImmediate<0, 0xffffff + 1>();
1095  }
1096 
1097  bool isImmThumbSR() const {
1098  return isImmediate<1, 33>();
1099  }
1100 
1101  bool isPKHLSLImm() const {
1102  return isImmediate<0, 32>();
1103  }
1104 
1105  bool isPKHASRImm() const {
1106  return isImmediate<0, 33>();
1107  }
1108 
1109  bool isAdrLabel() const {
1110  // If we have an immediate that's not a constant, treat it as a label
1111  // reference needing a fixup.
1112  if (isImm() && !isa<MCConstantExpr>(getImm()))
1113  return true;
1114 
1115  // If it is a constant, it must fit into a modified immediate encoding.
1116  if (!isImm()) return false;
1117  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1118  if (!CE) return false;
1119  int64_t Value = CE->getValue();
1120  return (ARM_AM::getSOImmVal(Value) != -1 ||
1121  ARM_AM::getSOImmVal(-Value) != -1);
1122  }
1123 
1124  bool isT2SOImm() const {
1125  // If we have an immediate that's not a constant, treat it as an expression
1126  // needing a fixup.
1127  if (isImm() && !isa<MCConstantExpr>(getImm())) {
1128  // We want to avoid matching :upper16: and :lower16: as we want these
1129  // expressions to match in isImm0_65535Expr()
1130  const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1131  return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1132  ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1133  }
1134  if (!isImm()) return false;
1135  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1136  if (!CE) return false;
1137  int64_t Value = CE->getValue();
1138  return ARM_AM::getT2SOImmVal(Value) != -1;
1139  }
1140 
1141  bool isT2SOImmNot() const {
1142  if (!isImm()) return false;
1143  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1144  if (!CE) return false;
1145  int64_t Value = CE->getValue();
1146  return ARM_AM::getT2SOImmVal(Value) == -1 &&
1147  ARM_AM::getT2SOImmVal(~Value) != -1;
1148  }
1149 
1150  bool isT2SOImmNeg() const {
1151  if (!isImm()) return false;
1152  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1153  if (!CE) return false;
1154  int64_t Value = CE->getValue();
1155  // Only use this when not representable as a plain so_imm.
1156  return ARM_AM::getT2SOImmVal(Value) == -1 &&
1157  ARM_AM::getT2SOImmVal(-Value) != -1;
1158  }
1159 
1160  bool isSetEndImm() const {
1161  if (!isImm()) return false;
1162  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1163  if (!CE) return false;
1164  int64_t Value = CE->getValue();
1165  return Value == 1 || Value == 0;
1166  }
1167 
1168  bool isReg() const override { return Kind == k_Register; }
1169  bool isRegList() const { return Kind == k_RegisterList; }
1170  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1171  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1172  bool isToken() const override { return Kind == k_Token; }
1173  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1174  bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1175  bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1176  bool isMem() const override {
1177  if (Kind != k_Memory)
1178  return false;
1179  if (Memory.BaseRegNum &&
1180  !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1181  return false;
1182  if (Memory.OffsetRegNum &&
1183  !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1184  return false;
1185  return true;
1186  }
1187  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1188  bool isRegShiftedReg() const {
1189  return Kind == k_ShiftedRegister &&
1190  ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1191  RegShiftedReg.SrcReg) &&
1192  ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1193  RegShiftedReg.ShiftReg);
1194  }
1195  bool isRegShiftedImm() const {
1196  return Kind == k_ShiftedImmediate &&
1197  ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1198  RegShiftedImm.SrcReg);
1199  }
1200  bool isRotImm() const { return Kind == k_RotateImmediate; }
1201  bool isModImm() const { return Kind == k_ModifiedImmediate; }
1202 
1203  bool isModImmNot() const {
1204  if (!isImm()) return false;
1205  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1206  if (!CE) return false;
1207  int64_t Value = CE->getValue();
1208  return ARM_AM::getSOImmVal(~Value) != -1;
1209  }
1210 
1211  bool isModImmNeg() const {
1212  if (!isImm()) return false;
1213  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1214  if (!CE) return false;
1215  int64_t Value = CE->getValue();
1216  return ARM_AM::getSOImmVal(Value) == -1 &&
1217  ARM_AM::getSOImmVal(-Value) != -1;
1218  }
1219 
1220  bool isThumbModImmNeg1_7() const {
1221  if (!isImm()) return false;
1222  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1223  if (!CE) return false;
1224  int32_t Value = -(int32_t)CE->getValue();
1225  return 0 < Value && Value < 8;
1226  }
1227 
1228  bool isThumbModImmNeg8_255() const {
1229  if (!isImm()) return false;
1230  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1231  if (!CE) return false;
1232  int32_t Value = -(int32_t)CE->getValue();
1233  return 7 < Value && Value < 256;
1234  }
1235 
1236  bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1237  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1238  bool isPostIdxRegShifted() const {
1239  return Kind == k_PostIndexRegister &&
1240  ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1241  }
1242  bool isPostIdxReg() const {
1243  return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1244  }
1245  bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1246  if (!isMem())
1247  return false;
1248  // No offset of any kind.
1249  return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1250  (alignOK || Memory.Alignment == Alignment);
1251  }
1252  bool isMemPCRelImm12() const {
1253  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1254  return false;
1255  // Base register must be PC.
1256  if (Memory.BaseRegNum != ARM::PC)
1257  return false;
1258  // Immediate offset in range [-4095, 4095].
1259  if (!Memory.OffsetImm) return true;
1260  int64_t Val = Memory.OffsetImm->getValue();
1261  return (Val > -4096 && Val < 4096) ||
1262  (Val == std::numeric_limits<int32_t>::min());
1263  }
1264 
1265  bool isAlignedMemory() const {
1266  return isMemNoOffset(true);
1267  }
1268 
1269  bool isAlignedMemoryNone() const {
1270  return isMemNoOffset(false, 0);
1271  }
1272 
1273  bool isDupAlignedMemoryNone() const {
1274  return isMemNoOffset(false, 0);
1275  }
1276 
1277  bool isAlignedMemory16() const {
1278  if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1279  return true;
1280  return isMemNoOffset(false, 0);
1281  }
1282 
1283  bool isDupAlignedMemory16() const {
1284  if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1285  return true;
1286  return isMemNoOffset(false, 0);
1287  }
1288 
1289  bool isAlignedMemory32() const {
1290  if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1291  return true;
1292  return isMemNoOffset(false, 0);
1293  }
1294 
1295  bool isDupAlignedMemory32() const {
1296  if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1297  return true;
1298  return isMemNoOffset(false, 0);
1299  }
1300 
1301  bool isAlignedMemory64() const {
1302  if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1303  return true;
1304  return isMemNoOffset(false, 0);
1305  }
1306 
1307  bool isDupAlignedMemory64() const {
1308  if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1309  return true;
1310  return isMemNoOffset(false, 0);
1311  }
1312 
1313  bool isAlignedMemory64or128() const {
1314  if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1315  return true;
1316  if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1317  return true;
1318  return isMemNoOffset(false, 0);
1319  }
1320 
1321  bool isDupAlignedMemory64or128() const {
1322  if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1323  return true;
1324  if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1325  return true;
1326  return isMemNoOffset(false, 0);
1327  }
1328 
1329  bool isAlignedMemory64or128or256() const {
1330  if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1331  return true;
1332  if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1333  return true;
1334  if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1335  return true;
1336  return isMemNoOffset(false, 0);
1337  }
1338 
1339  bool isAddrMode2() const {
1340  if (!isMem() || Memory.Alignment != 0) return false;
1341  // Check for register offset.
1342  if (Memory.OffsetRegNum) return true;
1343  // Immediate offset in range [-4095, 4095].
1344  if (!Memory.OffsetImm) return true;
1345  int64_t Val = Memory.OffsetImm->getValue();
1346  return Val > -4096 && Val < 4096;
1347  }
1348 
1349  bool isAM2OffsetImm() const {
1350  if (!isImm()) return false;
1351  // Immediate offset in range [-4095, 4095].
1352  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1353  if (!CE) return false;
1354  int64_t Val = CE->getValue();
1355  return (Val == std::numeric_limits<int32_t>::min()) ||
1356  (Val > -4096 && Val < 4096);
1357  }
1358 
1359  bool isAddrMode3() const {
1360  // If we have an immediate that's not a constant, treat it as a label
1361  // reference needing a fixup. If it is a constant, it's something else
1362  // and we reject it.
1363  if (isImm() && !isa<MCConstantExpr>(getImm()))
1364  return true;
1365  if (!isMem() || Memory.Alignment != 0) return false;
1366  // No shifts are legal for AM3.
1367  if (Memory.ShiftType != ARM_AM::no_shift) return false;
1368  // Check for register offset.
1369  if (Memory.OffsetRegNum) return true;
1370  // Immediate offset in range [-255, 255].
1371  if (!Memory.OffsetImm) return true;
1372  int64_t Val = Memory.OffsetImm->getValue();
1373  // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1374  // have to check for this too.
1375  return (Val > -256 && Val < 256) ||
1376  Val == std::numeric_limits<int32_t>::min();
1377  }
1378 
1379  bool isAM3Offset() const {
1380  if (isPostIdxReg())
1381  return true;
1382  if (!isImm())
1383  return false;
1384  // Immediate offset in range [-255, 255].
1385  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1386  if (!CE) return false;
1387  int64_t Val = CE->getValue();
1388  // Special case, #-0 is std::numeric_limits<int32_t>::min().
1389  return (Val > -256 && Val < 256) ||
1390  Val == std::numeric_limits<int32_t>::min();
1391  }
1392 
1393  bool isAddrMode5() const {
1394  // If we have an immediate that's not a constant, treat it as a label
1395  // reference needing a fixup. If it is a constant, it's something else
1396  // and we reject it.
1397  if (isImm() && !isa<MCConstantExpr>(getImm()))
1398  return true;
1399  if (!isMem() || Memory.Alignment != 0) return false;
1400  // Check for register offset.
1401  if (Memory.OffsetRegNum) return false;
1402  // Immediate offset in range [-1020, 1020] and a multiple of 4.
1403  if (!Memory.OffsetImm) return true;
1404  int64_t Val = Memory.OffsetImm->getValue();
1405  return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1406  Val == std::numeric_limits<int32_t>::min();
1407  }
1408 
1409  bool isAddrMode5FP16() const {
1410  // If we have an immediate that's not a constant, treat it as a label
1411  // reference needing a fixup. If it is a constant, it's something else
1412  // and we reject it.
1413  if (isImm() && !isa<MCConstantExpr>(getImm()))
1414  return true;
1415  if (!isMem() || Memory.Alignment != 0) return false;
1416  // Check for register offset.
1417  if (Memory.OffsetRegNum) return false;
1418  // Immediate offset in range [-510, 510] and a multiple of 2.
1419  if (!Memory.OffsetImm) return true;
1420  int64_t Val = Memory.OffsetImm->getValue();
1421  return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1422  Val == std::numeric_limits<int32_t>::min();
1423  }
1424 
1425  bool isMemTBB() const {
1426  if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1427  Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1428  return false;
1429  return true;
1430  }
1431 
1432  bool isMemTBH() const {
1433  if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1434  Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1435  Memory.Alignment != 0 )
1436  return false;
1437  return true;
1438  }
1439 
1440  bool isMemRegOffset() const {
1441  if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1442  return false;
1443  return true;
1444  }
1445 
1446  bool isT2MemRegOffset() const {
1447  if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1448  Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1449  return false;
1450  // Only lsl #{0, 1, 2, 3} allowed.
1451  if (Memory.ShiftType == ARM_AM::no_shift)
1452  return true;
1453  if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1454  return false;
1455  return true;
1456  }
1457 
1458  bool isMemThumbRR() const {
1459  // Thumb reg+reg addressing is simple. Just two registers, a base and
1460  // an offset. No shifts, negations or any other complicating factors.
1461  if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1462  Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1463  return false;
1464  return isARMLowRegister(Memory.BaseRegNum) &&
1465  (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1466  }
1467 
1468  bool isMemThumbRIs4() const {
1469  if (!isMem() || Memory.OffsetRegNum != 0 ||
1470  !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1471  return false;
1472  // Immediate offset, multiple of 4 in range [0, 124].
1473  if (!Memory.OffsetImm) return true;
1474  int64_t Val = Memory.OffsetImm->getValue();
1475  return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1476  }
1477 
1478  bool isMemThumbRIs2() const {
1479  if (!isMem() || Memory.OffsetRegNum != 0 ||
1480  !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1481  return false;
1482  // Immediate offset, multiple of 4 in range [0, 62].
1483  if (!Memory.OffsetImm) return true;
1484  int64_t Val = Memory.OffsetImm->getValue();
1485  return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1486  }
1487 
1488  bool isMemThumbRIs1() const {
1489  if (!isMem() || Memory.OffsetRegNum != 0 ||
1490  !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1491  return false;
1492  // Immediate offset in range [0, 31].
1493  if (!Memory.OffsetImm) return true;
1494  int64_t Val = Memory.OffsetImm->getValue();
1495  return Val >= 0 && Val <= 31;
1496  }
1497 
1498  bool isMemThumbSPI() const {
1499  if (!isMem() || Memory.OffsetRegNum != 0 ||
1500  Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1501  return false;
1502  // Immediate offset, multiple of 4 in range [0, 1020].
1503  if (!Memory.OffsetImm) return true;
1504  int64_t Val = Memory.OffsetImm->getValue();
1505  return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1506  }
1507 
1508  bool isMemImm8s4Offset() const {
1509  // If we have an immediate that's not a constant, treat it as a label
1510  // reference needing a fixup. If it is a constant, it's something else
1511  // and we reject it.
1512  if (isImm() && !isa<MCConstantExpr>(getImm()))
1513  return true;
1514  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1515  return false;
1516  // Immediate offset a multiple of 4 in range [-1020, 1020].
1517  if (!Memory.OffsetImm) return true;
1518  int64_t Val = Memory.OffsetImm->getValue();
1519  // Special case, #-0 is std::numeric_limits<int32_t>::min().
1520  return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1521  Val == std::numeric_limits<int32_t>::min();
1522  }
1523 
1524  bool isMemImm0_1020s4Offset() const {
1525  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1526  return false;
1527  // Immediate offset a multiple of 4 in range [0, 1020].
1528  if (!Memory.OffsetImm) return true;
1529  int64_t Val = Memory.OffsetImm->getValue();
1530  return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1531  }
1532 
1533  bool isMemImm8Offset() const {
1534  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1535  return false;
1536  // Base reg of PC isn't allowed for these encodings.
1537  if (Memory.BaseRegNum == ARM::PC) return false;
1538  // Immediate offset in range [-255, 255].
1539  if (!Memory.OffsetImm) return true;
1540  int64_t Val = Memory.OffsetImm->getValue();
1541  return (Val == std::numeric_limits<int32_t>::min()) ||
1542  (Val > -256 && Val < 256);
1543  }
1544 
1545  bool isMemPosImm8Offset() const {
1546  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1547  return false;
1548  // Immediate offset in range [0, 255].
1549  if (!Memory.OffsetImm) return true;
1550  int64_t Val = Memory.OffsetImm->getValue();
1551  return Val >= 0 && Val < 256;
1552  }
1553 
1554  bool isMemNegImm8Offset() const {
1555  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1556  return false;
1557  // Base reg of PC isn't allowed for these encodings.
1558  if (Memory.BaseRegNum == ARM::PC) return false;
1559  // Immediate offset in range [-255, -1].
1560  if (!Memory.OffsetImm) return false;
1561  int64_t Val = Memory.OffsetImm->getValue();
1562  return (Val == std::numeric_limits<int32_t>::min()) ||
1563  (Val > -256 && Val < 0);
1564  }
1565 
1566  bool isMemUImm12Offset() const {
1567  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1568  return false;
1569  // Immediate offset in range [0, 4095].
1570  if (!Memory.OffsetImm) return true;
1571  int64_t Val = Memory.OffsetImm->getValue();
1572  return (Val >= 0 && Val < 4096);
1573  }
1574 
1575  bool isMemImm12Offset() const {
1576  // If we have an immediate that's not a constant, treat it as a label
1577  // reference needing a fixup. If it is a constant, it's something else
1578  // and we reject it.
1579 
1580  if (isImm() && !isa<MCConstantExpr>(getImm()))
1581  return true;
1582 
1583  if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1584  return false;
1585  // Immediate offset in range [-4095, 4095].
1586  if (!Memory.OffsetImm) return true;
1587  int64_t Val = Memory.OffsetImm->getValue();
1588  return (Val > -4096 && Val < 4096) ||
1589  (Val == std::numeric_limits<int32_t>::min());
1590  }
1591 
1592  bool isConstPoolAsmImm() const {
1593  // Delay processing of Constant Pool Immediate, this will turn into
1594  // a constant. Match no other operand
1595  return (isConstantPoolImm());
1596  }
1597 
1598  bool isPostIdxImm8() const {
1599  if (!isImm()) return false;
1600  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1601  if (!CE) return false;
1602  int64_t Val = CE->getValue();
1603  return (Val > -256 && Val < 256) ||
1604  (Val == std::numeric_limits<int32_t>::min());
1605  }
1606 
1607  bool isPostIdxImm8s4() const {
1608  if (!isImm()) return false;
1609  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1610  if (!CE) return false;
1611  int64_t Val = CE->getValue();
1612  return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1613  (Val == std::numeric_limits<int32_t>::min());
1614  }
1615 
1616  bool isMSRMask() const { return Kind == k_MSRMask; }
1617  bool isBankedReg() const { return Kind == k_BankedReg; }
1618  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1619 
1620  // NEON operands.
1621  bool isSingleSpacedVectorList() const {
1622  return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1623  }
1624 
1625  bool isDoubleSpacedVectorList() const {
1626  return Kind == k_VectorList && VectorList.isDoubleSpaced;
1627  }
1628 
1629  bool isVecListOneD() const {
1630  if (!isSingleSpacedVectorList()) return false;
1631  return VectorList.Count == 1;
1632  }
1633 
1634  bool isVecListDPair() const {
1635  if (!isSingleSpacedVectorList()) return false;
1636  return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1637  .contains(VectorList.RegNum));
1638  }
1639 
1640  bool isVecListThreeD() const {
1641  if (!isSingleSpacedVectorList()) return false;
1642  return VectorList.Count == 3;
1643  }
1644 
1645  bool isVecListFourD() const {
1646  if (!isSingleSpacedVectorList()) return false;
1647  return VectorList.Count == 4;
1648  }
1649 
1650  bool isVecListDPairSpaced() const {
1651  if (Kind != k_VectorList) return false;
1652  if (isSingleSpacedVectorList()) return false;
1653  return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1654  .contains(VectorList.RegNum));
1655  }
1656 
1657  bool isVecListThreeQ() const {
1658  if (!isDoubleSpacedVectorList()) return false;
1659  return VectorList.Count == 3;
1660  }
1661 
1662  bool isVecListFourQ() const {
1663  if (!isDoubleSpacedVectorList()) return false;
1664  return VectorList.Count == 4;
1665  }
1666 
1667  bool isSingleSpacedVectorAllLanes() const {
1668  return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1669  }
1670 
1671  bool isDoubleSpacedVectorAllLanes() const {
1672  return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1673  }
1674 
1675  bool isVecListOneDAllLanes() const {
1676  if (!isSingleSpacedVectorAllLanes()) return false;
1677  return VectorList.Count == 1;
1678  }
1679 
1680  bool isVecListDPairAllLanes() const {
1681  if (!isSingleSpacedVectorAllLanes()) return false;
1682  return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1683  .contains(VectorList.RegNum));
1684  }
1685 
1686  bool isVecListDPairSpacedAllLanes() const {
1687  if (!isDoubleSpacedVectorAllLanes()) return false;
1688  return VectorList.Count == 2;
1689  }
1690 
1691  bool isVecListThreeDAllLanes() const {
1692  if (!isSingleSpacedVectorAllLanes()) return false;
1693  return VectorList.Count == 3;
1694  }
1695 
1696  bool isVecListThreeQAllLanes() const {
1697  if (!isDoubleSpacedVectorAllLanes()) return false;
1698  return VectorList.Count == 3;
1699  }
1700 
1701  bool isVecListFourDAllLanes() const {
1702  if (!isSingleSpacedVectorAllLanes()) return false;
1703  return VectorList.Count == 4;
1704  }
1705 
1706  bool isVecListFourQAllLanes() const {
1707  if (!isDoubleSpacedVectorAllLanes()) return false;
1708  return VectorList.Count == 4;
1709  }
1710 
1711  bool isSingleSpacedVectorIndexed() const {
1712  return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1713  }
1714 
1715  bool isDoubleSpacedVectorIndexed() const {
1716  return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1717  }
1718 
1719  bool isVecListOneDByteIndexed() const {
1720  if (!isSingleSpacedVectorIndexed()) return false;
1721  return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1722  }
1723 
1724  bool isVecListOneDHWordIndexed() const {
1725  if (!isSingleSpacedVectorIndexed()) return false;
1726  return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1727  }
1728 
1729  bool isVecListOneDWordIndexed() const {
1730  if (!isSingleSpacedVectorIndexed()) return false;
1731  return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1732  }
1733 
1734  bool isVecListTwoDByteIndexed() const {
1735  if (!isSingleSpacedVectorIndexed()) return false;
1736  return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1737  }
1738 
1739  bool isVecListTwoDHWordIndexed() const {
1740  if (!isSingleSpacedVectorIndexed()) return false;
1741  return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1742  }
1743 
1744  bool isVecListTwoQWordIndexed() const {
1745  if (!isDoubleSpacedVectorIndexed()) return false;
1746  return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1747  }
1748 
1749  bool isVecListTwoQHWordIndexed() const {
1750  if (!isDoubleSpacedVectorIndexed()) return false;
1751  return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1752  }
1753 
1754  bool isVecListTwoDWordIndexed() const {
1755  if (!isSingleSpacedVectorIndexed()) return false;
1756  return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1757  }
1758 
1759  bool isVecListThreeDByteIndexed() const {
1760  if (!isSingleSpacedVectorIndexed()) return false;
1761  return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1762  }
1763 
1764  bool isVecListThreeDHWordIndexed() const {
1765  if (!isSingleSpacedVectorIndexed()) return false;
1766  return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1767  }
1768 
1769  bool isVecListThreeQWordIndexed() const {
1770  if (!isDoubleSpacedVectorIndexed()) return false;
1771  return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1772  }
1773 
1774  bool isVecListThreeQHWordIndexed() const {
1775  if (!isDoubleSpacedVectorIndexed()) return false;
1776  return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1777  }
1778 
1779  bool isVecListThreeDWordIndexed() const {
1780  if (!isSingleSpacedVectorIndexed()) return false;
1781  return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1782  }
1783 
1784  bool isVecListFourDByteIndexed() const {
1785  if (!isSingleSpacedVectorIndexed()) return false;
1786  return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1787  }
1788 
1789  bool isVecListFourDHWordIndexed() const {
1790  if (!isSingleSpacedVectorIndexed()) return false;
1791  return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1792  }
1793 
1794  bool isVecListFourQWordIndexed() const {
1795  if (!isDoubleSpacedVectorIndexed()) return false;
1796  return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1797  }
1798 
1799  bool isVecListFourQHWordIndexed() const {
1800  if (!isDoubleSpacedVectorIndexed()) return false;
1801  return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1802  }
1803 
1804  bool isVecListFourDWordIndexed() const {
1805  if (!isSingleSpacedVectorIndexed()) return false;
1806  return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1807  }
1808 
1809  bool isVectorIndex8() const {
1810  if (Kind != k_VectorIndex) return false;
1811  return VectorIndex.Val < 8;
1812  }
1813 
1814  bool isVectorIndex16() const {
1815  if (Kind != k_VectorIndex) return false;
1816  return VectorIndex.Val < 4;
1817  }
1818 
1819  bool isVectorIndex32() const {
1820  if (Kind != k_VectorIndex) return false;
1821  return VectorIndex.Val < 2;
1822  }
1823  bool isVectorIndex64() const {
1824  if (Kind != k_VectorIndex) return false;
1825  return VectorIndex.Val < 1;
1826  }
1827 
1828  bool isNEONi8splat() const {
1829  if (!isImm()) return false;
1830  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1831  // Must be a constant.
1832  if (!CE) return false;
1833  int64_t Value = CE->getValue();
1834  // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1835  // value.
1836  return Value >= 0 && Value < 256;
1837  }
1838 
1839  bool isNEONi16splat() const {
1840  if (isNEONByteReplicate(2))
1841  return false; // Leave that for bytes replication and forbid by default.
1842  if (!isImm())
1843  return false;
1844  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1845  // Must be a constant.
1846  if (!CE) return false;
1847  unsigned Value = CE->getValue();
1848  return ARM_AM::isNEONi16splat(Value);
1849  }
1850 
1851  bool isNEONi16splatNot() const {
1852  if (!isImm())
1853  return false;
1854  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1855  // Must be a constant.
1856  if (!CE) return false;
1857  unsigned Value = CE->getValue();
1858  return ARM_AM::isNEONi16splat(~Value & 0xffff);
1859  }
1860 
1861  bool isNEONi32splat() const {
1862  if (isNEONByteReplicate(4))
1863  return false; // Leave that for bytes replication and forbid by default.
1864  if (!isImm())
1865  return false;
1866  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1867  // Must be a constant.
1868  if (!CE) return false;
1869  unsigned Value = CE->getValue();
1870  return ARM_AM::isNEONi32splat(Value);
1871  }
1872 
1873  bool isNEONi32splatNot() const {
1874  if (!isImm())
1875  return false;
1876  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1877  // Must be a constant.
1878  if (!CE) return false;
1879  unsigned Value = CE->getValue();
1880  return ARM_AM::isNEONi32splat(~Value);
1881  }
1882 
1883  static bool isValidNEONi32vmovImm(int64_t Value) {
1884  // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1885  // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1886  return ((Value & 0xffffffffffffff00) == 0) ||
1887  ((Value & 0xffffffffffff00ff) == 0) ||
1888  ((Value & 0xffffffffff00ffff) == 0) ||
1889  ((Value & 0xffffffff00ffffff) == 0) ||
1890  ((Value & 0xffffffffffff00ff) == 0xff) ||
1891  ((Value & 0xffffffffff00ffff) == 0xffff);
1892  }
1893 
1894  bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
1895  assert((Width == 8 || Width == 16 || Width == 32) &&
1896  "Invalid element width");
1897  assert(NumElems * Width <= 64 && "Invalid result width");
1898 
1899  if (!isImm())
1900  return false;
1901  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1902  // Must be a constant.
1903  if (!CE)
1904  return false;
1905  int64_t Value = CE->getValue();
1906  if (!Value)
1907  return false; // Don't bother with zero.
1908  if (Inv)
1909  Value = ~Value;
1910 
1911  uint64_t Mask = (1ull << Width) - 1;
1912  uint64_t Elem = Value & Mask;
1913  if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
1914  return false;
1915  if (Width == 32 && !isValidNEONi32vmovImm(Elem))
1916  return false;
1917 
1918  for (unsigned i = 1; i < NumElems; ++i) {
1919  Value >>= Width;
1920  if ((Value & Mask) != Elem)
1921  return false;
1922  }
1923  return true;
1924  }
1925 
1926  bool isNEONByteReplicate(unsigned NumBytes) const {
1927  return isNEONReplicate(8, NumBytes, false);
1928  }
1929 
1930  static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
1931  assert((FromW == 8 || FromW == 16 || FromW == 32) &&
1932  "Invalid source width");
1933  assert((ToW == 16 || ToW == 32 || ToW == 64) &&
1934  "Invalid destination width");
1935  assert(FromW < ToW && "ToW is not less than FromW");
1936  }
1937 
1938  template<unsigned FromW, unsigned ToW>
1939  bool isNEONmovReplicate() const {
1940  checkNeonReplicateArgs(FromW, ToW);
1941  if (ToW == 64 && isNEONi64splat())
1942  return false;
1943  return isNEONReplicate(FromW, ToW / FromW, false);
1944  }
1945 
1946  template<unsigned FromW, unsigned ToW>
1947  bool isNEONinvReplicate() const {
1948  checkNeonReplicateArgs(FromW, ToW);
1949  return isNEONReplicate(FromW, ToW / FromW, true);
1950  }
1951 
1952  bool isNEONi32vmov() const {
1953  if (isNEONByteReplicate(4))
1954  return false; // Let it to be classified as byte-replicate case.
1955  if (!isImm())
1956  return false;
1957  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1958  // Must be a constant.
1959  if (!CE)
1960  return false;
1961  return isValidNEONi32vmovImm(CE->getValue());
1962  }
1963 
1964  bool isNEONi32vmovNeg() const {
1965  if (!isImm()) return false;
1966  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1967  // Must be a constant.
1968  if (!CE) return false;
1969  return isValidNEONi32vmovImm(~CE->getValue());
1970  }
1971 
1972  bool isNEONi64splat() const {
1973  if (!isImm()) return false;
1974  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1975  // Must be a constant.
1976  if (!CE) return false;
1977  uint64_t Value = CE->getValue();
1978  // i64 value with each byte being either 0 or 0xff.
1979  for (unsigned i = 0; i < 8; ++i, Value >>= 8)
1980  if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1981  return true;
1982  }
1983 
1984  template<int64_t Angle, int64_t Remainder>
1985  bool isComplexRotation() const {
1986  if (!isImm()) return false;
1987 
1988  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1989  if (!CE) return false;
1990  uint64_t Value = CE->getValue();
1991 
1992  return (Value % Angle == Remainder && Value <= 270);
1993  }
1994 
1995  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1996  // Add as immediates when possible. Null MCExpr = 0.
1997  if (!Expr)
1999  else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2000  Inst.addOperand(MCOperand::createImm(CE->getValue()));
2001  else
2002  Inst.addOperand(MCOperand::createExpr(Expr));
2003  }
2004 
2005  void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2006  assert(N == 1 && "Invalid number of operands!");
2007  addExpr(Inst, getImm());
2008  }
2009 
2010  void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2011  assert(N == 1 && "Invalid number of operands!");
2012  addExpr(Inst, getImm());
2013  }
2014 
2015  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2016  assert(N == 2 && "Invalid number of operands!");
2017  Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2018  unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2019  Inst.addOperand(MCOperand::createReg(RegNum));
2020  }
2021 
2022  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2023  assert(N == 1 && "Invalid number of operands!");
2024  Inst.addOperand(MCOperand::createImm(getCoproc()));
2025  }
2026 
2027  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2028  assert(N == 1 && "Invalid number of operands!");
2029  Inst.addOperand(MCOperand::createImm(getCoproc()));
2030  }
2031 
2032  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2033  assert(N == 1 && "Invalid number of operands!");
2034  Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2035  }
2036 
2037  void addITMaskOperands(MCInst &Inst, unsigned N) const {
2038  assert(N == 1 && "Invalid number of operands!");
2039  Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2040  }
2041 
2042  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2043  assert(N == 1 && "Invalid number of operands!");
2044  Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2045  }
2046 
2047  void addCCOutOperands(MCInst &Inst, unsigned N) const {
2048  assert(N == 1 && "Invalid number of operands!");
2050  }
2051 
2052  void addRegOperands(MCInst &Inst, unsigned N) const {
2053  assert(N == 1 && "Invalid number of operands!");
2055  }
2056 
2057  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2058  assert(N == 3 && "Invalid number of operands!");
2059  assert(isRegShiftedReg() &&
2060  "addRegShiftedRegOperands() on non-RegShiftedReg!");
2061  Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2062  Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2064  ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2065  }
2066 
2067  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2068  assert(N == 2 && "Invalid number of operands!");
2069  assert(isRegShiftedImm() &&
2070  "addRegShiftedImmOperands() on non-RegShiftedImm!");
2071  Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2072  // Shift of #32 is encoded as 0 where permitted
2073  unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2075  ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2076  }
2077 
2078  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2079  assert(N == 1 && "Invalid number of operands!");
2080  Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2081  ShifterImm.Imm));
2082  }
2083 
2084  void addRegListOperands(MCInst &Inst, unsigned N) const {
2085  assert(N == 1 && "Invalid number of operands!");
2086  const SmallVectorImpl<unsigned> &RegList = getRegList();
2088  I = RegList.begin(), E = RegList.end(); I != E; ++I)
2090  }
2091 
2092  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2093  addRegListOperands(Inst, N);
2094  }
2095 
2096  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2097  addRegListOperands(Inst, N);
2098  }
2099 
2100  void addRotImmOperands(MCInst &Inst, unsigned N) const {
2101  assert(N == 1 && "Invalid number of operands!");
2102  // Encoded as val>>3. The printer handles display as 8, 16, 24.
2103  Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2104  }
2105 
2106  void addModImmOperands(MCInst &Inst, unsigned N) const {
2107  assert(N == 1 && "Invalid number of operands!");
2108 
2109  // Support for fixups (MCFixup)
2110  if (isImm())
2111  return addImmOperands(Inst, N);
2112 
2113  Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2114  }
2115 
2116  void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2117  assert(N == 1 && "Invalid number of operands!");
2118  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2119  uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2120  Inst.addOperand(MCOperand::createImm(Enc));
2121  }
2122 
2123  void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2124  assert(N == 1 && "Invalid number of operands!");
2125  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2126  uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2127  Inst.addOperand(MCOperand::createImm(Enc));
2128  }
2129 
2130  void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2131  assert(N == 1 && "Invalid number of operands!");
2132  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2133  uint32_t Val = -CE->getValue();
2134  Inst.addOperand(MCOperand::createImm(Val));
2135  }
2136 
2137  void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2138  assert(N == 1 && "Invalid number of operands!");
2139  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2140  uint32_t Val = -CE->getValue();
2141  Inst.addOperand(MCOperand::createImm(Val));
2142  }
2143 
2144  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2145  assert(N == 1 && "Invalid number of operands!");
2146  // Munge the lsb/width into a bitfield mask.
2147  unsigned lsb = Bitfield.LSB;
2148  unsigned width = Bitfield.Width;
2149  // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2150  uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2151  (32 - (lsb + width)));
2152  Inst.addOperand(MCOperand::createImm(Mask));
2153  }
2154 
2155  void addImmOperands(MCInst &Inst, unsigned N) const {
2156  assert(N == 1 && "Invalid number of operands!");
2157  addExpr(Inst, getImm());
2158  }
2159 
2160  void addFBits16Operands(MCInst &Inst, unsigned N) const {
2161  assert(N == 1 && "Invalid number of operands!");
2162  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2163  Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2164  }
2165 
2166  void addFBits32Operands(MCInst &Inst, unsigned N) const {
2167  assert(N == 1 && "Invalid number of operands!");
2168  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2169  Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2170  }
2171 
2172  void addFPImmOperands(MCInst &Inst, unsigned N) const {
2173  assert(N == 1 && "Invalid number of operands!");
2174  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2175  int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2176  Inst.addOperand(MCOperand::createImm(Val));
2177  }
2178 
2179  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2180  assert(N == 1 && "Invalid number of operands!");
2181  // FIXME: We really want to scale the value here, but the LDRD/STRD
2182  // instruction don't encode operands that way yet.
2183  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2185  }
2186 
2187  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2188  assert(N == 1 && "Invalid number of operands!");
2189  // The immediate is scaled by four in the encoding and is stored
2190  // in the MCInst as such. Lop off the low two bits here.
2191  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2192  Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2193  }
2194 
2195  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2196  assert(N == 1 && "Invalid number of operands!");
2197  // The immediate is scaled by four in the encoding and is stored
2198  // in the MCInst as such. Lop off the low two bits here.
2199  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2200  Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2201  }
2202 
2203  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2204  assert(N == 1 && "Invalid number of operands!");
2205  // The immediate is scaled by four in the encoding and is stored
2206  // in the MCInst as such. Lop off the low two bits here.
2207  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2208  Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2209  }
2210 
2211  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2212  assert(N == 1 && "Invalid number of operands!");
2213  // The constant encodes as the immediate-1, and we store in the instruction
2214  // the bits as encoded, so subtract off one here.
2215  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2216  Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2217  }
2218 
2219  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2220  assert(N == 1 && "Invalid number of operands!");
2221  // The constant encodes as the immediate-1, and we store in the instruction
2222  // the bits as encoded, so subtract off one here.
2223  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2224  Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2225  }
2226 
2227  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2228  assert(N == 1 && "Invalid number of operands!");
2229  // The constant encodes as the immediate, except for 32, which encodes as
2230  // zero.
2231  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2232  unsigned Imm = CE->getValue();
2233  Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2234  }
2235 
2236  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2237  assert(N == 1 && "Invalid number of operands!");
2238  // An ASR value of 32 encodes as 0, so that's how we want to add it to
2239  // the instruction as well.
2240  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2241  int Val = CE->getValue();
2242  Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2243  }
2244 
2245  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2246  assert(N == 1 && "Invalid number of operands!");
2247  // The operand is actually a t2_so_imm, but we have its bitwise
2248  // negation in the assembly source, so twiddle it here.
2249  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2251  }
2252 
2253  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2254  assert(N == 1 && "Invalid number of operands!");
2255  // The operand is actually a t2_so_imm, but we have its
2256  // negation in the assembly source, so twiddle it here.
2257  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2259  }
2260 
2261  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2262  assert(N == 1 && "Invalid number of operands!");
2263  // The operand is actually an imm0_4095, but we have its
2264  // negation in the assembly source, so twiddle it here.
2265  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2267  }
2268 
2269  void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2270  if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2271  Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2272  return;
2273  }
2274 
2275  const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2276  assert(SR && "Unknown value type!");
2278  }
2279 
2280  void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2281  assert(N == 1 && "Invalid number of operands!");
2282  if (isImm()) {
2283  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2284  if (CE) {
2286  return;
2287  }
2288 
2289  const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2290 
2291  assert(SR && "Unknown value type!");
2293  return;
2294  }
2295 
2296  assert(isMem() && "Unknown value type!");
2297  assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2298  Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2299  }
2300 
2301  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2302  assert(N == 1 && "Invalid number of operands!");
2303  Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2304  }
2305 
2306  void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2307  assert(N == 1 && "Invalid number of operands!");
2308  Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2309  }
2310 
2311  void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2312  assert(N == 1 && "Invalid number of operands!");
2313  Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2314  }
2315 
2316  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2317  assert(N == 1 && "Invalid number of operands!");
2318  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2319  }
2320 
2321  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2322  assert(N == 1 && "Invalid number of operands!");
2323  int32_t Imm = Memory.OffsetImm->getValue();
2324  Inst.addOperand(MCOperand::createImm(Imm));
2325  }
2326 
2327  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2328  assert(N == 1 && "Invalid number of operands!");
2329  assert(isImm() && "Not an immediate!");
2330 
2331  // If we have an immediate that's not a constant, treat it as a label
2332  // reference needing a fixup.
2333  if (!isa<MCConstantExpr>(getImm())) {
2334  Inst.addOperand(MCOperand::createExpr(getImm()));
2335  return;
2336  }
2337 
2338  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2339  int Val = CE->getValue();
2340  Inst.addOperand(MCOperand::createImm(Val));
2341  }
2342 
2343  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2344  assert(N == 2 && "Invalid number of operands!");
2345  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2346  Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2347  }
2348 
2349  void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2350  addAlignedMemoryOperands(Inst, N);
2351  }
2352 
2353  void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2354  addAlignedMemoryOperands(Inst, N);
2355  }
2356 
2357  void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2358  addAlignedMemoryOperands(Inst, N);
2359  }
2360 
2361  void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2362  addAlignedMemoryOperands(Inst, N);
2363  }
2364 
2365  void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2366  addAlignedMemoryOperands(Inst, N);
2367  }
2368 
2369  void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2370  addAlignedMemoryOperands(Inst, N);
2371  }
2372 
2373  void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2374  addAlignedMemoryOperands(Inst, N);
2375  }
2376 
2377  void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2378  addAlignedMemoryOperands(Inst, N);
2379  }
2380 
2381  void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2382  addAlignedMemoryOperands(Inst, N);
2383  }
2384 
2385  void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2386  addAlignedMemoryOperands(Inst, N);
2387  }
2388 
2389  void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2390  addAlignedMemoryOperands(Inst, N);
2391  }
2392 
2393  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2394  assert(N == 3 && "Invalid number of operands!");
2395  int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2396  if (!Memory.OffsetRegNum) {
2397  ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2398  // Special case for #-0
2399  if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2400  if (Val < 0) Val = -Val;
2401  Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2402  } else {
2403  // For register offset, we encode the shift type and negation flag
2404  // here.
2405  Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2406  Memory.ShiftImm, Memory.ShiftType);
2407  }
2408  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2409  Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2410  Inst.addOperand(MCOperand::createImm(Val));
2411  }
2412 
2413  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2414  assert(N == 2 && "Invalid number of operands!");
2415  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2416  assert(CE && "non-constant AM2OffsetImm operand!");
2417  int32_t Val = CE->getValue();
2418  ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2419  // Special case for #-0
2420  if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2421  if (Val < 0) Val = -Val;
2422  Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2424  Inst.addOperand(MCOperand::createImm(Val));
2425  }
2426 
2427  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2428  assert(N == 3 && "Invalid number of operands!");
2429  // If we have an immediate that's not a constant, treat it as a label
2430  // reference needing a fixup. If it is a constant, it's something else
2431  // and we reject it.
2432  if (isImm()) {
2433  Inst.addOperand(MCOperand::createExpr(getImm()));
2436  return;
2437  }
2438 
2439  int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2440  if (!Memory.OffsetRegNum) {
2441  ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2442  // Special case for #-0
2443  if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2444  if (Val < 0) Val = -Val;
2445  Val = ARM_AM::getAM3Opc(AddSub, Val);
2446  } else {
2447  // For register offset, we encode the shift type and negation flag
2448  // here.
2449  Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2450  }
2451  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2452  Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2453  Inst.addOperand(MCOperand::createImm(Val));
2454  }
2455 
2456  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2457  assert(N == 2 && "Invalid number of operands!");
2458  if (Kind == k_PostIndexRegister) {
2459  int32_t Val =
2460  ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2461  Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2462  Inst.addOperand(MCOperand::createImm(Val));
2463  return;
2464  }
2465 
2466  // Constant offset.
2467  const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2468  int32_t Val = CE->getValue();
2469  ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2470  // Special case for #-0
2471  if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2472  if (Val < 0) Val = -Val;
2473  Val = ARM_AM::getAM3Opc(AddSub, Val);
2475  Inst.addOperand(MCOperand::createImm(Val));
2476  }
2477 
2478  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2479  assert(N == 2 && "Invalid number of operands!");
2480  // If we have an immediate that's not a constant, treat it as a label
2481  // reference needing a fixup. If it is a constant, it's something else
2482  // and we reject it.
2483  if (isImm()) {
2484  Inst.addOperand(MCOperand::createExpr(getImm()));
2486  return;
2487  }
2488 
2489  // The lower two bits are always zero and as such are not encoded.
2490  int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2491  ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2492  // Special case for #-0
2493  if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2494  if (Val < 0) Val = -Val;
2495  Val = ARM_AM::getAM5Opc(AddSub, Val);
2496  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2497  Inst.addOperand(MCOperand::createImm(Val));
2498  }
2499 
2500  void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2501  assert(N == 2 && "Invalid number of operands!");
2502  // If we have an immediate that's not a constant, treat it as a label
2503  // reference needing a fixup. If it is a constant, it's something else
2504  // and we reject it.
2505  if (isImm()) {
2506  Inst.addOperand(MCOperand::createExpr(getImm()));
2508  return;
2509  }
2510 
2511  // The lower bit is always zero and as such is not encoded.
2512  int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2513  ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2514  // Special case for #-0
2515  if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2516  if (Val < 0) Val = -Val;
2517  Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2518  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2519  Inst.addOperand(MCOperand::createImm(Val));
2520  }
2521 
2522  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2523  assert(N == 2 && "Invalid number of operands!");
2524  // If we have an immediate that's not a constant, treat it as a label
2525  // reference needing a fixup. If it is a constant, it's something else
2526  // and we reject it.
2527  if (isImm()) {
2528  Inst.addOperand(MCOperand::createExpr(getImm()));
2530  return;
2531  }
2532 
2533  int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2534  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2535  Inst.addOperand(MCOperand::createImm(Val));
2536  }
2537 
2538  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2539  assert(N == 2 && "Invalid number of operands!");
2540  // The lower two bits are always zero and as such are not encoded.
2541  int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2542  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2543  Inst.addOperand(MCOperand::createImm(Val));
2544  }
2545 
2546  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2547  assert(N == 2 && "Invalid number of operands!");
2548  int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2549  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2550  Inst.addOperand(MCOperand::createImm(Val));
2551  }
2552 
2553  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2554  addMemImm8OffsetOperands(Inst, N);
2555  }
2556 
2557  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2558  addMemImm8OffsetOperands(Inst, N);
2559  }
2560 
2561  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2562  assert(N == 2 && "Invalid number of operands!");
2563  // If this is an immediate, it's a label reference.
2564  if (isImm()) {
2565  addExpr(Inst, getImm());
2567  return;
2568  }
2569 
2570  // Otherwise, it's a normal memory reg+offset.
2571  int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2572  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2573  Inst.addOperand(MCOperand::createImm(Val));
2574  }
2575 
2576  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2577  assert(N == 2 && "Invalid number of operands!");
2578  // If this is an immediate, it's a label reference.
2579  if (isImm()) {
2580  addExpr(Inst, getImm());
2582  return;
2583  }
2584 
2585  // Otherwise, it's a normal memory reg+offset.
2586  int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2587  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2588  Inst.addOperand(MCOperand::createImm(Val));
2589  }
2590 
2591  void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
2592  assert(N == 1 && "Invalid number of operands!");
2593  // This is container for the immediate that we will create the constant
2594  // pool from
2595  addExpr(Inst, getConstantPoolImm());
2596  return;
2597  }
2598 
2599  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2600  assert(N == 2 && "Invalid number of operands!");
2601  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2602  Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2603  }
2604 
2605  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2606  assert(N == 2 && "Invalid number of operands!");
2607  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2608  Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2609  }
2610 
2611  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2612  assert(N == 3 && "Invalid number of operands!");
2613  unsigned Val =
2615  Memory.ShiftImm, Memory.ShiftType);
2616  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2617  Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2618  Inst.addOperand(MCOperand::createImm(Val));
2619  }
2620 
2621  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2622  assert(N == 3 && "Invalid number of operands!");
2623  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2624  Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2625  Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
2626  }
2627 
2628  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2629  assert(N == 2 && "Invalid number of operands!");
2630  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2631  Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2632  }
2633 
2634  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2635  assert(N == 2 && "Invalid number of operands!");
2636  int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2637  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2638  Inst.addOperand(MCOperand::createImm(Val));
2639  }
2640 
2641  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2642  assert(N == 2 && "Invalid number of operands!");
2643  int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2644  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2645  Inst.addOperand(MCOperand::createImm(Val));
2646  }
2647 
2648  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2649  assert(N == 2 && "Invalid number of operands!");
2650  int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2651  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2652  Inst.addOperand(MCOperand::createImm(Val));
2653  }
2654 
2655  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2656  assert(N == 2 && "Invalid number of operands!");
2657  int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2658  Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2659  Inst.addOperand(MCOperand::createImm(Val));
2660  }
2661 
2662  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2663  assert(N == 1 && "Invalid number of operands!");
2664  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2665  assert(CE && "non-constant post-idx-imm8 operand!");
2666  int Imm = CE->getValue();
2667  bool isAdd = Imm >= 0;
2668  if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2669  Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2670  Inst.addOperand(MCOperand::createImm(Imm));
2671  }
2672 
2673  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2674  assert(N == 1 && "Invalid number of operands!");
2675  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2676  assert(CE && "non-constant post-idx-imm8s4 operand!");
2677  int Imm = CE->getValue();
2678  bool isAdd = Imm >= 0;
2679  if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2680  // Immediate is scaled by 4.
2681  Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2682  Inst.addOperand(MCOperand::createImm(Imm));
2683  }
2684 
2685  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2686  assert(N == 2 && "Invalid number of operands!");
2687  Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2688  Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
2689  }
2690 
2691  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2692  assert(N == 2 && "Invalid number of operands!");
2693  Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2694  // The sign, shift type, and shift amount are encoded in a single operand
2695  // using the AM2 encoding helpers.
2696  ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2697  unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2698  PostIdxReg.ShiftTy);
2699  Inst.addOperand(MCOperand::createImm(Imm));
2700  }
2701 
2702  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2703  assert(N == 1 && "Invalid number of operands!");
2704  Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2705  }
2706 
2707  void addBankedRegOperands(MCInst &Inst, unsigned N) const {
2708  assert(N == 1 && "Invalid number of operands!");
2709  Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2710  }
2711 
2712  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2713  assert(N == 1 && "Invalid number of operands!");
2714  Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2715  }
2716 
2717  void addVecListOperands(MCInst &Inst, unsigned N) const {
2718  assert(N == 1 && "Invalid number of operands!");
2719  Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2720  }
2721 
2722  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2723  assert(N == 2 && "Invalid number of operands!");
2724  Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2725  Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
2726  }
2727 
2728  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2729  assert(N == 1 && "Invalid number of operands!");
2730  Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2731  }
2732 
2733  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2734  assert(N == 1 && "Invalid number of operands!");
2735  Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2736  }
2737 
2738  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2739  assert(N == 1 && "Invalid number of operands!");
2740  Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2741  }
2742 
2743  void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
2744  assert(N == 1 && "Invalid number of operands!");
2745  Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2746  }
2747 
2748  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2749  assert(N == 1 && "Invalid number of operands!");
2750  // The immediate encodes the type of constant as well as the value.
2751  // Mask in that this is an i8 splat.
2752  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2753  Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
2754  }
2755 
2756  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2757  assert(N == 1 && "Invalid number of operands!");
2758  // The immediate encodes the type of constant as well as the value.
2759  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2760  unsigned Value = CE->getValue();
2761  Value = ARM_AM::encodeNEONi16splat(Value);
2762  Inst.addOperand(MCOperand::createImm(Value));
2763  }
2764 
2765  void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
2766  assert(N == 1 && "Invalid number of operands!");
2767  // The immediate encodes the type of constant as well as the value.
2768  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2769  unsigned Value = CE->getValue();
2770  Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
2771  Inst.addOperand(MCOperand::createImm(Value));
2772  }
2773 
2774  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2775  assert(N == 1 && "Invalid number of operands!");
2776  // The immediate encodes the type of constant as well as the value.
2777  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2778  unsigned Value = CE->getValue();
2779  Value = ARM_AM::encodeNEONi32splat(Value);
2780  Inst.addOperand(MCOperand::createImm(Value));
2781  }
2782 
2783  void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
2784  assert(N == 1 && "Invalid number of operands!");
2785  // The immediate encodes the type of constant as well as the value.
2786  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2787  unsigned Value = CE->getValue();
2788  Value = ARM_AM::encodeNEONi32splat(~Value);
2789  Inst.addOperand(MCOperand::createImm(Value));
2790  }
2791 
2792  void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
2793  // The immediate encodes the type of constant as well as the value.
2794  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2795  assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2796  Inst.getOpcode() == ARM::VMOVv16i8) &&
2797  "All instructions that wants to replicate non-zero byte "
2798  "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2799  unsigned Value = CE->getValue();
2800  if (Inv)
2801  Value = ~Value;
2802  unsigned B = Value & 0xff;
2803  B |= 0xe00; // cmode = 0b1110
2805  }
2806 
2807  void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2808  assert(N == 1 && "Invalid number of operands!");
2809  addNEONi8ReplicateOperands(Inst, true);
2810  }
2811 
2812  static unsigned encodeNeonVMOVImmediate(unsigned Value) {
2813  if (Value >= 256 && Value <= 0xffff)
2814  Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2815  else if (Value > 0xffff && Value <= 0xffffff)
2816  Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2817  else if (Value > 0xffffff)
2818  Value = (Value >> 24) | 0x600;
2819  return Value;
2820  }
2821 
2822  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2823  assert(N == 1 && "Invalid number of operands!");
2824  // The immediate encodes the type of constant as well as the value.
2825  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2826  unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
2827  Inst.addOperand(MCOperand::createImm(Value));
2828  }
2829 
2830  void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2831  assert(N == 1 && "Invalid number of operands!");
2832  addNEONi8ReplicateOperands(Inst, false);
2833  }
2834 
2835  void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
2836  assert(N == 1 && "Invalid number of operands!");
2837  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2838  assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
2839  Inst.getOpcode() == ARM::VMOVv8i16 ||
2840  Inst.getOpcode() == ARM::VMVNv4i16 ||
2841  Inst.getOpcode() == ARM::VMVNv8i16) &&
2842  "All instructions that want to replicate non-zero half-word "
2843  "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2844  uint64_t Value = CE->getValue();
2845  unsigned Elem = Value & 0xffff;
2846  if (Elem >= 256)
2847  Elem = (Elem >> 8) | 0x200;
2848  Inst.addOperand(MCOperand::createImm(Elem));
2849  }
2850 
2851  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2852  assert(N == 1 && "Invalid number of operands!");
2853  // The immediate encodes the type of constant as well as the value.
2854  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2855  unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
2856  Inst.addOperand(MCOperand::createImm(Value));
2857  }
2858 
2859  void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
2860  assert(N == 1 && "Invalid number of operands!");
2861  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2862  assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
2863  Inst.getOpcode() == ARM::VMOVv4i32 ||
2864  Inst.getOpcode() == ARM::VMVNv2i32 ||
2865  Inst.getOpcode() == ARM::VMVNv4i32) &&
2866  "All instructions that want to replicate non-zero word "
2867  "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2868  uint64_t Value = CE->getValue();
2869  unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
2870  Inst.addOperand(MCOperand::createImm(Elem));
2871  }
2872 
2873  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2874  assert(N == 1 && "Invalid number of operands!");
2875  // The immediate encodes the type of constant as well as the value.
2876  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2877  uint64_t Value = CE->getValue();
2878  unsigned Imm = 0;
2879  for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2880  Imm |= (Value & 1) << i;
2881  }
2882  Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
2883  }
2884 
2885  void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
2886  assert(N == 1 && "Invalid number of operands!");
2887  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2888  Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
2889  }
2890 
2891  void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
2892  assert(N == 1 && "Invalid number of operands!");
2893  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2894  Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
2895  }
2896 
2897  void print(raw_ostream &OS) const override;
2898 
2899  static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
2900  auto Op = make_unique<ARMOperand>(k_ITCondMask);
2901  Op->ITMask.Mask = Mask;
2902  Op->StartLoc = S;
2903  Op->EndLoc = S;
2904  return Op;
2905  }
2906 
2907  static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
2908  SMLoc S) {
2909  auto Op = make_unique<ARMOperand>(k_CondCode);
2910  Op->CC.Val = CC;
2911  Op->StartLoc = S;
2912  Op->EndLoc = S;
2913  return Op;
2914  }
2915 
2916  static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
2917  auto Op = make_unique<ARMOperand>(k_CoprocNum);
2918  Op->Cop.Val = CopVal;
2919  Op->StartLoc = S;
2920  Op->EndLoc = S;
2921  return Op;
2922  }
2923 
2924  static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
2925  auto Op = make_unique<ARMOperand>(k_CoprocReg);
2926  Op->Cop.Val = CopVal;
2927  Op->StartLoc = S;
2928  Op->EndLoc = S;
2929  return Op;
2930  }
2931 
2932  static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
2933  SMLoc E) {
2934  auto Op = make_unique<ARMOperand>(k_CoprocOption);
2935  Op->Cop.Val = Val;
2936  Op->StartLoc = S;
2937  Op->EndLoc = E;
2938  return Op;
2939  }
2940 
2941  static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
2942  auto Op = make_unique<ARMOperand>(k_CCOut);
2943  Op->Reg.RegNum = RegNum;
2944  Op->StartLoc = S;
2945  Op->EndLoc = S;
2946  return Op;
2947  }
2948 
2949  static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
2950  auto Op = make_unique<ARMOperand>(k_Token);
2951  Op->Tok.Data = Str.data();
2952  Op->Tok.Length = Str.size();
2953  Op->StartLoc = S;
2954  Op->EndLoc = S;
2955  return Op;
2956  }
2957 
2958  static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
2959  SMLoc E) {
2960  auto Op = make_unique<ARMOperand>(k_Register);
2961  Op->Reg.RegNum = RegNum;
2962  Op->StartLoc = S;
2963  Op->EndLoc = E;
2964  return Op;
2965  }
2966 
2967  static std::unique_ptr<ARMOperand>
2968  CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2969  unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
2970  SMLoc E) {
2971  auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
2972  Op->RegShiftedReg.ShiftTy = ShTy;
2973  Op->RegShiftedReg.SrcReg = SrcReg;
2974  Op->RegShiftedReg.ShiftReg = ShiftReg;
2975  Op->RegShiftedReg.ShiftImm = ShiftImm;
2976  Op->StartLoc = S;
2977  Op->EndLoc = E;
2978  return Op;
2979  }
2980 
2981  static std::unique_ptr<ARMOperand>
2982  CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2983  unsigned ShiftImm, SMLoc S, SMLoc E) {
2984  auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
2985  Op->RegShiftedImm.ShiftTy = ShTy;
2986  Op->RegShiftedImm.SrcReg = SrcReg;
2987  Op->RegShiftedImm.ShiftImm = ShiftImm;
2988  Op->StartLoc = S;
2989  Op->EndLoc = E;
2990  return Op;
2991  }
2992 
2993  static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
2994  SMLoc S, SMLoc E) {
2995  auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
2996  Op->ShifterImm.isASR = isASR;
2997  Op->ShifterImm.Imm = Imm;
2998  Op->StartLoc = S;
2999  Op->EndLoc = E;
3000  return Op;
3001  }
3002 
3003  static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3004  SMLoc E) {
3005  auto Op = make_unique<ARMOperand>(k_RotateImmediate);
3006  Op->RotImm.Imm = Imm;
3007  Op->StartLoc = S;
3008  Op->EndLoc = E;
3009  return Op;
3010  }
3011 
3012  static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3013  SMLoc S, SMLoc E) {
3014  auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
3015  Op->ModImm.Bits = Bits;
3016  Op->ModImm.Rot = Rot;
3017  Op->StartLoc = S;
3018  Op->EndLoc = E;
3019  return Op;
3020  }
3021 
3022  static std::unique_ptr<ARMOperand>
3023  CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3024  auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate);
3025  Op->Imm.Val = Val;
3026  Op->StartLoc = S;
3027  Op->EndLoc = E;
3028  return Op;
3029  }
3030 
3031  static std::unique_ptr<ARMOperand>
3032  CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3033  auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
3034  Op->Bitfield.LSB = LSB;
3035  Op->Bitfield.Width = Width;
3036  Op->StartLoc = S;
3037  Op->EndLoc = E;
3038  return Op;
3039  }
3040 
3041  static std::unique_ptr<ARMOperand>
3042  CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3043  SMLoc StartLoc, SMLoc EndLoc) {
3044  assert(Regs.size() > 0 && "RegList contains no registers?");
3045  KindTy Kind = k_RegisterList;
3046 
3047  if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
3048  Kind = k_DPRRegisterList;
3049  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
3050  contains(Regs.front().second))
3051  Kind = k_SPRRegisterList;
3052 
3053  // Sort based on the register encoding values.
3054  array_pod_sort(Regs.begin(), Regs.end());
3055 
3056  auto Op = make_unique<ARMOperand>(Kind);
3057  for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator
3058  I = Regs.begin(), E = Regs.end(); I != E; ++I)
3059  Op->Registers.push_back(I->second);
3060  Op->StartLoc = StartLoc;
3061  Op->EndLoc = EndLoc;
3062  return Op;
3063  }
3064 
3065  static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3066  unsigned Count,
3067  bool isDoubleSpaced,
3068  SMLoc S, SMLoc E) {
3069  auto Op = make_unique<ARMOperand>(k_VectorList);
3070  Op->VectorList.RegNum = RegNum;
3071  Op->VectorList.Count = Count;
3072  Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3073  Op->StartLoc = S;
3074  Op->EndLoc = E;
3075  return Op;
3076  }
3077 
3078  static std::unique_ptr<ARMOperand>
3079  CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3080  SMLoc S, SMLoc E) {
3081  auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
3082  Op->VectorList.RegNum = RegNum;
3083  Op->VectorList.Count = Count;
3084  Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3085  Op->StartLoc = S;
3086  Op->EndLoc = E;
3087  return Op;
3088  }
3089 
3090  static std::unique_ptr<ARMOperand>
3091  CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3092  bool isDoubleSpaced, SMLoc S, SMLoc E) {
3093  auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
3094  Op->VectorList.RegNum = RegNum;
3095  Op->VectorList.Count = Count;
3096  Op->VectorList.LaneIndex = Index;
3097  Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3098  Op->StartLoc = S;
3099  Op->EndLoc = E;
3100  return Op;
3101  }
3102 
3103  static std::unique_ptr<ARMOperand>
3104  CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3105  auto Op = make_unique<ARMOperand>(k_VectorIndex);
3106  Op->VectorIndex.Val = Idx;
3107  Op->StartLoc = S;
3108  Op->EndLoc = E;
3109  return Op;
3110  }
3111 
3112  static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3113  SMLoc E) {
3114  auto Op = make_unique<ARMOperand>(k_Immediate);
3115  Op->Imm.Val = Val;
3116  Op->StartLoc = S;
3117  Op->EndLoc = E;
3118  return Op;
3119  }
3120 
3121  static std::unique_ptr<ARMOperand>
3122  CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3123  unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3124  unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3125  SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3126  auto Op = make_unique<ARMOperand>(k_Memory);
3127  Op->Memory.BaseRegNum = BaseRegNum;
3128  Op->Memory.OffsetImm = OffsetImm;
3129  Op->Memory.OffsetRegNum = OffsetRegNum;
3130  Op->Memory.ShiftType = ShiftType;
3131  Op->Memory.ShiftImm = ShiftImm;
3132  Op->Memory.Alignment = Alignment;
3133  Op->Memory.isNegative = isNegative;
3134  Op->StartLoc = S;
3135  Op->EndLoc = E;
3136  Op->AlignmentLoc = AlignmentLoc;
3137  return Op;
3138  }
3139 
3140  static std::unique_ptr<ARMOperand>
3141  CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3142  unsigned ShiftImm, SMLoc S, SMLoc E) {
3143  auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
3144  Op->PostIdxReg.RegNum = RegNum;
3145  Op->PostIdxReg.isAdd = isAdd;
3146  Op->PostIdxReg.ShiftTy = ShiftTy;
3147  Op->PostIdxReg.ShiftImm = ShiftImm;
3148  Op->StartLoc = S;
3149  Op->EndLoc = E;
3150  return Op;
3151  }
3152 
3153  static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3154  SMLoc S) {
3155  auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
3156  Op->MBOpt.Val = Opt;
3157  Op->StartLoc = S;
3158  Op->EndLoc = S;
3159  return Op;
3160  }
3161 
3162  static std::unique_ptr<ARMOperand>
3163  CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3164  auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3165  Op->ISBOpt.Val = Opt;
3166  Op->StartLoc = S;
3167  Op->EndLoc = S;
3168  return Op;
3169  }
3170 
3171  static std::unique_ptr<ARMOperand>
3172  CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3173  auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3174  Op->TSBOpt.Val = Opt;
3175  Op->StartLoc = S;
3176  Op->EndLoc = S;
3177  return Op;
3178  }
3179 
3180  static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3181  SMLoc S) {
3182  auto Op = make_unique<ARMOperand>(k_ProcIFlags);
3183  Op->IFlags.Val = IFlags;
3184  Op->StartLoc = S;
3185  Op->EndLoc = S;
3186  return Op;
3187  }
3188 
3189  static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3190  auto Op = make_unique<ARMOperand>(k_MSRMask);
3191  Op->MMask.Val = MMask;
3192  Op->StartLoc = S;
3193  Op->EndLoc = S;
3194  return Op;
3195  }
3196 
3197  static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3198  auto Op = make_unique<ARMOperand>(k_BankedReg);
3199  Op->BankedReg.Val = Reg;
3200  Op->StartLoc = S;
3201  Op->EndLoc = S;
3202  return Op;
3203  }
3204 };
3205 
3206 } // end anonymous namespace.
3207 
3208 void ARMOperand::print(raw_ostream &OS) const {
3209  auto RegName = [](unsigned Reg) {
3210  if (Reg)
3212  else
3213  return "noreg";
3214  };
3215 
3216  switch (Kind) {
3217  case k_CondCode:
3218  OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3219  break;
3220  case k_CCOut:
3221  OS << "<ccout " << RegName(getReg()) << ">";
3222  break;
3223  case k_ITCondMask: {
3224  static const char *const MaskStr[] = {
3225  "(invalid)", "(teee)", "(tee)", "(teet)",
3226  "(te)", "(tete)", "(tet)", "(tett)",
3227  "(t)", "(ttee)", "(tte)", "(ttet)",
3228  "(tt)", "(ttte)", "(ttt)", "(tttt)"
3229  };
3230  assert((ITMask.Mask & 0xf) == ITMask.Mask);
3231  OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3232  break;
3233  }
3234  case k_CoprocNum:
3235  OS << "<coprocessor number: " << getCoproc() << ">";
3236  break;
3237  case k_CoprocReg:
3238  OS << "<coprocessor register: " << getCoproc() << ">";
3239  break;
3240  case k_CoprocOption:
3241  OS << "<coprocessor option: " << CoprocOption.Val << ">";
3242  break;
3243  case k_MSRMask:
3244  OS << "<mask: " << getMSRMask() << ">";
3245  break;
3246  case k_BankedReg:
3247  OS << "<banked reg: " << getBankedReg() << ">";
3248  break;
3249  case k_Immediate:
3250  OS << *getImm();
3251  break;
3252  case k_MemBarrierOpt:
3253  OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3254  break;
3255  case k_InstSyncBarrierOpt:
3256  OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3257  break;
3258  case k_TraceSyncBarrierOpt:
3259  OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3260  break;
3261  case k_Memory:
3262  OS << "<memory";
3263  if (Memory.BaseRegNum)
3264  OS << " base:" << RegName(Memory.BaseRegNum);
3265  if (Memory.OffsetImm)
3266  OS << " offset-imm:" << *Memory.OffsetImm;
3267  if (Memory.OffsetRegNum)
3268  OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3269  << RegName(Memory.OffsetRegNum);
3270  if (Memory.ShiftType != ARM_AM::no_shift) {
3271  OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3272  OS << " shift-imm:" << Memory.ShiftImm;
3273  }
3274  if (Memory.Alignment)
3275  OS << " alignment:" << Memory.Alignment;
3276  OS << ">";
3277  break;
3278  case k_PostIndexRegister:
3279  OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3280  << RegName(PostIdxReg.RegNum);
3281  if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3282  OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3283  << PostIdxReg.ShiftImm;
3284  OS << ">";
3285  break;
3286  case k_ProcIFlags: {
3287  OS << "<ARM_PROC::";
3288  unsigned IFlags = getProcIFlags();
3289  for (int i=2; i >= 0; --i)
3290  if (IFlags & (1 << i))
3291  OS << ARM_PROC::IFlagsToString(1 << i);
3292  OS << ">";
3293  break;
3294  }
3295  case k_Register:
3296  OS << "<register " << RegName(getReg()) << ">";
3297  break;
3298  case k_ShifterImmediate:
3299  OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3300  << " #" << ShifterImm.Imm << ">";
3301  break;
3302  case k_ShiftedRegister:
3303  OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3304  << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3305  << RegName(RegShiftedReg.ShiftReg) << ">";
3306  break;
3307  case k_ShiftedImmediate:
3308  OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3309  << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3310  << RegShiftedImm.ShiftImm << ">";
3311  break;
3312  case k_RotateImmediate:
3313  OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3314  break;
3315  case k_ModifiedImmediate:
3316  OS << "<mod_imm #" << ModImm.Bits << ", #"
3317  << ModImm.Rot << ")>";
3318  break;
3319  case k_ConstantPoolImmediate:
3320  OS << "<constant_pool_imm #" << *getConstantPoolImm();
3321  break;
3322  case k_BitfieldDescriptor:
3323  OS << "<bitfield " << "lsb: " << Bitfield.LSB
3324  << ", width: " << Bitfield.Width << ">";
3325  break;
3326  case k_RegisterList:
3327  case k_DPRRegisterList:
3328  case k_SPRRegisterList: {
3329  OS << "<register_list ";
3330 
3331  const SmallVectorImpl<unsigned> &RegList = getRegList();
3333  I = RegList.begin(), E = RegList.end(); I != E; ) {
3334  OS << RegName(*I);
3335  if (++I < E) OS << ", ";
3336  }
3337 
3338  OS << ">";
3339  break;
3340  }
3341  case k_VectorList:
3342  OS << "<vector_list " << VectorList.Count << " * "
3343  << RegName(VectorList.RegNum) << ">";
3344  break;
3345  case k_VectorListAllLanes:
3346  OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3347  << RegName(VectorList.RegNum) << ">";
3348  break;
3349  case k_VectorListIndexed:
3350  OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3351  << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
3352  break;
3353  case k_Token:
3354  OS << "'" << getToken() << "'";
3355  break;
3356  case k_VectorIndex:
3357  OS << "<vectorindex " << getVectorIndex() << ">";
3358  break;
3359  }
3360 }
3361 
3362 /// @name Auto-generated Match Functions
3363 /// {
3364 
3365 static unsigned MatchRegisterName(StringRef Name);
3366 
3367 /// }
3368 
3369 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3370  SMLoc &StartLoc, SMLoc &EndLoc) {
3371  const AsmToken &Tok = getParser().getTok();
3372  StartLoc = Tok.getLoc();
3373  EndLoc = Tok.getEndLoc();
3374  RegNo = tryParseRegister();
3375 
3376  return (RegNo == (unsigned)-1);
3377 }
3378 
3379 /// Try to parse a register name. The token must be an Identifier when called,
3380 /// and if it is a register name the token is eaten and the register number is
3381 /// returned. Otherwise return -1.
3382 int ARMAsmParser::tryParseRegister() {
3383  MCAsmParser &Parser = getParser();
3384  const AsmToken &Tok = Parser.getTok();
3385  if (Tok.isNot(AsmToken::Identifier)) return -1;
3386 
3387  std::string lowerCase = Tok.getString().lower();
3388  unsigned RegNum = MatchRegisterName(lowerCase);
3389  if (!RegNum) {
3390  RegNum = StringSwitch<unsigned>(lowerCase)
3391  .Case("r13", ARM::SP)
3392  .Case("r14", ARM::LR)
3393  .Case("r15", ARM::PC)
3394  .Case("ip", ARM::R12)
3395  // Additional register name aliases for 'gas' compatibility.
3396  .Case("a1", ARM::R0)
3397  .Case("a2", ARM::R1)
3398  .Case("a3", ARM::R2)
3399  .Case("a4", ARM::R3)
3400  .Case("v1", ARM::R4)
3401  .Case("v2", ARM::R5)
3402  .Case("v3", ARM::R6)
3403  .Case("v4", ARM::R7)
3404  .Case("v5", ARM::R8)
3405  .Case("v6", ARM::R9)
3406  .Case("v7", ARM::R10)
3407  .Case("v8", ARM::R11)
3408  .Case("sb", ARM::R9)
3409  .Case("sl", ARM::R10)
3410  .Case("fp", ARM::R11)
3411  .Default(0);
3412  }
3413  if (!RegNum) {
3414  // Check for aliases registered via .req. Canonicalize to lower case.
3415  // That's more consistent since register names are case insensitive, and
3416  // it's how the original entry was passed in from MC/MCParser/AsmParser.
3417  StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3418  // If no match, return failure.
3419  if (Entry == RegisterReqs.end())
3420  return -1;
3421  Parser.Lex(); // Eat identifier token.
3422  return Entry->getValue();
3423  }
3424 
3425  // Some FPUs only have 16 D registers, so D16-D31 are invalid
3426  if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3427  return -1;
3428 
3429  Parser.Lex(); // Eat identifier token.
3430 
3431  return RegNum;
3432 }
3433 
3434 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3435 // If a recoverable error occurs, return 1. If an irrecoverable error
3436 // occurs, return -1. An irrecoverable error is one where tokens have been
3437 // consumed in the process of trying to parse the shifter (i.e., when it is
3438 // indeed a shifter operand, but malformed).
3439 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3440  MCAsmParser &Parser = getParser();
3441  SMLoc S = Parser.getTok().getLoc();
3442  const AsmToken &Tok = Parser.getTok();
3443  if (Tok.isNot(AsmToken::Identifier))
3444  return -1;
3445 
3446  std::string lowerCase = Tok.getString().lower();
3448  .Case("asl", ARM_AM::lsl)
3449  .Case("lsl", ARM_AM::lsl)
3450  .Case("lsr", ARM_AM::lsr)
3451  .Case("asr", ARM_AM::asr)
3452  .Case("ror", ARM_AM::ror)
3453  .Case("rrx", ARM_AM::rrx)
3455 
3456  if (ShiftTy == ARM_AM::no_shift)
3457  return 1;
3458 
3459  Parser.Lex(); // Eat the operator.
3460 
3461  // The source register for the shift has already been added to the
3462  // operand list, so we need to pop it off and combine it into the shifted
3463  // register operand instead.
3464  std::unique_ptr<ARMOperand> PrevOp(
3465  (ARMOperand *)Operands.pop_back_val().release());
3466  if (!PrevOp->isReg())
3467  return Error(PrevOp->getStartLoc(), "shift must be of a register");
3468  int SrcReg = PrevOp->getReg();
3469 
3470  SMLoc EndLoc;
3471  int64_t Imm = 0;
3472  int ShiftReg = 0;
3473  if (ShiftTy == ARM_AM::rrx) {
3474  // RRX Doesn't have an explicit shift amount. The encoder expects
3475  // the shift register to be the same as the source register. Seems odd,
3476  // but OK.
3477  ShiftReg = SrcReg;
3478  } else {
3479  // Figure out if this is shifted by a constant or a register (for non-RRX).
3480  if (Parser.getTok().is(AsmToken::Hash) ||
3481  Parser.getTok().is(AsmToken::Dollar)) {
3482  Parser.Lex(); // Eat hash.
3483  SMLoc ImmLoc = Parser.getTok().getLoc();
3484  const MCExpr *ShiftExpr = nullptr;
3485  if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3486  Error(ImmLoc, "invalid immediate shift value");
3487  return -1;
3488  }
3489  // The expression must be evaluatable as an immediate.
3490  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
3491  if (!CE) {
3492  Error(ImmLoc, "invalid immediate shift value");
3493  return -1;
3494  }
3495  // Range check the immediate.
3496  // lsl, ror: 0 <= imm <= 31
3497  // lsr, asr: 0 <= imm <= 32
3498  Imm = CE->getValue();
3499  if (Imm < 0 ||
3500  ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
3501  ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
3502  Error(ImmLoc, "immediate shift value out of range");
3503  return -1;
3504  }
3505  // shift by zero is a nop. Always send it through as lsl.
3506  // ('as' compatibility)
3507  if (Imm == 0)
3508  ShiftTy = ARM_AM::lsl;
3509  } else if (Parser.getTok().is(AsmToken::Identifier)) {
3510  SMLoc L = Parser.getTok().getLoc();
3511  EndLoc = Parser.getTok().getEndLoc();
3512  ShiftReg = tryParseRegister();
3513  if (ShiftReg == -1) {
3514  Error(L, "expected immediate or register in shift operand");
3515  return -1;
3516  }
3517  } else {
3518  Error(Parser.getTok().getLoc(),
3519  "expected immediate or register in shift operand");
3520  return -1;
3521  }
3522  }
3523 
3524  if (ShiftReg && ShiftTy != ARM_AM::rrx)
3525  Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
3526  ShiftReg, Imm,
3527  S, EndLoc));
3528  else
3529  Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
3530  S, EndLoc));
3531 
3532  return 0;
3533 }
3534 
3535 /// Try to parse a register name. The token must be an Identifier when called.
3536 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3537 /// if there is a "writeback". 'true' if it's not a register.
3538 ///
3539 /// TODO this is likely to change to allow different register types and or to
3540 /// parse for a specific register type.
3541 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
3542  MCAsmParser &Parser = getParser();
3543  SMLoc RegStartLoc = Parser.getTok().getLoc();
3544  SMLoc RegEndLoc = Parser.getTok().getEndLoc();
3545  int RegNo = tryParseRegister();
3546  if (RegNo == -1)
3547  return true;
3548 
3549  Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
3550 
3551  const AsmToken &ExclaimTok = Parser.getTok();
3552  if (ExclaimTok.is(AsmToken::Exclaim)) {
3553  Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
3554  ExclaimTok.getLoc()));
3555  Parser.Lex(); // Eat exclaim token
3556  return false;
3557  }
3558 
3559  // Also check for an index operand. This is only legal for vector registers,
3560  // but that'll get caught OK in operand matching, so we don't need to
3561  // explicitly filter everything else out here.
3562  if (Parser.getTok().is(AsmToken::LBrac)) {
3563  SMLoc SIdx = Parser.getTok().getLoc();
3564  Parser.Lex(); // Eat left bracket token.
3565 
3566  const MCExpr *ImmVal;
3567  if (getParser().parseExpression(ImmVal))
3568  return true;
3569  const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
3570  if (!MCE)
3571  return TokError("immediate value expected for vector index");
3572 
3573  if (Parser.getTok().isNot(AsmToken::RBrac))
3574  return Error(Parser.getTok().getLoc(), "']' expected");
3575 
3576  SMLoc E = Parser.getTok().getEndLoc();
3577  Parser.Lex(); // Eat right bracket token.
3578 
3579  Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
3580  SIdx, E,
3581  getContext()));
3582  }
3583 
3584  return false;
3585 }
3586 
3587 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3588 /// instruction with a symbolic operand name.
3589 /// We accept "crN" syntax for GAS compatibility.
3590 /// <operand-name> ::= <prefix><number>
3591 /// If CoprocOp is 'c', then:
3592 /// <prefix> ::= c | cr
3593 /// If CoprocOp is 'p', then :
3594 /// <prefix> ::= p
3595 /// <number> ::= integer in range [0, 15]
3596 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
3597  // Use the same layout as the tablegen'erated register name matcher. Ugly,
3598  // but efficient.
3599  if (Name.size() < 2 || Name[0] != CoprocOp)
3600  return -1;
3601  Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
3602 
3603  switch (Name.size()) {
3604  default: return -1;
3605  case 1:
3606  switch (Name[0]) {
3607  default: return -1;
3608  case '0': return 0;
3609  case '1': return 1;
3610  case '2': return 2;
3611  case '3': return 3;
3612  case '4': return 4;
3613  case '5': return 5;
3614  case '6': return 6;
3615  case '7': return 7;
3616  case '8': return 8;
3617  case '9': return 9;
3618  }
3619  case 2:
3620  if (Name[0] != '1')
3621  return -1;
3622  switch (Name[1]) {
3623  default: return -1;
3624  // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3625  // However, old cores (v5/v6) did use them in that way.
3626  case '0': return 10;
3627  case '1': return 11;
3628  case '2': return 12;
3629  case '3': return 13;
3630  case '4': return 14;
3631  case '5': return 15;
3632  }
3633  }
3634 }
3635 
3636 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3638 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
3639  MCAsmParser &Parser = getParser();
3640  SMLoc S = Parser.getTok().getLoc();
3641  const AsmToken &Tok = Parser.getTok();
3642  if (!Tok.is(AsmToken::Identifier))
3643  return MatchOperand_NoMatch;
3644  unsigned CC = ARMCondCodeFromString(Tok.getString());
3645  if (CC == ~0U)
3646  return MatchOperand_NoMatch;
3647  Parser.Lex(); // Eat the token.
3648 
3649  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3650 
3651  return MatchOperand_Success;
3652 }
3653 
3654 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3655 /// token must be an Identifier when called, and if it is a coprocessor
3656 /// number, the token is eaten and the operand is added to the operand list.
3658 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
3659  MCAsmParser &Parser = getParser();
3660  SMLoc S = Parser.getTok().getLoc();
3661  const AsmToken &Tok = Parser.getTok();
3662  if (Tok.isNot(AsmToken::Identifier))
3663  return MatchOperand_NoMatch;
3664 
3665  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3666  if (Num == -1)
3667  return MatchOperand_NoMatch;
3668  // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3669  if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
3670  return MatchOperand_NoMatch;
3671 
3672  Parser.Lex(); // Eat identifier token.
3673  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3674  return MatchOperand_Success;
3675 }
3676 
3677 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3678 /// token must be an Identifier when called, and if it is a coprocessor
3679 /// number, the token is eaten and the operand is added to the operand list.
3681 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
3682  MCAsmParser &Parser = getParser();
3683  SMLoc S = Parser.getTok().getLoc();
3684  const AsmToken &Tok = Parser.getTok();
3685  if (Tok.isNot(AsmToken::Identifier))
3686  return MatchOperand_NoMatch;
3687 
3688  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3689  if (Reg == -1)
3690  return MatchOperand_NoMatch;
3691 
3692  Parser.Lex(); // Eat identifier token.
3693  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3694  return MatchOperand_Success;
3695 }
3696 
3697 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3698 /// coproc_option : '{' imm0_255 '}'
3700 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
3701  MCAsmParser &Parser = getParser();
3702  SMLoc S = Parser.getTok().getLoc();
3703 
3704  // If this isn't a '{', this isn't a coprocessor immediate operand.
3705  if (Parser.getTok().isNot(AsmToken::LCurly))
3706  return MatchOperand_NoMatch;
3707  Parser.Lex(); // Eat the '{'
3708 
3709  const MCExpr *Expr;
3710  SMLoc Loc = Parser.getTok().getLoc();
3711  if (getParser().parseExpression(Expr)) {
3712  Error(Loc, "illegal expression");
3713  return MatchOperand_ParseFail;
3714  }
3715  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3716  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3717  Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3718  return MatchOperand_ParseFail;
3719  }
3720  int Val = CE->getValue();
3721 
3722  // Check for and consume the closing '}'
3723  if (Parser.getTok().isNot(AsmToken::RCurly))
3724  return MatchOperand_ParseFail;
3725  SMLoc E = Parser.getTok().getEndLoc();
3726  Parser.Lex(); // Eat the '}'
3727 
3728  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3729  return MatchOperand_Success;
3730 }
3731 
3732 // For register list parsing, we need to map from raw GPR register numbering
3733 // to the enumeration values. The enumeration values aren't sorted by
3734 // register number due to our using "sp", "lr" and "pc" as canonical names.
3735 static unsigned getNextRegister(unsigned Reg) {
3736  // If this is a GPR, we need to do it manually, otherwise we can rely
3737  // on the sort ordering of the enumeration since the other reg-classes
3738  // are sane.
3739  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3740  return Reg + 1;
3741  switch(Reg) {
3742  default: llvm_unreachable("Invalid GPR number!");
3743  case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
3744  case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
3745  case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
3746  case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
3747  case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
3748  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3749  case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
3750  case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
3751  }
3752 }
3753 
3754 /// Parse a register list.
3755 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
3756  MCAsmParser &Parser = getParser();
3757  if (Parser.getTok().isNot(AsmToken::LCurly))
3758  return TokError("Token is not a Left Curly Brace");
3759  SMLoc S = Parser.getTok().getLoc();
3760  Parser.Lex(); // Eat '{' token.
3761  SMLoc RegLoc = Parser.getTok().getLoc();
3762 
3763  // Check the first register in the list to see what register class
3764  // this is a list of.
3765  int Reg = tryParseRegister();
3766  if (Reg == -1)
3767  return Error(RegLoc, "register expected");
3768 
3769  // The reglist instructions have at most 16 registers, so reserve
3770  // space for that many.
3771  int EReg = 0;
3773 
3774  // Allow Q regs and just interpret them as the two D sub-registers.
3775  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3776  Reg = getDRegFromQReg(Reg);
3777  EReg = MRI->getEncodingValue(Reg);
3778  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3779  ++Reg;
3780  }
3781  const MCRegisterClass *RC;
3782  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3783  RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3784  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3785  RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3786  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3787  RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3788  else
3789  return Error(RegLoc, "invalid register in register list");
3790 
3791  // Store the register.
3792  EReg = MRI->getEncodingValue(Reg);
3793  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3794 
3795  // This starts immediately after the first register token in the list,
3796  // so we can see either a comma or a minus (range separator) as a legal
3797  // next token.
3798  while (Parser.getTok().is(AsmToken::Comma) ||
3799  Parser.getTok().is(AsmToken::Minus)) {
3800  if (Parser.getTok().is(AsmToken::Minus)) {
3801  Parser.Lex(); // Eat the minus.
3802  SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3803  int EndReg = tryParseRegister();
3804  if (EndReg == -1)
3805  return Error(AfterMinusLoc, "register expected");
3806  // Allow Q regs and just interpret them as the two D sub-registers.
3807  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3808  EndReg = getDRegFromQReg(EndReg) + 1;
3809  // If the register is the same as the start reg, there's nothing
3810  // more to do.
3811  if (Reg == EndReg)
3812  continue;
3813  // The register must be in the same register class as the first.
3814  if (!RC->contains(EndReg))
3815  return Error(AfterMinusLoc, "invalid register in register list");
3816  // Ranges must go from low to high.
3817  if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3818  return Error(AfterMinusLoc, "bad range in register list");
3819 
3820  // Add all the registers in the range to the register list.
3821  while (Reg != EndReg) {
3822  Reg = getNextRegister(Reg);
3823  EReg = MRI->getEncodingValue(Reg);
3824  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3825  }
3826  continue;
3827  }
3828  Parser.Lex(); // Eat the comma.
3829  RegLoc = Parser.getTok().getLoc();
3830  int OldReg = Reg;
3831  const AsmToken RegTok = Parser.getTok();
3832  Reg = tryParseRegister();
3833  if (Reg == -1)
3834  return Error(RegLoc, "register expected");
3835  // Allow Q regs and just interpret them as the two D sub-registers.
3836  bool isQReg = false;
3837  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3838  Reg = getDRegFromQReg(Reg);
3839  isQReg = true;
3840  }
3841  // The register must be in the same register class as the first.
3842  if (!RC->contains(Reg))
3843  return Error(RegLoc, "invalid register in register list");
3844  // List must be monotonically increasing.
3845  if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3846  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3847  Warning(RegLoc, "register list not in ascending order");
3848  else
3849  return Error(RegLoc, "register list not in ascending order");
3850  }
3851  if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3852  Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3853  ") in register list");
3854  continue;
3855  }
3856  // VFP register lists must also be contiguous.
3857  if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3858  Reg != OldReg + 1)
3859  return Error(RegLoc, "non-contiguous register range");
3860  EReg = MRI->getEncodingValue(Reg);
3861  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3862  if (isQReg) {
3863  EReg = MRI->getEncodingValue(++Reg);
3864  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3865  }
3866  }
3867 
3868  if (Parser.getTok().isNot(AsmToken::RCurly))
3869  return Error(Parser.getTok().getLoc(), "'}' expected");
3870  SMLoc E = Parser.getTok().getEndLoc();
3871  Parser.Lex(); // Eat '}' token.
3872 
3873  // Push the register list operand.
3874  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3875 
3876  // The ARM system instruction variants for LDM/STM have a '^' token here.
3877  if (Parser.getTok().is(AsmToken::Caret)) {
3878  Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3879  Parser.Lex(); // Eat '^' token.
3880  }
3881 
3882  return false;
3883 }
3884 
3885 // Helper function to parse the lane index for vector lists.
3886 OperandMatchResultTy ARMAsmParser::
3887 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3888  MCAsmParser &Parser = getParser();
3889  Index = 0; // Always return a defined index value.
3890  if (Parser.getTok().is(AsmToken::LBrac)) {
3891  Parser.Lex(); // Eat the '['.
3892  if (Parser.getTok().is(AsmToken::RBrac)) {
3893  // "Dn[]" is the 'all lanes' syntax.
3894  LaneKind = AllLanes;
3895  EndLoc = Parser.getTok().getEndLoc();
3896  Parser.Lex(); // Eat the ']'.
3897  return MatchOperand_Success;
3898  }
3899 
3900  // There's an optional '#' token here. Normally there wouldn't be, but
3901  // inline assemble puts one in, and it's friendly to accept that.
3902  if (Parser.getTok().is(AsmToken::Hash))
3903  Parser.Lex(); // Eat '#' or '$'.
3904 
3905  const MCExpr *LaneIndex;
3906  SMLoc Loc = Parser.getTok().getLoc();
3907  if (getParser().parseExpression(LaneIndex)) {
3908  Error(Loc, "illegal expression");
3909  return MatchOperand_ParseFail;
3910  }
3911  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3912  if (!CE) {
3913  Error(Loc, "lane index must be empty or an integer");
3914  return MatchOperand_ParseFail;
3915  }
3916  if (Parser.getTok().isNot(AsmToken::RBrac)) {
3917  Error(Parser.getTok().getLoc(), "']' expected");
3918  return MatchOperand_ParseFail;
3919  }
3920  EndLoc = Parser.getTok().getEndLoc();
3921  Parser.Lex(); // Eat the ']'.
3922  int64_t Val = CE->getValue();
3923 
3924  // FIXME: Make this range check context sensitive for .8, .16, .32.
3925  if (Val < 0 || Val > 7) {
3926  Error(Parser.getTok().getLoc(), "lane index out of range");
3927  return MatchOperand_ParseFail;
3928  }
3929  Index = Val;
3930  LaneKind = IndexedLane;
3931  return MatchOperand_Success;
3932  }
3933  LaneKind = NoLanes;
3934  return MatchOperand_Success;
3935 }
3936 
3937 // parse a vector register list
3939 ARMAsmParser::parseVectorList(OperandVector &Operands) {
3940  MCAsmParser &Parser = getParser();
3941  VectorLaneTy LaneKind;
3942  unsigned LaneIndex;
3943  SMLoc S = Parser.getTok().getLoc();
3944  // As an extension (to match gas), support a plain D register or Q register
3945  // (without encosing curly braces) as a single or double entry list,
3946  // respectively.
3947  if (Parser.getTok().is(AsmToken::Identifier)) {
3948  SMLoc E = Parser.getTok().getEndLoc();
3949  int Reg = tryParseRegister();
3950  if (Reg == -1)
3951  return MatchOperand_NoMatch;
3952  if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3953  OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3954  if (Res != MatchOperand_Success)
3955  return Res;
3956  switch (LaneKind) {
3957  case NoLanes:
3958  Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3959  break;
3960  case AllLanes:
3961  Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3962  S, E));
3963  break;
3964  case IndexedLane:
3965  Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3966  LaneIndex,
3967  false, S, E));
3968  break;
3969  }
3970  return MatchOperand_Success;
3971  }
3972  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3973  Reg = getDRegFromQReg(Reg);
3974  OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3975  if (Res != MatchOperand_Success)
3976  return Res;
3977  switch (LaneKind) {
3978  case NoLanes:
3979  Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3980  &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3981  Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3982  break;
3983  case AllLanes:
3984  Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3985  &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3986  Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3987  S, E));
3988  break;
3989  case IndexedLane:
3990  Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3991  LaneIndex,
3992  false, S, E));
3993  break;
3994  }
3995  return MatchOperand_Success;
3996  }
3997  Error(S, "vector register expected");
3998  return MatchOperand_ParseFail;
3999  }
4000 
4001  if (Parser.getTok().isNot(AsmToken::LCurly))
4002  return MatchOperand_NoMatch;
4003 
4004  Parser.Lex(); // Eat '{' token.
4005  SMLoc RegLoc = Parser.getTok().getLoc();
4006 
4007  int Reg = tryParseRegister();
4008  if (Reg == -1) {
4009  Error(RegLoc, "register expected");
4010  return MatchOperand_ParseFail;
4011  }
4012  unsigned Count = 1;
4013  int Spacing = 0;
4014  unsigned FirstReg = Reg;
4015  // The list is of D registers, but we also allow Q regs and just interpret
4016  // them as the two D sub-registers.
4017  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4018  FirstReg = Reg = getDRegFromQReg(Reg);
4019  Spacing = 1; // double-spacing requires explicit D registers, otherwise
4020  // it's ambiguous with four-register single spaced.
4021  ++Reg;
4022  ++Count;
4023  }
4024 
4025  SMLoc E;
4026  if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4027  return MatchOperand_ParseFail;
4028 
4029  while (Parser.getTok().is(AsmToken::Comma) ||
4030  Parser.getTok().is(AsmToken::Minus)) {
4031  if (Parser.getTok().is(AsmToken::Minus)) {
4032  if (!Spacing)
4033  Spacing = 1; // Register range implies a single spaced list.
4034  else if (Spacing == 2) {
4035  Error(Parser.getTok().getLoc(),
4036  "sequential registers in double spaced list");
4037  return MatchOperand_ParseFail;
4038  }
4039  Parser.Lex(); // Eat the minus.
4040  SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4041  int EndReg = tryParseRegister();
4042  if (EndReg == -1) {
4043  Error(AfterMinusLoc, "register expected");
4044  return MatchOperand_ParseFail;
4045  }
4046  // Allow Q regs and just interpret them as the two D sub-registers.
4047  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4048  EndReg = getDRegFromQReg(EndReg) + 1;
4049  // If the register is the same as the start reg, there's nothing
4050  // more to do.
4051  if (Reg == EndReg)
4052  continue;
4053  // The register must be in the same register class as the first.
4054  if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
4055  Error(AfterMinusLoc, "invalid register in register list");
4056  return MatchOperand_ParseFail;
4057  }
4058  // Ranges must go from low to high.
4059  if (Reg > EndReg) {
4060  Error(AfterMinusLoc, "bad range in register list");
4061  return MatchOperand_ParseFail;
4062  }
4063  // Parse the lane specifier if present.
4064  VectorLaneTy NextLaneKind;
4065  unsigned NextLaneIndex;
4066  if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4068  return MatchOperand_ParseFail;
4069  if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4070  Error(AfterMinusLoc, "mismatched lane index in register list");
4071  return MatchOperand_ParseFail;
4072  }
4073 
4074  // Add all the registers in the range to the register list.
4075  Count += EndReg - Reg;
4076  Reg = EndReg;
4077  continue;
4078  }
4079  Parser.Lex(); // Eat the comma.
4080  RegLoc = Parser.getTok().getLoc();
4081  int OldReg = Reg;
4082  Reg = tryParseRegister();
4083  if (Reg == -1) {
4084  Error(RegLoc, "register expected");
4085  return MatchOperand_ParseFail;
4086  }
4087  // vector register lists must be contiguous.
4088  // It's OK to use the enumeration values directly here rather, as the
4089  // VFP register classes have the enum sorted properly.
4090  //
4091  // The list is of D registers, but we also allow Q regs and just interpret
4092  // them as the two D sub-registers.
4093  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4094  if (!Spacing)
4095  Spacing = 1; // Register range implies a single spaced list.
4096  else if (Spacing == 2) {
4097  Error(RegLoc,
4098  "invalid register in double-spaced list (must be 'D' register')");
4099  return MatchOperand_ParseFail;
4100  }
4101  Reg = getDRegFromQReg(Reg);
4102  if (Reg != OldReg + 1) {
4103  Error(RegLoc, "non-contiguous register range");
4104  return MatchOperand_ParseFail;
4105  }
4106  ++Reg;
4107  Count += 2;
4108  // Parse the lane specifier if present.
4109  VectorLaneTy NextLaneKind;
4110  unsigned NextLaneIndex;
4111  SMLoc LaneLoc = Parser.getTok().getLoc();
4112  if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4114  return MatchOperand_ParseFail;
4115  if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4116  Error(LaneLoc, "mismatched lane index in register list");
4117  return MatchOperand_ParseFail;
4118  }
4119  continue;
4120  }
4121  // Normal D register.
4122  // Figure out the register spacing (single or double) of the list if
4123  // we don't know it already.
4124  if (!Spacing)
4125  Spacing = 1 + (Reg == OldReg + 2);
4126 
4127  // Just check that it's contiguous and keep going.
4128  if (Reg != OldReg + Spacing) {
4129  Error(RegLoc, "non-contiguous register range");
4130  return MatchOperand_ParseFail;
4131  }
4132  ++Count;
4133  // Parse the lane specifier if present.
4134  VectorLaneTy NextLaneKind;
4135  unsigned NextLaneIndex;
4136  SMLoc EndLoc = Parser.getTok().getLoc();
4137  if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4138  return MatchOperand_ParseFail;
4139  if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4140  Error(EndLoc, "mismatched lane index in register list");
4141  return MatchOperand_ParseFail;
4142  }
4143  }
4144 
4145  if (Parser.getTok().isNot(AsmToken::RCurly)) {
4146  Error(Parser.getTok().getLoc(), "'}' expected");
4147  return MatchOperand_ParseFail;
4148  }
4149  E = Parser.getTok().getEndLoc();
4150  Parser.Lex(); // Eat '}' token.
4151 
4152  switch (LaneKind) {
4153  case NoLanes:
4154  // Two-register operands have been converted to the
4155  // composite register classes.
4156  if (Count == 2) {
4157  const MCRegisterClass *RC = (Spacing == 1) ?
4158  &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4159  &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4160  FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4161  }
4162  Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
4163  (Spacing == 2), S, E));
4164  break;
4165  case AllLanes:
4166  // Two-register operands have been converted to the
4167  // composite register classes.
4168  if (Count == 2) {
4169  const MCRegisterClass *RC = (Spacing == 1) ?
4170  &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4171  &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4172  FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4173  }
4174  Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
4175  (Spacing == 2),
4176  S, E));
4177  break;
4178  case IndexedLane:
4179  Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4180  LaneIndex,
4181  (Spacing == 2),
4182  S, E));
4183  break;
4184  }
4185  return MatchOperand_Success;
4186 }
4187 
4188 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4190 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4191  MCAsmParser &Parser = getParser();
4192  SMLoc S = Parser.getTok().getLoc();
4193  const AsmToken &Tok = Parser.getTok();
4194  unsigned Opt;
4195 
4196  if (Tok.is(AsmToken::Identifier)) {
4197  StringRef OptStr = Tok.getString();
4198 
4199  Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4200  .Case("sy", ARM_MB::SY)
4201  .Case("st", ARM_MB::ST)
4202  .Case("ld", ARM_MB::LD)
4203  .Case("sh", ARM_MB::ISH)
4204  .Case("ish", ARM_MB::ISH)
4205  .Case("shst", ARM_MB::ISHST)
4206  .Case("ishst", ARM_MB::ISHST)
4207  .Case("ishld", ARM_MB::ISHLD)
4208  .Case("nsh", ARM_MB::NSH)
4209  .Case("un", ARM_MB::NSH)
4210  .Case("nshst", ARM_MB::NSHST)
4211  .Case("nshld", ARM_MB::NSHLD)
4212  .Case("unst", ARM_MB::NSHST)
4213  .Case("osh", ARM_MB::OSH)
4214  .Case("oshst", ARM_MB::OSHST)
4215  .Case("oshld", ARM_MB::OSHLD)
4216  .Default(~0U);
4217 
4218  // ishld, oshld, nshld and ld are only available from ARMv8.
4219  if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4220  Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4221  Opt = ~0U;
4222 
4223  if (Opt == ~0U)
4224  return MatchOperand_NoMatch;
4225 
4226  Parser.Lex(); // Eat identifier token.
4227  } else if (Tok.is(AsmToken::Hash) ||
4228  Tok.is(AsmToken::Dollar) ||
4229  Tok.is(AsmToken::Integer)) {
4230  if (Parser.getTok().isNot(AsmToken::Integer))
4231  Parser.Lex(); // Eat '#' or '$'.
4232  SMLoc Loc = Parser.getTok().getLoc();
4233 
4234  const MCExpr *MemBarrierID;
4235  if (getParser().parseExpression(MemBarrierID)) {
4236  Error(Loc, "illegal expression");
4237  return MatchOperand_ParseFail;
4238  }
4239 
4240  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4241  if (!CE) {
4242  Error(Loc, "constant expression expected");
4243  return MatchOperand_ParseFail;
4244  }
4245 
4246  int Val = CE->getValue();
4247  if (Val & ~0xf) {
4248  Error(Loc, "immediate value out of range");
4249  return MatchOperand_ParseFail;
4250  }
4251 
4252  Opt = ARM_MB::RESERVED_0 + Val;
4253  } else
4254  return MatchOperand_ParseFail;
4255 
4256  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4257  return MatchOperand_Success;
4258 }
4259 
4261 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4262  MCAsmParser &Parser = getParser();
4263  SMLoc S = Parser.getTok().getLoc();
4264  const AsmToken &Tok = Parser.getTok();
4265 
4266  if (Tok.isNot(AsmToken::Identifier))
4267  return MatchOperand_NoMatch;
4268 
4269  if (!Tok.getString().equals_lower("csync"))
4270  return MatchOperand_NoMatch;
4271 
4272  Parser.Lex(); // Eat identifier token.
4273 
4274  Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4275  return MatchOperand_Success;
4276 }
4277 
4278 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4280 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4281  MCAsmParser &Parser = getParser();
4282  SMLoc S = Parser.getTok().getLoc();
4283  const AsmToken &Tok = Parser.getTok();
4284  unsigned Opt;
4285 
4286  if (Tok.is(AsmToken::Identifier)) {
4287  StringRef OptStr = Tok.getString();
4288 
4289  if (OptStr.equals_lower("sy"))
4290  Opt = ARM_ISB::SY;
4291  else
4292  return MatchOperand_NoMatch;
4293 
4294  Parser.Lex(); // Eat identifier token.
4295  } else if (Tok.is(AsmToken::Hash) ||
4296  Tok.is(AsmToken::Dollar) ||
4297  Tok.is(AsmToken::Integer)) {
4298  if (Parser.getTok().isNot(AsmToken::Integer))
4299  Parser.Lex(); // Eat '#' or '$'.
4300  SMLoc Loc = Parser.getTok().getLoc();
4301 
4302  const MCExpr *ISBarrierID;
4303  if (getParser().parseExpression(ISBarrierID)) {
4304  Error(Loc, "illegal expression");
4305  return MatchOperand_ParseFail;
4306  }
4307 
4308  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4309  if (!CE) {
4310  Error(Loc, "constant expression expected");
4311  return MatchOperand_ParseFail;
4312  }
4313 
4314  int Val = CE->getValue();
4315  if (Val & ~0xf) {
4316  Error(Loc, "immediate value out of range");
4317  return MatchOperand_ParseFail;
4318  }
4319 
4320  Opt = ARM_ISB::RESERVED_0 + Val;
4321  } else
4322  return MatchOperand_ParseFail;
4323 
4324  Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4325  (ARM_ISB::InstSyncBOpt)Opt, S));
4326  return MatchOperand_Success;
4327 }
4328 
4329 
4330 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4332 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4333  MCAsmParser &Parser = getParser();
4334  SMLoc S = Parser.getTok().getLoc();
4335  const AsmToken &Tok = Parser.getTok();
4336  if (!Tok.is(AsmToken::Identifier))
4337  return MatchOperand_NoMatch;
4338  StringRef IFlagsStr = Tok.getString();
4339 
4340  // An iflags string of "none" is interpreted to mean that none of the AIF
4341  // bits are set. Not a terribly useful instruction, but a valid encoding.
4342  unsigned IFlags = 0;
4343  if (IFlagsStr != "none") {
4344  for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4345  unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4346  .Case("a", ARM_PROC::A)
4347  .Case("i", ARM_PROC::I)
4348  .Case("f", ARM_PROC::F)
4349  .Default(~0U);
4350 
4351  // If some specific iflag is already set, it means that some letter is
4352  // present more than once, this is not acceptable.
4353  if (Flag == ~0U || (IFlags & Flag))
4354  return MatchOperand_NoMatch;
4355 
4356  IFlags |= Flag;
4357  }
4358  }
4359 
4360  Parser.Lex(); // Eat identifier token.
4361  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4362  return MatchOperand_Success;
4363 }
4364 
4365 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4367 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4368  MCAsmParser &Parser = getParser();
4369  SMLoc S = Parser.getTok().getLoc();
4370  const AsmToken &Tok = Parser.getTok();
4371 
4372  if (Tok.is(AsmToken::Integer)) {
4373  int64_t Val = Tok.getIntVal();
4374  if (Val > 255 || Val < 0) {
4375  return MatchOperand_NoMatch;
4376  }
4377  unsigned SYSmvalue = Val & 0xFF;
4378  Parser.Lex();
4379  Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4380  return MatchOperand_Success;
4381  }
4382 
4383  if (!Tok.is(AsmToken::Identifier))
4384  return MatchOperand_NoMatch;
4385  StringRef Mask = Tok.getString();
4386 
4387  if (isMClass()) {
4388  auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4389  if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4390  return MatchOperand_NoMatch;
4391 
4392  unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4393 
4394  Parser.Lex(); // Eat identifier token.
4395  Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4396  return MatchOperand_Success;
4397  }
4398 
4399  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4400  size_t Start = 0, Next = Mask.find('_');
4401  StringRef Flags = "";
4402  std::string SpecReg = Mask.slice(Start, Next).lower();
4403  if (Next != StringRef::npos)
4404  Flags = Mask.slice(Next+1, Mask.size());
4405 
4406  // FlagsVal contains the complete mask:
4407  // 3-0: Mask
4408  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4409  unsigned FlagsVal = 0;
4410 
4411  if (SpecReg == "apsr") {
4412  FlagsVal = StringSwitch<unsigned>(Flags)
4413  .Case("nzcvq", 0x8) // same as CPSR_f
4414  .Case("g", 0x4) // same as CPSR_s
4415  .Case("nzcvqg", 0xc) // same as CPSR_fs
4416  .Default(~0U);
4417 
4418  if (FlagsVal == ~0U) {
4419  if (!Flags.empty())
4420  return MatchOperand_NoMatch;
4421  else
4422  FlagsVal = 8; // No flag
4423  }
4424  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4425  // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4426  if (Flags == "all" || Flags == "")
4427  Flags = "fc";
4428  for (int i = 0, e = Flags.size(); i != e; ++i) {
4429  unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4430  .Case("c", 1)
4431  .Case("x", 2)
4432  .Case("s", 4)
4433  .Case("f", 8)
4434  .Default(~0U);
4435 
4436  // If some specific flag is already set, it means that some letter is
4437  // present more than once, this is not acceptable.
4438  if (Flag == ~0U || (FlagsVal & Flag))
4439  return MatchOperand_NoMatch;
4440  FlagsVal |= Flag;
4441  }
4442  } else // No match for special register.
4443  return MatchOperand_NoMatch;
4444 
4445  // Special register without flags is NOT equivalent to "fc" flags.
4446  // NOTE: This is a divergence from gas' behavior. Uncommenting the following
4447  // two lines would enable gas compatibility at the expense of breaking
4448  // round-tripping.
4449  //
4450  // if (!FlagsVal)
4451  // FlagsVal = 0x9;
4452 
4453  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4454  if (SpecReg == "spsr")
4455  FlagsVal |= 16;
4456 
4457  Parser.Lex(); // Eat identifier token.
4458  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4459  return MatchOperand_Success;
4460 }
4461 
4462 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4463 /// use in the MRS/MSR instructions added to support virtualization.
4465 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
4466  MCAsmParser &Parser = getParser();
4467  SMLoc S = Parser.getTok().getLoc();
4468  const AsmToken &Tok = Parser.getTok();
4469  if (!Tok.is(AsmToken::Identifier))
4470  return MatchOperand_NoMatch;
4471  StringRef RegName = Tok.getString();
4472 
4473  auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
4474  if (!TheReg)
4475  return MatchOperand_NoMatch;
4476  unsigned Encoding = TheReg->Encoding;
4477 
4478  Parser.Lex(); // Eat identifier token.
4479  Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
4480  return MatchOperand_Success;
4481 }
4482 
4484 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
4485  int High) {
4486  MCAsmParser &Parser = getParser();
4487  const AsmToken &Tok = Parser.getTok();
4488  if (Tok.isNot(AsmToken::Identifier)) {
4489  Error(Parser.getTok().getLoc(), Op + " operand expected.");
4490  return MatchOperand_ParseFail;
4491  }
4492  StringRef ShiftName = Tok.getString();
4493  std::string LowerOp = Op.lower();
4494  std::string UpperOp = Op.upper();
4495  if (ShiftName != LowerOp && ShiftName != UpperOp) {
4496  Error(Parser.getTok().getLoc(), Op + " operand expected.");
4497  return MatchOperand_ParseFail;
4498  }
4499  Parser.Lex(); // Eat shift type token.
4500 
4501  // There must be a '#' and a shift amount.
4502  if (Parser.getTok().isNot(AsmToken::Hash) &&
4503  Parser.getTok().isNot(AsmToken::Dollar)) {
4504  Error(Parser.getTok().getLoc(), "'#' expected");
4505  return MatchOperand_ParseFail;
4506  }
4507  Parser.Lex(); // Eat hash token.
4508 
4509  const MCExpr *ShiftAmount;
4510  SMLoc Loc = Parser.getTok().getLoc();
4511  SMLoc EndLoc;
4512  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4513  Error(Loc, "illegal expression");
4514  return MatchOperand_ParseFail;
4515  }
4516  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4517  if (!CE) {
4518  Error(Loc, "constant expression expected");
4519  return MatchOperand_ParseFail;
4520  }
4521  int Val = CE->getValue();
4522  if (Val < Low || Val > High) {
4523  Error(Loc, "immediate value out of range");
4524  return MatchOperand_ParseFail;
4525  }
4526 
4527  Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
4528 
4529  return MatchOperand_Success;
4530 }
4531 
4533 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
4534  MCAsmParser &Parser = getParser();
4535  const AsmToken &Tok = Parser.getTok();
4536  SMLoc S = Tok.getLoc();
4537  if (Tok.isNot(AsmToken::Identifier)) {
4538  Error(S, "'be' or 'le' operand expected");
4539  return MatchOperand_ParseFail;
4540  }
4541  int Val = StringSwitch<int>(Tok.getString().lower())
4542  .Case("be", 1)
4543  .Case("le", 0)
4544  .Default(-1);
4545  Parser.Lex(); // Eat the token.
4546 
4547  if (Val == -1) {
4548  Error(S, "'be' or 'le' operand expected");
4549  return MatchOperand_ParseFail;
4550  }
4551  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
4552  getContext()),
4553  S, Tok.getEndLoc()));
4554  return MatchOperand_Success;
4555 }
4556 
4557 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4558 /// instructions. Legal values are:
4559 /// lsl #n 'n' in [0,31]
4560 /// asr #n 'n' in [1,32]
4561 /// n == 32 encoded as n == 0.
4563 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
4564  MCAsmParser &Parser = getParser();
4565  const AsmToken &Tok = Parser.getTok();
4566  SMLoc S = Tok.getLoc();
4567  if (Tok.isNot(AsmToken::Identifier)) {
4568  Error(S, "shift operator 'asr' or 'lsl' expected");
4569  return MatchOperand_ParseFail;
4570  }
4571  StringRef ShiftName = Tok.getString();
4572  bool isASR;
4573  if (ShiftName == "lsl" || ShiftName == "LSL")
4574  isASR = false;
4575  else if (ShiftName == "asr" || ShiftName == "ASR")
4576  isASR = true;
4577  else {
4578  Error(S, "shift operator 'asr' or 'lsl' expected");
4579  return MatchOperand_ParseFail;
4580  }
4581  Parser.Lex(); // Eat the operator.
4582 
4583  // A '#' and a shift amount.
4584  if (Parser.getTok().isNot(AsmToken::Hash) &&
4585  Parser.getTok().isNot(AsmToken::Dollar)) {
4586  Error(Parser.getTok().getLoc(), "'#' expected");
4587  return MatchOperand_ParseFail;
4588  }
4589  Parser.Lex(); // Eat hash token.
4590  SMLoc ExLoc = Parser.getTok().getLoc();
4591 
4592  const MCExpr *ShiftAmount;
4593  SMLoc EndLoc;
4594  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4595  Error(ExLoc, "malformed shift expression");
4596  return MatchOperand_ParseFail;
4597  }
4598  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4599  if (!CE) {
4600  Error(ExLoc, "shift amount must be an immediate");
4601  return MatchOperand_ParseFail;
4602  }
4603 
4604  int64_t Val = CE->getValue();
4605  if (isASR) {
4606  // Shift amount must be in [1,32]
4607  if (Val < 1 || Val > 32) {
4608  Error(ExLoc, "'asr' shift amount must be in range [1,32]");
4609  return MatchOperand_ParseFail;
4610  }
4611  // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4612  if (isThumb() && Val == 32) {
4613  Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
4614  return MatchOperand_ParseFail;
4615  }
4616  if (Val == 32) Val = 0;
4617  } else {
4618  // Shift amount must be in [1,32]
4619  if (Val < 0 || Val > 31) {
4620  Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
4621  return MatchOperand_ParseFail;
4622  }
4623  }
4624 
4625  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
4626 
4627  return MatchOperand_Success;
4628 }
4629 
4630 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4631 /// of instructions. Legal values are:
4632 /// ror #n 'n' in {0, 8, 16, 24}
4634 ARMAsmParser::parseRotImm(OperandVector &Operands) {
4635  MCAsmParser &Parser = getParser();
4636  const AsmToken &Tok = Parser.getTok();
4637  SMLoc S = Tok.getLoc();
4638  if (Tok.isNot(AsmToken::Identifier))
4639  return MatchOperand_NoMatch;
4640  StringRef ShiftName = Tok.getString();
4641  if (ShiftName != "ror" && ShiftName != "ROR")
4642  return MatchOperand_NoMatch;
4643  Parser.Lex(); // Eat the operator.
4644 
4645  // A '#' and a rotate amount.
4646  if (Parser.getTok().isNot(AsmToken::Hash) &&
4647  Parser.getTok().isNot(AsmToken::Dollar)) {
4648  Error(Parser.getTok().getLoc(), "'#' expected");
4649  return MatchOperand_ParseFail;
4650  }
4651  Parser.Lex(); // Eat hash token.
4652  SMLoc ExLoc = Parser.getTok().getLoc();
4653 
4654  const MCExpr *ShiftAmount;
4655  SMLoc EndLoc;
4656  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4657  Error(ExLoc, "malformed rotate expression");
4658  return MatchOperand_ParseFail;
4659  }
4660  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4661  if (!CE) {
4662  Error(ExLoc, "rotate amount must be an immediate");
4663  return MatchOperand_ParseFail;
4664  }
4665 
4666  int64_t Val = CE->getValue();
4667  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4668  // normally, zero is represented in asm by omitting the rotate operand
4669  // entirely.
4670  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4671  Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4672  return MatchOperand_ParseFail;
4673  }
4674 
4675  Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4676 
4677  return MatchOperand_Success;
4678 }
4679 
4681 ARMAsmParser::parseModImm(OperandVector &Operands) {
4682  MCAsmParser &Parser = getParser();
4683  MCAsmLexer &Lexer = getLexer();
4684  int64_t Imm1, Imm2;
4685 
4686  SMLoc S = Parser.getTok().getLoc();
4687 
4688  // 1) A mod_imm operand can appear in the place of a register name:
4689  // add r0, #mod_imm
4690  // add r0, r0, #mod_imm
4691  // to correctly handle the latter, we bail out as soon as we see an
4692  // identifier.
4693  //
4694  // 2) Similarly, we do not want to parse into complex operands:
4695  // mov r0, #mod_imm
4696  // mov r0, :lower16:(_foo)
4697  if (Parser.getTok().is(AsmToken::Identifier) ||
4698  Parser.getTok().is(AsmToken::Colon))
4699  return MatchOperand_NoMatch;
4700 
4701  // Hash (dollar) is optional as per the ARMARM
4702  if (Parser.getTok().is(AsmToken::Hash) ||
4703  Parser.getTok().is(AsmToken::Dollar)) {
4704  // Avoid parsing into complex operands (#:)
4705  if (Lexer.peekTok().is(AsmToken::Colon))
4706  return MatchOperand_NoMatch;
4707 
4708  // Eat the hash (dollar)
4709  Parser.Lex();
4710  }
4711 
4712  SMLoc Sx1, Ex1;
4713  Sx1 = Parser.getTok().getLoc();
4714  const MCExpr *Imm1Exp;
4715  if (getParser().parseExpression(Imm1Exp, Ex1)) {
4716  Error(Sx1, "malformed expression");
4717  return MatchOperand_ParseFail;
4718  }
4719 
4720  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
4721 
4722  if (CE) {
4723  // Immediate must fit within 32-bits
4724  Imm1 = CE->getValue();
4725  int Enc = ARM_AM::getSOImmVal(Imm1);
4726  if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
4727  // We have a match!
4728  Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
4729  (Enc & 0xF00) >> 7,
4730  Sx1, Ex1));
4731  return MatchOperand_Success;
4732  }
4733 
4734  // We have parsed an immediate which is not for us, fallback to a plain
4735  // immediate. This can happen for instruction aliases. For an example,
4736  // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4737  // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4738  // instruction with a mod_imm operand. The alias is defined such that the
4739  // parser method is shared, that's why we have to do this here.
4740  if (Parser.getTok().is(AsmToken::EndOfStatement)) {
4741  Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4742  return MatchOperand_Success;
4743  }
4744  } else {
4745  // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4746  // MCFixup). Fallback to a plain immediate.
4747  Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4748  return MatchOperand_Success;
4749  }
4750 
4751  // From this point onward, we expect the input to be a (#bits, #rot) pair
4752  if (Parser.getTok().isNot(AsmToken::Comma)) {
4753  Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
4754  return MatchOperand_ParseFail;
4755  }
4756 
4757  if (Imm1 & ~0xFF) {
4758  Error(Sx1, "immediate operand must a number in the range [0, 255]");
4759  return MatchOperand_ParseFail;
4760  }
4761 
4762  // Eat the comma
4763  Parser.Lex();
4764 
4765  // Repeat for #rot
4766  SMLoc Sx2, Ex2;
4767  Sx2 = Parser.getTok().getLoc();
4768 
4769  // Eat the optional hash (dollar)
4770  if (Parser.getTok().is(AsmToken::Hash) ||
4771  Parser.getTok().is(AsmToken::Dollar))
4772  Parser.Lex();
4773 
4774  const MCExpr *Imm2Exp;
4775  if (getParser().parseExpression(Imm2Exp, Ex2)) {
4776  Error(Sx2, "malformed expression");
4777  return MatchOperand_ParseFail;
4778  }
4779 
4780  CE = dyn_cast<MCConstantExpr>(Imm2Exp);
4781 
4782  if (CE) {
4783  Imm2 = CE->getValue();
4784  if (!(Imm2 & ~0x1E)) {
4785  // We have a match!
4786  Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
4787  return MatchOperand_Success;
4788  }
4789  Error(Sx2, "immediate operand must an even number in the range [0, 30]");
4790  return MatchOperand_ParseFail;
4791  } else {
4792  Error(Sx2, "constant expression expected");
4793  return MatchOperand_ParseFail;
4794  }
4795 }
4796 
4798 ARMAsmParser::parseBitfield(OperandVector &Operands) {
4799  MCAsmParser &Parser = getParser();
4800  SMLoc S = Parser.getTok().getLoc();
4801  // The bitfield descriptor is really two operands, the LSB and the width.
4802  if (Parser.getTok().isNot(AsmToken::Hash) &&
4803  Parser.getTok().isNot(AsmToken::Dollar)) {
4804  Error(Parser.getTok().getLoc(), "'#' expected");
4805  return MatchOperand_ParseFail;
4806  }
4807  Parser.Lex(); // Eat hash token.
4808 
4809  const MCExpr *LSBExpr;
4810  SMLoc E = Parser.getTok().getLoc();
4811  if (getParser().parseExpression(LSBExpr)) {
4812  Error(E, "malformed immediate expression");
4813  return MatchOperand_ParseFail;
4814  }
4815  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4816  if (!CE) {
4817  Error(E, "'lsb' operand must be an immediate");
4818  return MatchOperand_ParseFail;
4819  }
4820 
4821  int64_t LSB = CE->getValue();
4822  // The LSB must be in the range [0,31]
4823  if (LSB < 0 || LSB > 31) {
4824  Error(E, "'lsb' operand must be in the range [0,31]");
4825  return MatchOperand_ParseFail;
4826  }
4827  E = Parser.getTok().getLoc();
4828 
4829  // Expect another immediate operand.
4830  if (Parser.getTok().isNot(AsmToken::Comma)) {
4831  Error(Parser.getTok().getLoc(), "too few operands");
4832  return MatchOperand_ParseFail;
4833  }
4834  Parser.Lex(); // Eat hash token.
4835  if (Parser.getTok().isNot(AsmToken::Hash) &&
4836  Parser.getTok().isNot(AsmToken::Dollar)) {
4837  Error(Parser.getTok().getLoc(), "'#' expected");
4838  return MatchOperand_ParseFail;
4839  }
4840  Parser.Lex(); // Eat hash token.
4841 
4842  const MCExpr *WidthExpr;
4843  SMLoc EndLoc;
4844  if (getParser().parseExpression(WidthExpr, EndLoc)) {
4845  Error(E, "malformed immediate expression");
4846  return MatchOperand_ParseFail;
4847  }
4848  CE = dyn_cast<MCConstantExpr>(WidthExpr);
4849  if (!CE) {
4850  Error(E, "'width' operand must be an immediate");
4851  return MatchOperand_ParseFail;
4852  }
4853 
4854  int64_t Width = CE->getValue();
4855  // The LSB must be in the range [1,32-lsb]
4856  if (Width < 1 || Width > 32 - LSB) {
4857  Error(E, "'width' operand must be in the range [1,32-lsb]");
4858  return MatchOperand_ParseFail;
4859  }
4860 
4861  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4862 
4863  return MatchOperand_Success;
4864 }
4865 
4867 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
4868  // Check for a post-index addressing register operand. Specifically:
4869  // postidx_reg := '+' register {, shift}
4870  // | '-' register {, shift}
4871  // | register {, shift}
4872 
4873  // This method must return MatchOperand_NoMatch without consuming any tokens
4874  // in the case where there is no match, as other alternatives take other
4875  // parse methods.
4876  MCAsmParser &Parser = getParser();
4877  AsmToken Tok = Parser.getTok();
4878  SMLoc S = Tok.getLoc();
4879  bool haveEaten = false;
4880  bool isAdd = true;
4881  if (Tok.is(AsmToken::Plus)) {
4882  Parser.Lex(); // Eat the '+' token.
4883  haveEaten = true;
4884  } else if (Tok.is(AsmToken::Minus)) {
4885  Parser.Lex(); // Eat the '-' token.
4886  isAdd = false;
4887  haveEaten = true;
4888  }
4889 
4890  SMLoc E = Parser.getTok().getEndLoc();
4891  int Reg = tryParseRegister();
4892  if (Reg == -1) {
4893  if (!haveEaten)
4894  return MatchOperand_NoMatch;
4895  Error(Parser.getTok().getLoc(), "register expected");
4896  return MatchOperand_ParseFail;
4897  }
4898 
4900  unsigned ShiftImm = 0;
4901  if (Parser.getTok().is(AsmToken::Comma)) {
4902  Parser.Lex(); // Eat the ','.
4903  if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4904  return MatchOperand_ParseFail;
4905 
4906  // FIXME: Only approximates end...may include intervening whitespace.
4907  E = Parser.getTok().getLoc();
4908  }
4909 
4910  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4911  ShiftImm, S, E));
4912 
4913  return MatchOperand_Success;
4914 }
4915 
4917 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
4918  // Check for a post-index addressing register operand. Specifically:
4919  // am3offset := '+' register
4920  // | '-' register
4921  // | register
4922  // | # imm
4923  // | # + imm
4924  // | # - imm
4925 
4926  // This method must return MatchOperand_NoMatch without consuming any tokens
4927  // in the case where there is no match, as other alternatives take other
4928  // parse methods.
4929  MCAsmParser &Parser = getParser();
4930  AsmToken Tok = Parser.getTok();
4931  SMLoc S = Tok.getLoc();
4932 
4933  // Do immediates first, as we always parse those if we have a '#'.
4934  if (Parser.getTok().is(AsmToken::Hash) ||
4935  Parser.getTok().is(AsmToken::Dollar)) {
4936  Parser.Lex(); // Eat '#' or '$'.
4937  // Explicitly look for a '-', as we need to encode negative zero
4938  // differently.
4939  bool isNegative = Parser.getTok().is(AsmToken::Minus);
4940  const MCExpr *Offset;
4941  SMLoc E;
4942  if (getParser().parseExpression(Offset, E))
4943  return MatchOperand_ParseFail;
4945  if (!CE) {
4946  Error(S, "constant expression expected");
4947  return MatchOperand_ParseFail;
4948  }
4949  // Negative zero is encoded as the flag value
4950  // std::numeric_limits<int32_t>::min().
4951  int32_t Val = CE->getValue();
4952  if (isNegative && Val == 0)
4953  Val = std::numeric_limits<int32_t>::min();
4954 
4955  Operands.push_back(
4956  ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
4957 
4958  return MatchOperand_Success;
4959  }
4960 
4961  bool haveEaten = false;
4962  bool isAdd = true;
4963  if (Tok.is(AsmToken::Plus)) {
4964  Parser.Lex(); // Eat the '+' token.
4965  haveEaten = true;
4966  } else if (Tok.is(AsmToken::Minus)) {
4967  Parser.Lex(); // Eat the '-' token.
4968  isAdd = false;
4969  haveEaten = true;
4970  }
4971 
4972  Tok = Parser.getTok();
4973  int Reg = tryParseRegister();
4974  if (Reg == -1) {
4975  if (!haveEaten)
4976  return MatchOperand_NoMatch;
4977  Error(Tok.getLoc(), "register expected");
4978  return MatchOperand_ParseFail;
4979  }
4980 
4981  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4982  0, S, Tok.getEndLoc()));
4983 
4984  return MatchOperand_Success;
4985 }
4986 
4987 /// Convert parsed operands to MCInst. Needed here because this instruction
4988 /// only has two register operands, but multiplication is commutative so
4989 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4990 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
4991  const OperandVector &Operands) {
4992  ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
4993  ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
4994  // If we have a three-operand form, make sure to set Rn to be the operand
4995  // that isn't the same as Rd.
4996  unsigned RegOp = 4;
4997  if (Operands.size() == 6 &&
4998  ((ARMOperand &)*Operands[4]).getReg() ==
4999  ((ARMOperand &)*Operands[3]).getReg())
5000  RegOp = 5;
5001  ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5002  Inst.addOperand(Inst.getOperand(0));
5003  ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5004 }
5005 
5006 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5007  const OperandVector &Operands) {
5008  int CondOp = -1, ImmOp = -1;
5009  switch(Inst.getOpcode()) {
5010  case ARM::tB:
5011  case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
5012 
5013  case ARM::t2B:
5014  case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5015 
5016  default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5017  }
5018  // first decide whether or not the branch should be conditional
5019  // by looking at it's location relative to an IT block
5020  if(inITBlock()) {
5021  // inside an IT block we cannot have any conditional branches. any
5022  // such instructions needs to be converted to unconditional form
5023  switch(Inst.getOpcode()) {
5024  case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5025  case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5026  }
5027  } else {
5028  // outside IT blocks we can only have unconditional branches with AL
5029  // condition code or conditional branches with non-AL condition code
5030  unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5031  switch(Inst.getOpcode()) {
5032  case ARM::tB:
5033  case ARM::tBcc:
5034  Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5035  break;
5036  case ARM::t2B:
5037  case ARM::t2Bcc:
5038  Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5039  break;
5040  }
5041  }
5042 
5043  // now decide on encoding size based on branch target range
5044  switch(Inst.getOpcode()) {
5045  // classify tB as either t2B or t1B based on range of immediate operand
5046  case ARM::tB: {
5047  ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5048  if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5049  Inst.setOpcode(ARM::t2B);
5050  break;
5051  }
5052  // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5053  case ARM::tBcc: {
5054  ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5055  if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5056  Inst.setOpcode(ARM::t2Bcc);
5057  break;
5058  }
5059  }
5060  ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5061  ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5062 }
5063 
5064 /// Parse an ARM memory expression, return false if successful else return true
5065 /// or an error. The first token must be a '[' when called.
5066 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5067  MCAsmParser &Parser = getParser();
5068  SMLoc S, E;
5069  if (Parser.getTok().isNot(AsmToken::LBrac))
5070  return TokError("Token is not a Left Bracket");
5071  S = Parser.getTok().getLoc();
5072  Parser.Lex(); // Eat left bracket token.
5073 
5074  const AsmToken &BaseRegTok = Parser.getTok();
5075  int BaseRegNum = tryParseRegister();
5076  if (BaseRegNum == -1)
5077  return Error(BaseRegTok.getLoc(), "register expected");
5078 
5079  // The next token must either be a comma, a colon or a closing bracket.
5080  const AsmToken &Tok = Parser.getTok();
5081  if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5082  !Tok.is(AsmToken::RBrac))
5083  return Error(Tok.getLoc(), "malformed memory operand");
5084 
5085  if (Tok.is(AsmToken::RBrac)) {
5086  E = Tok.getEndLoc();
5087  Parser.Lex(); // Eat right bracket token.
5088 
5089  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5090  ARM_AM::no_shift, 0, 0, false,
5091  S, E));
5092 
5093  // If there's a pre-indexing writeback marker, '!', just add it as a token
5094  // operand. It's rather odd, but syntactically valid.
5095  if (Parser.getTok().is(AsmToken::Exclaim)) {
5096  Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5097  Parser.Lex(); // Eat the '!'.
5098  }
5099 
5100  return false;
5101  }
5102 
5103  assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5104  "Lost colon or comma in memory operand?!");
5105  if (Tok.is(AsmToken::Comma)) {
5106  Parser.Lex(); // Eat the comma.
5107  }
5108 
5109  // If we have a ':', it's an alignment specifier.
5110  if (Parser.getTok().is(AsmToken::Colon)) {
5111  Parser.Lex(); // Eat the ':'.
5112  E = Parser.getTok().getLoc();
5113  SMLoc AlignmentLoc = Tok.getLoc();
5114 
5115  const MCExpr *Expr;
5116  if (getParser().parseExpression(Expr))
5117  return true;
5118 
5119  // The expression has to be a constant. Memory references with relocations
5120  // don't come through here, as they use the <label> forms of the relevant
5121  // instructions.
5122  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5123  if (!CE)
5124  return Error (E, "constant expression expected");
5125 
5126  unsigned Align = 0;
5127  switch (CE->getValue()) {
5128  default:
5129  return Error(E,
5130  "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5131  case 16: Align = 2; break;
5132  case 32: Align = 4; break;
5133  case 64: Align = 8; break;
5134  case 128: Align = 16; break;
5135  case 256: Align = 32; break;
5136  }
5137 
5138  // Now we should have the closing ']'
5139  if (Parser.getTok().isNot(AsmToken::RBrac))
5140  return Error(Parser.getTok().getLoc(), "']' expected");
5141  E = Parser.getTok().getEndLoc();
5142  Parser.Lex(); // Eat right bracket token.
5143 
5144  // Don't worry about range checking the value here. That's handled by
5145  // the is*() predicates.
5146  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5147  ARM_AM::no_shift, 0, Align,
5148  false, S, E, AlignmentLoc));
5149 
5150  // If there's a pre-indexing writeback marker, '!', just add it as a token
5151  // operand.
5152  if (Parser.getTok().is(AsmToken::Exclaim)) {
5153  Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5154  Parser.Lex(); // Eat the '!'.
5155  }
5156 
5157  return false;
5158  }
5159 
5160  // If we have a '#', it's an immediate offset, else assume it's a register
5161  // offset. Be friendly and also accept a plain integer (without a leading
5162  // hash) for gas compatibility.
5163  if (Parser.getTok().is(AsmToken::Hash) ||
5164  Parser.getTok().is(AsmToken::Dollar) ||
5165  Parser.getTok().is(AsmToken::Integer)) {
5166  if (Parser.getTok().isNot(AsmToken::Integer))
5167  Parser.Lex(); // Eat '#' or '$'.
5168  E = Parser.getTok().getLoc();
5169 
5170  bool isNegative = getParser().getTok().is(AsmToken::Minus);
5171  const MCExpr *Offset;
5172  if (getParser().parseExpression(Offset))
5173  return true;
5174 
5175  // The expression has to be a constant. Memory references with relocations
5176  // don't come through here, as they use the <label> forms of the relevant
5177  // instructions.
5179  if (!CE)
5180  return Error (E, "constant expression expected");
5181 
5182  // If the constant was #-0, represent it as
5183  // std::numeric_limits<int32_t>::min().
5184  int32_t Val = CE->getValue();
5185  if (isNegative && Val == 0)
5186  CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5187  getContext());
5188 
5189  // Now we should have the closing ']'
5190  if (Parser.getTok().isNot(AsmToken::RBrac))
5191  return Error(Parser.getTok().getLoc(), "']' expected");
5192  E = Parser.getTok().getEndLoc();
5193  Parser.Lex(); // Eat right bracket token.
5194 
5195  // Don't worry about range checking the value here. That's handled by
5196  // the is*() predicates.
5197  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5198  ARM_AM::no_shift, 0, 0,
5199  false, S, E));
5200 
5201  // If there's a pre-indexing writeback marker, '!', just add it as a token
5202  // operand.
5203  if (Parser.getTok().is(AsmToken::Exclaim)) {
5204  Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5205  Parser.Lex(); // Eat the '!'.
5206  }
5207 
5208  return false;
5209  }
5210 
5211  // The register offset is optionally preceded by a '+' or '-'
5212  bool isNegative = false;
5213  if (Parser.getTok().is(AsmToken::Minus)) {
5214  isNegative = true;
5215  Parser.Lex(); // Eat the '-'.
5216  } else if (Parser.getTok().is(AsmToken::Plus)) {
5217  // Nothing to do.
5218  Parser.Lex(); // Eat the '+'.
5219  }
5220 
5221  E = Parser.getTok().getLoc();
5222  int OffsetRegNum = tryParseRegister();
5223  if (OffsetRegNum == -1)
5224  return Error(E, "register expected");
5225 
5226  // If there's a shift operator, handle it.
5227  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5228  unsigned ShiftImm = 0;
5229  if (Parser.getTok().is(AsmToken::Comma)) {
5230  Parser.Lex(); // Eat the ','.
5231  if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5232  return true;
5233  }
5234 
5235  // Now we should have the closing ']'
5236  if (Parser.getTok().isNot(AsmToken::RBrac))
5237  return Error(Parser.getTok().getLoc(), "']' expected");
5238  E = Parser.getTok().getEndLoc();
5239  Parser.Lex(); // Eat right bracket token.
5240 
5241  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5242  ShiftType, ShiftImm, 0, isNegative,
5243  S, E));
5244 
5245  // If there's a pre-indexing writeback marker, '!', just add it as a token
5246  // operand.
5247  if (Parser.getTok().is(AsmToken::Exclaim)) {
5248  Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5249  Parser.Lex(); // Eat the '!'.
5250  }
5251 
5252  return false;
5253 }
5254 
5255 /// parseMemRegOffsetShift - one of these two:
5256 /// ( lsl | lsr | asr | ror ) , # shift_amount
5257 /// rrx
5258 /// return true if it parses a shift otherwise it returns false.
5259 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5260  unsigned &Amount) {
5261  MCAsmParser &Parser = getParser();
5262  SMLoc Loc = Parser.getTok().getLoc();
5263  const AsmToken &Tok = Parser.getTok();
5264  if (Tok.isNot(AsmToken::Identifier))
5265  return Error(Loc, "illegal shift operator");
5266  StringRef ShiftName = Tok.getString();
5267  if (ShiftName == "lsl" || ShiftName == "LSL" ||
5268  ShiftName == "asl" || ShiftName == "ASL")
5269  St = ARM_AM::lsl;
5270  else if (ShiftName == "lsr" || ShiftName == "LSR")
5271  St = ARM_AM::lsr;
5272  else if (ShiftName == "asr" || ShiftName == "ASR")
5273  St = ARM_AM::asr;
5274  else if (ShiftName == "ror" || ShiftName == "ROR")
5275  St = ARM_AM::ror;
5276  else if (ShiftName == "rrx" || ShiftName == "RRX")
5277  St = ARM_AM::rrx;
5278  else
5279  return Error(Loc, "illegal shift operator");
5280  Parser.Lex(); // Eat shift type token.
5281 
5282  // rrx stands alone.
5283  Amount = 0;
5284  if (St != ARM_AM::rrx) {
5285  Loc = Parser.getTok().getLoc();
5286  // A '#' and a shift amount.
5287  const AsmToken &HashTok = Parser.getTok();
5288  if (HashTok.isNot(AsmToken::Hash) &&
5289  HashTok.isNot(AsmToken::Dollar))
5290  return Error(HashTok.getLoc(), "'#' expected");
5291  Parser.Lex(); // Eat hash token.
5292 
5293  const MCExpr *Expr;
5294  if (getParser().parseExpression(Expr))
5295  return true;
5296  // Range check the immediate.
5297  // lsl, ror: 0 <= imm <= 31
5298  // lsr, asr: 0 <= imm <= 32
5299  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5300  if (!CE)
5301  return Error(Loc, "shift amount must be an immediate");
5302  int64_t Imm = CE->getValue();
5303  if (Imm < 0 ||
5304  ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5305  ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5306  return Error(Loc, "immediate shift value out of range");
5307  // If <ShiftTy> #0, turn it into a no_shift.
5308  if (Imm == 0)
5309  St = ARM_AM::lsl;
5310  // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5311  if (Imm == 32)
5312  Imm = 0;
5313  Amount = Imm;
5314  }
5315 
5316  return false;
5317 }
5318 
5319 /// parseFPImm - A floating point immediate expression operand.
5321 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5322  MCAsmParser &Parser = getParser();
5323  // Anything that can accept a floating point constant as an operand
5324  // needs to go through here, as the regular parseExpression is
5325  // integer only.
5326  //
5327  // This routine still creates a generic Immediate operand, containing
5328  // a bitcast of the 64-bit floating point value. The various operands
5329  // that accept floats can check whether the value is valid for them
5330  // via the standard is*() predicates.
5331 
5332  SMLoc S = Parser.getTok().getLoc();
5333 
5334  if (Parser.getTok().isNot(AsmToken::Hash) &&
5335  Parser.getTok().isNot(AsmToken::Dollar))
5336  return MatchOperand_NoMatch;
5337 
5338  // Disambiguate the VMOV forms that can accept an FP immediate.
5339  // vmov.f32 <sreg>, #imm
5340  // vmov.f64 <dreg>, #imm
5341  // vmov.f32 <dreg>, #imm @ vector f32x2
5342  // vmov.f32 <qreg>, #imm @ vector f32x4
5343  //
5344  // There are also the NEON VMOV instructions which expect an
5345  // integer constant. Make sure we don't try to parse an FPImm
5346  // for these:
5347  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5348  ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5349  bool isVmovf = TyOp.isToken() &&
5350  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5351  TyOp.getToken() == ".f16");
5352  ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5353  bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5354  Mnemonic.getToken() == "fconsts");
5355  if (!(isVmovf || isFconst))
5356  return MatchOperand_NoMatch;
5357 
5358  Parser.Lex(); // Eat '#' or '$'.
5359 
5360  // Handle negation, as that still comes through as a separate token.
5361  bool isNegative = false;
5362  if (Parser.getTok().is(AsmToken::Minus)) {
5363  isNegative = true;
5364  Parser.Lex();
5365  }
5366  const AsmToken &Tok = Parser.getTok();
5367  SMLoc Loc = Tok.getLoc();
5368  if (Tok.is(AsmToken::Real) && isVmovf) {
5369  APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5370  uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5371  // If we had a '-' in front, toggle the sign bit.
5372  IntVal ^= (uint64_t)isNegative << 31;
5373  Parser.Lex(); // Eat the token.
5374  Operands.push_back(ARMOperand::CreateImm(
5375  MCConstantExpr::create(IntVal, getContext()),
5376  S, Parser.getTok().getLoc()));
5377  return MatchOperand_Success;
5378  }
5379  // Also handle plain integers. Instructions which allow floating point
5380  // immediates also allow a raw encoded 8-bit value.
5381  if (Tok.is(AsmToken::Integer) && isFconst) {
5382  int64_t Val = Tok.getIntVal();
5383  Parser.Lex(); // Eat the token.
5384  if (Val > 255 || Val < 0) {
5385  Error(Loc, "encoded floating point value out of range");
5386  return MatchOperand_ParseFail;
5387  }
5388  float RealVal = ARM_AM::getFPImmFloat(Val);
5389  Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5390 
5391  Operands.push_back(ARMOperand::CreateImm(
5392  MCConstantExpr::create(Val, getContext()), S,
5393  Parser.getTok().getLoc()));
5394  return MatchOperand_Success;
5395  }
5396 
5397  Error(Loc, "invalid floating point immediate");
5398  return MatchOperand_ParseFail;
5399 }
5400 
5401 /// Parse a arm instruction operand. For now this parses the operand regardless
5402 /// of the mnemonic.
5403 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5404  MCAsmParser &Parser = getParser();
5405  SMLoc S, E;
5406 
5407  // Check if the current operand has a custom associated parser, if so, try to
5408  // custom parse the operand, or fallback to the general approach.
5409  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5410  if (ResTy == MatchOperand_Success)
5411  return false;
5412  // If there wasn't a custom match, try the generic matcher below. Otherwise,
5413  // there was a match, but an error occurred, in which case, just return that
5414  // the operand parsing failed.
5415  if (ResTy == MatchOperand_ParseFail)
5416  return true;
5417 
5418  switch (getLexer().getKind()) {
5419  default:
5420  Error(Parser.getTok().getLoc(), "unexpected token in operand");
5421  return true;
5422  case AsmToken::Identifier: {
5423  // If we've seen a branch mnemonic, the next operand must be a label. This
5424  // is true even if the label is a register name. So "br r1" means branch to
5425  // label "r1".
5426  bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
5427  if (!ExpectLabel) {
5428  if (!tryParseRegisterWithWriteBack(Operands))
5429  return false;
5430  int Res = tryParseShiftRegister(Operands);
5431  if (Res == 0) // success
5432  return false;
5433  else if (Res == -1) // irrecoverable error
5434  return true;
5435  // If this is VMRS, check for the apsr_nzcv operand.
5436  if (Mnemonic == "vmrs" &&
5437  Parser.getTok().getString().equals_lower("apsr_nzcv")) {
5438  S = Parser.getTok().getLoc();
5439  Parser.Lex();
5440  Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
5441  return false;
5442  }
5443  }
5444 
5445  // Fall though for the Identifier case that is not a register or a
5446  // special name.
5448  }
5449  case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
5450  case AsmToken::Integer: // things like 1f and 2b as a branch targets
5451  case AsmToken::String: // quoted label names.
5452  case AsmToken::Dot: { // . as a branch target
5453  // This was not a register so parse other operands that start with an
5454  // identifier (like labels) as expressions and create them as immediates.
5455  const MCExpr *IdVal;
5456  S = Parser.getTok().getLoc();
5457  if (getParser().parseExpression(IdVal))
5458  return true;
5459  E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5460  Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
5461  return false;
5462  }
5463  case AsmToken::LBrac:
5464  return parseMemory(Operands);
5465  case AsmToken::LCurly:
5466  return parseRegisterList(Operands);
5467  case AsmToken::Dollar:
5468  case AsmToken::Hash:
5469  // #42 -> immediate.
5470  S = Parser.getTok().getLoc();
5471  Parser.Lex();
5472 
5473  if (Parser.getTok().isNot(AsmToken::Colon)) {
5474  bool isNegative = Parser.getTok().is(AsmToken::Minus);
5475  const MCExpr *ImmVal;
5476  if (getParser().parseExpression(ImmVal))
5477  return true;
5478  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
5479  if (CE) {
5480  int32_t Val = CE->getValue();
5481  if (isNegative && Val == 0)
5482  ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5483  getContext());
5484  }
5485  E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5486  Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
5487 
5488  // There can be a trailing '!' on operands that we want as a separate
5489  // '!' Token operand. Handle that here. For example, the compatibility
5490  // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5491  if (Parser.getTok().is(AsmToken::Exclaim)) {
5492  Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
5493  Parser.getTok().getLoc()));
5494  Parser.Lex(); // Eat exclaim token
5495  }
5496  return false;
5497  }
5498  // w/ a ':' after the '#', it's just like a plain ':'.
5500 
5501  case AsmToken::Colon: {
5502  S = Parser.getTok().getLoc();
5503  // ":lower16:" and ":upper16:" expression prefixes
5504  // FIXME: Check it's an expression prefix,
5505  // e.g. (FOO - :lower16:BAR) isn't legal.
5506  ARMMCExpr::VariantKind RefKind;
5507  if (parsePrefix(RefKind))
5508  return true;
5509 
5510  const MCExpr *SubExprVal;
5511  if (getParser().parseExpression(SubExprVal))
5512  return true;
5513 
5514  const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
5515  getContext());
5516  E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5517  Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
5518  return false;
5519  }
5520  case AsmToken::Equal: {
5521  S = Parser.getTok().getLoc();
5522  if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5523  return Error(S, "unexpected token in operand");
5524  Parser.Lex(); // Eat '='
5525  const MCExpr *SubExprVal;
5526  if (getParser().parseExpression(SubExprVal))
5527  return true;
5528  E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5529 
5530  // execute-only: we assume that assembly programmers know what they are
5531  // doing and allow literal pool creation here
5532  Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
5533  return false;
5534  }
5535  }
5536 }
5537 
5538 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5539 // :lower16: and :upper16:.
5540 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
5541  MCAsmParser &Parser = getParser();
5542  RefKind = ARMMCExpr::VK_ARM_None;
5543 
5544  // consume an optional '#' (GNU compatibility)
5545  if (getLexer().is(AsmToken::Hash))
5546  Parser.Lex();
5547 
5548  // :lower16: and :upper16: modifiers
5549  assert(getLexer().is(AsmToken::Colon) && "expected a :");
5550  Parser.Lex(); // Eat ':'
5551 
5552  if (getLexer().isNot(AsmToken::Identifier)) {
5553  Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
5554  return true;
5555  }
5556 
5557  enum {
5558  COFF = (1 << MCObjectFileInfo::IsCOFF),
5559  ELF = (1 << MCObjectFileInfo::IsELF),
5560  MACHO = (1 << MCObjectFileInfo::IsMachO),
5561  WASM = (1 << MCObjectFileInfo::IsWasm),
5562  };
5563  static const struct PrefixEntry {
5564  const char *Spelling;
5565  ARMMCExpr::VariantKind VariantKind;
5566  uint8_t SupportedFormats;
5567  } PrefixEntries[] = {
5568  { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
5569  { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
5570  };
5571 
5572  StringRef IDVal = Parser.getTok().getIdentifier();
5573 
5574  const auto &Prefix =
5575  std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
5576  [&IDVal](const PrefixEntry &PE) {
5577  return PE.Spelling == IDVal;
5578  });
5579  if (Prefix == std::end(PrefixEntries)) {
5580  Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
5581  return true;
5582  }
5583 
5584  uint8_t CurrentFormat;
5585  switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5587  CurrentFormat = MACHO;
5588  break;
5590  CurrentFormat = ELF;
5591  break;
5593  CurrentFormat = COFF;
5594  break;
5596  CurrentFormat = WASM;
5597  break;
5598  }
5599 
5600  if (~Prefix->SupportedFormats & CurrentFormat) {
5601  Error(Parser.getTok().getLoc(),
5602  "cannot represent relocation in the current file format");
5603  return true;
5604  }
5605 
5606  RefKind = Prefix->VariantKind;
5607  Parser.Lex();
5608 
5609  if (getLexer().isNot(AsmToken::Colon)) {
5610  Error(Parser.getTok().getLoc(), "unexpected token after prefix");
5611  return true;
5612  }
5613  Parser.Lex(); // Eat the last ':'
5614 
5615  return false;
5616 }
5617 
5618 /// Given a mnemonic, split out possible predication code and carry
5619 /// setting letters to form a canonical mnemonic and flags.
5620 //
5621 // FIXME: Would be nice to autogen this.
5622 // FIXME: This is a bit of a maze of special cases.
5623 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
5624  unsigned &PredicationCode,
5625  bool &CarrySetting,
5626  unsigned &ProcessorIMod,
5627  StringRef &ITMask) {
5628  PredicationCode = ARMCC::AL;
5629  CarrySetting = false;
5630  ProcessorIMod = 0;
5631 
5632  // Ignore some mnemonics we know aren't predicated forms.
5633  //
5634  // FIXME: Would be nice to autogen this.
5635  if ((Mnemonic == "movs" && isThumb()) ||
5636  Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
5637  Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
5638  Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
5639  Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
5640  Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
5641  Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
5642  Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
5643  Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
5644  Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
5645  Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
5646  Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
5647  Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
5648  Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
5649  Mnemonic == "bxns" || Mnemonic == "blxns" ||
5650  Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5651  Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5652  Mnemonic == "vfmal" || Mnemonic == "vfmsl")
5653  return Mnemonic;
5654 
5655  // First, split out any predication code. Ignore mnemonics we know aren't
5656  // predicated but do have a carry-set and so weren't caught above.
5657  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
5658  Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
5659  Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
5660  Mnemonic != "sbcs" && Mnemonic != "rscs") {
5661  unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
5662  if (CC != ~0U) {
5663  Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
5664  PredicationCode = CC;
5665  }
5666  }
5667 
5668  // Next, determine if we have a carry setting bit. We explicitly ignore all
5669  // the instructions we know end in 's'.
5670  if (Mnemonic.endswith("s") &&
5671  !(Mnemonic == "cps" || Mnemonic == "mls" ||
5672  Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
5673  Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
5674  Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
5675  Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
5676  Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
5677  Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
5678  Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
5679  Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
5680  Mnemonic == "bxns" || Mnemonic == "blxns" ||
5681  (Mnemonic == "movs" && isThumb()))) {
5682  Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
5683  CarrySetting = true;
5684  }
5685 
5686  // The "cps" instruction can have a interrupt mode operand which is glued into
5687  // the mnemonic. Check if this is the case, split it and parse the imod op
5688  if (Mnemonic.startswith("cps")) {
5689  // Split out any imod code.
5690  unsigned IMod =
5691  StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
5692  .Case("ie", ARM_PROC::IE)
5693  .Case("id", ARM_PROC::ID)
5694  .Default(~0U);
5695  if (IMod != ~0U) {
5696  Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
5697  ProcessorIMod = IMod;
5698  }
5699  }
5700 
5701  // The "it" instruction has the condition mask on the end of the mnemonic.
5702  if (Mnemonic.startswith("it")) {
5703  ITMask = Mnemonic.slice(2, Mnemonic.size());
5704  Mnemonic = Mnemonic.slice(0, 2);
5705  }
5706 
5707  return Mnemonic;
5708 }
5709 
5710 /// Given a canonical mnemonic, determine if the instruction ever allows
5711 /// inclusion of carry set or predication code operands.
5712 //
5713 // FIXME: It would be nice to autogen this.
5714 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
5715  bool &CanAcceptCarrySet,
5716  bool &CanAcceptPredicationCode) {
5717  CanAcceptCarrySet =
5718  Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5719  Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
5720  Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
5721  Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
5722  Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
5723  Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
5724  Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5725  (!isThumb() &&
5726  (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
5727  Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
5728 
5729  if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5730  Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
5731  Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
5732  Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
5733  Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
5734  Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
5735  Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
5736  Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
5737  Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
5738  Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
5739  (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
5740  Mnemonic == "vmovx" || Mnemonic == "vins" ||
5741  Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5742  Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5743  Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
5744  Mnemonic == "sb" || Mnemonic == "ssbb" ||
5745  Mnemonic == "pssbb") {
5746  // These mnemonics are never predicable
5747  CanAcceptPredicationCode = false;
5748  } else if (!isThumb()) {
5749  // Some instructions are only predicable in Thumb mode
5750  CanAcceptPredicationCode =
5751  Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5752  Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5753  Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
5754  Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
5755  Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
5756  Mnemonic != "stc2" && Mnemonic != "stc2l" &&
5757  Mnemonic != "tsb" &&
5758  !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
5759  } else if (isThumbOne()) {
5760  if (hasV6MOps())
5761  CanAcceptPredicationCode = Mnemonic != "movs";
5762  else
5763  CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5764  } else
5765  CanAcceptPredicationCode = true;
5766 }
5767 
5768 // Some Thumb instructions have two operand forms that are not
5769 // available as three operand, convert to two operand form if possible.
5770 //
5771 // FIXME: We would really like to be able to tablegen'erate this.
5772 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
5773  bool CarrySetting,
5774  OperandVector &Operands) {
5775  if (Operands.size() != 6)
5776  return;
5777 
5778  const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5779  auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
5780  if (!Op3.isReg() || !Op4.isReg())
5781  return;
5782 
5783  auto Op3Reg = Op3.getReg();
5784  auto Op4Reg = Op4.getReg();
5785 
5786  // For most Thumb2 cases we just generate the 3 operand form and reduce
5787  // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5788  // won't accept SP or PC so we do the transformation here taking care
5789  // with immediate range in the 'add sp, sp #imm' case.
5790  auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
5791  if (isThumbTwo()) {
5792  if (Mnemonic != "add")
5793  return;
5794  bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
5795  (Op5.isReg() && Op5.getReg() == ARM::PC);
5796  if (!TryTransform) {
5797  TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
5798  (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
5799  !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
5800  Op5.isImm() && !Op5.isImm0_508s4());
5801  }
5802  if (!TryTransform)
5803  return;
5804  } else if (!isThumbOne())
5805  return;
5806 
5807  if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
5808  Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5809  Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
5810  Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
5811  return;
5812 
5813  // If first 2 operands of a 3 operand instruction are the same
5814  // then transform to 2 operand version of the same instruction
5815  // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5816  bool Transform = Op3Reg == Op4Reg;
5817 
5818  // For communtative operations, we might be able to transform if we swap
5819  // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
5820  // as tADDrsp.
5821  const ARMOperand *LastOp = &Op5;
5822  bool Swap = false;
5823  if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
5824  ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
5825  Mnemonic == "and" || Mnemonic == "eor" ||
5826  Mnemonic == "adc" || Mnemonic == "orr")) {
5827  Swap = true;
5828  LastOp = &Op4;
5829  Transform = true;
5830  }
5831 
5832  // If both registers are the same then remove one of them from
5833  // the operand list, with certain exceptions.
5834  if (Transform) {
5835  // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5836  // 2 operand forms don't exist.
5837  if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
5838  LastOp->isReg())
5839  Transform = false;
5840 
5841  // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5842  // 3-bits because the ARMARM says not to.
5843  if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
5844  Transform = false;
5845  }
5846 
5847  if (Transform) {
5848  if (Swap)
5849  std::swap(Op4, Op5);
5850  Operands.erase(Operands.begin() + 3);
5851  }
5852 }
5853 
5854 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5855  OperandVector &Operands) {
5856  // FIXME: This is all horribly hacky. We really need a better way to deal
5857  // with optional operands like this in the matcher table.
5858 
5859  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5860  // another does not. Specifically, the MOVW instruction does not. So we
5861  // special case it here and remove the defaulted (non-setting) cc_out
5862  // operand if that's the instruction we're trying to match.
5863  //
5864  // We do this as post-processing of the explicit operands rather than just
5865  // conditionally adding the cc_out in the first place because we need
5866  // to check the type of the parsed immediate operand.
5867  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5868  !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
5869  static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
5870  static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5871  return true;
5872 
5873  // Register-register 'add' for thumb does not have a cc_out operand
5874  // when there are only two register operands.
5875  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5876  static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5877  static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5878  static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5879  return true;
5880  // Register-register 'add' for thumb does not have a cc_out operand
5881  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5882  // have to check the immediate range here since Thumb2 has a variant
5883  // that can handle a different range and has a cc_out operand.
5884  if (((isThumb() && Mnemonic == "add") ||
5885  (isThumbTwo() && Mnemonic == "sub")) &&
5886  Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5887  static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5888  static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
5889  static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5890  ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
5891  static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
5892  return true;
5893  // For Thumb2, add/sub immediate does not have a cc_out operand for the
5894  // imm0_4095 variant. That's the least-preferred variant when
5895  // selecting via the generic "add" mnemonic, so to know that we
5896  // should remove the cc_out operand, we have to explicitly check that
5897  // it's not one of the other variants. Ugh.
5898  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5899  Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5900  static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5901  static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5902  // Nest conditions rather than one big 'if' statement for readability.
5903  //
5904  // If both registers are low, we're in an IT block, and the immediate is
5905  // in range, we should use encoding T1 instead, which has a cc_out.
5906  if (inITBlock() &&
5907  isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
5908  isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
5909  static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
5910  return false;
5911  // Check against T3. If the second register is the PC, this is an
5912  // alternate form of ADR, which uses encoding T4, so check for that too.
5913  if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
5914  static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
5915  return false;
5916 
5917  // Otherwise, we use encoding T4, which does not have a cc_out
5918  // operand.
5919  return true;
5920  }
5921 
5922  // The thumb2 multiply instruction doesn't have a CCOut register, so
5923  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5924  // use the 16-bit encoding or not.
5925  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5926  static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5927  static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5928  static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5929  static_cast<ARMOperand &>(*Operands[5]).isReg() &&
5930  // If the registers aren't low regs, the destination reg isn't the
5931  // same as one of the source regs, or the cc_out operand is zero
5932  // outside of an IT block, we have to use the 32-bit encoding, so
5933  // remove the cc_out operand.
5934  (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5935  !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5936  !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
5937  !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5938  static_cast<ARMOperand &>(*Operands[5]).getReg() &&
5939  static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5940  static_cast<ARMOperand &>(*Operands[4]).getReg())))
5941  return true;
5942 
5943  // Also check the 'mul' syntax variant that doesn't specify an explicit
5944  // destination register.
5945  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5946  static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5947  static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5948  static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5949  // If the registers aren't low regs or the cc_out operand is zero
5950  // outside of an IT block, we have to use the 32-bit encoding, so
5951  // remove the cc_out operand.
5952  (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5953  !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5954  !inITBlock()))
5955  return true;
5956 
5957  // Register-register 'add/sub' for thumb does not have a cc_out operand
5958  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5959  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5960  // right, this will result in better diagnostics (which operand is off)
5961  // anyway.
5962  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5963  (Operands.size() == 5 || Operands.size() == 6) &&
5964  static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5965  static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
5966  static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5967  (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
5968  (Operands.size() == 6 &&
5969  static_cast<ARMOperand &>(*Operands[5]).isImm())))
5970  return true;
5971 
5972  return false;
5973 }
5974 
5975 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
5976  OperandVector &Operands) {
5977  // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5978  unsigned RegIdx = 3;
5979  if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") &&
5980  (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
5981  static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
5982  if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
5983  (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
5984  static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
5985  RegIdx = 4;
5986 
5987  if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
5988  (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
5989  static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
5990  ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
5991  static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
5992  return true;
5993  }
5994  return false;
5995 }
5996 
5997 static bool isDataTypeToken(StringRef Tok) {
5998  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5999  Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6000  Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6001  Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6002  Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6003  Tok == ".f" || Tok == ".d";
6004 }
6005 
6006 // FIXME: This bit should probably be handled via an explicit match class
6007 // in the .td files that matches the suffix instead of having it be
6008 // a literal string token the way it is now.
6009 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6010  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6011 }
6012 
6013 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
6014  unsigned VariantID);
6015 
6016 // The GNU assembler has aliases of ldrd and strd with the second register
6017 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6018 //
6019 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6020 // the assmebly parser could then generate confusing diagnostics refering to
6021 // it. If we do find anything that prevents us from doing the transformation we
6022 // bail out, and let the assembly parser report an error on the instruction as
6023 // it is written.
6024 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6025  OperandVector &Operands) {
6026  if (Mnemonic != "ldrd" && Mnemonic != "strd")
6027  return;
6028  if (Operands.size() < 4)
6029  return;
6030 
6031  ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6032  ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6033 
6034  if (!Op2.isReg())
6035  return;
6036  if (!Op3.isMem())
6037  return;
6038 
6039  const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6040  if (!GPR.contains(Op2.getReg()))
6041  return;
6042 
6043  unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6044  if (!isThumb() && (RtEncoding & 1)) {
6045  // In ARM mode, the registers must be from an aligned pair, this
6046  // restriction does not apply in Thumb mode.
6047  return;
6048  }
6049  if (Op2.getReg() == ARM::PC)
6050  return;
6051  unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6052  if (!PairedReg || PairedReg == ARM::PC ||
6053  (PairedReg == ARM::SP && !hasV8Ops()))
6054  return;
6055 
6056  Operands.insert(
6057  Operands.begin() + 3,
6058  ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6059 }
6060 
6061 /// Parse an arm instruction mnemonic followed by its operands.
6062 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6063  SMLoc NameLoc, OperandVector &Operands) {
6064  MCAsmParser &Parser = getParser();
6065 
6066  // Apply mnemonic aliases before doing anything else, as the destination
6067  // mnemonic may include suffices and we want to handle them normally.
6068  // The generic tblgen'erated code does this later, at the start of
6069  // MatchInstructionImpl(), but that's too late for aliases that include
6070  // any sort of suffix.
6071  uint64_t AvailableFeatures = getAvailableFeatures();
6072  unsigned AssemblerDialect = getParser().getAssemblerDialect();
6073  applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6074 
6075  // First check for the ARM-specific .req directive.
6076  if (Parser.getTok().is(AsmToken::Identifier) &&
6077  Parser.getTok().getIdentifier() == ".req") {
6078  parseDirectiveReq(Name, NameLoc);
6079  // We always return 'error' for this, as we're done with this
6080  // statement and don't need to match the 'instruction."
6081  return true;
6082  }
6083 
6084  // Create the leading tokens for the mnemonic, split by '.' characters.
6085  size_t Start = 0, Next = Name.find('.');
6086  StringRef Mnemonic = Name.slice(Start, Next);
6087 
6088  // Split out the predication code and carry setting flag from the mnemonic.
6089  unsigned PredicationCode;
6090  unsigned ProcessorIMod;
6091  bool CarrySetting;
6092  StringRef ITMask;
6093  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
6094  ProcessorIMod, ITMask);
6095 
6096  // In Thumb1, only the branch (B) instruction can be predicated.
6097  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6098  return Error(NameLoc, "conditional execution not supported in Thumb1");
6099  }
6100 
6101  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6102 
6103  // Handle the IT instruction ITMask. Convert it to a bitmask. This
6104  // is the mask as it will be for the IT encoding if the conditional
6105  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6106  // where the conditional bit0 is zero, the instruction post-processing
6107  // will adjust the mask accordingly.
6108  if (Mnemonic == "it") {
6109  SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
6110  if (ITMask.size() > 3) {
6111  return Error(Loc, "too many conditions on IT instruction");
6112  }
6113  unsigned Mask = 8;
6114  for (unsigned i = ITMask.size(); i != 0; --i) {
6115  char pos = ITMask[i - 1];
6116  if (pos != 't' && pos != 'e') {
6117  return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6118  }
6119  Mask >>= 1;
6120  if (ITMask[i - 1] == 't')
6121  Mask |= 8;
6122  }
6123  Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6124  }
6125 
6126  // FIXME: This is all a pretty gross hack. We should automatically handle
6127  // optional operands like this via tblgen.
6128 
6129  // Next, add the CCOut and ConditionCode operands, if needed.
6130  //
6131  // For mnemonics which can ever incorporate a carry setting bit or predication
6132  // code, our matching model involves us always generating CCOut and
6133  // ConditionCode operands to match the mnemonic "as written" and then we let
6134  // the matcher deal with finding the right instruction or generating an
6135  // appropriate error.
6136  bool CanAcceptCarrySet, CanAcceptPredicationCode;
6137  getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
6138 
6139  // If we had a carry-set on an instruction that can't do that, issue an
6140  // error.
6141  if (!CanAcceptCarrySet && CarrySetting) {
6142  return Error(NameLoc, "instruction '" + Mnemonic +
6143  "' can not set flags, but 's' suffix specified");
6144  }
6145  // If we had a predication code on an instruction that can't do that, issue an
6146  // error.
6147  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6148  return Error(NameLoc, "instruction '" + Mnemonic +
6149  "' is not predicable, but condition code specified");
6150  }
6151 
6152  // Add the carry setting operand, if necessary.
6153  if (CanAcceptCarrySet) {
6154  SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6155  Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6156  Loc));
6157  }
6158 
6159  // Add the predication code operand, if necessary.
6160  if (CanAcceptPredicationCode) {
6161  SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6162  CarrySetting);
6163  Operands.push_back(ARMOperand::CreateCondCode(
6164  ARMCC::CondCodes(PredicationCode), Loc));
6165  }
6166 
6167  // Add the processor imod operand, if necessary.
6168  if (ProcessorIMod) {
6169  Operands.push_back(ARMOperand::CreateImm(
6170  MCConstantExpr::create(ProcessorIMod, getContext()),
6171  NameLoc, NameLoc));
6172  } else if (Mnemonic == "cps" && isMClass()) {
6173  return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6174  }
6175 
6176  // Add the remaining tokens in the mnemonic.
6177  while (Next != StringRef::npos) {
6178  Start = Next;
6179  Next = Name.find('.', Start + 1);
6180  StringRef ExtraToken = Name.slice(Start, Next);
6181 
6182  // Some NEON instructions have an optional datatype suffix that is
6183  // completely ignored. Check for that.
6184  if (isDataTypeToken(ExtraToken) &&
6185  doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6186  continue;
6187 
6188  // For for ARM mode generate an error if the .n qualifier is used.
6189  if (ExtraToken == ".n" && !isThumb()) {
6190  SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6191  return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6192  "arm mode");
6193  }
6194 
6195  // The .n qualifier is always discarded as that is what the tables
6196  // and matcher expect. In ARM mode the .w qualifier has no effect,
6197  // so discard it to avoid errors that can be caused by the matcher.
6198  if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6199  SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6200  Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6201  }
6202  }
6203 
6204  // Read the remaining operands.
6205  if (getLexer().isNot(AsmToken::EndOfStatement)) {
6206  // Read the first operand.
6207  if (parseOperand(Operands, Mnemonic)) {
6208  return true;
6209  }
6210 
6211  while (parseOptionalToken(AsmToken::Comma)) {
6212  // Parse and remember the operand.
6213  if (parseOperand(Operands, Mnemonic)) {
6214  return true;
6215  }
6216  }
6217  }
6218 
6219  if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6220  return true;
6221 
6222  tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6223 
6224  // Some instructions, mostly Thumb, have forms for the same mnemonic that
6225  // do and don't have a cc_out optional-def operand. With some spot-checks
6226  // of the operand list, we can figure out which variant we're trying to
6227  // parse and adjust accordingly before actually matching. We shouldn't ever
6228  // try to remove a cc_out operand that was explicitly set on the
6229  // mnemonic, of course (CarrySetting == true). Reason number #317 the
6230  // table driven matcher doesn't fit well with the ARM instruction set.
6231  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6232  Operands.erase(Operands.begin() + 1);
6233 
6234  // Some instructions have the same mnemonic, but don't always
6235  // have a predicate. Distinguish them here and delete the
6236  // predicate if needed.
6237  if (PredicationCode == ARMCC::AL &&
6238  shouldOmitPredicateOperand(Mnemonic, Operands))
6239  Operands.erase(Operands.begin() + 1);
6240 
6241  // ARM mode 'blx' need special handling, as the register operand version
6242  // is predicable, but the label operand version is not. So, we can't rely
6243  // on the Mnemonic based checking to correctly figure out when to put
6244  // a k_CondCode operand in the list. If we're trying to match the label
6245  // version, remove the k_CondCode operand here.
6246  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
6247  static_cast<ARMOperand &>(*Operands[2]).isImm())
6248  Operands.erase(Operands.begin() + 1);
6249 
6250  // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6251  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6252  // a single GPRPair reg operand is used in the .td file to replace the two
6253  // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6254  // expressed as a GPRPair, so we have to manually merge them.
6255  // FIXME: We would really like to be able to tablegen'erate this.
6256  if (!isThumb() && Operands.size() > 4 &&
6257  (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
6258  Mnemonic == "stlexd")) {
6259  bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
6260  unsigned Idx = isLoad ? 2 : 3;
6261  ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
6262  ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
6263 
6264  const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
6265  // Adjust only if Op1 and Op2 are GPRs.
6266  if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
6267  MRC.contains(Op2.getReg())) {
6268  unsigned Reg1 = Op1.getReg();
6269  unsigned Reg2 = Op2.getReg();
6270  unsigned Rt = MRI->getEncodingValue(Reg1);
6271  unsigned Rt2 = MRI->getEncodingValue(Reg2);
6272 
6273  // Rt2 must be Rt + 1 and Rt must be even.
6274  if (Rt + 1 != Rt2 || (Rt & 1)) {
6275  return Error(Op2.getStartLoc(),
6276  isLoad ? "destination operands must be sequential"
6277  : "source operands must be sequential");
6278  }
6279  unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
6280  &(MRI->getRegClass(ARM::GPRPairRegClassID)));
6281  Operands[Idx] =
6282  ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
6283  Operands.erase(Operands.begin() + Idx + 1);
6284  }
6285  }
6286 
6287  // GNU Assembler extension (compatibility).
6288  fixupGNULDRDAlias(Mnemonic, Operands);
6289 
6290  // FIXME: As said above, this is all a pretty gross hack. This instruction
6291  // does not fit with other "subs" and tblgen.
6292  // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6293  // so the Mnemonic is the original name "subs" and delete the predicate
6294  // operand so it will match the table entry.
6295  if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
6296  static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6297  static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
6298  static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6299  static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
6300  static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6301  Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
6302  Operands.erase(Operands.begin() + 1);
6303  }
6304  return false;
6305 }
6306 
6307 // Validate context-sensitive operand constraints.
6308 
6309 // return 'true' if register list contains non-low GPR registers,
6310 // 'false' otherwise. If Reg is in the register list or is HiReg, set
6311 // 'containsReg' to true.
6312 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
6313  unsigned Reg, unsigned HiReg,
6314  bool &containsReg) {
6315  containsReg = false;
6316  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
6317  unsigned OpReg = Inst.getOperand(i).getReg();
6318  if (OpReg == Reg)
6319  containsReg = true;
6320  // Anything other than a low register isn't legal here.
6321  if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
6322  return true;
6323  }
6324  return false;
6325 }
6326 
6327 // Check if the specified regisgter is in the register list of the inst,
6328 // starting at the indicated operand number.
6329 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
6330  for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
6331  unsigned OpReg = Inst.getOperand(i).getReg();
6332  if (OpReg == Reg)
6333  return true;
6334  }
6335  return false;
6336 }
6337 
6338 // Return true if instruction has the interesting property of being
6339 // allowed in IT blocks, but not being predicable.
6340 static bool instIsBreakpoint(const MCInst &Inst) {
6341  return Inst.getOpcode() == ARM::tBKPT ||
6342  Inst.getOpcode() == ARM::BKPT ||
6343  Inst.getOpcode() == ARM::tHLT ||
6344  Inst.getOpcode() == ARM::HLT;
6345 }
6346 
6347 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
6348  const OperandVector &Operands,
6349  unsigned ListNo, bool IsARPop) {
6350  const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6351  bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6352 
6353  bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6354  bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
6355  bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6356 
6357  if (!IsARPop && ListContainsSP)
6358  return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6359  "SP may not be in the register list");
6360  else if (ListContainsPC && ListContainsLR)
6361  return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6362  "PC and LR may not be in the register list simultaneously");
6363  return false;
6364 }
6365 
6366 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
6367  const OperandVector &Operands,
6368  unsigned ListNo) {
6369  const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6370  bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6371 
6372  bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6373  bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6374 
6375  if (ListContainsSP && ListContainsPC)
6376  return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6377  "SP and PC may not be in the register list");
6378  else if (ListContainsSP)
6379  return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6380  "SP may not be in the register list");
6381  else if (ListContainsPC)
6382  return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6383  "PC may not be in the register list");
6384  return false;
6385 }
6386 
6387 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
6388  const OperandVector &Operands,
6389  bool Load, bool ARMMode, bool Writeback) {
6390  unsigned RtIndex = Load || !Writeback ? 0 : 1;
6391  unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
6392  unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
6393 
6394  if (ARMMode) {
6395  // Rt can't be R14.
6396  if (Rt == 14)
6397  return Error(Operands[3]->getStartLoc(),
6398  "Rt can't be R14");
6399 
6400  // Rt must be even-numbered.
6401  if ((Rt & 1) == 1)
6402  return Error(Operands[3]->getStartLoc(),
6403  "Rt must be even-numbered");
6404 
6405  // Rt2 must be Rt + 1.
6406  if (Rt2 != Rt + 1) {
6407  if (Load)
6408  return Error(Operands[3]->getStartLoc(),
6409  "destination operands must be sequential");
6410  else
6411  return Error(Operands[3]->getStartLoc(),
6412  "source operands must be sequential");
6413  }
6414 
6415  // FIXME: Diagnose m == 15
6416  // FIXME: Diagnose ldrd with m == t || m == t2.
6417  }
6418 
6419  if (!ARMMode && Load) {
6420  if (Rt2 == Rt)
6421  return Error(Operands[3]->getStartLoc(),
6422  "destination operands can't be identical");
6423  }
6424 
6425  if (Writeback) {
6426  unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6427 
6428  if (Rn == Rt || Rn == Rt2) {
6429  if (Load)
6430  return Error(Operands[3]->getStartLoc(),
6431  "base register needs to be different from destination "
6432  "registers");
6433  else
6434  return Error(Operands[3]->getStartLoc(),
6435  "source register and base register can't be identical");
6436  }
6437 
6438  // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6439  // (Except the immediate form of ldrd?)
6440  }
6441 
6442  return false;
6443 }
6444 
6445 
6446 // FIXME: We would really like to be able to tablegen'erate this.
6447 bool ARMAsmParser::validateInstruction(MCInst &Inst,
6448  const OperandVector &Operands) {
6449  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
6450  SMLoc Loc = Operands[0]->getStartLoc();
6451 
6452  // Check the IT block state first.
6453  // NOTE: BKPT and HLT instructions have the interesting property of being
6454  // allowed in IT blocks, but not being predicable. They just always execute.
6455  if (inITBlock() && !instIsBreakpoint(Inst)) {
6456  // The instruction must be predicable.
6457  if (!MCID.isPredicable())
6458  return Error(Loc, "instructions in IT block must be predicable");
6460  Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
6461  if (Cond != currentITCond()) {
6462  // Find the condition code Operand to get its SMLoc information.
6463  SMLoc CondLoc;
6464  for (unsigned I = 1; I < Operands.size(); ++I)
6465  if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
6466  CondLoc = Operands[I]->getStartLoc();
6467  return Error(CondLoc, "incorrect condition in IT block; got '" +
6469  "', but expected '" +
6470  ARMCondCodeToString(currentITCond()) + "'");
6471  }
6472  // Check for non-'al' condition codes outside of the IT block.
6473  } else if (isThumbTwo() && MCID.isPredicable() &&
6474  Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6475  ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
6476  Inst.getOpcode() != ARM::t2Bcc) {
6477  return Error(Loc, "predicated instructions must be in IT block");
6478  } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
6479  Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6480  ARMCC::AL) {
6481  return Warning(Loc, "predicated instructions should be in IT block");
6482  }
6483 
6484  // PC-setting instructions in an IT block, but not the last instruction of
6485  // the block, are UNPREDICTABLE.
6486  if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
6487  return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
6488  }
6489 
6490  const unsigned Opcode = Inst.getOpcode();
6491  switch (Opcode) {
6492  case ARM::t2IT: {
6493  // Encoding is unpredictable if it ever results in a notional 'NV'
6494  // predicate. Since we don't parse 'NV' directly this means an 'AL'
6495  // predicate with an "else" mask bit.
6496  unsigned Cond = Inst.getOperand(0).getImm();
6497  unsigned Mask = Inst.getOperand(1).getImm();
6498 
6499  // Mask hasn't been modified to the IT instruction encoding yet so
6500  // conditions only allowing a 't' are a block of 1s starting at bit 3
6501  // followed by all 0s. Easiest way is to just list the 4 possibilities.
6502  if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 &&
6503  Mask != 15)
6504  return Error(Loc, "unpredictable IT predicate sequence");
6505  break;
6506  }
6507  case ARM::LDRD:
6508  if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6509  /*Writeback*/false))
6510  return true;
6511  break;
6512  case ARM::LDRD_PRE:
6513  case ARM::LDRD_POST:
6514  if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6515  /*Writeback*/true))
6516  return true;
6517  break;
6518  case ARM::t2LDRDi8:
6519  if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6520  /*Writeback*/false))
6521  return true;
6522  break;
6523  case ARM::t2LDRD_PRE:
6524  case ARM::t2LDRD_POST:
6525  if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6526  /*Writeback*/true))
6527  return true;
6528  break;
6529  case ARM::t2BXJ: {
6530  const unsigned RmReg = Inst.getOperand(0).getReg();
6531  // Rm = SP is no longer unpredictable in v8-A
6532  if (RmReg == ARM::SP && !hasV8Ops())
6533  return Error(Operands[2]->getStartLoc(),
6534  "r13 (SP) is an unpredictable operand to BXJ");
6535  return false;
6536  }
6537  case ARM::STRD:
6538  if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6539  /*Writeback*/false))
6540  return true;
6541  break;
6542  case ARM::STRD_PRE:
6543  case ARM::STRD_POST:
6544  if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6545  /*Writeback*/true))
6546  return true;
6547  break;
6548  case ARM::t2STRD_PRE:
6549  case ARM::t2STRD_POST:
6550  if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
6551  /*Writeback*/true))
6552  return true;
6553  break;
6554  case ARM::STR_PRE_IMM:
6555  case ARM::STR_PRE_REG:
6556  case ARM::t2STR_PRE:
6557  case ARM::STR_POST_IMM:
6558  case ARM::STR_POST_REG:
6559  case ARM::t2STR_POST:
6560  case ARM::STRH_PRE:
6561  case ARM::t2STRH_PRE:
6562  case ARM::STRH_POST:
6563  case ARM::t2STRH_POST:
6564  case ARM::STRB_PRE_IMM:
6565  case ARM::STRB_PRE_REG:
6566  case ARM::t2STRB_PRE:
6567  case ARM::STRB_POST_IMM:
6568  case ARM::STRB_POST_REG:
6569  case ARM::t2STRB_POST: {
6570  // Rt must be different from Rn.
6571  const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6572  const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6573 
6574  if (Rt == Rn)
6575  return Error(Operands[3]->getStartLoc(),
6576  "source register and base register can't be identical");
6577  return false;
6578  }
6579  case ARM::LDR_PRE_IMM:
6580  case ARM::LDR_PRE_REG:
6581  case ARM::t2LDR_PRE:
6582  case ARM::LDR_POST_IMM:
6583  case ARM::LDR_POST_REG:
6584  case ARM::t2LDR_POST:
6585  case ARM::LDRH_PRE:
6586  case ARM::t2LDRH_PRE:
6587  case ARM::LDRH_POST:
6588  case ARM::t2LDRH_POST:
6589  case ARM::LDRSH_PRE:
6590  case ARM::t2LDRSH_PRE:
6591  case ARM::LDRSH_POST:
6592  case ARM::t2LDRSH_POST:
6593  case ARM::LDRB_PRE_IMM:
6594  case ARM::LDRB_PRE_REG:
6595  case ARM::t2LDRB_PRE:
6596  case ARM::LDRB_POST_IMM:
6597  case ARM::LDRB_POST_REG:
6598  case ARM::t2LDRB_POST:
6599  case ARM::LDRSB_PRE:
6600  case ARM::t2LDRSB_PRE:
6601  case ARM::LDRSB_POST:
6602  case ARM::t2LDRSB_POST: {
6603  // Rt must be different from Rn.
6604  const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6605  const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6606 
6607  if (Rt == Rn)
6608  return Error(Operands[3]->getStartLoc(),
6609  "destination register and base register can't be identical");
6610  return false;
6611  }
6612  case ARM::SBFX:
6613  case ARM::t2SBFX:
6614  case ARM::UBFX:
6615  case ARM::t2UBFX: {
6616  // Width must be in range [1, 32-lsb].
6617  unsigned LSB = Inst.getOperand(2).getImm();
6618  unsigned Widthm1 = Inst.getOperand(3).getImm();
6619  if (Widthm1 >= 32 - LSB)
6620  return Error(Operands[5]->getStartLoc(),
6621  "bitfield width must be in range [1,32-lsb]");
6622  return false;
6623  }
6624  // Notionally handles ARM::tLDMIA_UPD too.
6625  case ARM::tLDMIA: {
6626  // If we're parsing Thumb2, the .w variant is available and handles
6627  // most cases that are normally illegal for a Thumb1 LDM instruction.
6628  // We'll make the transformation in processInstruction() if necessary.
6629  //
6630  // Thumb LDM instructions are writeback iff the base register is not
6631  // in the register list.
6632  unsigned Rn = Inst.getOperand(0).getReg();
6633  bool HasWritebackToken =
6634  (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6635  static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
6636  bool ListContainsBase;
6637  if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
6638  return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
6639  "registers must be in range r0-r7");
6640  // If we should have writeback, then there should be a '!' token.
6641  if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
6642  return Error(Operands[2]->getStartLoc(),
6643  "writeback operator '!' expected");
6644  // If we should not have writeback, there must not be a '!'. This is
6645  // true even for the 32-bit wide encodings.
6646  if (ListContainsBase && HasWritebackToken)
6647  return Error(Operands[3]->getStartLoc(),
6648  "writeback operator '!' not allowed when base register "
6649  "in register list");
6650 
6651  if (validatetLDMRegList(Inst, Operands, 3))
6652  return true;
6653  break;
6654  }
6655  case ARM::LDMIA_UPD:
6656  case ARM::LDMDB_UPD:
6657  case ARM::LDMIB_UPD:
6658  case ARM::LDMDA_UPD:
6659  // ARM variants loading and updating the same register are only officially
6660  // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6661  if (!hasV7Ops())
6662  break;
6663  if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6664  return Error(Operands.back()->getStartLoc(),
6665  "writeback register not allowed in register list");
6666  break;
6667  case ARM::t2LDMIA:
6668  case ARM::t2LDMDB:
6669  if (validatetLDMRegList(Inst, Operands, 3))
6670  return true;
6671  break;
6672  case ARM::t2STMIA:
6673  case ARM::t2STMDB:
6674  if (validatetSTMRegList(Inst, Operands, 3))
6675  return true;
6676  break;
6677  case ARM::t2LDMIA_UPD:
6678  case ARM::t2LDMDB_UPD:
6679  case ARM::t2STMIA_UPD:
6680  case ARM::t2STMDB_UPD:
6681  if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6682  return Error(Operands.back()->getStartLoc(),
6683  "writeback register not allowed in register list");
6684 
6685  if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
6686  if (validatetLDMRegList(Inst, Operands, 3))
6687  return true;
6688  } else {
6689  if (validatetSTMRegList(Inst, Operands, 3))
6690  return true;
6691  }
6692  break;
6693 
6694  case ARM::sysLDMIA_UPD:
6695  case ARM::sysLDMDA_UPD:
6696  case ARM::sysLDMDB_UPD:
6697  case ARM::sysLDMIB_UPD:
6698  if (!listContainsReg(Inst, 3, ARM::PC))
6699  return Error(Operands[4]->getStartLoc(),
6700  "writeback register only allowed on system LDM "
6701  "if PC in register-list");
6702  break;
6703  case ARM::sysSTMIA_UPD:
6704  case ARM::sysSTMDA_UPD:
6705  case ARM::sysSTMDB_UPD:
6706  case ARM::sysSTMIB_UPD:
6707  return Error(Operands[2]->getStartLoc(),
6708  "system STM cannot have writeback register");
6709  case ARM::tMUL:
6710  // The second source operand must be the same register as the destination
6711  // operand.
6712  //
6713  // In this case, we must directly check the parsed operands because the
6714  // cvtThumbMultiply() function is written in such a way that it guarantees
6715  // this first statement is always true for the new Inst. Essentially, the
6716  // destination is unconditionally copied into the second source operand
6717  // without checking to see if it matches what we actually parsed.
6718  if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
6719  ((ARMOperand &)*Operands[5]).getReg()) &&
6720  (((ARMOperand &)*Operands[3]).getReg() !=
6721  ((ARMOperand &)*Operands[4]).getReg())) {
6722  return Error(Operands[3]->getStartLoc(),
6723  "destination register must match source register");
6724  }
6725  break;
6726 
6727  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6728  // so only issue a diagnostic for thumb1. The instructions will be
6729  // switched to the t2 encodings in processInstruction() if necessary.
6730  case ARM::tPOP: {
6731  bool ListContainsBase;
6732  if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
6733  !isThumbTwo())
6734  return Error(Operands[2]->getStartLoc(),
6735  "registers must be in range r0-r7 or pc");
6736  if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
6737  return true;
6738  break;
6739  }
6740  case ARM::tPUSH: {
6741  bool ListContainsBase;
6742  if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
6743  !isThumbTwo())
6744  return Error(Operands[2]->getStartLoc(),
6745  "registers must be in range r0-r7 or lr");
6746  if (validatetSTMRegList(Inst, Operands, 2))
6747  return true;
6748  break;
6749  }
6750  case ARM::tSTMIA_UPD: {
6751  bool ListContainsBase, InvalidLowList;
6752  InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
6753  0, ListContainsBase);
6754  if (InvalidLowList && !isThumbTwo())
6755  return Error(Operands[4]->getStartLoc(),
6756  "registers must be in range r0-r7");
6757 
6758  // This would be converted to a 32-bit stm, but that's not valid if the
6759  // writeback register is in the list.
6760  if (InvalidLowList && ListContainsBase)
6761  return Error(Operands[4]->getStartLoc(),
6762  "writeback operator '!' not allowed when base register "
6763  "in register list");
6764 
6765  if (validatetSTMRegList(Inst, Operands, 4))
6766  return true;
6767  break;
6768  }
6769  case ARM::tADDrSP:
6770  // If the non-SP source operand and the destination operand are not the
6771  // same, we need thumb2 (for the wide encoding), or we have an error.
6772  if (!isThumbTwo() &&
6773  Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
6774  return Error(Operands[4]->getStartLoc(),
6775  "source register must be the same as destination");
6776  }
6777  break;
6778 
6779  // Final range checking for Thumb unconditional branch instructions.
6780  case ARM::tB:
6781  if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
6782  return Error(Operands[2]->getStartLoc(), "branch target out of range");
6783  break;
6784  case ARM::t2B: {
6785  int op = (Operands[2]->isImm()) ? 2 : 3;
6786  if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
6787  return Error(Operands[op]->getStartLoc(), "branch target out of range");
6788  break;
6789  }
6790  // Final range checking for Thumb conditional branch instructions.
6791  case ARM::tBcc:
6792  if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
6793  return Error(Operands[2]->getStartLoc(), "branch target out of range");
6794  break;
6795  case ARM::t2Bcc: {
6796  int Op = (Operands[2]->isImm()) ? 2 : 3;
6797  if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
6798  return Error(Operands[Op]->getStartLoc(), "branch target out of range");
6799  break;
6800  }
6801  case ARM::tCBZ:
6802  case ARM::tCBNZ: {
6803  if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
6804  return Error(Operands[2]->getStartLoc(), "branch target out of range");
6805  break;
6806  }
6807  case ARM::MOVi16:
6808  case ARM::MOVTi16:
6809  case ARM::t2MOVi16:
6810  case ARM::t2MOVTi16:
6811  {
6812  // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6813  // especially when we turn it into a movw and the expression <symbol> does
6814  // not have a :lower16: or :upper16 as part of the expression. We don't
6815  // want the behavior of silently truncating, which can be unexpected and
6816  // lead to bugs that are difficult to find since this is an easy mistake
6817  // to make.
6818  int i = (Operands[3]->isImm()) ? 3 : 4;
6819  ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
6820  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
6821  if (CE) break;
6822  const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
6823  if (!E) break;
6824  const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
6825  if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
6826  ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
6827  return Error(
6828  Op.getStartLoc(),
6829  "immediate expression for mov requires :lower16: or :upper16");
6830  break;
6831  }
6832  case ARM::HINT:
6833  case ARM::t2HINT: {
6834  unsigned Imm8 = Inst.getOperand(0).getImm();
6835  unsigned Pred = Inst.getOperand(1).getImm();
6836  // ESB is not predicable (pred must be AL). Without the RAS extension, this
6837  // behaves as any other unallocated hint.
6838  if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
6839  return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
6840  "predicable, but condition "
6841  "code specified");
6842  if (Imm8 == 0x14 && Pred != ARMCC::AL)
6843  return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
6844  "predicable, but condition "
6845  "code specified");
6846  break;
6847  }
6848  case ARM::DSB:
6849  case ARM::t2DSB: {
6850 
6851  if (Inst.getNumOperands() < 2)
6852  break;
6853 
6854  unsigned Option = Inst.getOperand(0).getImm();
6855  unsigned Pred = Inst.getOperand(1).getImm();
6856 
6857  // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
6858  if (Option == 0 && Pred != ARMCC::AL)
6859  return Error(Operands[1]->getStartLoc(),
6860  "instruction 'ssbb' is not predicable, but condition code "
6861  "specified");
6862  if (Option == 4 && Pred != ARMCC::AL)
6863  return Error(Operands[1]->getStartLoc(),
6864  "instruction 'pssbb' is not predicable, but condition code "
6865  "specified");
6866  break;
6867  }
6868  case ARM::VMOVRRS: {
6869  // Source registers must be sequential.
6870  const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6871  const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6872  if (Sm1 != Sm + 1)
6873  return Error(Operands[5]->getStartLoc(),
6874  "source operands must be sequential");
6875  break;
6876  }
6877  case ARM::VMOVSRR: {
6878  // Destination registers must be sequential.
6879  const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6880  const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6881  if (Sm1 != Sm + 1)
6882  return Error(Operands[3]->getStartLoc(),
6883  "destination operands must be sequential");
6884  break;
6885  }
6886  case ARM::VLDMDIA:
6887  case ARM::VSTMDIA: {
6888  ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
6889  auto &RegList = Op.getRegList();
6890  if (RegList.size() < 1 || RegList.size() > 16)
6891  return Error(Operands[3]->getStartLoc(),
6892  "list of registers must be at least 1 and at most 16");
6893  break;
6894  }
6895  }
6896 
6897  return false;
6898 }
6899 
6900 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
6901  switch(Opc) {
6902  default: llvm_unreachable("unexpected opcode!");
6903  // VST1LN
6904  case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6905  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6906  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6907  case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6908  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6909  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6910  case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
6911  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
6912  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
6913 
6914  // VST2LN
6915  case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6916  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6917  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6918  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6919  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6920 
6921  case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6922  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6923  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6924  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6925  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6926 
6927  case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
6928  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
6929  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
6930  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
6931  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
6932 
6933  // VST3LN
6934  case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6935  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6936  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6937  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
6938  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6939  case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6940  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6941  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6942  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
6943  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6944  case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
6945  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
6946  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
6947  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
6948  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
6949 
6950  // VST3
6951  case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6952  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6953  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6954  case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6955  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6956  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6957  case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6958  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6959  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6960  case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6961  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6962  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6963  case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
6964  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
6965  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
6966  case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
6967  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
6968  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
6969 
6970  // VST4LN
6971  case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6972  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6973  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6974  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
6975  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6976  case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6977  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6978  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6979  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
6980  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6981  case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
6982  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
6983  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
6984  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
6985  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
6986 
6987  // VST4
6988  case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6989  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6990  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6991  case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6992  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6993  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6994  case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6995  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6996  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6997  case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6998  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6999  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
7000  case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
7001  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
7002  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
7003  case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
7004  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
7005  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
7006  }
7007 }
7008 
7009 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
7010  switch(Opc) {
7011  default: llvm_unreachable("unexpected opcode!");
7012  // VLD1LN
7013  case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
7014  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
7015  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
7016  case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
7017  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
7018  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
7019  case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
7020  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
7021  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
7022 
7023  // VLD2LN
7024  case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7025  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7026  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7027  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
7028  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7029  case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7030  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7031  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7032  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
7033  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7034  case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
7035  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
7036  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
7037  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
7038  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
7039 
7040  // VLD3DUP
7041  case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7042  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7043  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7044  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
7045  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7046  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7047  case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7048  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7049  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7050  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
7051  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7052  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7053  case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
7054  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
7055  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
7056  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
7057  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
7058  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
7059 
7060  // VLD3LN
7061  case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7062  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7063  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7064  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
7065  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7066  case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7067  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7068  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7069  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
7070  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7071  case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
7072  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
7073  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
7074  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
7075  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
7076 
7077  // VLD3
7078  case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7079  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7080  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7081  case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7082  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7083  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7084  case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7085  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7086  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7087  case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7088  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7089  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7090  case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
7091  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
7092  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
7093  case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
7094  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
7095  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
7096 
7097  // VLD4LN
7098  case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7099  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7100  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7101  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7102  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7103  case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7104  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7105  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7106  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7107  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7108  case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
7109  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
7110  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
7111  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
7112  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
7113 
7114  // VLD4DUP
7115  case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7116  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7117  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7118  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
7119  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
7120  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7121  case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7122  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7123  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7124  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
7125  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
7126  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7127  case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
7128  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
7129  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
7130  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
7131  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
7132  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
7133 
7134  // VLD4
7135  case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7136  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7137  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7138  case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7139  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7140  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7141  case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7142  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7143  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7144  case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7145  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7146  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7147  case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
7148  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
7149  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
7150  case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
7151  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
7152  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
7153  }
7154 }
7155 
7156 bool ARMAsmParser::processInstruction(MCInst &Inst,
7157  const OperandVector &Operands,
7158  MCStreamer &Out) {
7159  // Check if we have the wide qualifier, because if it's present we
7160  // must avoid selecting a 16-bit thumb instruction.
7161  bool HasWideQualifier = false;
7162  for (auto &Op : Operands) {
7163  ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
7164  if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
7165  HasWideQualifier = true;
7166  break;
7167  }
7168  }
7169 
7170  switch (Inst.getOpcode()) {
7171  // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7172  case ARM::LDRT_POST:
7173  case ARM::LDRBT_POST: {
7174  const unsigned Opcode =
7175  (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
7176  : ARM::LDRBT_POST_IMM;
7177  MCInst TmpInst;
7178  TmpInst.setOpcode(Opcode);
7179  TmpInst.addOperand(Inst.getOperand(0));
7180  TmpInst.addOperand(Inst.getOperand(1));
7181  TmpInst.addOperand(Inst.getOperand(1));
7182  TmpInst.addOperand(MCOperand::createReg(0));
7183  TmpInst.addOperand(MCOperand::createImm(0));
7184  TmpInst.addOperand(Inst.getOperand(2));
7185  TmpInst.addOperand(Inst.getOperand(3));
7186  Inst = TmpInst;
7187  return true;
7188  }
7189  // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7190  case ARM::STRT_POST:
7191  case ARM::STRBT_POST: {
7192  const unsigned Opcode =
7193  (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
7194  : ARM::STRBT_POST_IMM;
7195  MCInst TmpInst;
7196  TmpInst.setOpcode(Opcode);
7197  TmpInst.addOperand(Inst.getOperand(1));
7198  TmpInst.addOperand(Inst.getOperand(0));
7199  TmpInst.addOperand(Inst.getOperand(1));
7200  TmpInst.addOperand(MCOperand::createReg(0));
7201  TmpInst.addOperand(MCOperand::createImm(0));
7202  TmpInst.addOperand(Inst.getOperand(2));
7203  TmpInst.addOperand(Inst.getOperand(3));
7204  Inst = TmpInst;
7205  return true;
7206  }
7207  // Alias for alternate form of 'ADR Rd, #imm' instruction.
7208  case ARM::ADDri: {
7209  if (Inst.getOperand(1).getReg() != ARM::PC ||
7210  Inst.getOperand(5).getReg() != 0 ||
7211  !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
7212  return false;
7213  MCInst TmpInst;
7214  TmpInst.setOpcode(ARM::ADR);
7215  TmpInst.addOperand(Inst.getOperand(0));
7216  if (Inst.getOperand(2).isImm()) {
7217  // Immediate (mod_imm) will be in its encoded form, we must unencode it
7218  // before passing it to the ADR instruction.
7219  unsigned Enc = Inst.getOperand(2).getImm();
7221  ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
7222  } else {
7223  // Turn PC-relative expression into absolute expression.
7224  // Reading PC provides the start of the current instruction + 8 and
7225  // the transform to adr is biased by that.
7226  MCSymbol *Dot = getContext().createTempSymbol();
7227  Out.EmitLabel(Dot);
7228  const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
7229  const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
7231  getContext());
7232  const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
7233  const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
7234  getContext());
7235  const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
7236  getContext());
7237  TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
7238  }
7239  TmpInst.addOperand(Inst.getOperand(3));
7240  TmpInst.addOperand(Inst.getOperand(4));
7241  Inst = TmpInst;
7242  return true;
7243  }
7244  // Aliases for alternate PC+imm syntax of LDR instructions.
7245  case ARM::t2LDRpcrel:
7246  // Select the narrow version if the immediate will fit.
7247  if (Inst.getOperand(1).getImm() > 0 &&
7248  Inst.getOperand(1).getImm() <= 0xff &&
7249  !HasWideQualifier)
7250  Inst.setOpcode(ARM::tLDRpci);
7251  else
7252  Inst.setOpcode(ARM::t2LDRpci);
7253  return true;
7254  case ARM::t2LDRBpcrel:
7255  Inst.setOpcode(ARM::t2LDRBpci);
7256  return true;
7257  case ARM::t2LDRHpcrel:
7258  Inst.setOpcode(ARM::t2LDRHpci);
7259  return true;
7260  case ARM::t2LDRSBpcrel:
7261  Inst.setOpcode(ARM::t2LDRSBpci);
7262  return true;
7263  case ARM::t2LDRSHpcrel:
7264  Inst.setOpcode(ARM::t2LDRSHpci);
7265  return true;
7266  case ARM::LDRConstPool:
7267  case ARM::tLDRConstPool:
7268  case ARM::t2LDRConstPool: {
7269  // Pseudo instruction ldr rt, =immediate is converted to a
7270  // MOV rt, immediate if immediate is known and representable
7271  // otherwise we create a constant pool entry that we load from.
7272  MCInst TmpInst;
7273  if (Inst.getOpcode() == ARM::LDRConstPool)
7274  TmpInst.setOpcode(ARM::LDRi12);
7275  else if (Inst.getOpcode() == ARM::tLDRConstPool)
7276  TmpInst.setOpcode(ARM::tLDRpci);
7277  else if (Inst.getOpcode() == ARM::t2LDRConstPool)
7278  TmpInst.setOpcode(ARM::t2LDRpci);
7279  const ARMOperand &PoolOperand =
7280  (HasWideQualifier ?
7281  static_cast<ARMOperand &>(*Operands[4]) :
7282  static_cast<ARMOperand &>(*Operands[3]));
7283  const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
7284  // If SubExprVal is a constant we may be able to use a MOV
7285  if (isa<MCConstantExpr>(SubExprVal) &&
7286  Inst.getOperand(0).getReg() != ARM::PC &&
7287  Inst.getOperand(0).getReg() != ARM::SP) {
7288  int64_t Value =
7289  (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
7290  bool UseMov = true;
7291  bool MovHasS = true;
7292  if (Inst.getOpcode() == ARM::LDRConstPool) {
7293  // ARM Constant
7294  if (ARM_AM::getSOImmVal(Value) != -1) {
7295  Value = ARM_AM::getSOImmVal(Value);
7296  TmpInst.setOpcode(ARM::MOVi);
7297  }
7298  else if (ARM_AM::getSOImmVal(~Value) != -1) {
7299  Value = ARM_AM::getSOImmVal(~Value);
7300  TmpInst.setOpcode(ARM::MVNi);
7301  }
7302  else if (hasV6T2Ops() &&
7303  Value >=0 && Value < 65536) {
7304  TmpInst.setOpcode(ARM::MOVi16);
7305  MovHasS = false;
7306  }
7307  else
7308  UseMov = false;
7309  }
7310  else {
7311  // Thumb/Thumb2 Constant
7312  if (hasThumb2() &&
7313  ARM_AM::getT2SOImmVal(Value) != -1)
7314  TmpInst.setOpcode(ARM::t2MOVi);
7315  else if (hasThumb2() &&
7316  ARM_AM::getT2SOImmVal(~Value) != -1) {
7317  TmpInst.setOpcode(ARM::t2MVNi);
7318  Value = ~Value;
7319  }
7320  else if (hasV8MBaseline() &&
7321  Value >=0 && Value < 65536) {
7322  TmpInst.setOpcode(ARM::t2MOVi16);
7323  MovHasS = false;
7324  }
7325  else
7326  UseMov = false;
7327  }
7328  if (UseMov) {
7329  TmpInst.addOperand(Inst.getOperand(0)); // Rt
7330  TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
7331  TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7332  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7333  if (MovHasS)
7334  TmpInst.addOperand(MCOperand::createReg(0)); // S
7335  Inst = TmpInst;
7336  return true;
7337  }
7338  }
7339  // No opportunity to use MOV/MVN create constant pool
7340  const MCExpr *CPLoc =
7341  getTargetStreamer().addConstantPoolEntry(SubExprVal,
7342  PoolOperand.getStartLoc());
7343  TmpInst.addOperand(Inst.getOperand(0)); // Rt
7344  TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
7345  if (TmpInst.getOpcode() == ARM::LDRi12)
7346  TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
7347  TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7348  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7349  Inst = TmpInst;
7350  return true;
7351  }
7352  // Handle NEON VST complex aliases.
7353  case ARM::VST1LNdWB_register_Asm_8:
7354  case ARM::VST1LNdWB_register_Asm_16:
7355  case ARM::VST1LNdWB_register_Asm_32: {
7356  MCInst TmpInst;
7357  // Shuffle the operands around so the lane index operand is in the
7358  // right place.
7359  unsigned Spacing;
7360  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7361  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7362  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7363  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7364  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7365  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7366  TmpInst.addOperand(Inst.getOperand(1)); // lane
7367  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7368  TmpInst.addOperand(Inst.getOperand(6));
7369  Inst = TmpInst;
7370  return true;
7371  }
7372 
7373  case ARM::VST2LNdWB_register_Asm_8:
7374  case ARM::VST2LNdWB_register_Asm_16:
7375  case ARM::VST2LNdWB_register_Asm_32:
7376  case ARM::VST2LNqWB_register_Asm_16:
7377  case ARM::VST2LNqWB_register_Asm_32: {
7378  MCInst TmpInst;
7379  // Shuffle the operands around so the lane index operand is in the
7380  // right place.
7381  unsigned Spacing;
7382  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7383  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7384  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7385  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7386  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7387  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7388  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7389  Spacing));
7390  TmpInst.addOperand(Inst.getOperand(1)); // lane
7391  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7392  TmpInst.addOperand(Inst.getOperand(6));
7393  Inst = TmpInst;
7394  return true;
7395  }
7396 
7397  case ARM::VST3LNdWB_register_Asm_8:
7398  case ARM::VST3LNdWB_register_Asm_16:
7399  case ARM::VST3LNdWB_register_Asm_32:
7400  case ARM::VST3LNqWB_register_Asm_16:
7401  case ARM::VST3LNqWB_register_Asm_32: {
7402  MCInst TmpInst;
7403  // Shuffle the operands around so the lane index operand is in the
7404  // right place.
7405  unsigned Spacing;
7406  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7407  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7408  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7409  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7410  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7411  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7412  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7413  Spacing));
7414  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7415  Spacing * 2));
7416  TmpInst.addOperand(Inst.getOperand(1)); // lane
7417  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7418  TmpInst.addOperand(Inst.getOperand(6));
7419  Inst = TmpInst;
7420  return true;
7421  }
7422 
7423  case ARM::VST4LNdWB_register_Asm_8:
7424  case ARM::VST4LNdWB_register_Asm_16:
7425  case ARM::VST4LNdWB_register_Asm_32:
7426  case ARM::VST4LNqWB_register_Asm_16:
7427  case ARM::VST4LNqWB_register_Asm_32: {
7428  MCInst TmpInst;
7429  // Shuffle the operands around so the lane index operand is in the
7430  // right place.
7431  unsigned Spacing;
7432  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7433  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7434  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7435  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7436  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7437  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7438  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7439  Spacing));
7440  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7441  Spacing * 2));
7442  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7443  Spacing * 3));
7444  TmpInst.addOperand(Inst.getOperand(1)); // lane
7445  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7446  TmpInst.addOperand(Inst.getOperand(6));
7447  Inst = TmpInst;
7448  return true;
7449  }
7450 
7451  case ARM::VST1LNdWB_fixed_Asm_8:
7452  case ARM::VST1LNdWB_fixed_Asm_16:
7453  case ARM::VST1LNdWB_fixed_Asm_32: {
7454  MCInst TmpInst;
7455  // Shuffle the operands around so the lane index operand is in the
7456  // right place.
7457  unsigned Spacing;
7458  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7459  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7460  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7461  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7462  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7463  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7464  TmpInst.addOperand(Inst.getOperand(1)); // lane
7465  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7466  TmpInst.addOperand(Inst.getOperand(5));
7467  Inst = TmpInst;
7468  return true;
7469  }
7470 
7471  case ARM::VST2LNdWB_fixed_Asm_8:
7472  case ARM::VST2LNdWB_fixed_Asm_16:
7473  case ARM::VST2LNdWB_fixed_Asm_32:
7474  case ARM::VST2LNqWB_fixed_Asm_16:
7475  case ARM::VST2LNqWB_fixed_Asm_32: {
7476  MCInst TmpInst;
7477  // Shuffle the operands around so the lane index operand is in the
7478  // right place.
7479  unsigned Spacing;
7480  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7481  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7482  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7483  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7484  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7485  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7486  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7487  Spacing));
7488  TmpInst.addOperand(Inst.getOperand(1)); // lane
7489  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7490  TmpInst.addOperand(Inst.getOperand(5));
7491  Inst = TmpInst;
7492  return true;
7493  }
7494 
7495  case ARM::VST3LNdWB_fixed_Asm_8:
7496  case ARM::VST3LNdWB_fixed_Asm_16:
7497  case ARM::VST3LNdWB_fixed_Asm_32:
7498  case ARM::VST3LNqWB_fixed_Asm_16:
7499  case ARM::VST3LNqWB_fixed_Asm_32: {
7500  MCInst TmpInst;
7501  // Shuffle the operands around so the lane index operand is in the
7502  // right place.
7503  unsigned Spacing;
7504  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7505  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7506  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7507  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7508  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7509  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7510  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7511  Spacing));
7512  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7513  Spacing * 2));
7514  TmpInst.addOperand(Inst.getOperand(1)); // lane
7515  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7516  TmpInst.addOperand(Inst.getOperand(5));
7517  Inst = TmpInst;
7518  return true;
7519  }
7520 
7521  case ARM::VST4LNdWB_fixed_Asm_8:
7522  case ARM::VST4LNdWB_fixed_Asm_16:
7523  case ARM::VST4LNdWB_fixed_Asm_32:
7524  case ARM::VST4LNqWB_fixed_Asm_16:
7525  case ARM::VST4LNqWB_fixed_Asm_32: {
7526  MCInst TmpInst;
7527  // Shuffle the operands around so the lane index operand is in the
7528  // right place.
7529  unsigned Spacing;
7530  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7531  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7532  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7533  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7534  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7535  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7536  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7537  Spacing));
7538  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7539  Spacing * 2));
7540  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7541  Spacing * 3));
7542  TmpInst.addOperand(Inst.getOperand(1)); // lane
7543  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7544  TmpInst.addOperand(Inst.getOperand(5));
7545  Inst = TmpInst;
7546  return true;
7547  }
7548 
7549  case ARM::VST1LNdAsm_8:
7550  case ARM::VST1LNdAsm_16:
7551  case ARM::VST1LNdAsm_32: {
7552  MCInst TmpInst;
7553  // Shuffle the operands around so the lane index operand is in the
7554  // right place.
7555  unsigned Spacing;
7556  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7557  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7558  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7559  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7560  TmpInst.addOperand(Inst.getOperand(1)); // lane
7561  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7562  TmpInst.addOperand(Inst.getOperand(5));
7563  Inst = TmpInst;
7564  return true;
7565  }
7566 
7567  case ARM::VST2LNdAsm_8:
7568  case ARM::VST2LNdAsm_16:
7569  case ARM::VST2LNdAsm_32:
7570  case ARM::VST2LNqAsm_16:
7571  case ARM::VST2LNqAsm_32: {
7572  MCInst TmpInst;
7573  // Shuffle the operands around so the lane index operand is in the
7574  // right place.
7575  unsigned Spacing;
7576  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7577  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7578  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7579  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7580  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7581  Spacing));
7582  TmpInst.addOperand(Inst.getOperand(1)); // lane
7583  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7584  TmpInst.addOperand(Inst.getOperand(5));
7585  Inst = TmpInst;
7586  return true;
7587  }
7588 
7589  case ARM::VST3LNdAsm_8:
7590  case ARM::VST3LNdAsm_16:
7591  case ARM::VST3LNdAsm_32:
7592  case ARM::VST3LNqAsm_16:
7593  case ARM::VST3LNqAsm_32: {
7594  MCInst TmpInst;
7595  // Shuffle the operands around so the lane index operand is in the
7596  // right place.
7597  unsigned Spacing;
7598  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7599  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7600  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7601  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7602  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7603  Spacing));
7604  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7605  Spacing * 2));
7606  TmpInst.addOperand(Inst.getOperand(1)); // lane
7607  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7608  TmpInst.addOperand(Inst.getOperand(5));
7609  Inst = TmpInst;
7610  return true;
7611  }
7612 
7613  case ARM::VST4LNdAsm_8:
7614  case ARM::VST4LNdAsm_16:
7615  case ARM::VST4LNdAsm_32:
7616  case ARM::VST4LNqAsm_16:
7617  case ARM::VST4LNqAsm_32: {
7618  MCInst TmpInst;
7619  // Shuffle the operands around so the lane index operand is in the
7620  // right place.
7621  unsigned Spacing;
7622  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7623  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7624  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7625  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7626  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7627  Spacing));
7628  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7629  Spacing * 2));
7630  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7631  Spacing * 3));
7632  TmpInst.addOperand(Inst.getOperand(1)); // lane
7633  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7634  TmpInst.addOperand(Inst.getOperand(5));
7635  Inst = TmpInst;
7636  return true;
7637  }
7638 
7639  // Handle NEON VLD complex aliases.
7640  case ARM::VLD1LNdWB_register_Asm_8:
7641  case ARM::VLD1LNdWB_register_Asm_16:
7642  case ARM::VLD1LNdWB_register_Asm_32: {
7643  MCInst TmpInst;
7644  // Shuffle the operands around so the lane index operand is in the
7645  // right place.
7646  unsigned Spacing;
7647  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7648  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7649  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7650  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7651  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7652  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7653  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7654  TmpInst.addOperand(Inst.getOperand(1)); // lane
7655  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7656  TmpInst.addOperand(Inst.getOperand(6));
7657  Inst = TmpInst;
7658  return true;
7659  }
7660 
7661  case ARM::VLD2LNdWB_register_Asm_8:
7662  case ARM::VLD2LNdWB_register_Asm_16:
7663  case ARM::VLD2LNdWB_register_Asm_32:
7664  case ARM::VLD2LNqWB_register_Asm_16:
7665  case ARM::VLD2LNqWB_register_Asm_32: {
7666  MCInst TmpInst;
7667  // Shuffle the operands around so the lane index operand is in the
7668  // right place.
7669  unsigned Spacing;
7670  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7671  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7672  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7673  Spacing));
7674  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7675  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7676  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7677  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7678  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7679  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7680  Spacing));
7681  TmpInst.addOperand(Inst.getOperand(1)); // lane
7682  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7683  TmpInst.addOperand(Inst.getOperand(6));
7684  Inst = TmpInst;
7685  return true;
7686  }
7687 
7688  case ARM::VLD3LNdWB_register_Asm_8:
7689  case ARM::VLD3LNdWB_register_Asm_16:
7690  case ARM::VLD3LNdWB_register_Asm_32:
7691  case ARM::VLD3LNqWB_register_Asm_16:
7692  case ARM::VLD3LNqWB_register_Asm_32: {
7693  MCInst TmpInst;
7694  // Shuffle the operands around so the lane index operand is in the
7695  // right place.
7696  unsigned Spacing;
7697  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7698  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7699  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7700  Spacing));
7701  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7702  Spacing * 2));
7703  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7704  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7705  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7706  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7707  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7708  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7709  Spacing));
7710  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7711  Spacing * 2));
7712  TmpInst.addOperand(Inst.getOperand(1)); // lane
7713  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7714  TmpInst.addOperand(Inst.getOperand(6));
7715  Inst = TmpInst;
7716  return true;
7717  }
7718 
7719  case ARM::VLD4LNdWB_register_Asm_8:
7720  case ARM::VLD4LNdWB_register_Asm_16:
7721  case ARM::VLD4LNdWB_register_Asm_32:
7722  case ARM::VLD4LNqWB_register_Asm_16:
7723  case ARM::VLD4LNqWB_register_Asm_32: {
7724  MCInst TmpInst;
7725  // Shuffle the operands around so the lane index operand is in the
7726  // right place.
7727  unsigned Spacing;
7728  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7729  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7730  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7731  Spacing));
7732  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7733  Spacing * 2));
7734  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7735  Spacing * 3));
7736  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7737  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7738  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7739  TmpInst.addOperand(Inst.getOperand(4)); // Rm
7740  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7741  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7742  Spacing));
7743  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7744  Spacing * 2));
7745  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7746  Spacing * 3));
7747  TmpInst.addOperand(Inst.getOperand(1)); // lane
7748  TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7749  TmpInst.addOperand(Inst.getOperand(6));
7750  Inst = TmpInst;
7751  return true;
7752  }
7753 
7754  case ARM::VLD1LNdWB_fixed_Asm_8:
7755  case ARM::VLD1LNdWB_fixed_Asm_16:
7756  case ARM::VLD1LNdWB_fixed_Asm_32: {
7757  MCInst TmpInst;
7758  // Shuffle the operands around so the lane index operand is in the
7759  // right place.
7760  unsigned Spacing;
7761  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7762  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7763  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7764  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7765  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7766  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7767  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7768  TmpInst.addOperand(Inst.getOperand(1)); // lane
7769  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7770  TmpInst.addOperand(Inst.getOperand(5));
7771  Inst = TmpInst;
7772  return true;
7773  }
7774 
7775  case ARM::VLD2LNdWB_fixed_Asm_8:
7776  case ARM::VLD2LNdWB_fixed_Asm_16:
7777  case ARM::VLD2LNdWB_fixed_Asm_32:
7778  case ARM::VLD2LNqWB_fixed_Asm_16:
7779  case ARM::VLD2LNqWB_fixed_Asm_32: {
7780  MCInst TmpInst;
7781  // Shuffle the operands around so the lane index operand is in the
7782  // right place.
7783  unsigned Spacing;
7784  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7785  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7786  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7787  Spacing));
7788  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7789  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7790  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7791  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7792  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7793  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7794  Spacing));
7795  TmpInst.addOperand(Inst.getOperand(1)); // lane
7796  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7797  TmpInst.addOperand(Inst.getOperand(5));
7798  Inst = TmpInst;
7799  return true;
7800  }
7801 
7802  case ARM::VLD3LNdWB_fixed_Asm_8:
7803  case ARM::VLD3LNdWB_fixed_Asm_16:
7804  case ARM::VLD3LNdWB_fixed_Asm_32:
7805  case ARM::VLD3LNqWB_fixed_Asm_16:
7806  case ARM::VLD3LNqWB_fixed_Asm_32: {
7807  MCInst TmpInst;
7808  // Shuffle the operands around so the lane index operand is in the
7809  // right place.
7810  unsigned Spacing;
7811  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7812  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7813  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7814  Spacing));
7815  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7816  Spacing * 2));
7817  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7818  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7819  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7820  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7821  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7822  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7823  Spacing));
7824  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7825  Spacing * 2));
7826  TmpInst.addOperand(Inst.getOperand(1)); // lane
7827  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7828  TmpInst.addOperand(Inst.getOperand(5));
7829  Inst = TmpInst;
7830  return true;
7831  }
7832 
7833  case ARM::VLD4LNdWB_fixed_Asm_8:
7834  case ARM::VLD4LNdWB_fixed_Asm_16:
7835  case ARM::VLD4LNdWB_fixed_Asm_32:
7836  case ARM::VLD4LNqWB_fixed_Asm_16:
7837  case ARM::VLD4LNqWB_fixed_Asm_32: {
7838  MCInst TmpInst;
7839  // Shuffle the operands around so the lane index operand is in the
7840  // right place.
7841  unsigned Spacing;
7842  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7843  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7844  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7845  Spacing));
7846  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7847  Spacing * 2));
7848  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7849  Spacing * 3));
7850  TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7851  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7852  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7853  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7854  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7855  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7856  Spacing));
7857  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7858  Spacing * 2));
7859  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7860  Spacing * 3));
7861  TmpInst.addOperand(Inst.getOperand(1)); // lane
7862  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7863  TmpInst.addOperand(Inst.getOperand(5));
7864  Inst = TmpInst;
7865  return true;
7866  }
7867 
7868  case ARM::VLD1LNdAsm_8:
7869  case ARM::VLD1LNdAsm_16:
7870  case ARM::VLD1LNdAsm_32: {
7871  MCInst TmpInst;
7872  // Shuffle the operands around so the lane index operand is in the
7873  // right place.
7874  unsigned Spacing;
7875  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7876  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7877  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7878  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7879  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7880  TmpInst.addOperand(Inst.getOperand(1)); // lane
7881  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7882  TmpInst.addOperand(Inst.getOperand(5));
7883  Inst = TmpInst;
7884  return true;
7885  }
7886 
7887  case ARM::VLD2LNdAsm_8:
7888  case ARM::VLD2LNdAsm_16:
7889  case ARM::VLD2LNdAsm_32:
7890  case ARM::VLD2LNqAsm_16:
7891  case ARM::VLD2LNqAsm_32: {
7892  MCInst TmpInst;
7893  // Shuffle the operands around so the lane index operand is in the
7894  // right place.
7895  unsigned Spacing;
7896  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7897  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7898  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7899  Spacing));
7900  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7901  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7902  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7903  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7904  Spacing));
7905  TmpInst.addOperand(Inst.getOperand(1)); // lane
7906  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7907  TmpInst.addOperand(Inst.getOperand(5));
7908  Inst = TmpInst;
7909  return true;
7910  }
7911 
7912  case ARM::VLD3LNdAsm_8:
7913  case ARM::VLD3LNdAsm_16:
7914  case ARM::VLD3LNdAsm_32:
7915  case ARM::VLD3LNqAsm_16:
7916  case ARM::VLD3LNqAsm_32: {
7917  MCInst TmpInst;
7918  // Shuffle the operands around so the lane index operand is in the
7919  // right place.
7920  unsigned Spacing;
7921  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7922  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7923  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7924  Spacing));
7925  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7926  Spacing * 2));
7927  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7928  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7929  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7930  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7931  Spacing));
7932  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7933  Spacing * 2));
7934  TmpInst.addOperand(Inst.getOperand(1)); // lane
7935  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7936  TmpInst.addOperand(Inst.getOperand(5));
7937  Inst = TmpInst;
7938  return true;
7939  }
7940 
7941  case ARM::VLD4LNdAsm_8:
7942  case ARM::VLD4LNdAsm_16:
7943  case ARM::VLD4LNdAsm_32:
7944  case ARM::VLD4LNqAsm_16:
7945  case ARM::VLD4LNqAsm_32: {
7946  MCInst TmpInst;
7947  // Shuffle the operands around so the lane index operand is in the
7948  // right place.
7949  unsigned Spacing;
7950  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7951  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7952  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7953  Spacing));
7954  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7955  Spacing * 2));
7956  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7957  Spacing * 3));
7958  TmpInst.addOperand(Inst.getOperand(2)); // Rn
7959  TmpInst.addOperand(Inst.getOperand(3)); // alignment
7960  TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7961  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7962  Spacing));
7963  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7964  Spacing * 2));
7965  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7966  Spacing * 3));
7967  TmpInst.addOperand(Inst.getOperand(1)); // lane
7968  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7969  TmpInst.addOperand(Inst.getOperand(5));
7970  Inst = TmpInst;
7971  return true;
7972  }
7973 
7974  // VLD3DUP single 3-element structure to all lanes instructions.
7975  case ARM::VLD3DUPdAsm_8:
7976  case ARM::VLD3DUPdAsm_16:
7977  case ARM::VLD3DUPdAsm_32:
7978  case ARM::VLD3DUPqAsm_8:
7979  case ARM::VLD3DUPqAsm_16:
7980  case ARM::VLD3DUPqAsm_32: {
7981  MCInst TmpInst;
7982  unsigned Spacing;
7983  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7984  TmpInst.addOperand(Inst.getOperand(0)); // Vd
7985  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7986  Spacing));
7987  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7988  Spacing * 2));
7989  TmpInst.addOperand(Inst.getOperand(1)); // Rn
7990  TmpInst.addOperand(Inst.getOperand(2)); // alignment
7991  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7992  TmpInst.addOperand(Inst.getOperand(4));
7993  Inst = TmpInst;
7994  return true;
7995  }
7996 
7997  case ARM::VLD3DUPdWB_fixed_Asm_8:
7998  case ARM::VLD3DUPdWB_fixed_Asm_16:
7999  case ARM::VLD3DUPdWB_fixed_Asm_32:
8000  case ARM::VLD3DUPqWB_fixed_Asm_8:
8001  case ARM::VLD3DUPqWB_fixed_Asm_16:
8002  case ARM::VLD3DUPqWB_fixed_Asm_32: {
8003  MCInst TmpInst;
8004  unsigned Spacing;
8005  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8006  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8007  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8008  Spacing));
8009  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8010  Spacing * 2));
8011  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8012  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8013  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8014  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8015  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8016  TmpInst.addOperand(Inst.getOperand(4));
8017  Inst = TmpInst;
8018  return true;
8019  }
8020 
8021  case ARM::VLD3DUPdWB_register_Asm_8:
8022  case ARM::VLD3DUPdWB_register_Asm_16:
8023  case ARM::VLD3DUPdWB_register_Asm_32:
8024  case ARM::VLD3DUPqWB_register_Asm_8:
8025  case ARM::VLD3DUPqWB_register_Asm_16:
8026  case ARM::VLD3DUPqWB_register_Asm_32: {
8027  MCInst TmpInst;
8028  unsigned Spacing;
8029  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8030  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8031  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8032  Spacing));
8033  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8034  Spacing * 2));
8035  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8036  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8037  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8038  TmpInst.addOperand(Inst.getOperand(3)); // Rm
8039  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8040  TmpInst.addOperand(Inst.getOperand(5));
8041  Inst = TmpInst;
8042  return true;
8043  }
8044 
8045  // VLD3 multiple 3-element structure instructions.
8046  case ARM::VLD3dAsm_8:
8047  case ARM::VLD3dAsm_16:
8048  case ARM::VLD3dAsm_32:
8049  case ARM::VLD3qAsm_8:
8050  case ARM::VLD3qAsm_16:
8051  case ARM::VLD3qAsm_32: {
8052  MCInst TmpInst;
8053  unsigned Spacing;
8054  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8055  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8056  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8057  Spacing));
8058  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8059  Spacing * 2));
8060  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8061  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8062  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8063  TmpInst.addOperand(Inst.getOperand(4));
8064  Inst = TmpInst;
8065  return true;
8066  }
8067 
8068  case ARM::VLD3dWB_fixed_Asm_8:
8069  case ARM::VLD3dWB_fixed_Asm_16:
8070  case ARM::VLD3dWB_fixed_Asm_32:
8071  case ARM::VLD3qWB_fixed_Asm_8:
8072  case ARM::VLD3qWB_fixed_Asm_16:
8073  case ARM::VLD3qWB_fixed_Asm_32: {
8074  MCInst TmpInst;
8075  unsigned Spacing;
8076  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8077  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8078  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8079  Spacing));
8080  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8081  Spacing * 2));
8082  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8083  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8084  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8085  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8086  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8087  TmpInst.addOperand(Inst.getOperand(4));
8088  Inst = TmpInst;
8089  return true;
8090  }
8091 
8092  case ARM::VLD3dWB_register_Asm_8:
8093  case ARM::VLD3dWB_register_Asm_16:
8094  case ARM::VLD3dWB_register_Asm_32:
8095  case ARM::VLD3qWB_register_Asm_8:
8096  case ARM::VLD3qWB_register_Asm_16:
8097  case ARM::VLD3qWB_register_Asm_32: {
8098  MCInst TmpInst;
8099  unsigned Spacing;
8100  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8101  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8102  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8103  Spacing));
8104  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8105  Spacing * 2));
8106  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8107  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8108  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8109  TmpInst.addOperand(Inst.getOperand(3)); // Rm
8110  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8111  TmpInst.addOperand(Inst.getOperand(5));
8112  Inst = TmpInst;
8113  return true;
8114  }
8115 
8116  // VLD4DUP single 3-element structure to all lanes instructions.
8117  case ARM::VLD4DUPdAsm_8:
8118  case ARM::VLD4DUPdAsm_16:
8119  case ARM::VLD4DUPdAsm_32:
8120  case ARM::VLD4DUPqAsm_8:
8121  case ARM::VLD4DUPqAsm_16:
8122  case ARM::VLD4DUPqAsm_32: {
8123  MCInst TmpInst;
8124  unsigned Spacing;
8125  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8126  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8127  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8128  Spacing));
8129  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8130  Spacing * 2));
8131  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8132  Spacing * 3));
8133  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8134  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8135  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8136  TmpInst.addOperand(Inst.getOperand(4));
8137  Inst = TmpInst;
8138  return true;
8139  }
8140 
8141  case ARM::VLD4DUPdWB_fixed_Asm_8:
8142  case ARM::VLD4DUPdWB_fixed_Asm_16:
8143  case ARM::VLD4DUPdWB_fixed_Asm_32:
8144  case ARM::VLD4DUPqWB_fixed_Asm_8:
8145  case ARM::VLD4DUPqWB_fixed_Asm_16:
8146  case ARM::VLD4DUPqWB_fixed_Asm_32: {
8147  MCInst TmpInst;
8148  unsigned Spacing;
8149  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8150  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8151  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8152  Spacing));
8153  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8154  Spacing * 2));
8155  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8156  Spacing * 3));
8157  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8158  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8159  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8160  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8161  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8162  TmpInst.addOperand(Inst.getOperand(4));
8163  Inst = TmpInst;
8164  return true;
8165  }
8166 
8167  case ARM::VLD4DUPdWB_register_Asm_8:
8168  case ARM::VLD4DUPdWB_register_Asm_16:
8169  case ARM::VLD4DUPdWB_register_Asm_32:
8170  case ARM::VLD4DUPqWB_register_Asm_8:
8171  case ARM::VLD4DUPqWB_register_Asm_16:
8172  case ARM::VLD4DUPqWB_register_Asm_32: {
8173  MCInst TmpInst;
8174  unsigned Spacing;
8175  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8176  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8177  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8178  Spacing));
8179  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8180  Spacing * 2));
8181  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8182  Spacing * 3));
8183  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8184  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8185  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8186  TmpInst.addOperand(Inst.getOperand(3)); // Rm
8187  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8188  TmpInst.addOperand(Inst.getOperand(5));
8189  Inst = TmpInst;
8190  return true;
8191  }
8192 
8193  // VLD4 multiple 4-element structure instructions.
8194  case ARM::VLD4dAsm_8:
8195  case ARM::VLD4dAsm_16:
8196  case ARM::VLD4dAsm_32:
8197  case ARM::VLD4qAsm_8:
8198  case ARM::VLD4qAsm_16:
8199  case ARM::VLD4qAsm_32: {
8200  MCInst TmpInst;
8201  unsigned Spacing;
8202  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8203  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8204  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8205  Spacing));
8206  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8207  Spacing * 2));
8208  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8209  Spacing * 3));
8210  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8211  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8212  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8213  TmpInst.addOperand(Inst.getOperand(4));
8214  Inst = TmpInst;
8215  return true;
8216  }
8217 
8218  case ARM::VLD4dWB_fixed_Asm_8:
8219  case ARM::VLD4dWB_fixed_Asm_16:
8220  case ARM::VLD4dWB_fixed_Asm_32:
8221  case ARM::VLD4qWB_fixed_Asm_8:
8222  case ARM::VLD4qWB_fixed_Asm_16:
8223  case ARM::VLD4qWB_fixed_Asm_32: {
8224  MCInst TmpInst;
8225  unsigned Spacing;
8226  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8227  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8228  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8229  Spacing));
8230  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8231  Spacing * 2));
8232  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8233  Spacing * 3));
8234  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8235  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8236  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8237  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8238  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8239  TmpInst.addOperand(Inst.getOperand(4));
8240  Inst = TmpInst;
8241  return true;
8242  }
8243 
8244  case ARM::VLD4dWB_register_Asm_8:
8245  case ARM::VLD4dWB_register_Asm_16:
8246  case ARM::VLD4dWB_register_Asm_32:
8247  case ARM::VLD4qWB_register_Asm_8:
8248  case ARM::VLD4qWB_register_Asm_16:
8249  case ARM::VLD4qWB_register_Asm_32: {
8250  MCInst TmpInst;
8251  unsigned Spacing;
8252  TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8253  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8254  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8255  Spacing));
8256  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8257  Spacing * 2));
8258  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8259  Spacing * 3));
8260  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8261  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8262  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8263  TmpInst.addOperand(Inst.getOperand(3)); // Rm
8264  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8265  TmpInst.addOperand(Inst.getOperand(5));
8266  Inst = TmpInst;
8267  return true;
8268  }
8269 
8270  // VST3 multiple 3-element structure instructions.
8271  case ARM::VST3dAsm_8:
8272  case ARM::VST3dAsm_16:
8273  case ARM::VST3dAsm_32:
8274  case ARM::VST3qAsm_8:
8275  case ARM::VST3qAsm_16:
8276  case ARM::VST3qAsm_32: {
8277  MCInst TmpInst;
8278  unsigned Spacing;
8279  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8280  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8281  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8282  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8283  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8284  Spacing));
8285  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8286  Spacing * 2));
8287  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8288  TmpInst.addOperand(Inst.getOperand(4));
8289  Inst = TmpInst;
8290  return true;
8291  }
8292 
8293  case ARM::VST3dWB_fixed_Asm_8:
8294  case ARM::VST3dWB_fixed_Asm_16:
8295  case ARM::VST3dWB_fixed_Asm_32:
8296  case ARM::VST3qWB_fixed_Asm_8:
8297  case ARM::VST3qWB_fixed_Asm_16:
8298  case ARM::VST3qWB_fixed_Asm_32: {
8299  MCInst TmpInst;
8300  unsigned Spacing;
8301  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8302  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8303  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8304  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8305  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8306  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8307  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8308  Spacing));
8309  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8310  Spacing * 2));
8311  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8312  TmpInst.addOperand(Inst.getOperand(4));
8313  Inst = TmpInst;
8314  return true;
8315  }
8316 
8317  case ARM::VST3dWB_register_Asm_8:
8318  case ARM::VST3dWB_register_Asm_16:
8319  case ARM::VST3dWB_register_Asm_32:
8320  case ARM::VST3qWB_register_Asm_8:
8321  case ARM::VST3qWB_register_Asm_16:
8322  case ARM::VST3qWB_register_Asm_32: {
8323  MCInst TmpInst;
8324  unsigned Spacing;
8325  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8326  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8327  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8328  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8329  TmpInst.addOperand(Inst.getOperand(3)); // Rm
8330  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8331  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8332  Spacing));
8333  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8334  Spacing * 2));
8335  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8336  TmpInst.addOperand(Inst.getOperand(5));
8337  Inst = TmpInst;
8338  return true;
8339  }
8340 
8341  // VST4 multiple 3-element structure instructions.
8342  case ARM::VST4dAsm_8:
8343  case ARM::VST4dAsm_16:
8344  case ARM::VST4dAsm_32:
8345  case ARM::VST4qAsm_8:
8346  case ARM::VST4qAsm_16:
8347  case ARM::VST4qAsm_32: {
8348  MCInst TmpInst;
8349  unsigned Spacing;
8350  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8351  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8352  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8353  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8354  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8355  Spacing));
8356  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8357  Spacing * 2));
8358  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8359  Spacing * 3));
8360  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8361  TmpInst.addOperand(Inst.getOperand(4));
8362  Inst = TmpInst;
8363  return true;
8364  }
8365 
8366  case ARM::VST4dWB_fixed_Asm_8:
8367  case ARM::VST4dWB_fixed_Asm_16:
8368  case ARM::VST4dWB_fixed_Asm_32:
8369  case ARM::VST4qWB_fixed_Asm_8:
8370  case ARM::VST4qWB_fixed_Asm_16:
8371  case ARM::VST4qWB_fixed_Asm_32: {
8372  MCInst TmpInst;
8373  unsigned Spacing;
8374  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8375  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8376  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8377  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8378  TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8379  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8380  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8381  Spacing));
8382  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8383  Spacing * 2));
8384  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8385  Spacing * 3));
8386  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8387  TmpInst.addOperand(Inst.getOperand(4));
8388  Inst = TmpInst;
8389  return true;
8390  }
8391 
8392  case ARM::VST4dWB_register_Asm_8:
8393  case ARM::VST4dWB_register_Asm_16:
8394  case ARM::VST4dWB_register_Asm_32:
8395  case ARM::VST4qWB_register_Asm_8:
8396  case ARM::VST4qWB_register_Asm_16:
8397  case ARM::VST4qWB_register_Asm_32: {
8398  MCInst TmpInst;
8399  unsigned Spacing;
8400  TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8401  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8402  TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8403  TmpInst.addOperand(Inst.getOperand(2)); // alignment
8404  TmpInst.addOperand(Inst.getOperand(3)); // Rm
8405  TmpInst.addOperand(Inst.getOperand(0)); // Vd
8406  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8407  Spacing));
8408  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8409  Spacing * 2));
8410  TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8411  Spacing * 3));
8412  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8413  TmpInst.addOperand(Inst.getOperand(5));
8414  Inst = TmpInst;
8415  return true;
8416  }
8417 
8418  // Handle encoding choice for the shift-immediate instructions.
8419  case ARM::t2LSLri:
8420  case ARM::t2LSRri:
8421  case ARM::t2ASRri:
8422  if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8423  isARMLowRegister(Inst.getOperand(1).getReg()) &&
8424  Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8425  !HasWideQualifier) {
8426  unsigned NewOpc;
8427  switch (Inst.getOpcode()) {
8428  default: llvm_unreachable("unexpected opcode");
8429  case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
8430  case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
8431  case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
8432  }
8433  // The Thumb1 operands aren't in the same order. Awesome, eh?
8434  MCInst TmpInst;
8435  TmpInst.setOpcode(NewOpc);
8436  TmpInst.addOperand(Inst.getOperand(0));
8437  TmpInst.addOperand(Inst.getOperand(5));
8438  TmpInst.addOperand(Inst.getOperand(1));
8439  TmpInst.addOperand(Inst.getOperand(2));
8440  TmpInst.addOperand(Inst.getOperand(3));
8441  TmpInst.addOperand(Inst.getOperand(4));
8442  Inst = TmpInst;
8443  return true;
8444  }
8445  return false;
8446 
8447  // Handle the Thumb2 mode MOV complex aliases.
8448  case ARM::t2MOVsr:
8449  case ARM::t2MOVSsr: {
8450  // Which instruction to expand to depends on the CCOut operand and
8451  // whether we're in an IT block if the register operands are low
8452  // registers.
8453  bool isNarrow = false;
8454  if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8455  isARMLowRegister(Inst.getOperand(1).getReg()) &&
8456  isARMLowRegister(Inst.getOperand(2).getReg()) &&
8457  Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8458  inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
8459  !HasWideQualifier)
8460  isNarrow = true;
8461  MCInst TmpInst;
8462  unsigned newOpc;
8463  switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
8464  default: llvm_unreachable("unexpected opcode!");
8465  case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
8466  case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
8467  case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
8468  case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
8469  }
8470  TmpInst.setOpcode(newOpc);
8471  TmpInst.addOperand(Inst.getOperand(0)); // Rd
8472  if (isNarrow)
8474  Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8475  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8476  TmpInst.addOperand(Inst.getOperand(2)); // Rm
8477  TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8478  TmpInst.addOperand(Inst.getOperand(5));
8479  if (!isNarrow)
8481  Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8482  Inst = TmpInst;
8483  return true;
8484  }
8485  case ARM::t2MOVsi:
8486  case ARM::t2MOVSsi: {
8487  // Which instruction to expand to depends on the CCOut operand and
8488  // whether we're in an IT block if the register operands are low
8489  // registers.
8490  bool isNarrow = false;
8491  if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8492  isARMLowRegister(Inst.getOperand(1).getReg()) &&
8493  inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
8494  !HasWideQualifier)
8495  isNarrow = true;
8496  MCInst TmpInst;
8497  unsigned newOpc;
8498  unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8499  unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
8500  bool isMov = false;
8501  // MOV rd, rm, LSL #0 is actually a MOV instruction
8502  if (Shift == ARM_AM::lsl && Amount == 0) {
8503  isMov = true;
8504  // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8505  // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8506  // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8507  // instead.
8508  if (inITBlock()) {
8509  isNarrow = false;
8510  }
8511  newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
8512  } else {
8513  switch(Shift) {
8514  default: llvm_unreachable("unexpected opcode!");
8515  case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
8516  case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
8517  case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
8518  case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
8519  case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
8520  }
8521  }
8522  if (Amount == 32) Amount = 0;
8523  TmpInst.setOpcode(newOpc);
8524  TmpInst.addOperand(Inst.getOperand(0)); // Rd
8525  if (isNarrow && !isMov)
8527  Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8528  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8529  if (newOpc != ARM::t2RRX && !isMov)
8530  TmpInst.addOperand(MCOperand::createImm(Amount));
8531  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8532  TmpInst.addOperand(Inst.getOperand(4));
8533  if (!isNarrow)
8535  Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8536  Inst = TmpInst;
8537  return true;
8538  }
8539  // Handle the ARM mode MOV complex aliases.
8540  case ARM::ASRr:
8541  case ARM::LSRr:
8542  case ARM::LSLr:
8543  case ARM::RORr: {
8544  ARM_AM::ShiftOpc ShiftTy;
8545  switch(Inst.getOpcode()) {
8546  default: llvm_unreachable("unexpected opcode!");
8547  case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
8548  case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
8549  case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
8550  case ARM::RORr: ShiftTy = ARM_AM::ror; break;
8551  }
8552  unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
8553  MCInst TmpInst;
8554  TmpInst.setOpcode(ARM::MOVsr);
8555  TmpInst.addOperand(Inst.getOperand(0)); // Rd
8556  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8557  TmpInst.addOperand(Inst.getOperand(2)); // Rm
8558  TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8559  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8560  TmpInst.addOperand(Inst.getOperand(4));
8561  TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8562  Inst = TmpInst;
8563  return true;
8564  }
8565  case ARM::ASRi:
8566  case ARM::LSRi:
8567  case ARM::LSLi:
8568  case ARM::RORi: {
8569  ARM_AM::ShiftOpc ShiftTy;
8570  switch(Inst.getOpcode()) {
8571  default: llvm_unreachable("unexpected opcode!");
8572  case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
8573  case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
8574  case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
8575  case ARM::RORi: ShiftTy = ARM_AM::ror; break;
8576  }
8577  // A shift by zero is a plain MOVr, not a MOVsi.
8578  unsigned Amt = Inst.getOperand(2).getImm();
8579  unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
8580  // A shift by 32 should be encoded as 0 when permitted
8581  if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
8582  Amt = 0;
8583  unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
8584  MCInst TmpInst;
8585  TmpInst.setOpcode(Opc);
8586  TmpInst.addOperand(Inst.getOperand(0)); // Rd
8587  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8588  if (Opc == ARM::MOVsi)
8589  TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8590  TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8591  TmpInst.addOperand(Inst.getOperand(4));
8592  TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8593  Inst = TmpInst;
8594  return true;
8595  }
8596  case ARM::RRXi: {
8597  unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
8598  MCInst TmpInst;
8599  TmpInst.setOpcode(ARM::MOVsi);
8600  TmpInst.addOperand(Inst.getOperand(0)); // Rd
8601  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8602  TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8603  TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8604  TmpInst.addOperand(Inst.getOperand(3));
8605  TmpInst.addOperand(Inst.getOperand(4)); // cc_out
8606  Inst = TmpInst;
8607  return true;
8608  }
8609  case ARM::t2LDMIA_UPD: {
8610  // If this is a load of a single register, then we should use
8611  // a post-indexed LDR instruction instead, per the ARM ARM.
8612  if (Inst.getNumOperands() != 5)
8613  return false;
8614  MCInst TmpInst;
8615  TmpInst.setOpcode(ARM::t2LDR_POST);
8616  TmpInst.addOperand(Inst.getOperand(4)); // Rt
8617  TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8618  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8619  TmpInst.addOperand(MCOperand::createImm(4));
8620  TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8621  TmpInst.addOperand(Inst.getOperand(3));
8622  Inst = TmpInst;
8623  return true;
8624  }
8625  case ARM::t2STMDB_UPD: {
8626  // If this is a store of a single register, then we should use
8627  // a pre-indexed STR instruction instead, per the ARM ARM.
8628  if (Inst.getNumOperands() != 5)
8629  return false;
8630  MCInst TmpInst;
8631  TmpInst.setOpcode(ARM::t2STR_PRE);
8632  TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8633  TmpInst.addOperand(Inst.getOperand(4)); // Rt
8634  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8635  TmpInst.addOperand(MCOperand::createImm(-4));
8636  TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8637  TmpInst.addOperand(Inst.getOperand(3));
8638  Inst = TmpInst;
8639  return true;
8640  }
8641  case ARM::LDMIA_UPD:
8642  // If this is a load of a single register via a 'pop', then we should use
8643  // a post-indexed LDR instruction instead, per the ARM ARM.
8644  if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
8645  Inst.getNumOperands() == 5) {
8646  MCInst TmpInst;
8647  TmpInst.setOpcode(ARM::LDR_POST_IMM);
8648  TmpInst.addOperand(Inst.getOperand(4)); // Rt
8649  TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8650  TmpInst.addOperand(Inst.getOperand(1)); // Rn
8651  TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
8652  TmpInst.addOperand(MCOperand::createImm(4));
8653  TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8654  TmpInst.addOperand(Inst.getOperand(3));
8655  Inst = TmpInst;
8656  return true;
8657  }
8658  break;
8659  case ARM::STMDB_UPD:
8660  // If this is a store of a single register via a 'push', then we should use
8661  // a pre-indexed STR instruction instead, per the ARM ARM.
8662  if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
8663  Inst.getNumOperands() == 5) {
8664  MCInst TmpInst;
8665  TmpInst.setOpcode(ARM::STR_PRE_IMM);
8666  TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8667  TmpInst.addOperand(Inst.getOperand(4)); // Rt
8668  TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
8669  TmpInst.addOperand(MCOperand::createImm(-4));
8670  TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8671  TmpInst.addOperand(Inst.getOperand(3));
8672  Inst = TmpInst;
8673  }
8674  break;
8675  case ARM::t2ADDri12:
8676  // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8677  // mnemonic was used (not "addw"), encoding T3 is preferred.
8678  if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
8679  ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8680  break;
8681  Inst.setOpcode(ARM::t2ADDri);
8682  Inst.addOperand(MCOperand::createReg(0)); // cc_out
8683  break;
8684  case ARM::t2SUBri12:
8685  // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8686  // mnemonic was used (not "subw"), encoding T3 is preferred.
8687  if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
8688  ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8689  break;
8690  Inst.setOpcode(ARM::t2SUBri);
8691  Inst.addOperand(MCOperand::createReg(0)); // cc_out
8692  break;
8693  case ARM::tADDi8:
8694  // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8695  // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8696  // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8697  // to encoding T1 if <Rd> is omitted."
8698  if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8699  Inst.setOpcode(ARM::tADDi3);
8700  return true;
8701  }
8702  break;
8703  case ARM::tSUBi8:
8704  // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8705  // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8706  // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8707  // to encoding T1 if <Rd> is omitted."
8708  if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8709  Inst.setOpcode(ARM::tSUBi3);
8710  return true;
8711  }
8712  break;
8713  case ARM::t2ADDri:
8714  case ARM::t2SUBri: {
8715  // If the destination and first source operand are the same, and
8716  // the flags are compatible with the current IT status, use encoding T2
8717  // instead of T3. For compatibility with the system 'as'. Make sure the
8718  // wide encoding wasn't explicit.
8719  if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8720  !isARMLowRegister(Inst.getOperand(0).getReg()) ||
8721  (Inst.getOperand(2).isImm() &&
8722  (unsigned)Inst.getOperand(2).getImm() > 255) ||
8723  Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
8724  HasWideQualifier)
8725  break;
8726  MCInst TmpInst;
8727  TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
8728  ARM::tADDi8 : ARM::tSUBi8);
8729  TmpInst.addOperand(Inst.getOperand(0));
8730  TmpInst.addOperand(Inst.getOperand(5));
8731  TmpInst.addOperand(Inst.getOperand(0));
8732  TmpInst.addOperand(Inst.getOperand(2));
8733  TmpInst.addOperand(Inst.getOperand(3));
8734  TmpInst.addOperand(Inst.getOperand(4));
8735  Inst = TmpInst;
8736  return true;
8737  }
8738  case ARM::t2ADDrr: {
8739  // If the destination and first source operand are the same, and
8740  // there's no setting of the flags, use encoding T2 instead of T3.
8741  // Note that this is only for ADD, not SUB. This mirrors the system
8742  // 'as' behaviour. Also take advantage of ADD being commutative.
8743  // Make sure the wide encoding wasn't explicit.
8744  bool Swap = false;
8745  auto DestReg = Inst.getOperand(0).getReg();
8746  bool Transform = DestReg == Inst.getOperand(1).getReg();
8747  if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
8748  Transform = true;
8749  Swap = true;
8750  }
8751  if (!Transform ||
8752  Inst.getOperand(5).getReg() != 0 ||
8753  HasWideQualifier)
8754  break;
8755  MCInst TmpInst;
8756  TmpInst.setOpcode(ARM::tADDhirr);
8757  TmpInst.addOperand(Inst.getOperand(0));
8758  TmpInst.addOperand(Inst.getOperand(0));
8759  TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
8760  TmpInst.addOperand(Inst.getOperand(3));
8761  TmpInst.addOperand(Inst.getOperand(4));
8762  Inst = TmpInst;
8763  return true;
8764  }
8765  case ARM::tADDrSP:
8766  // If the non-SP source operand and the destination operand are not the
8767  // same, we need to use the 32-bit encoding if it's available.
8768  if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8769  Inst.setOpcode(ARM::t2ADDrr);
8770  Inst.addOperand(MCOperand::createReg(0)); // cc_out
8771  return true;
8772  }
8773  break;
8774  case ARM::tB:
8775  // A Thumb conditional branch outside of an IT block is a tBcc.
8776  if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
8777  Inst.setOpcode(ARM::tBcc);
8778  return true;
8779  }
8780  break;
8781  case ARM::t2B:
8782  // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8783  if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
8784  Inst.setOpcode(ARM::t2Bcc);
8785  return true;
8786  }
8787  break;
8788  case ARM::t2Bcc:
8789  // If the conditional is AL or we're in an IT block, we really want t2B.
8790  if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
8791  Inst.setOpcode(ARM::t2B);
8792  return true;
8793  }
8794  break;
8795  case ARM::tBcc:
8796  // If the conditional is AL, we really want tB.
8797  if (Inst.getOperand(1).getImm() == ARMCC::AL) {
8798  Inst.setOpcode(ARM::tB);
8799  return true;
8800  }
8801  break;
8802  case ARM::tLDMIA: {
8803  // If the register list contains any high registers, or if the writeback
8804  // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8805  // instead if we're in Thumb2. Otherwise, this should have generated
8806  // an error in validateInstruction().
8807  unsigned Rn = Inst.getOperand(0).getReg();
8808  bool hasWritebackToken =
8809  (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8810  static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
8811  bool listContainsBase;
8812  if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
8813  (!listContainsBase && !hasWritebackToken) ||
8814  (listContainsBase && hasWritebackToken)) {
8815  // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8816  assert(isThumbTwo());
8817  Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
8818  // If we're switching to the updating version, we need to insert
8819  // the writeback tied operand.
8820  if (hasWritebackToken)
8821  Inst.insert(Inst.begin(),
8823  return true;
8824  }
8825  break;
8826  }
8827  case ARM::tSTMIA_UPD: {
8828  // If the register list contains any high registers, we need to use
8829  // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8830  // should have generated an error in validateInstruction().
8831  unsigned Rn = Inst.getOperand(0).getReg();
8832  bool listContainsBase;
8833  if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
8834  // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8835  assert(isThumbTwo());
8836  Inst.setOpcode(ARM::t2STMIA_UPD);
8837  return true;
8838  }
8839  break;
8840  }
8841  case ARM::tPOP: {
8842  bool listContainsBase;
8843  // If the register list contains any high registers, we need to use
8844  // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8845  // should have generated an error in validateInstruction().
8846  if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
8847  return false;
8848  assert(isThumbTwo());
8849  Inst.setOpcode(ARM::t2LDMIA_UPD);
8850  // Add the base register and writeback operands.
8851  Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8852  Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8853  return true;
8854  }
8855  case ARM::tPUSH: {
8856  bool listContainsBase;
8857  if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
8858  return false;
8859  assert(isThumbTwo());
8860  Inst.setOpcode(ARM::t2STMDB_UPD);
8861  // Add the base register and writeback operands.
8862  Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8863  Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8864  return true;
8865  }
8866  case ARM::t2MOVi:
8867  // If we can use the 16-bit encoding and the user didn't explicitly
8868  // request the 32-bit variant, transform it here.
8869  if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8870  (Inst.getOperand(1).isImm() &&
8871  (unsigned)Inst.getOperand(1).getImm() <= 255) &&
8872  Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8873  !HasWideQualifier) {
8874  // The operands aren't in the same order for tMOVi8...
8875  MCInst TmpInst;
8876  TmpInst.setOpcode(ARM::tMOVi8);
8877  TmpInst.addOperand(Inst.getOperand(0));
8878  TmpInst.addOperand(Inst.getOperand(4));
8879  TmpInst.addOperand(Inst.getOperand(1));
8880  TmpInst.addOperand(Inst.getOperand(2));
8881  TmpInst.addOperand(Inst.getOperand(3));
8882  Inst = TmpInst;
8883  return true;
8884  }
8885  break;
8886 
8887  case ARM::t2MOVr:
8888  // If we can use the 16-bit encoding and the user didn't explicitly
8889  // request the 32-bit variant, transform it here.
8890  if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8891  isARMLowRegister(Inst.getOperand(1).getReg()) &&
8892  Inst.getOperand(2).getImm() == ARMCC::AL &&
8893  Inst.getOperand(4).getReg() == ARM::CPSR &&
8894  !HasWideQualifier) {
8895  // The operands aren't the same for tMOV[S]r... (no cc_out)
8896  MCInst TmpInst;
8897  TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
8898  TmpInst.addOperand(Inst.getOperand(0));
8899  TmpInst.addOperand(Inst.getOperand(1));
8900  TmpInst.addOperand(Inst.getOperand(2));
8901  TmpInst.addOperand(Inst.getOperand(3));
8902  Inst = TmpInst;
8903  return true;
8904  }
8905  break;
8906 
8907  case ARM::t2SXTH:
8908  case ARM::t2SXTB:
8909  case ARM::t2UXTH:
8910  case ARM::t2UXTB:
8911  // If we can use the 16-bit encoding and the user didn't explicitly
8912  // request the 32-bit variant, transform it here.
8913  if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8914  isARMLowRegister(Inst.getOperand(1).getReg()) &&
8915  Inst.getOperand(2).getImm() == 0 &&
8916  !HasWideQualifier) {
8917  unsigned NewOpc;
8918  switch (Inst.getOpcode()) {
8919  default: llvm_unreachable("Illegal opcode!");
8920  case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
8921  case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
8922  case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
8923  case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
8924  }
8925  // The operands aren't the same for thumb1 (no rotate operand).
8926  MCInst TmpInst;
8927  TmpInst.setOpcode(NewOpc);
8928  TmpInst.addOperand(Inst.getOperand(0));
8929  TmpInst.addOperand(Inst.getOperand(1));
8930  TmpInst.addOperand(Inst.getOperand(3));
8931  TmpInst.addOperand(Inst.getOperand(4));
8932  Inst = TmpInst;
8933  return true;
8934  }
8935  break;
8936 
8937  case ARM::MOVsi: {
8939  // rrx shifts and asr/lsr of #32 is encoded as 0
8940  if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
8941  return false;
8942  if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
8943  // Shifting by zero is accepted as a vanilla 'MOVr'
8944  MCInst TmpInst;
8945  TmpInst.setOpcode(ARM::MOVr);
8946  TmpInst.addOperand(Inst.getOperand(0));
8947  TmpInst.addOperand(Inst.getOperand(1));
8948  TmpInst.addOperand(Inst.getOperand(3));
8949  TmpInst.addOperand(Inst.getOperand(4));
8950  TmpInst.addOperand(Inst.getOperand(5));
8951  Inst = TmpInst;
8952  return true;
8953  }
8954  return false;
8955  }
8956  case ARM::ANDrsi:
8957  case ARM::ORRrsi:
8958  case ARM::EORrsi:
8959  case ARM::BICrsi:
8960  case ARM::SUBrsi:
8961  case ARM::ADDrsi: {
8962  unsigned newOpc;
8964  if (SOpc == ARM_AM::rrx) return false;
8965  switch (Inst.getOpcode()) {
8966  default: llvm_unreachable("unexpected opcode!");
8967  case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
8968  case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
8969  case ARM::EORrsi: newOpc = ARM::EORrr; break;
8970  case ARM::BICrsi: newOpc = ARM::BICrr; break;
8971  case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
8972  case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
8973  }
8974  // If the shift is by zero, use the non-shifted instruction definition.
8975  // The exception is for right shifts, where 0 == 32
8976  if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
8977  !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
8978  MCInst TmpInst;
8979  TmpInst.setOpcode(newOpc);
8980  TmpInst.addOperand(Inst.getOperand(0));
8981  TmpInst.addOperand(Inst.getOperand(1));
8982  TmpInst.addOperand(Inst.getOperand(2));
8983  TmpInst.addOperand(Inst.getOperand(4));
8984  TmpInst.addOperand(Inst.getOperand(5));
8985  TmpInst.addOperand(Inst.getOperand(6));
8986  Inst = TmpInst;
8987  return true;
8988  }
8989  return false;
8990  }
8991  case ARM::ITasm:
8992  case ARM::t2IT: {
8993  MCOperand &MO = Inst.getOperand(1);
8994  unsigned Mask = MO.getImm();
8996 
8997  // Set up the IT block state according to the IT instruction we just
8998  // matched.
8999  assert(!inITBlock() && "nested IT blocks?!");
9000  startExplicitITBlock(Cond, Mask);
9001  MO.setImm(getITMaskEncoding());
9002  break;
9003  }
9004  case ARM::t2LSLrr:
9005  case ARM::t2LSRrr:
9006  case ARM::t2ASRrr:
9007  case ARM::t2SBCrr:
9008  case ARM::t2RORrr:
9009  case ARM::t2BICrr:
9010  // Assemblers should use the narrow encodings of these instructions when permissible.
9011  if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
9012  isARMLowRegister(Inst.getOperand(2).getReg())) &&
9013  Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
9014  Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9015  !HasWideQualifier) {
9016  unsigned NewOpc;
9017  switch (Inst.getOpcode()) {
9018  default: llvm_unreachable("unexpected opcode");
9019  case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
9020  case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
9021  case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
9022  case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
9023  case ARM::t2RORrr: NewOpc = ARM::tROR; break;
9024  case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
9025  }
9026  MCInst TmpInst;
9027  TmpInst.setOpcode(NewOpc);
9028  TmpInst.addOperand(Inst.getOperand(0));
9029  TmpInst.addOperand(Inst.getOperand(5));
9030  TmpInst.addOperand(Inst.getOperand(1));
9031  TmpInst.addOperand(Inst.getOperand(2));
9032  TmpInst.addOperand(Inst.getOperand(3));
9033  TmpInst.addOperand(Inst.getOperand(4));
9034  Inst = TmpInst;
9035  return true;
9036  }
9037  return false;
9038 
9039  case ARM::t2ANDrr:
9040  case ARM::t2EORrr:
9041  case ARM::t2ADCrr:
9042  case ARM::t2ORRrr:
9043  // Assemblers should use the narrow encodings of these instructions when permissible.
9044  // These instructions are special in that they are commutable, so shorter encodings
9045  // are available more often.
9046  if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
9047  isARMLowRegister(Inst.getOperand(2).getReg())) &&
9048  (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
9049  Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
9050  Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9051  !HasWideQualifier) {
9052  unsigned NewOpc;
9053  switch (Inst.getOpcode()) {
9054  default: llvm_unreachable("unexpected opcode");
9055  case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
9056  case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
9057  case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
9058  case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
9059  }
9060  MCInst TmpInst;
9061  TmpInst.setOpcode(NewOpc);
9062  TmpInst.addOperand(Inst.getOperand(0));
9063  TmpInst.addOperand(Inst.getOperand(5));
9064  if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
9065  TmpInst.addOperand(Inst.getOperand(1));
9066  TmpInst.addOperand(Inst.getOperand(2));
9067  } else {
9068  TmpInst.addOperand(Inst.getOperand(2));
9069  TmpInst.addOperand(Inst.getOperand(1));
9070  }
9071  TmpInst.addOperand(Inst.getOperand(3));
9072  TmpInst.addOperand(Inst.getOperand(4));
9073  Inst = TmpInst;
9074  return true;
9075  }
9076  return false;
9077  }
9078  return false;
9079 }
9080 
9081 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
9082  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9083  // suffix depending on whether they're in an IT block or not.
9084  unsigned Opc = Inst.getOpcode();
9085  const MCInstrDesc &MCID = MII.get(Opc);
9087  assert(MCID.hasOptionalDef() &&
9088  "optionally flag setting instruction missing optional def operand");
9089  assert(MCID.NumOperands == Inst.getNumOperands() &&
9090  "operand count mismatch!");
9091  // Find the optional-def operand (cc_out).
9092  unsigned OpNo;
9093  for (OpNo = 0;
9094  !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
9095  ++OpNo)
9096  ;
9097  // If we're parsing Thumb1, reject it completely.
9098  if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
9099  return Match_RequiresFlagSetting;
9100  // If we're parsing Thumb2, which form is legal depends on whether we're
9101  // in an IT block.
9102  if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
9103  !inITBlock())
9104  return Match_RequiresITBlock;
9105  if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
9106  inITBlock())
9107  return Match_RequiresNotITBlock;
9108  // LSL with zero immediate is not allowed in an IT block
9109  if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
9110  return Match_RequiresNotITBlock;
9111  } else if (isThumbOne()) {
9112  // Some high-register supporting Thumb1 encodings only allow both registers
9113  // to be from r0-r7 when in Thumb2.
9114  if (Opc == ARM::tADDhirr && !hasV6MOps() &&
9115  isARMLowRegister(Inst.getOperand(1).getReg()) &&
9116  isARMLowRegister(Inst.getOperand(2).getReg()))
9117  return Match_RequiresThumb2;
9118  // Others only require ARMv6 or later.
9119  else if (Opc == ARM::tMOVr && !hasV6Ops() &&
9120  isARMLowRegister(Inst.getOperand(0).getReg()) &&
9121  isARMLowRegister(Inst.getOperand(1).getReg()))
9122  return Match_RequiresV6;
9123  }
9124 
9125  // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9126  // than the loop below can handle, so it uses the GPRnopc register class and
9127  // we do SP handling here.
9128  if (Opc == ARM::t2MOVr && !hasV8Ops())
9129  {
9130  // SP as both source and destination is not allowed
9131  if (Inst.getOperand(0).getReg() == ARM::SP &&
9132  Inst.getOperand(1).getReg() == ARM::SP)
9133  return Match_RequiresV8;
9134  // When flags-setting SP as either source or destination is not allowed
9135  if (Inst.getOperand(4).getReg() == ARM::CPSR &&
9136  (Inst.getOperand(0).getReg() == ARM::SP ||
9137  Inst.getOperand(1).getReg() == ARM::SP))
9138  return Match_RequiresV8;
9139  }
9140 
9141  // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9142  // ARMv8-A.
9143  if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) &&
9144  Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops()))
9145  return Match_InvalidOperand;
9146 
9147  for (unsigned I = 0; I < MCID.NumOperands; ++I)
9148  if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
9149  // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9150  if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops())
9151  return Match_RequiresV8;
9152  else if (Inst.getOperand(I).getReg() == ARM::PC)
9153  return Match_InvalidOperand;
9154  }
9155 
9156  return Match_Success;
9157 }
9158 
9159 namespace llvm {
9160 
9161 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
9162  return true; // In an assembly source, no need to second-guess
9163 }
9164 
9165 } // end namespace llvm
9166 
9167 // Returns true if Inst is unpredictable if it is in and IT block, but is not
9168 // the last instruction in the block.
9169 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
9170  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9171 
9172  // All branch & call instructions terminate IT blocks with the exception of
9173  // SVC.
9174  if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
9175  MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
9176  return true;
9177 
9178  // Any arithmetic instruction which writes to the PC also terminates the IT
9179  // block.
9180  if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
9181  return true;
9182 
9183  return false;
9184 }
9185 
9186 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
9187  SmallVectorImpl<NearMissInfo> &NearMisses,
9188  bool MatchingInlineAsm,
9189  bool &EmitInITBlock,
9190  MCStreamer &Out) {
9191  // If we can't use an implicit IT block here, just match as normal.
9192  if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9193  return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9194 
9195  // Try to match the instruction in an extension of the current IT block (if
9196  // there is one).
9197  if (inImplicitITBlock()) {
9198  extendImplicitITBlock(ITState.Cond);
9199  if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9200  Match_Success) {
9201  // The match succeded, but we still have to check that the instruction is
9202  // valid in this implicit IT block.
9203  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9204  if (MCID.isPredicable()) {
9205  ARMCC::CondCodes InstCond =
9207  .getImm();
9208  ARMCC::CondCodes ITCond = currentITCond();
9209  if (InstCond == ITCond) {
9210  EmitInITBlock = true;
9211  return Match_Success;
9212  } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
9213  invertCurrentITCondition();
9214  EmitInITBlock = true;
9215  return Match_Success;
9216  }
9217  }
9218  }
9219  rewindImplicitITPosition();
9220  }
9221 
9222  // Finish the current IT block, and try to match outside any IT block.
9223  flushPendingInstructions(Out);
9224  unsigned PlainMatchResult =
9225  MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9226  if (PlainMatchResult == Match_Success) {
9227  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9228  if (MCID.isPredicable()) {
9229  ARMCC::CondCodes InstCond =
9231  .getImm();
9232  // Some forms of the branch instruction have their own condition code
9233  // fields, so can be conditionally executed without an IT block.
9234  if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
9235  EmitInITBlock = false;
9236  return Match_Success;
9237  }
9238  if (InstCond == ARMCC::AL) {
9239  EmitInITBlock = false;
9240  return Match_Success;
9241  }
9242  } else {
9243  EmitInITBlock = false;
9244  return Match_Success;
9245  }
9246  }
9247 
9248  // Try to match in a new IT block. The matcher doesn't check the actual
9249  // condition, so we create an IT block with a dummy condition, and fix it up
9250  // once we know the actual condition.
9251  startImplicitITBlock();
9252  if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9253  Match_Success) {
9254  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9255  if (MCID.isPredicable()) {
9256  ITState.Cond =
9258  .getImm();
9259  EmitInITBlock = true;
9260  return Match_Success;
9261  }
9262  }
9263  discardImplicitITBlock();
9264 
9265  // If none of these succeed, return the error we got when trying to match
9266  // outside any IT blocks.
9267  EmitInITBlock = false;
9268  return PlainMatchResult;
9269 }
9270 
9271 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS,
9272  unsigned VariantID = 0);
9273 
9274 static const char *getSubtargetFeatureName(uint64_t Val);
9275 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
9276  OperandVector &Operands,
9277  MCStreamer &Out, uint64_t &ErrorInfo,
9278  bool MatchingInlineAsm) {
9279  MCInst Inst;
9280  unsigned MatchResult;
9281  bool PendConditionalInstruction = false;
9282 
9283  SmallVector<NearMissInfo, 4> NearMisses;
9284  MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
9285  PendConditionalInstruction, Out);
9286 
9287  switch (MatchResult) {
9288  case Match_Success:
9289  LLVM_DEBUG(dbgs() << "Parsed as: ";
9290  Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
9291  dbgs() << "\n");
9292 
9293  // Context sensitive operand constraints aren't handled by the matcher,
9294  // so check them here.
9295  if (validateInstruction(Inst, Operands)) {
9296  // Still progress the IT block, otherwise one wrong condition causes
9297  // nasty cascading errors.
9298  forwardITPosition();
9299  return true;
9300  }
9301 
9302  { // processInstruction() updates inITBlock state, we need to save it away
9303  bool wasInITBlock = inITBlock();
9304 
9305  // Some instructions need post-processing to, for example, tweak which
9306  // encoding is selected. Loop on it while changes happen so the
9307  // individual transformations can chain off each other. E.g.,
9308  // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9309  while (processInstruction(Inst, Operands, Out))
9310  LLVM_DEBUG(dbgs() << "Changed to: ";
9311  Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
9312  dbgs() << "\n");
9313 
9314  // Only after the instruction is fully processed, we can validate it
9315  if (wasInITBlock && hasV8Ops() && isThumb() &&
9316  !isV8EligibleForIT(&Inst)) {
9317  Warning(IDLoc, "deprecated instruction in IT block");
9318  }
9319  }
9320 
9321  // Only move forward at the very end so that everything in validate
9322  // and process gets a consistent answer about whether we're in an IT
9323  // block.
9324  forwardITPosition();
9325 
9326  // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9327  // doesn't actually encode.
9328  if (Inst.getOpcode() == ARM::ITasm)
9329  return false;
9330 
9331  Inst.setLoc(IDLoc);
9332  if (PendConditionalInstruction) {
9333  PendingConditionalInsts.push_back(Inst);
9334  if (isITBlockFull() || isITBlockTerminator(Inst))
9335  flushPendingInstructions(Out);
9336  } else {
9337  Out.EmitInstruction(Inst, getSTI());
9338  }
9339  return false;
9340  case Match_NearMisses:
9341  ReportNearMisses(NearMisses, IDLoc, Operands);
9342  return true;
9343  case Match_MnemonicFail: {
9344  uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
9345  std::string Suggestion = ARMMnemonicSpellCheck(
9346  ((ARMOperand &)*Operands[0]).getToken(), FBS);
9347  return Error(IDLoc, "invalid instruction" + Suggestion,
9348  ((ARMOperand &)*Operands[0]).getLocRange());
9349  }
9350  }
9351 
9352  llvm_unreachable("Implement any new match types added!");
9353 }
9354 
9355 /// parseDirective parses the arm specific directives
9356 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
9358  getContext().getObjectFileInfo()->getObjectFileType();
9359  bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9360  bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
9361 
9362  StringRef IDVal = DirectiveID.getIdentifier();
9363  if (IDVal == ".word")
9364  parseLiteralValues(4, DirectiveID.getLoc());
9365  else if (IDVal == ".short" || IDVal == ".hword")
9366  parseLiteralValues(2, DirectiveID.getLoc());
9367  else if (IDVal == ".thumb")
9368  parseDirectiveThumb(DirectiveID.getLoc());
9369  else if (IDVal == ".arm")
9370  parseDirectiveARM(DirectiveID.getLoc());
9371  else if (IDVal == ".thumb_func")
9372  parseDirectiveThumbFunc(DirectiveID.getLoc());
9373  else if (IDVal == ".code")
9374  parseDirectiveCode(DirectiveID.getLoc());
9375  else if (IDVal == ".syntax")
9376  parseDirectiveSyntax(DirectiveID.getLoc());
9377  else if (IDVal == ".unreq")
9378  parseDirectiveUnreq(DirectiveID.getLoc());
9379  else if (IDVal == ".fnend")
9380  parseDirectiveFnEnd(DirectiveID.getLoc());
9381  else if (IDVal == ".cantunwind")
9382  parseDirectiveCantUnwind(DirectiveID.getLoc());
9383  else if (IDVal == ".personality")
9384  parseDirectivePersonality(DirectiveID.getLoc());
9385  else if (IDVal == ".handlerdata")
9386  parseDirectiveHandlerData(DirectiveID.getLoc());
9387  else if (IDVal == ".setfp")
9388  parseDirectiveSetFP(DirectiveID.getLoc());
9389  else if (IDVal == ".pad")
9390  parseDirectivePad(DirectiveID.getLoc());
9391  else if (IDVal == ".save")
9392  parseDirectiveRegSave(DirectiveID.getLoc(), false);
9393  else if (IDVal == ".vsave")
9394  parseDirectiveRegSave(DirectiveID.getLoc(), true);
9395  else if (IDVal == ".ltorg" || IDVal == ".pool")
9396  parseDirectiveLtorg(DirectiveID.getLoc());
9397  else if (IDVal == ".even")
9398  parseDirectiveEven(DirectiveID.getLoc());
9399  else if (IDVal == ".personalityindex")
9400  parseDirectivePersonalityIndex(DirectiveID.getLoc());
9401  else if (IDVal == ".unwind_raw")
9402  parseDirectiveUnwindRaw(DirectiveID.getLoc());
9403  else if (IDVal == ".movsp")
9404  parseDirectiveMovSP(DirectiveID.getLoc());
9405  else if (IDVal == ".arch_extension")
9406  parseDirectiveArchExtension(DirectiveID.getLoc());
9407  else if (IDVal == ".align")
9408  return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
9409  else if (IDVal == ".thumb_set")
9410  parseDirectiveThumbSet(DirectiveID.getLoc());
9411  else if (IDVal == ".inst")
9412  parseDirectiveInst(DirectiveID.getLoc());
9413  else if (IDVal == ".inst.n")
9414  parseDirectiveInst(DirectiveID.getLoc(), 'n');
9415  else if (IDVal == ".inst.w")
9416  parseDirectiveInst(DirectiveID.getLoc(), 'w');
9417  else if (!IsMachO && !IsCOFF) {
9418  if (IDVal == ".arch")
9419  parseDirectiveArch(DirectiveID.getLoc());
9420  else if (IDVal == ".cpu")
9421  parseDirectiveCPU(DirectiveID.getLoc());
9422  else if (IDVal == ".eabi_attribute")
9423  parseDirectiveEabiAttr(DirectiveID.getLoc());
9424  else if (IDVal == ".fpu")
9425  parseDirectiveFPU(DirectiveID.getLoc());
9426  else if (IDVal == ".fnstart")
9427  parseDirectiveFnStart(DirectiveID.getLoc());
9428  else if (IDVal == ".object_arch")
9429  parseDirectiveObjectArch(DirectiveID.getLoc());
9430  else if (IDVal == ".tlsdescseq")
9431  parseDirectiveTLSDescSeq(DirectiveID.getLoc());
9432  else
9433  return true;
9434  } else
9435  return true;
9436  return false;
9437 }
9438 
9439 /// parseLiteralValues
9440 /// ::= .hword expression [, expression]*
9441 /// ::= .short expression [, expression]*
9442 /// ::= .word expression [, expression]*
9443 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
9444  auto parseOne = [&]() -> bool {
9445  const MCExpr *Value;
9446  if (getParser().parseExpression(Value))
9447  return true;
9448  getParser().getStreamer().EmitValue(Value, Size, L);
9449  return false;
9450  };
9451  return (parseMany(parseOne));
9452 }
9453 
9454 /// parseDirectiveThumb
9455 /// ::= .thumb
9456 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
9457  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9458  check(!hasThumb(), L, "target does not support Thumb mode"))
9459  return true;
9460 
9461  if (!isThumb())
9462  SwitchMode();
9463 
9464  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9465  return false;
9466 }
9467 
9468 /// parseDirectiveARM
9469 /// ::= .arm
9470 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
9471  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9472  check(!hasARM(), L, "target does not support ARM mode"))
9473  return true;
9474 
9475  if (isThumb())
9476  SwitchMode();
9477  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9478  return false;
9479 }
9480 
9481 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
9482  // We need to flush the current implicit IT block on a label, because it is
9483  // not legal to branch into an IT block.
9484  flushPendingInstructions(getStreamer());
9485 }
9486 
9487 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
9488  if (NextSymbolIsThumb) {
9489  getParser().getStreamer().EmitThumbFunc(Symbol);
9490  NextSymbolIsThumb = false;
9491  }
9492 }
9493 
9494 /// parseDirectiveThumbFunc
9495 /// ::= .thumbfunc symbol_name
9496 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
9497  MCAsmParser &Parser = getParser();
9498  const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
9499  bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9500 
9501  // Darwin asm has (optionally) function name after .thumb_func direction
9502  // ELF doesn't
9503 
9504  if (IsMachO) {
9505  if (Parser.getTok().is(AsmToken::Identifier) ||
9506  Parser.getTok().is(AsmToken::String)) {
9507  MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
9508  Parser.getTok().getIdentifier());
9509  getParser().getStreamer().EmitThumbFunc(Func);
9510  Parser.Lex();
9511  if (parseToken(AsmToken::EndOfStatement,
9512  "unexpected token in '.thumb_func' directive"))
9513  return true;
9514  return false;
9515  }
9516  }
9517 
9518  if (parseToken(AsmToken::EndOfStatement,
9519  "unexpected token in '.thumb_func' directive"))
9520  return true;
9521 
9522  NextSymbolIsThumb = true;
9523  return false;
9524 }
9525 
9526 /// parseDirectiveSyntax
9527 /// ::= .syntax unified | divided
9528 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
9529  MCAsmParser &Parser = getParser();
9530  const AsmToken &Tok = Parser.getTok();
9531  if (Tok.isNot(AsmToken::Identifier)) {
9532  Error(L, "unexpected token in .syntax directive");
9533  return false;
9534  }
9535 
9536  StringRef Mode = Tok.getString();
9537  Parser.Lex();
9538  if (check(Mode == "divided" || Mode == "DIVIDED", L,
9539  "'.syntax divided' arm assembly not supported") ||
9540  check(Mode != "unified" && Mode != "UNIFIED", L,
9541  "unrecognized syntax mode in .syntax directive") ||
9542  parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9543  return true;
9544 
9545  // TODO tell the MC streamer the mode
9546  // getParser().getStreamer().Emit???();
9547  return false;
9548 }
9549 
9550 /// parseDirectiveCode
9551 /// ::= .code 16 | 32
9552 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
9553  MCAsmParser &Parser = getParser();
9554  const AsmToken &Tok = Parser.getTok();
9555  if (Tok.isNot(AsmToken::Integer))
9556  return Error(L, "unexpected token in .code directive");
9557  int64_t Val = Parser.getTok().getIntVal();
9558  if (Val != 16 && Val != 32) {
9559  Error(L, "invalid operand to .code directive");
9560  return false;
9561  }
9562  Parser.Lex();
9563 
9564  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9565  return true;
9566 
9567  if (Val == 16) {
9568  if (!hasThumb())
9569  return Error(L, "target does not support Thumb mode");
9570 
9571  if (!isThumb())
9572  SwitchMode();
9573  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9574  } else {
9575  if (!hasARM())
9576  return Error(L, "target does not support ARM mode");
9577 
9578  if (isThumb())
9579  SwitchMode();
9580  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9581  }
9582 
9583  return false;
9584 }
9585 
9586 /// parseDirectiveReq
9587 /// ::= name .req registername
9588 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
9589  MCAsmParser &Parser = getParser();
9590  Parser.Lex(); // Eat the '.req' token.
9591  unsigned Reg;
9592  SMLoc SRegLoc, ERegLoc;
9593  if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
9594  "register name expected") ||
9595  parseToken(AsmToken::EndOfStatement,
9596  "unexpected input in .req directive."))
9597  return true;
9598 
9599  if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
9600  return Error(SRegLoc,
9601  "redefinition of '" + Name + "' does not match original.");
9602 
9603  return false;
9604 }
9605 
9606 /// parseDirectiveUneq
9607 /// ::= .unreq registername
9608 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
9609  MCAsmParser &Parser = getParser();
9610  if (Parser.getTok().isNot(AsmToken::Identifier))
9611  return Error(L, "unexpected input in .unreq directive.");
9612  RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
9613  Parser.Lex(); // Eat the identifier.
9614  if (parseToken(AsmToken::EndOfStatement,
9615  "unexpected input in '.unreq' directive"))
9616  return true;
9617  return false;
9618 }
9619 
9620 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9621 // before, if supported by the new target, or emit mapping symbols for the mode
9622 // switch.
9623 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
9624  if (WasThumb != isThumb()) {
9625  if (WasThumb && hasThumb()) {
9626  // Stay in Thumb mode
9627  SwitchMode();
9628  } else if (!WasThumb && hasARM()) {
9629  // Stay in ARM mode
9630  SwitchMode();
9631  } else {
9632  // Mode switch forced, because the new arch doesn't support the old mode.
9633  getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9634  : MCAF_Code32);
9635  // Warn about the implcit mode switch. GAS does not switch modes here,
9636  // but instead stays in the old mode, reporting an error on any following
9637  // instructions as the mode does not exist on the target.
9638  Warning(Loc, Twine("new target does not support ") +
9639  (WasThumb ? "thumb" : "arm") + " mode, switching to " +
9640  (!WasThumb ? "thumb" : "arm") + " mode");
9641  }
9642  }
9643 }
9644 
9645 /// parseDirectiveArch
9646 /// ::= .arch token
9647 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
9648  StringRef Arch = getParser().parseStringToEndOfStatement().trim();
9650 
9651  if (ID == ARM::ArchKind::INVALID)
9652  return Error(L, "Unknown arch name");
9653 
9654  bool WasThumb = isThumb();
9655  Triple T;
9656  MCSubtargetInfo &STI = copySTI();
9657  STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
9658  setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9659  FixModeAfterArchChange(WasThumb, L);
9660 
9661  getTargetStreamer().emitArch(ID);
9662  return false;
9663 }
9664 
9665 /// parseDirectiveEabiAttr
9666 /// ::= .eabi_attribute int, int [, "str"]
9667 /// ::= .eabi_attribute Tag_name, int [, "str"]
9668 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
9669  MCAsmParser &Parser = getParser();
9670  int64_t Tag;
9671  SMLoc TagLoc;
9672  TagLoc = Parser.getTok().getLoc();
9673  if (Parser.getTok().is(AsmToken::Identifier)) {
9674  StringRef Name = Parser.getTok().getIdentifier();
9676  if (Tag == -1) {
9677  Error(TagLoc, "attribute name not recognised: " + Name);
9678  return false;
9679  }
9680  Parser.Lex();
9681  } else {
9682  const MCExpr *AttrExpr;
9683 
9684  TagLoc = Parser.getTok().getLoc();
9685  if (Parser.parseExpression(AttrExpr))
9686  return true;
9687 
9688  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
9689  if (check(!CE, TagLoc, "expected numeric constant"))
9690  return true;
9691 
9692  Tag = CE->getValue();
9693  }
9694 
9695  if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9696  return true;
9697 
9698  StringRef StringValue = "";
9699  bool IsStringValue = false;
9700 
9701  int64_t IntegerValue = 0;
9702  bool IsIntegerValue = false;
9703 
9705  IsStringValue = true;
9706  else if (Tag == ARMBuildAttrs::compatibility) {
9707  IsStringValue = true;
9708  IsIntegerValue = true;
9709  } else if (Tag < 32 || Tag % 2 == 0)
9710  IsIntegerValue = true;
9711  else if (Tag % 2 == 1)
9712  IsStringValue = true;
9713  else
9714  llvm_unreachable("invalid tag type");
9715 
9716  if (IsIntegerValue) {
9717  const MCExpr *ValueExpr;
9718  SMLoc ValueExprLoc = Parser.getTok().getLoc();
9719  if (Parser.parseExpression(ValueExpr))
9720  return true;
9721 
9722  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
9723  if (!CE)
9724  return Error(ValueExprLoc, "expected numeric constant");
9725  IntegerValue = CE->getValue();
9726  }
9727 
9728  if (Tag == ARMBuildAttrs::compatibility) {
9729  if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9730  return true;
9731  }
9732 
9733  if (IsStringValue) {
9734  if (Parser.getTok().isNot(AsmToken::String))
9735  return Error(Parser.getTok().getLoc(), "bad string constant");
9736 
9737  StringValue = Parser.getTok().getStringContents();
9738  Parser.Lex();
9739  }
9740 
9742  "unexpected token in '.eabi_attribute' directive"))
9743  return true;
9744 
9745  if (IsIntegerValue && IsStringValue) {
9747  getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
9748  } else if (IsIntegerValue)
9749  getTargetStreamer().emitAttribute(Tag, IntegerValue);
9750  else if (IsStringValue)
9751  getTargetStreamer().emitTextAttribute(Tag, StringValue);
9752  return false;
9753 }
9754 
9755 /// parseDirectiveCPU
9756 /// ::= .cpu str
9757 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
9758  StringRef CPU = getParser().parseStringToEndOfStatement().trim();
9759  getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
9760 
9761  // FIXME: This is using table-gen data, but should be moved to
9762  // ARMTargetParser once that is table-gen'd.
9763  if (!getSTI().isCPUStringValid(CPU))
9764  return Error(L, "Unknown CPU name");
9765 
9766  bool WasThumb = isThumb();
9767  MCSubtargetInfo &STI = copySTI();
9768  STI.setDefaultFeatures(CPU, "");
9769  setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9770  FixModeAfterArchChange(WasThumb, L);
9771 
9772  return false;
9773 }
9774 
9775 /// parseDirectiveFPU
9776 /// ::= .fpu str
9777 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
9778  SMLoc FPUNameLoc = getTok().getLoc();
9779  StringRef FPU = getParser().parseStringToEndOfStatement().trim();
9780 
9781  unsigned ID = ARM::parseFPU(FPU);
9782  std::vector<StringRef> Features;
9783  if (!ARM::getFPUFeatures(ID, Features))
9784  return Error(FPUNameLoc, "Unknown FPU name");
9785 
9786  MCSubtargetInfo &STI = copySTI();
9787  for (auto Feature : Features)
9788  STI.ApplyFeatureFlag(Feature);
9789  setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9790 
9791  getTargetStreamer().emitFPU(ID);
9792  return false;
9793 }
9794 
9795 /// parseDirectiveFnStart
9796 /// ::= .fnstart
9797 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
9798  if (parseToken(AsmToken::EndOfStatement,
9799  "unexpected token in '.fnstart' directive"))
9800  return true;
9801 
9802  if (UC.hasFnStart()) {
9803  Error(L, ".fnstart starts before the end of previous one");
9804  UC.emitFnStartLocNotes();
9805  return true;
9806  }
9807 
9808  // Reset the unwind directives parser state
9809  UC.reset();
9810 
9811  getTargetStreamer().emitFnStart();
9812 
9813  UC.recordFnStart(L);
9814  return false;
9815 }
9816 
9817 /// parseDirectiveFnEnd
9818 /// ::= .fnend
9819 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
9820  if (parseToken(AsmToken::EndOfStatement,
9821  "unexpected token in '.fnend' directive"))
9822  return true;
9823  // Check the ordering of unwind directives
9824  if (!UC.hasFnStart())
9825  return Error(L, ".fnstart must precede .fnend directive");
9826 
9827  // Reset the unwind directives parser state
9828  getTargetStreamer().emitFnEnd();
9829 
9830  UC.reset();
9831  return false;
9832 }
9833 
9834 /// parseDirectiveCantUnwind
9835 /// ::= .cantunwind
9836 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
9837  if (parseToken(AsmToken::EndOfStatement,
9838  "unexpected token in '.cantunwind' directive"))
9839  return true;
9840 
9841  UC.recordCantUnwind(L);
9842  // Check the ordering of unwind directives
9843  if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
9844  return true;
9845 
9846  if (UC.hasHandlerData()) {
9847  Error(L, ".cantunwind can't be used with .handlerdata directive");
9848  UC.emitHandlerDataLocNotes();
9849  return true;
9850  }
9851  if (UC.hasPersonality()) {
9852  Error(L, ".cantunwind can't be used with .personality directive");
9853  UC.emitPersonalityLocNotes();
9854  return true;
9855  }
9856 
9857  getTargetStreamer().emitCantUnwind();
9858  return false;
9859 }
9860 
9861 /// parseDirectivePersonality
9862 /// ::= .personality name
9863 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
9864  MCAsmParser &Parser = getParser();
9865  bool HasExistingPersonality = UC.hasPersonality();
9866 
9867  // Parse the name of the personality routine
9868  if (Parser.getTok().isNot(AsmToken::Identifier))
9869  return Error(L, "unexpected input in .personality directive.");
9870  StringRef Name(Parser.getTok().getIdentifier());
9871  Parser.Lex();
9872 
9873  if (parseToken(AsmToken::EndOfStatement,
9874  "unexpected token in '.personality' directive"))
9875  return true;
9876 
9877  UC.recordPersonality(L);
9878 
9879  // Check the ordering of unwind directives
9880  if (!UC.hasFnStart())
9881  return Error(L, ".fnstart must precede .personality directive");
9882  if (UC.cantUnwind()) {
9883  Error(L, ".personality can't be used with .cantunwind directive");
9884  UC.emitCantUnwindLocNotes();
9885  return true;
9886  }
9887  if (UC.hasHandlerData()) {
9888  Error(L, ".personality must precede .handlerdata directive");
9889  UC.emitHandlerDataLocNotes();
9890  return true;
9891  }
9892  if (HasExistingPersonality) {
9893  Error(L, "multiple personality directives");
9894  UC.emitPersonalityLocNotes();
9895  return true;
9896  }
9897 
9898  MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
9899  getTargetStreamer().emitPersonality(PR);
9900  return false;
9901 }
9902 
9903 /// parseDirectiveHandlerData
9904 /// ::= .handlerdata
9905 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
9906  if (parseToken(AsmToken::EndOfStatement,
9907  "unexpected token in '.handlerdata' directive"))
9908  return true;
9909 
9910  UC.recordHandlerData(L);
9911  // Check the ordering of unwind directives
9912  if (!UC.hasFnStart())
9913  return Error(L, ".fnstart must precede .personality directive");
9914  if (UC.cantUnwind()) {
9915  Error(L, ".handlerdata can't be used with .cantunwind directive");
9916  UC.emitCantUnwindLocNotes();
9917  return true;
9918  }
9919 
9920  getTargetStreamer().emitHandlerData();
9921  return false;
9922 }
9923 
9924 /// parseDirectiveSetFP
9925 /// ::= .setfp fpreg, spreg [, offset]
9926 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
9927  MCAsmParser &Parser = getParser();
9928  // Check the ordering of unwind directives
9929  if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
9930  check(UC.hasHandlerData(), L,
9931  ".setfp must precede .handlerdata directive"))
9932  return true;
9933 
9934  // Parse fpreg
9935  SMLoc FPRegLoc = Parser.getTok().getLoc();
9936  int FPReg = tryParseRegister();
9937 
9938  if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
9939  Parser.parseToken(AsmToken::Comma, "comma expected"))
9940  return true;
9941 
9942  // Parse spreg
9943  SMLoc SPRegLoc = Parser.getTok().getLoc();
9944  int SPReg = tryParseRegister();
9945  if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
9946  check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
9947  "register should be either $sp or the latest fp register"))
9948  return true;
9949 
9950  // Update the frame pointer register
9951  UC.saveFPReg(FPReg);
9952 
9953  // Parse offset
9954  int64_t Offset = 0;
9955  if (Parser.parseOptionalToken(AsmToken::Comma)) {
9956  if (Parser.getTok().isNot(AsmToken::Hash) &&
9957  Parser.getTok().isNot(AsmToken::Dollar))
9958  return Error(Parser.getTok().getLoc(), "'#' expected");
9959  Parser.Lex(); // skip hash token.
9960 
9961  const MCExpr *OffsetExpr;
9962  SMLoc ExLoc = Parser.getTok().getLoc();
9963  SMLoc EndLoc;
9964  if (getParser().parseExpression(OffsetExpr, EndLoc))
9965  return Error(ExLoc, "malformed setfp offset");
9966  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9967  if (check(!CE, ExLoc, "setfp offset must be an immediate"))
9968  return true;
9969  Offset = CE->getValue();
9970  }
9971 
9973  return true;
9974 
9975  getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
9976  static_cast<unsigned>(SPReg), Offset);
9977  return false;
9978 }
9979 
9980 /// parseDirective
9981 /// ::= .pad offset
9982 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
9983  MCAsmParser &Parser = getParser();
9984  // Check the ordering of unwind directives
9985  if (!UC.hasFnStart())
9986  return Error(L, ".fnstart must precede .pad directive");
9987  if (UC.hasHandlerData())
9988  return Error(L, ".pad must precede .handlerdata directive");
9989 
9990  // Parse the offset
9991  if (Parser.getTok().isNot(AsmToken::Hash) &&
9992  Parser.getTok().isNot(AsmToken::Dollar))
9993  return Error(Parser.getTok().getLoc(), "'#' expected");
9994  Parser.Lex(); // skip hash token.
9995 
9996  const MCExpr *OffsetExpr;
9997  SMLoc ExLoc = Parser.getTok().getLoc();
9998  SMLoc EndLoc;
9999  if (getParser().parseExpression(OffsetExpr, EndLoc))
10000  return Error(ExLoc, "malformed pad offset");
10001  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10002  if (!CE)
10003  return Error(ExLoc, "pad offset must be an immediate");
10004 
10005  if (parseToken(AsmToken::EndOfStatement,
10006  "unexpected token in '.pad' directive"))
10007  return true;
10008 
10009  getTargetStreamer().emitPad(CE->getValue());
10010  return false;
10011 }
10012 
10013 /// parseDirectiveRegSave
10014 /// ::= .save { registers }
10015 /// ::= .vsave { registers }
10016 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
10017  // Check the ordering of unwind directives
10018  if (!UC.hasFnStart())
10019  return Error(L, ".fnstart must precede .save or .vsave directives");
10020  if (UC.hasHandlerData())
10021  return Error(L, ".save or .vsave must precede .handlerdata directive");
10022 
10023  // RAII object to make sure parsed operands are deleted.
10025 
10026  // Parse the register list
10027  if (parseRegisterList(Operands) ||
10028  parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10029  return true;
10030  ARMOperand &Op = (ARMOperand &)*Operands[0];
10031  if (!IsVector && !Op.isRegList())
10032  return Error(L, ".save expects GPR registers");
10033  if (IsVector && !Op.isDPRRegList())
10034  return Error(L, ".vsave expects DPR registers");
10035 
10036  getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
10037  return false;
10038 }
10039 
10040 /// parseDirectiveInst
10041 /// ::= .inst opcode [, ...]
10042 /// ::= .inst.n opcode [, ...]
10043 /// ::= .inst.w opcode [, ...]
10044 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
10045  int Width = 4;
10046 
10047  if (isThumb()) {
10048  switch (Suffix) {
10049  case 'n':
10050  Width = 2;
10051  break;
10052  case 'w':
10053  break;
10054  default:
10055  Width = 0;
10056  break;
10057  }
10058  } else {
10059  if (Suffix)
10060  return Error(Loc, "width suffixes are invalid in ARM mode");
10061  }
10062 
10063  auto parseOne = [&]() -> bool {
10064  const MCExpr *Expr;
10065  if (getParser().parseExpression(Expr))
10066  return true;
10067  const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
10068  if (!Value) {
10069  return Error(Loc, "expected constant expression");
10070  }
10071 
10072  char CurSuffix = Suffix;
10073  switch (Width) {
10074  case 2:
10075  if (Value->getValue() > 0xffff)
10076  return Error(Loc, "inst.n operand is too big, use inst.w instead");
10077  break;
10078  case 4:
10079  if (Value->getValue() > 0xffffffff)
10080  return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
10081  " operand is too big");
10082  break;
10083  case 0:
10084  // Thumb mode, no width indicated. Guess from the opcode, if possible.
10085  if (Value->getValue() < 0xe800)
10086  CurSuffix = 'n';
10087  else if (Value->getValue() >= 0xe8000000)
10088  CurSuffix = 'w';
10089  else
10090  return Error(Loc, "cannot determine Thumb instruction size, "
10091  "use inst.n/inst.w instead");
10092  break;
10093  default:
10094  llvm_unreachable("only supported widths are 2 and 4");
10095  }
10096 
10097  getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
10098  return false;
10099  };
10100 
10101  if (parseOptionalToken(AsmToken::EndOfStatement))
10102  return Error(Loc, "expected expression following directive");
10103  if (parseMany(parseOne))
10104  return true;
10105  return false;
10106 }
10107 
10108 /// parseDirectiveLtorg
10109 /// ::= .ltorg | .pool
10110 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
10111  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10112  return true;
10113  getTargetStreamer().emitCurrentConstantPool();
10114  return false;
10115 }
10116 
10117 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
10118  const MCSection *Section = getStreamer().getCurrentSectionOnly();
10119 
10120  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10121  return true;
10122 
10123  if (!Section) {
10124  getStreamer().InitSections(false);
10125  Section = getStreamer().getCurrentSectionOnly();
10126  }
10127 
10128  assert(Section && "must have section to emit alignment");
10129  if (Section->UseCodeAlign())
10130  getStreamer().EmitCodeAlignment(2);
10131  else
10132  getStreamer().EmitValueToAlignment(2);
10133 
10134  return false;
10135 }
10136 
10137 /// parseDirectivePersonalityIndex
10138 /// ::= .personalityindex index
10139 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
10140  MCAsmParser &Parser = getParser();
10141  bool HasExistingPersonality = UC.hasPersonality();
10142 
10143  const MCExpr *IndexExpression;
10144  SMLoc IndexLoc = Parser.getTok().getLoc();
10145  if (Parser.parseExpression(IndexExpression) ||
10146  parseToken(AsmToken::EndOfStatement,
10147  "unexpected token in '.personalityindex' directive")) {
10148  return true;
10149  }
10150 
10151  UC.recordPersonalityIndex(L);
10152 
10153  if (!UC.hasFnStart()) {
10154  return Error(L, ".fnstart must precede .personalityindex directive");
10155  }
10156  if (UC.cantUnwind()) {
10157  Error(L, ".personalityindex cannot be used with .cantunwind");
10158  UC.emitCantUnwindLocNotes();
10159  return true;
10160  }
10161  if (UC.hasHandlerData()) {
10162  Error(L, ".personalityindex must precede .handlerdata directive");
10163  UC.emitHandlerDataLocNotes();
10164  return true;
10165  }
10166  if (HasExistingPersonality) {
10167  Error(L, "multiple personality directives");
10168  UC.emitPersonalityLocNotes();
10169  return true;
10170  }
10171 
10172  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
10173  if (!CE)
10174  return Error(IndexLoc, "index must be a constant number");
10175  if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
10176  return Error(IndexLoc,
10177  "personality routine index should be in range [0-3]");
10178 
10179  getTargetStreamer().emitPersonalityIndex(CE->getValue());
10180  return false;
10181 }
10182 
10183 /// parseDirectiveUnwindRaw
10184 /// ::= .unwind_raw offset, opcode [, opcode...]
10185 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
10186  MCAsmParser &Parser = getParser();
10187  int64_t StackOffset;
10188  const MCExpr *OffsetExpr;
10189  SMLoc OffsetLoc = getLexer().getLoc();
10190 
10191  if (!UC.hasFnStart())
10192  return Error(L, ".fnstart must precede .unwind_raw directives");
10193  if (getParser().parseExpression(OffsetExpr))
10194  return Error(OffsetLoc, "expected expression");
10195 
10196  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10197  if (!CE)
10198  return Error(OffsetLoc, "offset must be a constant");
10199 
10200  StackOffset = CE->getValue();
10201 
10202  if (Parser.parseToken(AsmToken::Comma, "expected comma"))
10203  return true;
10204 
10205  SmallVector<uint8_t, 16> Opcodes;
10206 
10207  auto parseOne = [&]() -> bool {
10208  const MCExpr *OE;
10209  SMLoc OpcodeLoc = getLexer().getLoc();
10210  if (check(getLexer().is(AsmToken::EndOfStatement) ||
10211  Parser.parseExpression(OE),
10212  OpcodeLoc, "expected opcode expression"))
10213  return true;
10214  const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
10215  if (!OC)
10216  return Error(OpcodeLoc, "opcode value must be a constant");
10217  const int64_t Opcode = OC->getValue();
10218  if (Opcode & ~0xff)
10219  return Error(OpcodeLoc, "invalid opcode");
10220  Opcodes.push_back(uint8_t(Opcode));
10221  return false;
10222  };
10223 
10224  // Must have at least 1 element
10225  SMLoc OpcodeLoc = getLexer().getLoc();
10226  if (parseOptionalToken(AsmToken::EndOfStatement))
10227  return Error(OpcodeLoc, "expected opcode expression");
10228  if (parseMany(parseOne))
10229  return true;
10230 
10231  getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
10232  return false;
10233 }
10234 
10235 /// parseDirectiveTLSDescSeq
10236 /// ::= .tlsdescseq tls-variable
10237 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
10238  MCAsmParser &Parser = getParser();
10239 
10240  if (getLexer().isNot(AsmToken::Identifier))
10241  return TokError("expected variable after '.tlsdescseq' directive");
10242 
10243  const MCSymbolRefExpr *SRE =
10245  MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
10246  Lex();
10247 
10248  if (parseToken(AsmToken::EndOfStatement,
10249  "unexpected token in '.tlsdescseq' directive"))
10250  return true;
10251 
10252  getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
10253  return false;
10254 }
10255 
10256 /// parseDirectiveMovSP
10257 /// ::= .movsp reg [, #offset]
10258 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
10259  MCAsmParser &Parser = getParser();
10260  if (!UC.hasFnStart())
10261  return Error(L, ".fnstart must precede .movsp directives");
10262  if (UC.getFPReg() != ARM::SP)
10263  return Error(L, "unexpected .movsp directive");
10264 
10265  SMLoc SPRegLoc = Parser.getTok().getLoc();
10266  int SPReg = tryParseRegister();
10267  if (SPReg == -1)
10268  return Error(SPRegLoc, "register expected");
10269  if (SPReg == ARM::SP || SPReg == ARM::PC)
10270  return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
10271 
10272  int64_t Offset = 0;
10273  if (Parser.parseOptionalToken(AsmToken::Comma)) {
10274  if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
10275  return true;
10276 
10277  const MCExpr *OffsetExpr;
10278  SMLoc OffsetLoc = Parser.getTok().getLoc();
10279 
10280  if (Parser.parseExpression(OffsetExpr))
10281  return Error(OffsetLoc, "malformed offset expression");
10282 
10283  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10284  if (!CE)
10285  return Error(OffsetLoc, "offset must be an immediate constant");
10286 
10287  Offset = CE->getValue();
10288  }
10289 
10290  if (parseToken(AsmToken::EndOfStatement,
10291  "unexpected token in '.movsp' directive"))
10292  return true;
10293 
10294  getTargetStreamer().emitMovSP(SPReg, Offset);
10295  UC.saveFPReg(SPReg);
10296 
10297  return false;
10298 }
10299 
10300 /// parseDirectiveObjectArch
10301 /// ::= .object_arch name
10302 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
10303  MCAsmParser &Parser = getParser();
10304  if (getLexer().isNot(AsmToken::Identifier))
10305  return Error(getLexer().getLoc(), "unexpected token");
10306 
10307  StringRef Arch = Parser.getTok().getString();
10308  SMLoc ArchLoc = Parser.getTok().getLoc();
10309  Lex();
10310 
10312 
10313  if (ID == ARM::ArchKind::INVALID)
10314  return Error(ArchLoc, "unknown architecture '" + Arch + "'");
10315  if (parseToken(AsmToken::EndOfStatement))
10316  return true;
10317 
10318  getTargetStreamer().emitObjectArch(ID);
10319  return false;
10320 }
10321 
10322 /// parseDirectiveAlign
10323 /// ::= .align
10324 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
10325  // NOTE: if this is not the end of the statement, fall back to the target
10326  // agnostic handling for this directive which will correctly handle this.
10327  if (parseOptionalToken(AsmToken::EndOfStatement)) {
10328  // '.align' is target specifically handled to mean 2**2 byte alignment.
10329  const MCSection *Section = getStreamer().getCurrentSectionOnly();
10330  assert(Section && "must have section to emit alignment");
10331  if (Section->UseCodeAlign())
10332  getStreamer().EmitCodeAlignment(4, 0);
10333  else
10334  getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10335  return false;
10336  }
10337  return true;
10338 }
10339 
10340 /// parseDirectiveThumbSet
10341 /// ::= .thumb_set name, value
10342 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
10343  MCAsmParser &Parser = getParser();
10344 
10345  StringRef Name;
10346  if (check(Parser.parseIdentifier(Name),
10347  "expected identifier after '.thumb_set'") ||
10348  parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
10349  return true;
10350 
10351  MCSymbol *Sym;
10352  const MCExpr *Value;
10353  if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
10354  Parser, Sym, Value))
10355  return true;
10356 
10357  getTargetStreamer().emitThumbSet(Sym, Value);
10358  return false;
10359 }
10360 
10361 /// Force static initialization.
10362 extern "C" void LLVMInitializeARMAsmParser() {
10367 }
10368 
10369 #define GET_REGISTER_MATCHER
10370 #define GET_SUBTARGET_FEATURE_NAME
10371 #define GET_MATCHER_IMPLEMENTATION
10372 #define GET_MNEMONIC_SPELL_CHECKER
10373 #include "ARMGenAsmMatcher.inc"
10374 
10375 // Some diagnostics need to vary with subtarget features, so they are handled
10376 // here. For example, the DPR class has either 16 or 32 registers, depending
10377 // on the FPU available.
10378 const char *
10379 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
10380  switch (MatchError) {
10381  // rGPR contains sp starting with ARMv8.
10382  case Match_rGPR:
10383  return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10384  : "operand must be a register in range [r0, r12] or r14";
10385  // DPR contains 16 registers for some FPUs, and 32 for others.
10386  case Match_DPR:
10387  return hasD16() ? "operand must be a register in range [d0, d15]"
10388  : "operand must be a register in range [d0, d31]";
10389  case Match_DPR_RegList:
10390  return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10391  : "operand must be a list of registers in range [d0, d31]";
10392 
10393  // For all other diags, use the static string from tablegen.
10394  default:
10395  return getMatchKindDiag(MatchError);
10396  }
10397 }
10398 
10399 // Process the list of near-misses, throwing away ones we don't want to report
10400 // to the user, and converting the rest to a source location and string that
10401 // should be reported.
10402 void
10403 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
10404  SmallVectorImpl<NearMissMessage> &NearMissesOut,
10405  SMLoc IDLoc, OperandVector &Operands) {
10406  // TODO: If operand didn't match, sub in a dummy one and run target
10407  // predicate, so that we can avoid reporting near-misses that are invalid?
10408  // TODO: Many operand types dont have SuperClasses set, so we report
10409  // redundant ones.
10410  // TODO: Some operands are superclasses of registers (e.g.
10411  // MCK_RegShiftedImm), we don't have any way to represent that currently.
10412  // TODO: This is not all ARM-specific, can some of it be factored out?
10413 
10414  // Record some information about near-misses that we have already seen, so
10415  // that we can avoid reporting redundant ones. For example, if there are
10416  // variants of an instruction that take 8- and 16-bit immediates, we want
10417  // to only report the widest one.
10418  std::multimap<unsigned, unsigned> OperandMissesSeen;
10419  SmallSet<uint64_t, 4> FeatureMissesSeen;
10420  bool ReportedTooFewOperands = false;
10421 
10422  // Process the near-misses in reverse order, so that we see more general ones
10423  // first, and so can avoid emitting more specific ones.
10424  for (NearMissInfo &I : reverse(NearMissesIn)) {
10425  switch (I.getKind()) {
10427  SMLoc OperandLoc =
10428  ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
10429  const char *OperandDiag =
10430  getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
10431 
10432  // If we have already emitted a message for a superclass, don't also report
10433  // the sub-class. We consider all operand classes that we don't have a
10434  // specialised diagnostic for to be equal for the propose of this check,
10435  // so that we don't report the generic error multiple times on the same
10436  // operand.
10437  unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
10438  auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
10439  if (std::any_of(PrevReports.first, PrevReports.second,
10440  [DupCheckMatchClass](
10441  const std::pair<unsigned, unsigned> Pair) {
10442  if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
10443  return Pair.second == DupCheckMatchClass;
10444  else
10445  return isSubclass((MatchClassKind)DupCheckMatchClass,
10446  (MatchClassKind)Pair.second);
10447  }))
10448  break;
10449  OperandMissesSeen.insert(
10450  std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
10451 
10452  NearMissMessage Message;
10453  Message.Loc = OperandLoc;
10454  if (OperandDiag) {
10455  Message.Message = OperandDiag;
10456  } else if (I.getOperandClass() == InvalidMatchClass) {
10457  Message.Message = "too many operands for instruction";
10458  } else {
10459  Message.Message = "invalid operand for instruction";
10460  LLVM_DEBUG(
10461  dbgs() << "Missing diagnostic string for operand class "
10462  << getMatchClassName((MatchClassKind)I.getOperandClass())
10463  << I.getOperandClass() << ", error " << I.getOperandError()
10464  << ", opcode " << MII.getName(I.getOpcode()) << "\n");
10465  }
10466  NearMissesOut.emplace_back(Message);
10467  break;
10468  }
10470  uint64_t MissingFeatures = I.getFeatures();
10471  // Don't report the same set of features twice.
10472  if (FeatureMissesSeen.count(MissingFeatures))
10473  break;
10474  FeatureMissesSeen.insert(MissingFeatures);
10475 
10476  // Special case: don't report a feature set which includes arm-mode for
10477  // targets that don't have ARM mode.
10478  if ((MissingFeatures & Feature_IsARM) && !hasARM())
10479  break;
10480  // Don't report any near-misses that both require switching instruction
10481  // set, and adding other subtarget features.
10482  if (isThumb() && (MissingFeatures & Feature_IsARM) &&
10483  (MissingFeatures & ~Feature_IsARM))
10484  break;
10485  if (!isThumb() && (MissingFeatures & Feature_IsThumb) &&
10486  (MissingFeatures & ~Feature_IsThumb))
10487  break;
10488  if (!isThumb() && (MissingFeatures & Feature_IsThumb2) &&
10489  (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb)))
10490  break;
10491  if (isMClass() && (MissingFeatures & Feature_HasNEON))
10492  break;
10493 
10494  NearMissMessage Message;
10495  Message.Loc = IDLoc;
10496  raw_svector_ostream OS(Message.Message);
10497 
10498  OS << "instruction requires:";
10499  uint64_t Mask = 1;
10500  for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1);
10501  ++MaskPos) {
10502  if (MissingFeatures & Mask) {
10503  OS << " " << getSubtargetFeatureName(MissingFeatures & Mask);
10504  }
10505  Mask <<= 1;
10506  }
10507  NearMissesOut.emplace_back(Message);
10508 
10509  break;
10510  }
10512  NearMissMessage Message;
10513  Message.Loc = IDLoc;
10514  switch (I.getPredicateError()) {
10515  case Match_RequiresNotITBlock:
10516  Message.Message = "flag setting instruction only valid outside IT block";
10517  break;
10518  case Match_RequiresITBlock:
10519  Message.Message = "instruction only valid inside IT block";
10520  break;
10521  case Match_RequiresV6:
10522  Message.Message = "instruction variant requires ARMv6 or later";
10523  break;
10524  case Match_RequiresThumb2:
10525  Message.Message = "instruction variant requires Thumb2";
10526  break;
10527  case Match_RequiresV8:
10528  Message.Message = "instruction variant requires ARMv8 or later";
10529  break;
10530  case Match_RequiresFlagSetting:
10531  Message.Message = "no flag-preserving variant of this instruction available";
10532  break;
10533  case Match_InvalidOperand:
10534  Message.Message = "invalid operand for instruction";
10535  break;
10536  default:
10537  llvm_unreachable("Unhandled target predicate error");
10538  break;
10539  }
10540  NearMissesOut.emplace_back(Message);
10541  break;
10542  }
10544  if (!ReportedTooFewOperands) {
10545  SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
10546  NearMissesOut.emplace_back(NearMissMessage{
10547  EndLoc, StringRef("too few operands for instruction")});
10548  ReportedTooFewOperands = true;
10549  }
10550  break;
10551  }
10553  // This should never leave the matcher.
10554  llvm_unreachable("not a near-miss");
10555  break;
10556  }
10557  }
10558 }
10559 
10560 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
10561  SMLoc IDLoc, OperandVector &Operands) {
10563  FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
10564 
10565  if (Messages.size() == 0) {
10566  // No near-misses were found, so the best we can do is "invalid
10567  // instruction".
10568  Error(IDLoc, "invalid instruction");
10569  } else if (Messages.size() == 1) {
10570  // One near miss was found, report it as the sole error.
10571  Error(Messages[0].Loc, Messages[0].Message);
10572  } else {
10573  // More than one near miss, so report a generic "invalid instruction"
10574  // error, followed by notes for each of the near-misses.
10575  Error(IDLoc, "invalid instruction, any one of the following would fix this:");
10576  for (auto &M : Messages) {
10577  Note(M.Loc, M.Message);
10578  }
10579  }
10580 }
10581 
10582 // FIXME: This structure should be moved inside ARMTargetParser
10583 // when we start to table-generate them, and we can use the ARM
10584 // flags below, that were generated by table-gen.
10585 static const struct {
10586  const unsigned Kind;
10587  const uint64_t ArchCheck;
10589 } Extensions[] = {
10590  { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} },
10591  { ARM::AEK_CRYPTO, Feature_HasV8,
10592  {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10593  { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} },
10594  { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass,
10595  {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
10596  { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} },
10597  { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10598  { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} },
10599  // FIXME: Only available in A-class, isel not predicated
10600  { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} },
10601  { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
10602  { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} },
10603  // FIXME: Unsupported extensions.
10604  { ARM::AEK_OS, Feature_None, {} },
10605  { ARM::AEK_IWMMXT, Feature_None, {} },
10606  { ARM::AEK_IWMMXT2, Feature_None, {} },
10607  { ARM::AEK_MAVERICK, Feature_None, {} },
10608  { ARM::AEK_XSCALE, Feature_None, {} },
10609 };
10610 
10611 /// parseDirectiveArchExtension
10612 /// ::= .arch_extension [no]feature
10613 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
10614  MCAsmParser &Parser = getParser();
10615 
10616  if (getLexer().isNot(AsmToken::Identifier))
10617  return Error(getLexer().getLoc(), "expected architecture extension name");
10618 
10619  StringRef Name = Parser.getTok().getString();
10620  SMLoc ExtLoc = Parser.getTok().getLoc();
10621  Lex();
10622 
10623  if (parseToken(AsmToken::EndOfStatement,
10624  "unexpected token in '.arch_extension' directive"))
10625  return true;
10626 
10627  bool EnableFeature = true;
10628  if (Name.startswith_lower("no")) {
10629  EnableFeature = false;
10630  Name = Name.substr(2);
10631  }
10632  unsigned FeatureKind = ARM::parseArchExt(Name);
10633  if (FeatureKind == ARM::AEK_INVALID)
10634  return Error(ExtLoc, "unknown architectural extension: " + Name);
10635 
10636  for (const auto &Extension : Extensions) {
10637  if (Extension.Kind != FeatureKind)
10638  continue;
10639 
10640  if (Extension.Features.none())
10641  return Error(ExtLoc, "unsupported architectural extension: " + Name);
10642 
10643  if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
10644  return Error(ExtLoc, "architectural extension '" + Name +
10645  "' is not "
10646  "allowed for the current base architecture");
10647 
10648  MCSubtargetInfo &STI = copySTI();
10649  FeatureBitset ToggleFeatures = EnableFeature
10650  ? (~STI.getFeatureBits() & Extension.Features)
10651  : ( STI.getFeatureBits() & Extension.Features);
10652 
10653  uint64_t Features =
10654  ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
10655  setAvailableFeatures(Features);
10656  return false;
10657  }
10658 
10659  return Error(ExtLoc, "unknown architectural extension: " + Name);
10660 }
10661 
10662 // Define this matcher function after the auto-generated include so we
10663 // have the match class enum definitions.
10664 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
10665  unsigned Kind) {
10666  ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
10667  // If the kind is a token for a literal immediate, check if our asm
10668  // operand matches. This is for InstAliases which have a fixed-value
10669  // immediate in the syntax.
10670  switch (Kind) {
10671  default: break;
10672  case MCK__35_0:
10673  if (Op.isImm())
10674  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
10675  if (CE->getValue() == 0)
10676  return Match_Success;
10677  break;
10678  case MCK_ModImm:
10679  if (Op.isImm()) {
10680  const MCExpr *SOExpr = Op.getImm();
10681  int64_t Value;
10682  if (!SOExpr->evaluateAsAbsolute(Value))
10683  return Match_Success;
10684  assert((Value >= std::numeric_limits<int32_t>::min() &&
10685  Value <= std::numeric_limits<uint32_t>::max()) &&
10686  "expression value must be representable in 32 bits");
10687  }
10688  break;
10689  case MCK_rGPR:
10690  if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
10691  return Match_Success;
10692  return Match_rGPR;
10693  case MCK_GPRPair:
10694  if (Op.isReg() &&
10695  MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
10696  return Match_Success;
10697  break;
10698  }
10699  return Match_InvalidOperand;
10700 }
static bool isReg(const MCInst &MI, unsigned OpNo)
Represents a range in source code.
Definition: SMLoc.h:49
Instances of this class represent a uniqued identifier for a section in the current translation unit...
Definition: MCSection.h:39
iterator begin()
Definition: MCInst.h:194
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
bool isImm() const
Definition: MCInst.h:59
static MSP430CC::CondCodes getCondCode(unsigned Cond)
unsigned encodeNEONi16splat(unsigned Value)
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
LLVM_NODISCARD bool startswith_lower(StringRef Prefix) const
Check if this string starts with the given Prefix, ignoring case.
Definition: StringRef.cpp:47
StringRef getString() const
Get the string for the current token, this includes all characters (for example, the quotes on string...
Definition: MCAsmMacro.h:111
#define R4(n)
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
bool isNEONi32splat(unsigned Value)
Checks if Value is a correct immediate for instructions like VBIC/VORR.
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:250
SI Whole Quad Mode
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:323
This class represents lattice values for constants.
Definition: AllocatorList.h:24
VariantKind getKind() const
getOpcode - Get the kind of this expression.
Definition: ARMMCExpr.h:52
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
LLVM_NODISCARD bool equals_lower(StringRef RHS) const
equals_lower - Check for string equality, ignoring case.
Definition: StringRef.h:176
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
Generic assembler parser interface, for use by target specific assembly parsers.
Definition: MCAsmParser.h:110
virtual void Initialize(MCAsmParser &Parser)
Initialize the extension for parsing using the given Parser.
class llvm::RegisterBankInfo GPR
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:137
This class provides various memory handling functions that manipulate MemoryBlock instances...
Definition: Memory.h:46
MCTargetAsmParser - Generic interface to target specific assembly parsers.
bool parseAssignmentExpression(StringRef Name, bool allow_redef, MCAsmParser &Parser, MCSymbol *&Symbol, const MCExpr *&Value)
Parse a value expression and return whether it can be assigned to a symbol with the given name...
Definition: AsmParser.cpp:5878
void push_back(const T &Elt)
Definition: SmallVector.h:218
static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT)
static const ARMMCExpr * create(VariantKind Kind, const MCExpr *Expr, MCContext &Ctx)
Definition: ARMMCExpr.cpp:18
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
void dump_pretty(raw_ostream &OS, const MCInstPrinter *Printer=nullptr, StringRef Separator=" ") const
Dump the MCInst as prettily as possible using the additional MC structures, if given.
Definition: MCInst.cpp:73
Target specific streamer interface.
Definition: MCStreamer.h:84
unsigned Reg
int findFirstPredOperandIdx() const
Find the index of the first operand in the operand list that is used to represent the predicate...
Definition: MCInstrDesc.h:586
unsigned encodeNEONi32splat(unsigned Value)
Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
bool isNot(TokenKind K) const
Definition: MCAsmMacro.h:84
bool isV8EligibleForIT(const InstrType *Instr)
Definition: ARMFeatures.h:25
const FeatureBitset Features
iterator find(StringRef Key)
Definition: StringMap.h:333
virtual const AsmToken & Lex()=0
Get the next AsmToken in the stream, possibly handling file inclusion first.
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:510
unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, unsigned IdxMode=0)
getAM3Opc - This function encodes the addrmode3 opc field.
#define R2(n)
#define op(i)
const AsmToken & getTok() const
Get the current AsmToken from the stream.
Definition: MCAsmParser.cpp:34
Target & getTheThumbLETarget()
uint64_t High
static bool isThumb(const MCSubtargetInfo &STI)
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:128
bool isReturn() const
Return true if the instruction is a return.
Definition: MCInstrDesc.h:246
virtual void EmitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI, bool PrintSchedInfo=false)
Emit the given Instruction into the current section.
Definition: MCStreamer.cpp:956
return AArch64::GPR64RegClass contains(Reg)
bool isBranch() const
Returns true if this is a conditional, unconditional, or indirect branch.
Definition: MCInstrDesc.h:277
static bool instIsBreakpoint(const MCInst &Inst)
const char * getShiftOpcStr(ShiftOpc Op)
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool endswith(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition: StringRef.h:279
StringRef getIdentifier() const
Get the identifier string for the current token, which should be an identifier or a string...
Definition: MCAsmMacro.h:100
amdgpu Simplify well known AMD library false Value Value const Twine & Name
static MCOperand createReg(unsigned Reg)
Definition: MCInst.h:116
static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, unsigned Reg, unsigned HiReg, bool &containsReg)
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
bool contains(unsigned Reg) const
contains - Return true if the specified register is included in this register class.
const FeatureBitset & getFeatureBits() const
Generic assembler lexer interface, for use by target specific assembly lexers.
Definition: MCAsmLexer.h:40
static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID=0)
static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp)
MatchCoprocessorOperandName - Try to parse an coprocessor related instruction with a symbolic operand...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
static bool isLoad(int Opcode)
StringRef getArchName(ArchKind AK)
static unsigned MatchRegisterName(StringRef Name)
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:36
Target independent representation for an assembler token.
Definition: MCAsmMacro.h:22
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:166
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE R Default(T Value)
Definition: StringSwitch.h:203
Target & getTheARMBETarget()
static bool isMem(const MachineInstr &MI, unsigned Op)
Definition: X86InstrInfo.h:161
MCParsedAsmOperand - This abstract class represents a source-level assembly instruction operand...
This file implements a class to represent arbitrary precision integral constant values and operations...
virtual bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc)=0
Parse an arbitrary expression.
unsigned getReg() const
Returns the register number.
Definition: MCInst.h:65
Context object for machine code objects.
Definition: MCContext.h:63
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:267
std::pair< StringRef, StringRef > getToken(StringRef Source, StringRef Delimiters=" \\\)
getToken - This function extracts one token from source, ignoring any leading characters that appear ...
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool startswith(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:267
RegisterMCAsmParser - Helper template for registering a target specific assembly parser, for use in the target machine initialization function.
.code16 (X86) / .code 16 (ARM)
Definition: MCDirectives.h:51
Target & getTheThumbBETarget()
#define T
float getFPImmFloat(unsigned Imm)
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
unsigned getRegister(unsigned i) const
getRegister - Return the specified register in the class.
SMLoc getLoc() const
Definition: MCAsmLexer.cpp:28
bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, const MCRegisterInfo &RI) const
Return true if this instruction defines the specified physical register, either explicitly or implici...
Definition: MCInstrDesc.cpp:54
const MCExpr * getExpr() const
Definition: MCInst.h:96
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:598
static const char * getRegisterName(unsigned RegNo)
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:461
static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg)
MCRegisterClass - Base class of TargetRegisterClass.
iterator insert(iterator I, const MCOperand &Op)
Definition: MCInst.h:199
LLVM_NODISCARD std::string upper() const
Convert the given ASCII string to uppercase.
Definition: StringRef.cpp:116
Analysis containing CSE Info
Definition: CSEInfo.cpp:21
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:161
unsigned short NumOperands
Definition: MCInstrDesc.h:167
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:118
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
FeatureBitset ToggleFeature(uint64_t FB)
Toggle a feature and return the re-computed feature bits.
int64_t getImm() const
Definition: MCInst.h:76
bool parseToken(AsmToken::TokenKind T, const Twine &Msg="unexpected token")
Definition: MCAsmParser.cpp:50
#define P(N)
const char * getPointer() const
Definition: SMLoc.h:35
int64_t getValue() const
Definition: MCExpr.h:152
ImplicitItModeTy
void setImm(int64_t Val)
Definition: MCInst.h:81
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:43
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
Streaming machine code generation interface.
Definition: MCStreamer.h:189
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:1083
unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset)
getAM5Opc - This function encodes the addrmode5 opc field.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
unsigned const MachineRegisterInfo * MRI
MCTargetStreamer * getTargetStreamer()
Definition: MCStreamer.h:258
Container class for subtarget features.
std::size_t countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0&#39;s from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:120
static const char * InstSyncBOptToString(unsigned val)
Definition: ARMBaseInfo.h:135
SMLoc getEndLoc() const
Definition: MCAsmLexer.cpp:32
LLVM_NODISCARD StringRef trim(char Char) const
Return string with consecutive Char characters starting from the left and right removed.
Definition: StringRef.h:848
static unsigned getFPReg(const RISCVSubtarget &STI)
bool isOptionalDef() const
Set if this operand is a optional def.
Definition: MCInstrDesc.h:96
bool hasOptionalDef() const
Set if this instruction has an optional definition, e.g.
Definition: MCInstrDesc.h:239
unsigned getSORegOffset(unsigned Op)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:643
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:24
unsigned getSubReg(unsigned Reg, unsigned Idx) const
Returns the physical register number of sub-register "Index" for physical register RegNo...
This file declares a class to represent arbitrary precision floating point values and provide a varie...
FeatureBitset ApplyFeatureFlag(StringRef FS)
Apply a feature flag and return the re-computed feature bits, including all feature bits implied by t...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1193
static const char * TraceSyncBOptToString(unsigned val)
Definition: ARMBaseInfo.h:106
int getT2SOImmVal(unsigned Arg)
getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit into a Thumb-2 shifter_oper...
static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D)
bool isExpr() const
Definition: MCInst.h:61
int64_t getIntVal() const
Definition: MCAsmMacro.h:116
static const struct @395 Extensions[]
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
unsigned getNumOperands() const
Definition: MCInst.h:184
const AsmToken peekTok(bool ShouldSkipSpace=true)
Look ahead at the next token to be lexed.
Definition: MCAsmLexer.h:106
bool isPredicable() const
Return true if this instruction has a predicate operand that controls execution.
Definition: MCInstrDesc.h:308
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:181
static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, unsigned VariantID)
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1214
bool isIndirectBranch() const
Return true if this is an indirect branch, such as a branch through a register.
Definition: MCInstrDesc.h:281
unsigned rotr32(unsigned Val, unsigned Amt)
rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
virtual bool UseCodeAlign() const =0
Return true if a .align directive should use "optimized nops" to fill instead of 0s.
iterator erase(const_iterator CI)
Definition: SmallVector.h:445
size_t size() const
Definition: SmallVector.h:53
void setLoc(SMLoc loc)
Definition: MCInst.h:179
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isNEONi16splat(unsigned Value)
Checks if Value is a correct immediate for instructions like VBIC/VORR.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
static unsigned getNextRegister(unsigned Reg)
static const char * ARMCondCodeToString(ARMCC::CondCodes CC)
Definition: ARMBaseInfo.h:70
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef drop_front(size_t N=1) const
Return a StringRef equal to &#39;this&#39; but with the first N elements dropped.
Definition: StringRef.h:645
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:120
MCStreamer & getStreamer()
Definition: MCStreamer.h:92
void setOpcode(unsigned Op)
Definition: MCInst.h:173
int getSOImmVal(unsigned Arg)
getSOImmVal - Given a 32-bit immediate, if it is something that can fit into an shifter_operand immed...
#define R6(n)
ArchKind parseArch(StringRef Arch)
unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset)
getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
static bool isDataTypeToken(StringRef Tok)
unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, unsigned IdxMode=0)
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:182
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef slice(size_t Start, size_t End) const
Return a reference to the substring from [Start, End).
Definition: StringRef.h:710
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm)
const FeatureBitset Features
static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing)
static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
bool is(TokenKind K) const
Definition: MCAsmMacro.h:83
Class for arbitrary precision integers.
Definition: APInt.h:70
VectorLaneTy
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo)
static const char * MemBOptToString(unsigned val, bool HasV8)
Definition: ARMBaseInfo.h:78
const uint64_t ArchCheck
Base class for user error types.
Definition: Error.h:345
LLVM_ATTRIBUTE_ALWAYS_INLINE StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:70
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:478
static const char * IFlagsToString(unsigned val)
Definition: ARMBaseInfo.h:38
ShiftOpc getSORegShOp(unsigned Op)
.code32 (X86) / .code 32 (ARM)
Definition: MCDirectives.h:52
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:618
static SMLoc getFromPointer(const char *Ptr)
Definition: SMLoc.h:37
static unsigned ARMCondCodeFromString(StringRef CC)
Definition: ARMBaseInfo.h:91
int AttrTypeFromString(StringRef Tag)
static bool isARMLowRegister(unsigned Reg)
isARMLowRegister - Returns true if the register is a low register (r0-r7).
Definition: ARMBaseInfo.h:161
static CondCodes getOppositeCondition(CondCodes CC)
Definition: ARMBaseInfo.h:49
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
static const size_t npos
Definition: StringRef.h:51
void emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:652
void LLVMInitializeARMAsmParser()
Force static initialization.
int16_t RegClass
This specifies the register class enumeration of the operand if the operand is a register.
Definition: MCInstrDesc.h:73
unsigned parseArchExt(StringRef ArchExt)
StringRef getStringContents() const
Get the contents of a string token (without quotes).
Definition: MCAsmMacro.h:91
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
bool isCall() const
Return true if the instruction is a call.
Definition: MCInstrDesc.h:258
Generic base class for all target subtargets.
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
virtual void Note(SMLoc L, const Twine &Msg, SMRange Range=None)=0
Emit a note at the location L, with the message Msg.
static const char * getSubtargetFeatureName(uint64_t Val)
const unsigned Kind
LLVM_NODISCARD std::string lower() const
Definition: StringRef.cpp:108
bool getFPUFeatures(unsigned FPUKind, std::vector< StringRef > &Features)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
int getFP32Imm(const APInt &Imm)
getFP32Imm - Return an 8-bit floating-point version of the 32-bit floating-point value.
bool isTerminator() const
Returns true if this instruction part of the terminator for a basic block.
Definition: MCInstrDesc.h:271
LLVM Value Representation.
Definition: Value.h:73
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:175
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
virtual void EmitLabel(MCSymbol *Symbol, SMLoc Loc=SMLoc())
Emit a label for Symbol into the current section.
Definition: MCStreamer.cpp:347
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
unsigned parseFPU(StringRef FPU)
bool parseOptionalToken(AsmToken::TokenKind T)
Attempt to parse and consume token, returning true on success.
Definition: MCAsmParser.cpp:67
void addOperand(const MCOperand &Op)
Definition: MCInst.h:186
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
virtual bool parseIdentifier(StringRef &Res)=0
Parse an identifier or string (as a quoted identifier) and set Res to the identifier contents...
Represents a location in source code.
Definition: SMLoc.h:24
Target & getTheARMLETarget()
unsigned getOpcode() const
Definition: MCInst.h:174
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition: StringRef.h:298
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:35
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:123
iterator end()
Definition: StringMap.h:318
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx)
Definition: MCExpr.cpp:164
bool IsCPSRDead< MCInst >(const MCInst *Instr)
void setDefaultFeatures(StringRef CPU, StringRef FS)
Set the features to the default for the given CPU with an appended feature string.
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:165