LLVM  8.0.1
MCExpr.cpp
Go to the documentation of this file.
1 //===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/MC/MCExpr.h"
11 #include "llvm/ADT/Statistic.h"
12 #include "llvm/ADT/StringSwitch.h"
13 #include "llvm/Config/llvm-config.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCAssembler.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSymbol.h"
21 #include "llvm/MC/MCValue.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
27 #include <cassert>
28 #include <cstdint>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "mcexpr"
33 
34 namespace {
35 namespace stats {
36 
37 STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
38 
39 } // end namespace stats
40 } // end anonymous namespace
41 
42 void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens) const {
43  switch (getKind()) {
44  case MCExpr::Target:
45  return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
46  case MCExpr::Constant:
47  OS << cast<MCConstantExpr>(*this).getValue();
48  return;
49 
50  case MCExpr::SymbolRef: {
51  const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
52  const MCSymbol &Sym = SRE.getSymbol();
53  // Parenthesize names that start with $ so that they don't look like
54  // absolute names.
55  bool UseParens =
56  !InParens && !Sym.getName().empty() && Sym.getName()[0] == '$';
57  if (UseParens) {
58  OS << '(';
59  Sym.print(OS, MAI);
60  OS << ')';
61  } else
62  Sym.print(OS, MAI);
63 
64  if (SRE.getKind() != MCSymbolRefExpr::VK_None)
65  SRE.printVariantKind(OS);
66 
67  return;
68  }
69 
70  case MCExpr::Unary: {
71  const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
72  switch (UE.getOpcode()) {
73  case MCUnaryExpr::LNot: OS << '!'; break;
74  case MCUnaryExpr::Minus: OS << '-'; break;
75  case MCUnaryExpr::Not: OS << '~'; break;
76  case MCUnaryExpr::Plus: OS << '+'; break;
77  }
78  bool Binary = UE.getSubExpr()->getKind() == MCExpr::Binary;
79  if (Binary) OS << "(";
80  UE.getSubExpr()->print(OS, MAI);
81  if (Binary) OS << ")";
82  return;
83  }
84 
85  case MCExpr::Binary: {
86  const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
87 
88  // Only print parens around the LHS if it is non-trivial.
89  if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
90  BE.getLHS()->print(OS, MAI);
91  } else {
92  OS << '(';
93  BE.getLHS()->print(OS, MAI);
94  OS << ')';
95  }
96 
97  switch (BE.getOpcode()) {
98  case MCBinaryExpr::Add:
99  // Print "X-42" instead of "X+-42".
100  if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
101  if (RHSC->getValue() < 0) {
102  OS << RHSC->getValue();
103  return;
104  }
105  }
106 
107  OS << '+';
108  break;
109  case MCBinaryExpr::AShr: OS << ">>"; break;
110  case MCBinaryExpr::And: OS << '&'; break;
111  case MCBinaryExpr::Div: OS << '/'; break;
112  case MCBinaryExpr::EQ: OS << "=="; break;
113  case MCBinaryExpr::GT: OS << '>'; break;
114  case MCBinaryExpr::GTE: OS << ">="; break;
115  case MCBinaryExpr::LAnd: OS << "&&"; break;
116  case MCBinaryExpr::LOr: OS << "||"; break;
117  case MCBinaryExpr::LShr: OS << ">>"; break;
118  case MCBinaryExpr::LT: OS << '<'; break;
119  case MCBinaryExpr::LTE: OS << "<="; break;
120  case MCBinaryExpr::Mod: OS << '%'; break;
121  case MCBinaryExpr::Mul: OS << '*'; break;
122  case MCBinaryExpr::NE: OS << "!="; break;
123  case MCBinaryExpr::Or: OS << '|'; break;
124  case MCBinaryExpr::Shl: OS << "<<"; break;
125  case MCBinaryExpr::Sub: OS << '-'; break;
126  case MCBinaryExpr::Xor: OS << '^'; break;
127  }
128 
129  // Only print parens around the LHS if it is non-trivial.
130  if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
131  BE.getRHS()->print(OS, MAI);
132  } else {
133  OS << '(';
134  BE.getRHS()->print(OS, MAI);
135  OS << ')';
136  }
137  return;
138  }
139  }
140 
141  llvm_unreachable("Invalid expression kind!");
142 }
143 
144 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
145 LLVM_DUMP_METHOD void MCExpr::dump() const {
146  dbgs() << *this;
147  dbgs() << '\n';
148 }
149 #endif
150 
151 /* *** */
152 
153 const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
154  const MCExpr *RHS, MCContext &Ctx,
155  SMLoc Loc) {
156  return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
157 }
158 
159 const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
160  MCContext &Ctx, SMLoc Loc) {
161  return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
162 }
163 
164 const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx) {
165  return new (Ctx) MCConstantExpr(Value);
166 }
167 
168 /* *** */
169 
170 MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
171  const MCAsmInfo *MAI, SMLoc Loc)
172  : MCExpr(MCExpr::SymbolRef, Loc), Kind(Kind),
173  UseParensForSymbolVariant(MAI->useParensForSymbolVariant()),
174  HasSubsectionsViaSymbols(MAI->hasSubsectionsViaSymbols()),
175  Symbol(Symbol) {
176  assert(Symbol);
177 }
178 
179 const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
180  VariantKind Kind,
181  MCContext &Ctx, SMLoc Loc) {
182  return new (Ctx) MCSymbolRefExpr(Sym, Kind, Ctx.getAsmInfo(), Loc);
183 }
184 
185 const MCSymbolRefExpr *MCSymbolRefExpr::create(StringRef Name, VariantKind Kind,
186  MCContext &Ctx) {
187  return create(Ctx.getOrCreateSymbol(Name), Kind, Ctx);
188 }
189 
190 StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
191  switch (Kind) {
192  case VK_Invalid: return "<<invalid>>";
193  case VK_None: return "<<none>>";
194 
195  case VK_DTPOFF: return "DTPOFF";
196  case VK_DTPREL: return "DTPREL";
197  case VK_GOT: return "GOT";
198  case VK_GOTOFF: return "GOTOFF";
199  case VK_GOTREL: return "GOTREL";
200  case VK_GOTPCREL: return "GOTPCREL";
201  case VK_GOTTPOFF: return "GOTTPOFF";
202  case VK_INDNTPOFF: return "INDNTPOFF";
203  case VK_NTPOFF: return "NTPOFF";
204  case VK_GOTNTPOFF: return "GOTNTPOFF";
205  case VK_PLT: return "PLT";
206  case VK_TLSGD: return "TLSGD";
207  case VK_TLSLD: return "TLSLD";
208  case VK_TLSLDM: return "TLSLDM";
209  case VK_TPOFF: return "TPOFF";
210  case VK_TPREL: return "TPREL";
211  case VK_TLSCALL: return "tlscall";
212  case VK_TLSDESC: return "tlsdesc";
213  case VK_TLVP: return "TLVP";
214  case VK_TLVPPAGE: return "TLVPPAGE";
215  case VK_TLVPPAGEOFF: return "TLVPPAGEOFF";
216  case VK_PAGE: return "PAGE";
217  case VK_PAGEOFF: return "PAGEOFF";
218  case VK_GOTPAGE: return "GOTPAGE";
219  case VK_GOTPAGEOFF: return "GOTPAGEOFF";
220  case VK_SECREL: return "SECREL32";
221  case VK_SIZE: return "SIZE";
222  case VK_WEAKREF: return "WEAKREF";
223  case VK_X86_ABS8: return "ABS8";
224  case VK_ARM_NONE: return "none";
225  case VK_ARM_GOT_PREL: return "GOT_PREL";
226  case VK_ARM_TARGET1: return "target1";
227  case VK_ARM_TARGET2: return "target2";
228  case VK_ARM_PREL31: return "prel31";
229  case VK_ARM_SBREL: return "sbrel";
230  case VK_ARM_TLSLDO: return "tlsldo";
231  case VK_ARM_TLSDESCSEQ: return "tlsdescseq";
232  case VK_AVR_NONE: return "none";
233  case VK_AVR_LO8: return "lo8";
234  case VK_AVR_HI8: return "hi8";
235  case VK_AVR_HLO8: return "hlo8";
236  case VK_AVR_DIFF8: return "diff8";
237  case VK_AVR_DIFF16: return "diff16";
238  case VK_AVR_DIFF32: return "diff32";
239  case VK_PPC_LO: return "l";
240  case VK_PPC_HI: return "h";
241  case VK_PPC_HA: return "ha";
242  case VK_PPC_HIGH: return "high";
243  case VK_PPC_HIGHA: return "higha";
244  case VK_PPC_HIGHER: return "higher";
245  case VK_PPC_HIGHERA: return "highera";
246  case VK_PPC_HIGHEST: return "highest";
247  case VK_PPC_HIGHESTA: return "highesta";
248  case VK_PPC_GOT_LO: return "got@l";
249  case VK_PPC_GOT_HI: return "got@h";
250  case VK_PPC_GOT_HA: return "got@ha";
251  case VK_PPC_TOCBASE: return "tocbase";
252  case VK_PPC_TOC: return "toc";
253  case VK_PPC_TOC_LO: return "toc@l";
254  case VK_PPC_TOC_HI: return "toc@h";
255  case VK_PPC_TOC_HA: return "toc@ha";
256  case VK_PPC_DTPMOD: return "dtpmod";
257  case VK_PPC_TPREL_LO: return "tprel@l";
258  case VK_PPC_TPREL_HI: return "tprel@h";
259  case VK_PPC_TPREL_HA: return "tprel@ha";
260  case VK_PPC_TPREL_HIGH: return "tprel@high";
261  case VK_PPC_TPREL_HIGHA: return "tprel@higha";
262  case VK_PPC_TPREL_HIGHER: return "tprel@higher";
263  case VK_PPC_TPREL_HIGHERA: return "tprel@highera";
264  case VK_PPC_TPREL_HIGHEST: return "tprel@highest";
265  case VK_PPC_TPREL_HIGHESTA: return "tprel@highesta";
266  case VK_PPC_DTPREL_LO: return "dtprel@l";
267  case VK_PPC_DTPREL_HI: return "dtprel@h";
268  case VK_PPC_DTPREL_HA: return "dtprel@ha";
269  case VK_PPC_DTPREL_HIGH: return "dtprel@high";
270  case VK_PPC_DTPREL_HIGHA: return "dtprel@higha";
271  case VK_PPC_DTPREL_HIGHER: return "dtprel@higher";
272  case VK_PPC_DTPREL_HIGHERA: return "dtprel@highera";
273  case VK_PPC_DTPREL_HIGHEST: return "dtprel@highest";
274  case VK_PPC_DTPREL_HIGHESTA: return "dtprel@highesta";
275  case VK_PPC_GOT_TPREL: return "got@tprel";
276  case VK_PPC_GOT_TPREL_LO: return "got@tprel@l";
277  case VK_PPC_GOT_TPREL_HI: return "got@tprel@h";
278  case VK_PPC_GOT_TPREL_HA: return "got@tprel@ha";
279  case VK_PPC_GOT_DTPREL: return "got@dtprel";
280  case VK_PPC_GOT_DTPREL_LO: return "got@dtprel@l";
281  case VK_PPC_GOT_DTPREL_HI: return "got@dtprel@h";
282  case VK_PPC_GOT_DTPREL_HA: return "got@dtprel@ha";
283  case VK_PPC_TLS: return "tls";
284  case VK_PPC_GOT_TLSGD: return "got@tlsgd";
285  case VK_PPC_GOT_TLSGD_LO: return "got@tlsgd@l";
286  case VK_PPC_GOT_TLSGD_HI: return "got@tlsgd@h";
287  case VK_PPC_GOT_TLSGD_HA: return "got@tlsgd@ha";
288  case VK_PPC_TLSGD: return "tlsgd";
289  case VK_PPC_GOT_TLSLD: return "got@tlsld";
290  case VK_PPC_GOT_TLSLD_LO: return "got@tlsld@l";
291  case VK_PPC_GOT_TLSLD_HI: return "got@tlsld@h";
292  case VK_PPC_GOT_TLSLD_HA: return "got@tlsld@ha";
293  case VK_PPC_TLSLD: return "tlsld";
294  case VK_PPC_LOCAL: return "local";
295  case VK_COFF_IMGREL32: return "IMGREL";
296  case VK_Hexagon_PCREL: return "PCREL";
297  case VK_Hexagon_LO16: return "LO16";
298  case VK_Hexagon_HI16: return "HI16";
299  case VK_Hexagon_GPREL: return "GPREL";
300  case VK_Hexagon_GD_GOT: return "GDGOT";
301  case VK_Hexagon_LD_GOT: return "LDGOT";
302  case VK_Hexagon_GD_PLT: return "GDPLT";
303  case VK_Hexagon_LD_PLT: return "LDPLT";
304  case VK_Hexagon_IE: return "IE";
305  case VK_Hexagon_IE_GOT: return "IEGOT";
306  case VK_WebAssembly_FUNCTION: return "FUNCTION";
307  case VK_WebAssembly_GLOBAL: return "GLOBAL";
308  case VK_WebAssembly_TYPEINDEX: return "TYPEINDEX";
309  case VK_WebAssembly_EVENT: return "EVENT";
310  case VK_AMDGPU_GOTPCREL32_LO: return "gotpcrel32@lo";
311  case VK_AMDGPU_GOTPCREL32_HI: return "gotpcrel32@hi";
312  case VK_AMDGPU_REL32_LO: return "rel32@lo";
313  case VK_AMDGPU_REL32_HI: return "rel32@hi";
314  case VK_AMDGPU_REL64: return "rel64";
315  }
316  llvm_unreachable("Invalid variant kind");
317 }
318 
319 MCSymbolRefExpr::VariantKind
320 MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
321  return StringSwitch<VariantKind>(Name.lower())
322  .Case("dtprel", VK_DTPREL)
323  .Case("dtpoff", VK_DTPOFF)
324  .Case("got", VK_GOT)
325  .Case("gotoff", VK_GOTOFF)
326  .Case("gotrel", VK_GOTREL)
327  .Case("gotpcrel", VK_GOTPCREL)
328  .Case("gottpoff", VK_GOTTPOFF)
329  .Case("indntpoff", VK_INDNTPOFF)
330  .Case("ntpoff", VK_NTPOFF)
331  .Case("gotntpoff", VK_GOTNTPOFF)
332  .Case("plt", VK_PLT)
333  .Case("tlscall", VK_TLSCALL)
334  .Case("tlsdesc", VK_TLSDESC)
335  .Case("tlsgd", VK_TLSGD)
336  .Case("tlsld", VK_TLSLD)
337  .Case("tlsldm", VK_TLSLDM)
338  .Case("tpoff", VK_TPOFF)
339  .Case("tprel", VK_TPREL)
340  .Case("tlvp", VK_TLVP)
341  .Case("tlvppage", VK_TLVPPAGE)
342  .Case("tlvppageoff", VK_TLVPPAGEOFF)
343  .Case("page", VK_PAGE)
344  .Case("pageoff", VK_PAGEOFF)
345  .Case("gotpage", VK_GOTPAGE)
346  .Case("gotpageoff", VK_GOTPAGEOFF)
347  .Case("imgrel", VK_COFF_IMGREL32)
348  .Case("secrel32", VK_SECREL)
349  .Case("size", VK_SIZE)
350  .Case("abs8", VK_X86_ABS8)
351  .Case("l", VK_PPC_LO)
352  .Case("h", VK_PPC_HI)
353  .Case("ha", VK_PPC_HA)
354  .Case("high", VK_PPC_HIGH)
355  .Case("higha", VK_PPC_HIGHA)
356  .Case("higher", VK_PPC_HIGHER)
357  .Case("highera", VK_PPC_HIGHERA)
358  .Case("highest", VK_PPC_HIGHEST)
359  .Case("highesta", VK_PPC_HIGHESTA)
360  .Case("got@l", VK_PPC_GOT_LO)
361  .Case("got@h", VK_PPC_GOT_HI)
362  .Case("got@ha", VK_PPC_GOT_HA)
363  .Case("local", VK_PPC_LOCAL)
364  .Case("tocbase", VK_PPC_TOCBASE)
365  .Case("toc", VK_PPC_TOC)
366  .Case("toc@l", VK_PPC_TOC_LO)
367  .Case("toc@h", VK_PPC_TOC_HI)
368  .Case("toc@ha", VK_PPC_TOC_HA)
369  .Case("tls", VK_PPC_TLS)
370  .Case("dtpmod", VK_PPC_DTPMOD)
371  .Case("tprel@l", VK_PPC_TPREL_LO)
372  .Case("tprel@h", VK_PPC_TPREL_HI)
373  .Case("tprel@ha", VK_PPC_TPREL_HA)
374  .Case("tprel@high", VK_PPC_TPREL_HIGH)
375  .Case("tprel@higha", VK_PPC_TPREL_HIGHA)
376  .Case("tprel@higher", VK_PPC_TPREL_HIGHER)
377  .Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
378  .Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
379  .Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
380  .Case("dtprel@l", VK_PPC_DTPREL_LO)
381  .Case("dtprel@h", VK_PPC_DTPREL_HI)
382  .Case("dtprel@ha", VK_PPC_DTPREL_HA)
383  .Case("dtprel@high", VK_PPC_DTPREL_HIGH)
384  .Case("dtprel@higha", VK_PPC_DTPREL_HIGHA)
385  .Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
386  .Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
387  .Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
388  .Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
389  .Case("got@tprel", VK_PPC_GOT_TPREL)
390  .Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
391  .Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
392  .Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
393  .Case("got@dtprel", VK_PPC_GOT_DTPREL)
394  .Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
395  .Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
396  .Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
397  .Case("got@tlsgd", VK_PPC_GOT_TLSGD)
398  .Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
399  .Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
400  .Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
401  .Case("got@tlsld", VK_PPC_GOT_TLSLD)
402  .Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
403  .Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
404  .Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
405  .Case("gdgot", VK_Hexagon_GD_GOT)
406  .Case("gdplt", VK_Hexagon_GD_PLT)
407  .Case("iegot", VK_Hexagon_IE_GOT)
408  .Case("ie", VK_Hexagon_IE)
409  .Case("ldgot", VK_Hexagon_LD_GOT)
410  .Case("ldplt", VK_Hexagon_LD_PLT)
411  .Case("pcrel", VK_Hexagon_PCREL)
412  .Case("none", VK_ARM_NONE)
413  .Case("got_prel", VK_ARM_GOT_PREL)
414  .Case("target1", VK_ARM_TARGET1)
415  .Case("target2", VK_ARM_TARGET2)
416  .Case("prel31", VK_ARM_PREL31)
417  .Case("sbrel", VK_ARM_SBREL)
418  .Case("tlsldo", VK_ARM_TLSLDO)
419  .Case("lo8", VK_AVR_LO8)
420  .Case("hi8", VK_AVR_HI8)
421  .Case("hlo8", VK_AVR_HLO8)
422  .Case("function", VK_WebAssembly_FUNCTION)
423  .Case("global", VK_WebAssembly_GLOBAL)
424  .Case("typeindex", VK_WebAssembly_TYPEINDEX)
425  .Case("event", VK_WebAssembly_EVENT)
426  .Case("gotpcrel32@lo", VK_AMDGPU_GOTPCREL32_LO)
427  .Case("gotpcrel32@hi", VK_AMDGPU_GOTPCREL32_HI)
428  .Case("rel32@lo", VK_AMDGPU_REL32_LO)
429  .Case("rel32@hi", VK_AMDGPU_REL32_HI)
430  .Case("rel64", VK_AMDGPU_REL64)
431  .Default(VK_Invalid);
432 }
433 
434 void MCSymbolRefExpr::printVariantKind(raw_ostream &OS) const {
435  if (UseParensForSymbolVariant)
436  OS << '(' << MCSymbolRefExpr::getVariantKindName(getKind()) << ')';
437  else
438  OS << '@' << MCSymbolRefExpr::getVariantKindName(getKind());
439 }
440 
441 /* *** */
442 
443 void MCTargetExpr::anchor() {}
444 
445 /* *** */
446 
447 bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
448  return evaluateAsAbsolute(Res, nullptr, nullptr, nullptr);
449 }
450 
451 bool MCExpr::evaluateAsAbsolute(int64_t &Res,
452  const MCAsmLayout &Layout) const {
453  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr);
454 }
455 
456 bool MCExpr::evaluateAsAbsolute(int64_t &Res,
457  const MCAsmLayout &Layout,
458  const SectionAddrMap &Addrs) const {
459  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs);
460 }
461 
462 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
463  return evaluateAsAbsolute(Res, &Asm, nullptr, nullptr);
464 }
465 
466 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
467  return evaluateAsAbsolute(Res, Asm, nullptr, nullptr);
468 }
469 
470 bool MCExpr::evaluateKnownAbsolute(int64_t &Res,
471  const MCAsmLayout &Layout) const {
472  return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr,
473  true);
474 }
475 
476 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
477  const MCAsmLayout *Layout,
478  const SectionAddrMap *Addrs) const {
479  // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
480  // absolutize differences across sections and that is what the MachO writer
481  // uses Addrs for.
482  return evaluateAsAbsolute(Res, Asm, Layout, Addrs, Addrs);
483 }
484 
485 bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
486  const MCAsmLayout *Layout,
487  const SectionAddrMap *Addrs, bool InSet) const {
488  MCValue Value;
489 
490  // Fast path constants.
491  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
492  Res = CE->getValue();
493  return true;
494  }
495 
496  bool IsRelocatable =
497  evaluateAsRelocatableImpl(Value, Asm, Layout, nullptr, Addrs, InSet);
498 
499  // Record the current value.
500  Res = Value.getConstant();
501 
502  return IsRelocatable && Value.isAbsolute();
503 }
504 
505 /// Helper method for \see EvaluateSymbolAdd().
506 static void AttemptToFoldSymbolOffsetDifference(
507  const MCAssembler *Asm, const MCAsmLayout *Layout,
508  const SectionAddrMap *Addrs, bool InSet, const MCSymbolRefExpr *&A,
509  const MCSymbolRefExpr *&B, int64_t &Addend) {
510  if (!A || !B)
511  return;
512 
513  const MCSymbol &SA = A->getSymbol();
514  const MCSymbol &SB = B->getSymbol();
515 
516  if (SA.isUndefined() || SB.isUndefined())
517  return;
518 
519  if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
520  return;
521 
522  if (SA.getFragment() == SB.getFragment() && !SA.isVariable() &&
523  !SA.isUnset() && !SB.isVariable() && !SB.isUnset()) {
524  Addend += (SA.getOffset() - SB.getOffset());
525 
526  // Pointers to Thumb symbols need to have their low-bit set to allow
527  // for interworking.
528  if (Asm->isThumbFunc(&SA))
529  Addend |= 1;
530 
531  // If symbol is labeled as micromips, we set low-bit to ensure
532  // correct offset in .gcc_except_table
533  if (Asm->getBackend().isMicroMips(&SA))
534  Addend |= 1;
535 
536  // Clear the symbol expr pointers to indicate we have folded these
537  // operands.
538  A = B = nullptr;
539  return;
540  }
541 
542  if (!Layout)
543  return;
544 
545  const MCSection &SecA = *SA.getFragment()->getParent();
546  const MCSection &SecB = *SB.getFragment()->getParent();
547 
548  if ((&SecA != &SecB) && !Addrs)
549  return;
550 
551  // Eagerly evaluate.
552  Addend += Layout->getSymbolOffset(A->getSymbol()) -
553  Layout->getSymbolOffset(B->getSymbol());
554  if (Addrs && (&SecA != &SecB))
555  Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
556 
557  // Pointers to Thumb symbols need to have their low-bit set to allow
558  // for interworking.
559  if (Asm->isThumbFunc(&SA))
560  Addend |= 1;
561 
562  // If symbol is labeled as micromips, we set low-bit to ensure
563  // correct offset in .gcc_except_table
564  if (Asm->getBackend().isMicroMips(&SA))
565  Addend |= 1;
566 
567  // Clear the symbol expr pointers to indicate we have folded these
568  // operands.
569  A = B = nullptr;
570 }
571 
572 /// Evaluate the result of an add between (conceptually) two MCValues.
573 ///
574 /// This routine conceptually attempts to construct an MCValue:
575 /// Result = (Result_A - Result_B + Result_Cst)
576 /// from two MCValue's LHS and RHS where
577 /// Result = LHS + RHS
578 /// and
579 /// Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
580 ///
581 /// This routine attempts to aggresively fold the operands such that the result
582 /// is representable in an MCValue, but may not always succeed.
583 ///
584 /// \returns True on success, false if the result is not representable in an
585 /// MCValue.
586 
587 /// NOTE: It is really important to have both the Asm and Layout arguments.
588 /// They might look redundant, but this function can be used before layout
589 /// is done (see the object streamer for example) and having the Asm argument
590 /// lets us avoid relaxations early.
591 static bool
592 EvaluateSymbolicAdd(const MCAssembler *Asm, const MCAsmLayout *Layout,
593  const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS,
594  const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B,
595  int64_t RHS_Cst, MCValue &Res) {
596  // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
597  // about dealing with modifiers. This will ultimately bite us, one day.
598  const MCSymbolRefExpr *LHS_A = LHS.getSymA();
599  const MCSymbolRefExpr *LHS_B = LHS.getSymB();
600  int64_t LHS_Cst = LHS.getConstant();
601 
602  // Fold the result constant immediately.
603  int64_t Result_Cst = LHS_Cst + RHS_Cst;
604 
605  assert((!Layout || Asm) &&
606  "Must have an assembler object if layout is given!");
607 
608  // If we have a layout, we can fold resolved differences. Do not do this if
609  // the backend requires this to be emitted as individual relocations, unless
610  // the InSet flag is set to get the current difference anyway (used for
611  // example to calculate symbol sizes).
612  if (Asm &&
613  (InSet || !Asm->getBackend().requiresDiffExpressionRelocations())) {
614  // First, fold out any differences which are fully resolved. By
615  // reassociating terms in
616  // Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
617  // we have the four possible differences:
618  // (LHS_A - LHS_B),
619  // (LHS_A - RHS_B),
620  // (RHS_A - LHS_B),
621  // (RHS_A - RHS_B).
622  // Since we are attempting to be as aggressive as possible about folding, we
623  // attempt to evaluate each possible alternative.
624  AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
625  Result_Cst);
626  AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
627  Result_Cst);
628  AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
629  Result_Cst);
630  AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
631  Result_Cst);
632  }
633 
634  // We can't represent the addition or subtraction of two symbols.
635  if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
636  return false;
637 
638  // At this point, we have at most one additive symbol and one subtractive
639  // symbol -- find them.
640  const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
641  const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
642 
643  Res = MCValue::get(A, B, Result_Cst);
644  return true;
645 }
646 
648  const MCAsmLayout *Layout,
649  const MCFixup *Fixup) const {
650  MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
651  return evaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
652  false);
653 }
654 
655 bool MCExpr::evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const {
656  MCAssembler *Assembler = &Layout.getAssembler();
657  return evaluateAsRelocatableImpl(Res, Assembler, &Layout, nullptr, nullptr,
658  true);
659 }
660 
661 static bool canExpand(const MCSymbol &Sym, bool InSet) {
662  const MCExpr *Expr = Sym.getVariableValue();
663  const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
664  if (Inner) {
665  if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
666  return false;
667  }
668 
669  if (InSet)
670  return true;
671  return !Sym.isInSection();
672 }
673 
675  const MCAsmLayout *Layout,
676  const MCFixup *Fixup,
677  const SectionAddrMap *Addrs,
678  bool InSet) const {
679  ++stats::MCExprEvaluate;
680 
681  switch (getKind()) {
682  case Target:
683  return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Layout,
684  Fixup);
685 
686  case Constant:
687  Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
688  return true;
689 
690  case SymbolRef: {
691  const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
692  const MCSymbol &Sym = SRE->getSymbol();
693 
694  // Evaluate recursively if this is a variable.
695  if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None &&
696  canExpand(Sym, InSet)) {
697  bool IsMachO = SRE->hasSubsectionsViaSymbols();
698  if (Sym.getVariableValue()->evaluateAsRelocatableImpl(
699  Res, Asm, Layout, Fixup, Addrs, InSet || IsMachO)) {
700  if (!IsMachO)
701  return true;
702 
703  const MCSymbolRefExpr *A = Res.getSymA();
704  const MCSymbolRefExpr *B = Res.getSymB();
705  // FIXME: This is small hack. Given
706  // a = b + 4
707  // .long a
708  // the OS X assembler will completely drop the 4. We should probably
709  // include it in the relocation or produce an error if that is not
710  // possible.
711  // Allow constant expressions.
712  if (!A && !B)
713  return true;
714  // Allows aliases with zero offset.
715  if (Res.getConstant() == 0 && (!A || !B))
716  return true;
717  }
718  }
719 
720  Res = MCValue::get(SRE, nullptr, 0);
721  return true;
722  }
723 
724  case Unary: {
725  const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
726  MCValue Value;
727 
728  if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, Layout, Fixup,
729  Addrs, InSet))
730  return false;
731 
732  switch (AUE->getOpcode()) {
733  case MCUnaryExpr::LNot:
734  if (!Value.isAbsolute())
735  return false;
736  Res = MCValue::get(!Value.getConstant());
737  break;
738  case MCUnaryExpr::Minus:
739  /// -(a - b + const) ==> (b - a - const)
740  if (Value.getSymA() && !Value.getSymB())
741  return false;
742 
743  // The cast avoids undefined behavior if the constant is INT64_MIN.
744  Res = MCValue::get(Value.getSymB(), Value.getSymA(),
745  -(uint64_t)Value.getConstant());
746  break;
747  case MCUnaryExpr::Not:
748  if (!Value.isAbsolute())
749  return false;
750  Res = MCValue::get(~Value.getConstant());
751  break;
752  case MCUnaryExpr::Plus:
753  Res = Value;
754  break;
755  }
756 
757  return true;
758  }
759 
760  case Binary: {
761  const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
762  MCValue LHSValue, RHSValue;
763 
764  if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, Layout, Fixup,
765  Addrs, InSet) ||
766  !ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, Layout, Fixup,
767  Addrs, InSet)) {
768  // Check if both are Target Expressions, see if we can compare them.
769  if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS()))
770  if (const MCTargetExpr *R = cast<MCTargetExpr>(ABE->getRHS())) {
771  switch (ABE->getOpcode()) {
772  case MCBinaryExpr::EQ:
773  Res = MCValue::get((L->isEqualTo(R)) ? -1 : 0);
774  return true;
775  case MCBinaryExpr::NE:
776  Res = MCValue::get((R->isEqualTo(R)) ? 0 : -1);
777  return true;
778  default: break;
779  }
780  }
781  return false;
782  }
783 
784  // We only support a few operations on non-constant expressions, handle
785  // those first.
786  if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
787  switch (ABE->getOpcode()) {
788  default:
789  return false;
790  case MCBinaryExpr::Sub:
791  // Negate RHS and add.
792  // The cast avoids undefined behavior if the constant is INT64_MIN.
793  return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
794  RHSValue.getSymB(), RHSValue.getSymA(),
795  -(uint64_t)RHSValue.getConstant(), Res);
796 
797  case MCBinaryExpr::Add:
798  return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
799  RHSValue.getSymA(), RHSValue.getSymB(),
800  RHSValue.getConstant(), Res);
801  }
802  }
803 
804  // FIXME: We need target hooks for the evaluation. It may be limited in
805  // width, and gas defines the result of comparisons differently from
806  // Apple as.
807  int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
808  int64_t Result = 0;
809  auto Op = ABE->getOpcode();
810  switch (Op) {
811  case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
812  case MCBinaryExpr::Add: Result = LHS + RHS; break;
813  case MCBinaryExpr::And: Result = LHS & RHS; break;
814  case MCBinaryExpr::Div:
815  case MCBinaryExpr::Mod:
816  // Handle division by zero. gas just emits a warning and keeps going,
817  // we try to be stricter.
818  // FIXME: Currently the caller of this function has no way to understand
819  // we're bailing out because of 'division by zero'. Therefore, it will
820  // emit a 'expected relocatable expression' error. It would be nice to
821  // change this code to emit a better diagnostic.
822  if (RHS == 0)
823  return false;
824  if (ABE->getOpcode() == MCBinaryExpr::Div)
825  Result = LHS / RHS;
826  else
827  Result = LHS % RHS;
828  break;
829  case MCBinaryExpr::EQ: Result = LHS == RHS; break;
830  case MCBinaryExpr::GT: Result = LHS > RHS; break;
831  case MCBinaryExpr::GTE: Result = LHS >= RHS; break;
832  case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
833  case MCBinaryExpr::LOr: Result = LHS || RHS; break;
834  case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
835  case MCBinaryExpr::LT: Result = LHS < RHS; break;
836  case MCBinaryExpr::LTE: Result = LHS <= RHS; break;
837  case MCBinaryExpr::Mul: Result = LHS * RHS; break;
838  case MCBinaryExpr::NE: Result = LHS != RHS; break;
839  case MCBinaryExpr::Or: Result = LHS | RHS; break;
840  case MCBinaryExpr::Shl: Result = uint64_t(LHS) << uint64_t(RHS); break;
841  case MCBinaryExpr::Sub: Result = LHS - RHS; break;
842  case MCBinaryExpr::Xor: Result = LHS ^ RHS; break;
843  }
844 
845  switch (Op) {
846  default:
847  Res = MCValue::get(Result);
848  break;
849  case MCBinaryExpr::EQ:
850  case MCBinaryExpr::GT:
851  case MCBinaryExpr::GTE:
852  case MCBinaryExpr::LT:
853  case MCBinaryExpr::LTE:
854  case MCBinaryExpr::NE:
855  // A comparison operator returns a -1 if true and 0 if false.
856  Res = MCValue::get(Result ? -1 : 0);
857  break;
858  }
859 
860  return true;
861  }
862  }
863 
864  llvm_unreachable("Invalid assembly expression kind!");
865 }
866 
868  switch (getKind()) {
869  case Target:
870  // We never look through target specific expressions.
871  return cast<MCTargetExpr>(this)->findAssociatedFragment();
872 
873  case Constant:
875 
876  case SymbolRef: {
877  const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
878  const MCSymbol &Sym = SRE->getSymbol();
879  return Sym.getFragment();
880  }
881 
882  case Unary:
883  return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();
884 
885  case Binary: {
886  const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
887  MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
888  MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();
889 
890  // If either is absolute, return the other.
892  return RHS_F;
894  return LHS_F;
895 
896  // Not always correct, but probably the best we can do without more context.
897  if (BE->getOpcode() == MCBinaryExpr::Sub)
899 
900  // Otherwise, return the first non-null fragment.
901  return LHS_F ? LHS_F : RHS_F;
902  }
903  }
904 
905  llvm_unreachable("Invalid assembly expression kind!");
906 }
Signed less than comparison (result is either 0 or some target-specific non-zero value).
Definition: MCExpr.h:430
Bitwise negation.
Definition: MCExpr.h:365
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Signed less than or equal comparison (result is either 0 or some target-specific non-zero value)...
Definition: MCExpr.h:432
This represents an "assembler immediate".
Definition: MCValue.h:40
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
VariantKind getKind() const
Definition: MCExpr.h:338
Bitwise and.
Definition: MCExpr.h:421
Multiplication.
Definition: MCExpr.h:435
Opcode getOpcode() const
Get the kind of this unary expression.
Definition: MCExpr.h:404
const MCExpr * getLHS() const
Get the left-hand side expression of the binary operator.
Definition: MCExpr.h:564
Unary plus.
Definition: MCExpr.h:366
STATISTIC(NumFunctions, "Total number of functions")
Equality comparison.
Definition: MCExpr.h:423
Bitwise or.
Definition: MCExpr.h:437
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition: MCFixup.h:74
int64_t getConstant() const
Definition: MCValue.h:47
const MCSymbolRefExpr * getSymB() const
Definition: MCValue.h:49
Encapsulates the layout of an assembly file at a particular point in time.
Definition: MCAsmLayout.h:29
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:36
This is an extension point for target-specific MCExpr subclasses to implement.
Definition: MCExpr.h:581
bool isInSection() const
isInSection - Check if this symbol is defined in some section (i.e., it is defined but not absolute)...
Definition: MCSymbol.h:252
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:166
Arithmetic shift right.
Definition: MCExpr.h:439
bool evaluateAsRelocatable(MCValue &Res, const MCAsmLayout *Layout, const MCFixup *Fixup) const
Try to evaluate the expression to a relocatable value, i.e.
Definition: MCExpr.cpp:647
const MCExpr * getRHS() const
Get the right-hand side expression of the binary operator.
Definition: MCExpr.h:567
Logical or.
Definition: MCExpr.h:429
Signed remainder.
Definition: MCExpr.h:434
Unary assembler expressions.
Definition: MCExpr.h:360
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
static bool canExpand(const MCSymbol &Sym, bool InSet)
Definition: MCExpr.cpp:661
Signed division.
Definition: MCExpr.h:422
MCAssembler & getAssembler() const
Get the assembler object this is a layout for.
Definition: MCAsmLayout.h:51
Unary expressions.
Definition: MCExpr.h:42
Shift left.
Definition: MCExpr.h:438
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens=false) const
Definition: MCExpr.cpp:42
This is an important base class in LLVM.
Definition: Constant.h:42
static bool EvaluateSymbolicAdd(const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS, const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst, MCValue &Res)
Evaluate the result of an add between (conceptually) two MCValues.
Definition: MCExpr.cpp:592
const MCSymbolRefExpr * getSymA() const
Definition: MCValue.h:48
Logical negation.
Definition: MCExpr.h:363
Logical and.
Definition: MCExpr.h:428
Binary assembler expressions.
Definition: MCExpr.h:417
bool hasSubsectionsViaSymbols() const
Definition: MCExpr.h:342
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static MCFragment * AbsolutePseudoFragment
Definition: MCSymbol.h:64
void printVariantKind(raw_ostream &OS) const
Definition: MCExpr.cpp:434
const MCSymbol & getSymbol() const
Definition: MCExpr.h:336
ExprKind getKind() const
Definition: MCExpr.h:73
MCFragment * getFragment(bool SetUsed=true) const
Definition: MCSymbol.h:384
bool evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const MCFixup *Fixup, const SectionAddrMap *Addrs, bool InSet) const
Definition: MCExpr.cpp:674
Inequality comparison.
Definition: MCExpr.h:436
Signed greater than comparison (result is either 0 or some target-specific non-zero value) ...
Definition: MCExpr.h:424
MCFragment * findAssociatedFragment() const
Find the "associated section" for this expression, which is currently defined as the absolute section...
Definition: MCExpr.cpp:867
Signed greater than or equal comparison (result is either 0 or some target-specific non-zero value)...
Definition: MCExpr.h:426
Target - Wrapper for Target specific information.
Bitwise exclusive or.
Definition: MCExpr.h:442
Logical shift right.
Definition: MCExpr.h:440
static MCValue get(const MCSymbolRefExpr *SymA, const MCSymbolRefExpr *SymB=nullptr, int64_t Val=0, uint32_t RefKind=0)
Definition: MCValue.h:63
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
References to labels and assigned expressions.
Definition: MCExpr.h:41
Unary minus.
Definition: MCExpr.h:364
bool evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const
Try to evaluate the expression to the form (a - b + constant) where neither a nor b are variables...
Definition: MCExpr.cpp:655
Opcode getOpcode() const
Get the kind of this binary expression.
Definition: MCExpr.h:561
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:203
const MCExpr * getVariableValue(bool SetUsed=true) const
getVariableValue - Get the value for variable symbols.
Definition: MCSymbol.h:299
const MCExpr * getSubExpr() const
Get the child of this unary expression.
Definition: MCExpr.h:407
LLVM Value Representation.
Definition: Value.h:73
Constant expressions.
Definition: MCExpr.h:40
Binary expressions.
Definition: MCExpr.h:39
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
Subtraction.
Definition: MCExpr.h:441
Target specific expression.
Definition: MCExpr.h:43
void print(raw_ostream &OS, const MCAsmInfo *MAI) const
print - Print the value to the stream OS.
Definition: MCSymbol.cpp:60