LLVM  8.0.1
ARMAsmPrinter.cpp
Go to the documentation of this file.
1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/Support/Debug.h"
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "asm-printer"
54 
56  std::unique_ptr<MCStreamer> Streamer)
57  : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
58  InConstantPool(false), OptimizationGoals(-1) {}
59 
61  // Make sure to terminate any constant pools that were at the end
62  // of the function.
63  if (!InConstantPool)
64  return;
65  InConstantPool = false;
66  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
67 }
68 
70  if (AFI->isThumbFunction()) {
71  OutStreamer->EmitAssemblerFlag(MCAF_Code16);
72  OutStreamer->EmitThumbFunc(CurrentFnSym);
73  } else {
74  OutStreamer->EmitAssemblerFlag(MCAF_Code32);
75  }
76  OutStreamer->EmitLabel(CurrentFnSym);
77 }
78 
80  uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
81  assert(Size && "C++ constructor pointer had zero size!");
82 
84  assert(GV && "C++ constructor pointer was not a GlobalValue!");
85 
86  const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
88  (Subtarget->isTargetELF()
91  OutContext);
92 
93  OutStreamer->EmitValue(E, Size);
94 }
95 
97  if (PromotedGlobals.count(GV))
98  // The global was promoted into a constant pool. It should not be emitted.
99  return;
101 }
102 
103 /// runOnMachineFunction - This uses the EmitInstruction()
104 /// method to print assembly for each instruction.
105 ///
107  AFI = MF.getInfo<ARMFunctionInfo>();
108  MCP = MF.getConstantPool();
109  Subtarget = &MF.getSubtarget<ARMSubtarget>();
110 
112  const Function &F = MF.getFunction();
113  const TargetMachine& TM = MF.getTarget();
114 
115  // Collect all globals that had their storage promoted to a constant pool.
116  // Functions are emitted before variables, so this accumulates promoted
117  // globals from all functions in PromotedGlobals.
118  for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
119  PromotedGlobals.insert(GV);
120 
121  // Calculate this function's optimization goal.
122  unsigned OptimizationGoal;
124  // For best debugging illusion, speed and small size sacrificed
125  OptimizationGoal = 6;
126  else if (F.optForMinSize())
127  // Aggressively for small size, speed and debug illusion sacrificed
128  OptimizationGoal = 4;
129  else if (F.optForSize())
130  // For small size, but speed and debugging illusion preserved
131  OptimizationGoal = 3;
132  else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
133  // Aggressively for speed, small size and debug illusion sacrificed
134  OptimizationGoal = 2;
135  else if (TM.getOptLevel() > CodeGenOpt::None)
136  // For speed, but small size and good debug illusion preserved
137  OptimizationGoal = 1;
138  else // TM.getOptLevel() == CodeGenOpt::None
139  // For good debugging, but speed and small size preserved
140  OptimizationGoal = 5;
141 
142  // Combine a new optimization goal with existing ones.
143  if (OptimizationGoals == -1) // uninitialized goals
144  OptimizationGoals = OptimizationGoal;
145  else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
146  OptimizationGoals = 0;
147 
148  if (Subtarget->isTargetCOFF()) {
149  bool Internal = F.hasInternalLinkage();
153 
154  OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
155  OutStreamer->EmitCOFFSymbolStorageClass(Scl);
156  OutStreamer->EmitCOFFSymbolType(Type);
157  OutStreamer->EndCOFFSymbolDef();
158  }
159 
160  // Emit the rest of the function body.
162 
163  // Emit the XRay table for this function.
164  emitXRayTable();
165 
166  // If we need V4T thumb mode Register Indirect Jump pads, emit them.
167  // These are created per function, rather than per TU, since it's
168  // relatively easy to exceed the thumb branch range within a TU.
169  if (! ThumbIndirectPads.empty()) {
170  OutStreamer->EmitAssemblerFlag(MCAF_Code16);
171  EmitAlignment(1);
172  for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
173  OutStreamer->EmitLabel(TIP.second);
175  .addReg(TIP.first)
176  // Add predicate operands.
177  .addImm(ARMCC::AL)
178  .addReg(0));
179  }
180  ThumbIndirectPads.clear();
181  }
182 
183  // We didn't modify anything.
184  return false;
185 }
186 
188  raw_ostream &O) {
189  const MachineOperand &MO = MI->getOperand(OpNum);
190  unsigned TF = MO.getTargetFlags();
191 
192  switch (MO.getType()) {
193  default: llvm_unreachable("<unknown operand type>");
195  unsigned Reg = MO.getReg();
197  assert(!MO.getSubReg() && "Subregs should be eliminated!");
198  if(ARM::GPRPairRegClass.contains(Reg)) {
199  const MachineFunction &MF = *MI->getParent()->getParent();
201  Reg = TRI->getSubReg(Reg, ARM::gsub_0);
202  }
204  break;
205  }
207  int64_t Imm = MO.getImm();
208  O << '#';
209  if (TF == ARMII::MO_LO16)
210  O << ":lower16:";
211  else if (TF == ARMII::MO_HI16)
212  O << ":upper16:";
213  O << Imm;
214  break;
215  }
217  MO.getMBB()->getSymbol()->print(O, MAI);
218  return;
220  const GlobalValue *GV = MO.getGlobal();
221  if (TF & ARMII::MO_LO16)
222  O << ":lower16:";
223  else if (TF & ARMII::MO_HI16)
224  O << ":upper16:";
225  GetARMGVSymbol(GV, TF)->print(O, MAI);
226 
227  printOffset(MO.getOffset(), O);
228  break;
229  }
231  if (Subtarget->genExecuteOnly())
232  llvm_unreachable("execute-only should not generate constant pools");
233  GetCPISymbol(MO.getIndex())->print(O, MAI);
234  break;
235  }
236 }
237 
238 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
239  // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
240  // indexes in MachineConstantPool, which isn't in sync with indexes used here.
241  const DataLayout &DL = getDataLayout();
243  "CPI" + Twine(getFunctionNumber()) + "_" +
244  Twine(CPID));
245 }
246 
247 //===--------------------------------------------------------------------===//
248 
249 MCSymbol *ARMAsmPrinter::
250 GetARMJTIPICJumpTableLabel(unsigned uid) const {
251  const DataLayout &DL = getDataLayout();
253  raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
254  << getFunctionNumber() << '_' << uid;
255  return OutContext.getOrCreateSymbol(Name);
256 }
257 
258 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
259  unsigned AsmVariant, const char *ExtraCode,
260  raw_ostream &O) {
261  // Does this asm operand have a single letter operand modifier?
262  if (ExtraCode && ExtraCode[0]) {
263  if (ExtraCode[1] != 0) return true; // Unknown modifier.
264 
265  switch (ExtraCode[0]) {
266  default:
267  // See if this is a generic print operand
268  return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
269  case 'a': // Print as a memory address.
270  if (MI->getOperand(OpNum).isReg()) {
271  O << "["
273  << "]";
274  return false;
275  }
277  case 'c': // Don't print "#" before an immediate operand.
278  if (!MI->getOperand(OpNum).isImm())
279  return true;
280  O << MI->getOperand(OpNum).getImm();
281  return false;
282  case 'P': // Print a VFP double precision register.
283  case 'q': // Print a NEON quad precision register.
284  printOperand(MI, OpNum, O);
285  return false;
286  case 'y': // Print a VFP single precision register as indexed double.
287  if (MI->getOperand(OpNum).isReg()) {
288  unsigned Reg = MI->getOperand(OpNum).getReg();
290  // Find the 'd' register that has this 's' register as a sub-register,
291  // and determine the lane number.
292  for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
293  if (!ARM::DPRRegClass.contains(*SR))
294  continue;
295  bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
296  O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
297  return false;
298  }
299  }
300  return true;
301  case 'B': // Bitwise inverse of integer or symbol without a preceding #.
302  if (!MI->getOperand(OpNum).isImm())
303  return true;
304  O << ~(MI->getOperand(OpNum).getImm());
305  return false;
306  case 'L': // The low 16 bits of an immediate constant.
307  if (!MI->getOperand(OpNum).isImm())
308  return true;
309  O << (MI->getOperand(OpNum).getImm() & 0xffff);
310  return false;
311  case 'M': { // A register range suitable for LDM/STM.
312  if (!MI->getOperand(OpNum).isReg())
313  return true;
314  const MachineOperand &MO = MI->getOperand(OpNum);
315  unsigned RegBegin = MO.getReg();
316  // This takes advantage of the 2 operand-ness of ldm/stm and that we've
317  // already got the operands in registers that are operands to the
318  // inline asm statement.
319  O << "{";
320  if (ARM::GPRPairRegClass.contains(RegBegin)) {
322  unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
323  O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
324  RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
325  }
326  O << ARMInstPrinter::getRegisterName(RegBegin);
327 
328  // FIXME: The register allocator not only may not have given us the
329  // registers in sequence, but may not be in ascending registers. This
330  // will require changes in the register allocator that'll need to be
331  // propagated down here if the operands change.
332  unsigned RegOps = OpNum + 1;
333  while (MI->getOperand(RegOps).isReg()) {
334  O << ", "
336  RegOps++;
337  }
338 
339  O << "}";
340 
341  return false;
342  }
343  case 'R': // The most significant register of a pair.
344  case 'Q': { // The least significant register of a pair.
345  if (OpNum == 0)
346  return true;
347  const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
348  if (!FlagsOP.isImm())
349  return true;
350  unsigned Flags = FlagsOP.getImm();
351 
352  // This operand may not be the one that actually provides the register. If
353  // it's tied to a previous one then we should refer instead to that one
354  // for registers and their classes.
355  unsigned TiedIdx;
356  if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
357  for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
358  unsigned OpFlags = MI->getOperand(OpNum).getImm();
359  OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
360  }
361  Flags = MI->getOperand(OpNum).getImm();
362 
363  // Later code expects OpNum to be pointing at the register rather than
364  // the flags.
365  OpNum += 1;
366  }
367 
368  unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
369  unsigned RC;
370  bool FirstHalf;
371  const ARMBaseTargetMachine &ATM =
372  static_cast<const ARMBaseTargetMachine &>(TM);
373 
374  // 'Q' should correspond to the low order register and 'R' to the high
375  // order register. Whether this corresponds to the upper or lower half
376  // depends on the endianess mode.
377  if (ExtraCode[0] == 'Q')
378  FirstHalf = ATM.isLittleEndian();
379  else
380  // ExtraCode[0] == 'R'.
381  FirstHalf = !ATM.isLittleEndian();
383  if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
384  ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
385  if (NumVals != 1)
386  return true;
387  const MachineOperand &MO = MI->getOperand(OpNum);
388  if (!MO.isReg())
389  return true;
391  unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ?
392  ARM::gsub_0 : ARM::gsub_1);
394  return false;
395  }
396  if (NumVals != 2)
397  return true;
398  unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
399  if (RegOp >= MI->getNumOperands())
400  return true;
401  const MachineOperand &MO = MI->getOperand(RegOp);
402  if (!MO.isReg())
403  return true;
404  unsigned Reg = MO.getReg();
406  return false;
407  }
408 
409  case 'e': // The low doubleword register of a NEON quad register.
410  case 'f': { // The high doubleword register of a NEON quad register.
411  if (!MI->getOperand(OpNum).isReg())
412  return true;
413  unsigned Reg = MI->getOperand(OpNum).getReg();
414  if (!ARM::QPRRegClass.contains(Reg))
415  return true;
417  unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
418  ARM::dsub_0 : ARM::dsub_1);
419  O << ARMInstPrinter::getRegisterName(SubReg);
420  return false;
421  }
422 
423  // This modifier is not yet supported.
424  case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
425  return true;
426  case 'H': { // The highest-numbered register of a pair.
427  const MachineOperand &MO = MI->getOperand(OpNum);
428  if (!MO.isReg())
429  return true;
430  const MachineFunction &MF = *MI->getParent()->getParent();
432  unsigned Reg = MO.getReg();
433  if(!ARM::GPRPairRegClass.contains(Reg))
434  return false;
435  Reg = TRI->getSubReg(Reg, ARM::gsub_1);
437  return false;
438  }
439  }
440  }
441 
442  printOperand(MI, OpNum, O);
443  return false;
444 }
445 
447  unsigned OpNum, unsigned AsmVariant,
448  const char *ExtraCode,
449  raw_ostream &O) {
450  // Does this asm operand have a single letter operand modifier?
451  if (ExtraCode && ExtraCode[0]) {
452  if (ExtraCode[1] != 0) return true; // Unknown modifier.
453 
454  switch (ExtraCode[0]) {
455  case 'A': // A memory operand for a VLD1/VST1 instruction.
456  default: return true; // Unknown modifier.
457  case 'm': // The base register of a memory operand.
458  if (!MI->getOperand(OpNum).isReg())
459  return true;
461  return false;
462  }
463  }
464 
465  const MachineOperand &MO = MI->getOperand(OpNum);
466  assert(MO.isReg() && "unexpected inline asm memory operand");
467  O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
468  return false;
469 }
470 
471 static bool isThumb(const MCSubtargetInfo& STI) {
472  return STI.getFeatureBits()[ARM::ModeThumb];
473 }
474 
476  const MCSubtargetInfo *EndInfo) const {
477  // If either end mode is unknown (EndInfo == NULL) or different than
478  // the start mode, then restore the start mode.
479  const bool WasThumb = isThumb(StartInfo);
480  if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
481  OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
482  }
483 }
484 
486  const Triple &TT = TM.getTargetTriple();
487  // Use unified assembler syntax.
488  OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
489 
490  // Emit ARM Build Attributes
491  if (TT.isOSBinFormatELF())
492  emitAttributes();
493 
494  // Use the triple's architecture and subarchitecture to determine
495  // if we're thumb for the purposes of the top level code16 assembler
496  // flag.
497  if (!M.getModuleInlineAsm().empty() && TT.isThumb())
498  OutStreamer->EmitAssemblerFlag(MCAF_Code16);
499 }
500 
501 static void
504  // L_foo$stub:
505  OutStreamer.EmitLabel(StubLabel);
506  // .indirect_symbol _foo
507  OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
508 
509  if (MCSym.getInt())
510  // External to current translation unit.
511  OutStreamer.EmitIntValue(0, 4/*size*/);
512  else
513  // Internal to current translation unit.
514  //
515  // When we place the LSDA into the TEXT section, the type info
516  // pointers need to be indirect and pc-rel. We accomplish this by
517  // using NLPs; however, sometimes the types are local to the file.
518  // We need to fill in the value for the NLP in those cases.
519  OutStreamer.EmitValue(
520  MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
521  4 /*size*/);
522 }
523 
524 
526  const Triple &TT = TM.getTargetTriple();
527  if (TT.isOSBinFormatMachO()) {
528  // All darwin targets use mach-o.
529  const TargetLoweringObjectFileMachO &TLOFMacho =
530  static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
531  MachineModuleInfoMachO &MMIMacho =
533 
534  // Output non-lazy-pointers for external and common global variables.
536 
537  if (!Stubs.empty()) {
538  // Switch with ".non_lazy_symbol_pointer" directive.
539  OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
540  EmitAlignment(2);
541 
542  for (auto &Stub : Stubs)
543  emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
544 
545  Stubs.clear();
546  OutStreamer->AddBlankLine();
547  }
548 
549  Stubs = MMIMacho.GetThreadLocalGVStubList();
550  if (!Stubs.empty()) {
551  // Switch with ".non_lazy_symbol_pointer" directive.
552  OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
553  EmitAlignment(2);
554 
555  for (auto &Stub : Stubs)
556  emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
557 
558  Stubs.clear();
559  OutStreamer->AddBlankLine();
560  }
561 
562  // Funny Darwin hack: This flag tells the linker that no global symbols
563  // contain code that falls through to other global symbols (e.g. the obvious
564  // implementation of multiple entry points). If this doesn't occur, the
565  // linker can safely perform dead code stripping. Since LLVM never
566  // generates code that does this, it is always safe to set.
567  OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
568  }
569 
570  // The last attribute to be emitted is ABI_optimization_goals
571  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
572  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
573 
574  if (OptimizationGoals > 0 &&
575  (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
576  Subtarget->isTargetMuslAEABI()))
578  OptimizationGoals = -1;
579 
581 }
582 
583 //===----------------------------------------------------------------------===//
584 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
585 // FIXME:
586 // The following seem like one-off assembler flags, but they actually need
587 // to appear in the .ARM.attributes section in ELF.
588 // Instead of subclassing the MCELFStreamer, we do the work here.
589 
590 // Returns true if all functions have the same function attribute value.
591 // It also returns true when the module has no functions.
593  StringRef Value) {
594  return !any_of(M, [&](const Function &F) {
595  return F.getFnAttribute(Attr).getValueAsString() != Value;
596  });
597 }
598 
599 void ARMAsmPrinter::emitAttributes() {
600  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
601  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
602 
604 
605  ATS.switchVendor("aeabi");
606 
607  // Compute ARM ELF Attributes based on the default subtarget that
608  // we'd have constructed. The existing ARM behavior isn't LTO clean
609  // anyhow.
610  // FIXME: For ifunc related functions we could iterate over and look
611  // for a feature string that doesn't match the default one.
612  const Triple &TT = TM.getTargetTriple();
613  StringRef CPU = TM.getTargetCPU();
615  std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
616  if (!FS.empty()) {
617  if (!ArchFS.empty())
618  ArchFS = (Twine(ArchFS) + "," + FS).str();
619  else
620  ArchFS = FS;
621  }
622  const ARMBaseTargetMachine &ATM =
623  static_cast<const ARMBaseTargetMachine &>(TM);
624  const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
625 
626  // Emit build attributes for the available hardware.
627  ATS.emitTargetAttributes(STI);
628 
629  // RW data addressing.
630  if (isPositionIndependent()) {
633  } else if (STI.isRWPI()) {
634  // RWPI specific attributes.
637  }
638 
639  // RO data addressing.
640  if (isPositionIndependent() || STI.isROPI()) {
643  }
644 
645  // GOT use.
646  if (isPositionIndependent()) {
649  } else {
652  }
653 
654  // Set FP Denormals.
656  "denormal-fp-math",
657  "preserve-sign") ||
662  "denormal-fp-math",
663  "positive-zero") ||
667  else if (!TM.Options.UnsafeFPMath)
670  else {
671  if (!STI.hasVFP2()) {
672  // When the target doesn't have an FPU (by design or
673  // intention), the assumptions made on the software support
674  // mirror that of the equivalent hardware support *if it
675  // existed*. For v7 and better we indicate that denormals are
676  // flushed preserving sign, and for V6 we indicate that
677  // denormals are flushed to positive zero.
678  if (STI.hasV7Ops())
681  } else if (STI.hasVFP3()) {
682  // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
683  // the sign bit of the zero matches the sign bit of the input or
684  // result that is being flushed to zero.
687  }
688  // For VFPv2 implementations it is implementation defined as
689  // to whether denormals are flushed to positive zero or to
690  // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
691  // LLVM has chosen to flush this to positive zero (most likely for
692  // GCC compatibility), so that's the chosen value here (the
693  // absence of its emission implies zero).
694  }
695 
696  // Set FP exceptions and rounding
698  "no-trapping-math", "true") ||
702  else if (!TM.Options.UnsafeFPMath) {
704 
705  // If the user has permitted this code to choose the IEEE 754
706  // rounding at run-time, emit the rounding attribute.
709  }
710 
711  // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
712  // equivalent of GCC's -ffinite-math-only flag.
716  else
719 
720  // FIXME: add more flags to ARMBuildAttributes.h
721  // 8-bytes alignment stuff.
724 
725  // Hard float. Use both S and D registers and conform to AAPCS-VFP.
726  if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
728 
729  // FIXME: To support emitting this build attribute as GCC does, the
730  // -mfp16-format option and associated plumbing must be
731  // supported. For now the __fp16 type is exposed by default, so this
732  // attribute should be emitted with value 1.
735 
736  if (MMI) {
737  if (const Module *SourceModule = MMI->getModule()) {
738  // ABI_PCS_wchar_t to indicate wchar_t width
739  // FIXME: There is no way to emit value 0 (wchar_t prohibited).
740  if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
741  SourceModule->getModuleFlag("wchar_size"))) {
742  int WCharWidth = WCharWidthValue->getZExtValue();
743  assert((WCharWidth == 2 || WCharWidth == 4) &&
744  "wchar_t width must be 2 or 4 bytes");
746  }
747 
748  // ABI_enum_size to indicate enum width
749  // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
750  // (all enums contain a value needing 32 bits to encode).
751  if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
752  SourceModule->getModuleFlag("min_enum_size"))) {
753  int EnumWidth = EnumWidthValue->getZExtValue();
754  assert((EnumWidth == 1 || EnumWidth == 4) &&
755  "Minimum enum width must be 1 or 4 bytes");
756  int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
757  ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
758  }
759  }
760  }
761 
762  // We currently do not support using R9 as the TLS pointer.
763  if (STI.isRWPI())
766  else if (STI.isR9Reserved())
769  else
772 }
773 
774 //===----------------------------------------------------------------------===//
775 
777  unsigned LabelId, MCContext &Ctx) {
778 
779  MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
780  + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
781  return Label;
782 }
783 
786  switch (Modifier) {
787  case ARMCP::no_modifier:
789  case ARMCP::TLSGD:
791  case ARMCP::TPOFF:
793  case ARMCP::GOTTPOFF:
795  case ARMCP::SBREL:
797  case ARMCP::GOT_PREL:
799  case ARMCP::SECREL:
801  }
802  llvm_unreachable("Invalid ARMCPModifier!");
803 }
804 
805 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
806  unsigned char TargetFlags) {
807  if (Subtarget->isTargetMachO()) {
808  bool IsIndirect =
809  (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
810 
811  if (!IsIndirect)
812  return getSymbol(GV);
813 
814  // FIXME: Remove this when Darwin transition to @GOT like syntax.
815  MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
816  MachineModuleInfoMachO &MMIMachO =
819  GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
820  : MMIMachO.getGVStubEntry(MCSym);
821 
822  if (!StubSym.getPointer())
824  !GV->hasInternalLinkage());
825  return MCSym;
826  } else if (Subtarget->isTargetCOFF()) {
827  assert(Subtarget->isTargetWindows() &&
828  "Windows is the only supported COFF target");
829 
830  bool IsIndirect =
831  (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
832  if (!IsIndirect)
833  return getSymbol(GV);
834 
836  if (TargetFlags & ARMII::MO_DLLIMPORT)
837  Name = "__imp_";
838  else if (TargetFlags & ARMII::MO_COFFSTUB)
839  Name = ".refptr.";
840  getNameWithPrefix(Name, GV);
841 
842  MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
843 
844  if (TargetFlags & ARMII::MO_COFFSTUB) {
845  MachineModuleInfoCOFF &MMICOFF =
848  MMICOFF.getGVStubEntry(MCSym);
849 
850  if (!StubSym.getPointer())
851  StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
852  }
853 
854  return MCSym;
855  } else if (Subtarget->isTargetELF()) {
856  return getSymbol(GV);
857  }
858  llvm_unreachable("unexpected target");
859 }
860 
861 void ARMAsmPrinter::
863  const DataLayout &DL = getDataLayout();
864  int Size = DL.getTypeAllocSize(MCPV->getType());
865 
866  ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
867 
868  if (ACPV->isPromotedGlobal()) {
869  // This constant pool entry is actually a global whose storage has been
870  // promoted into the constant pool. This global may be referenced still
871  // by debug information, and due to the way AsmPrinter is set up, the debug
872  // info is immutable by the time we decide to promote globals to constant
873  // pools. Because of this, we need to ensure we emit a symbol for the global
874  // with private linkage (the default) so debug info can refer to it.
875  //
876  // However, if this global is promoted into several functions we must ensure
877  // we don't try and emit duplicate symbols!
878  auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
879  for (const auto *GV : ACPC->promotedGlobals()) {
880  if (!EmittedPromotedGlobalLabels.count(GV)) {
881  MCSymbol *GVSym = getSymbol(GV);
882  OutStreamer->EmitLabel(GVSym);
883  EmittedPromotedGlobalLabels.insert(GV);
884  }
885  }
886  return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
887  }
888 
889  MCSymbol *MCSym;
890  if (ACPV->isLSDA()) {
891  MCSym = getCurExceptionSym();
892  } else if (ACPV->isBlockAddress()) {
893  const BlockAddress *BA =
894  cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
895  MCSym = GetBlockAddressSymbol(BA);
896  } else if (ACPV->isGlobalValue()) {
897  const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
898 
899  // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
900  // flag the global as MO_NONLAZY.
901  unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
902  MCSym = GetARMGVSymbol(GV, TF);
903  } else if (ACPV->isMachineBasicBlock()) {
904  const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
905  MCSym = MBB->getSymbol();
906  } else {
907  assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
908  auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
909  MCSym = GetExternalSymbolSymbol(Sym);
910  }
911 
912  // Create an MCSymbol for the reference.
913  const MCExpr *Expr =
915  OutContext);
916 
917  if (ACPV->getPCAdjustment()) {
918  MCSymbol *PCLabel =
920  ACPV->getLabelId(), OutContext);
921  const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
922  PCRelExpr =
923  MCBinaryExpr::createAdd(PCRelExpr,
925  OutContext),
926  OutContext);
927  if (ACPV->mustAddCurrentAddress()) {
928  // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
929  // label, so just emit a local label end reference that instead.
931  OutStreamer->EmitLabel(DotSym);
932  const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
933  PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
934  }
935  Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
936  }
937  OutStreamer->EmitValue(Expr, Size);
938 }
939 
941  const MachineOperand &MO1 = MI->getOperand(1);
942  unsigned JTI = MO1.getIndex();
943 
944  // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
945  // ARM mode tables.
946  EmitAlignment(2);
947 
948  // Emit a label for the jump table.
949  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
950  OutStreamer->EmitLabel(JTISymbol);
951 
952  // Mark the jump table as data-in-code.
953  OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
954 
955  // Emit each entry of the table.
956  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
957  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
958  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
959 
960  for (MachineBasicBlock *MBB : JTBBs) {
961  // Construct an MCExpr for the entry. We want a value of the form:
962  // (BasicBlockAddr - TableBeginAddr)
963  //
964  // For example, a table with entries jumping to basic blocks BB0 and BB1
965  // would look like:
966  // LJTI_0_0:
967  // .word (LBB0 - LJTI_0_0)
968  // .word (LBB1 - LJTI_0_0)
969  const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
970 
971  if (isPositionIndependent() || Subtarget->isROPI())
972  Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
973  OutContext),
974  OutContext);
975  // If we're generating a table of Thumb addresses in static relocation
976  // model, we need to add one to keep interworking correctly.
977  else if (AFI->isThumbFunction())
979  OutContext);
980  OutStreamer->EmitValue(Expr, 4);
981  }
982  // Mark the end of jump table data-in-code region.
983  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
984 }
985 
987  const MachineOperand &MO1 = MI->getOperand(1);
988  unsigned JTI = MO1.getIndex();
989 
990  // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
991  // ARM mode tables.
992  EmitAlignment(2);
993 
994  // Emit a label for the jump table.
995  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
996  OutStreamer->EmitLabel(JTISymbol);
997 
998  // Emit each entry of the table.
999  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1000  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1001  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1002 
1003  for (MachineBasicBlock *MBB : JTBBs) {
1004  const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1005  OutContext);
1006  // If this isn't a TBB or TBH, the entries are direct branch instructions.
1008  .addExpr(MBBSymbolExpr)
1009  .addImm(ARMCC::AL)
1010  .addReg(0));
1011  }
1012 }
1013 
1015  unsigned OffsetWidth) {
1016  assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1017  const MachineOperand &MO1 = MI->getOperand(1);
1018  unsigned JTI = MO1.getIndex();
1019 
1020  if (Subtarget->isThumb1Only())
1021  EmitAlignment(2);
1022 
1023  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1024  OutStreamer->EmitLabel(JTISymbol);
1025 
1026  // Emit each entry of the table.
1027  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1028  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1029  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1030 
1031  // Mark the jump table as data-in-code.
1032  OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1034 
1035  for (auto MBB : JTBBs) {
1036  const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1037  OutContext);
1038  // Otherwise it's an offset from the dispatch instruction. Construct an
1039  // MCExpr for the entry. We want a value of the form:
1040  // (BasicBlockAddr - TBBInstAddr + 4) / 2
1041  //
1042  // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1043  // would look like:
1044  // LJTI_0_0:
1045  // .byte (LBB0 - (LCPI0_0 + 4)) / 2
1046  // .byte (LBB1 - (LCPI0_0 + 4)) / 2
1047  // where LCPI0_0 is a label defined just before the TBB instruction using
1048  // this table.
1049  MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1050  const MCExpr *Expr = MCBinaryExpr::createAdd(
1053  Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1055  OutContext);
1056  OutStreamer->EmitValue(Expr, OffsetWidth);
1057  }
1058  // Mark the end of jump table data-in-code region. 32-bit offsets use
1059  // actual branch instructions here, so we don't mark those as a data-region
1060  // at all.
1061  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1062 
1063  // Make sure the next instruction is 2-byte aligned.
1064  EmitAlignment(1);
1065 }
1066 
1067 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1069  "Only instruction which are involved into frame setup code are allowed");
1070 
1071  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1072  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1073  const MachineFunction &MF = *MI->getParent()->getParent();
1074  const TargetRegisterInfo *TargetRegInfo =
1076  const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
1077  const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1078 
1079  unsigned FramePtr = TargetRegInfo->getFrameRegister(MF);
1080  unsigned Opc = MI->getOpcode();
1081  unsigned SrcReg, DstReg;
1082 
1083  if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1084  // Two special cases:
1085  // 1) tPUSH does not have src/dst regs.
1086  // 2) for Thumb1 code we sometimes materialize the constant via constpool
1087  // load. Yes, this is pretty fragile, but for now I don't see better
1088  // way... :(
1089  SrcReg = DstReg = ARM::SP;
1090  } else {
1091  SrcReg = MI->getOperand(1).getReg();
1092  DstReg = MI->getOperand(0).getReg();
1093  }
1094 
1095  // Try to figure out the unwinding opcode out of src / dst regs.
1096  if (MI->mayStore()) {
1097  // Register saves.
1098  assert(DstReg == ARM::SP &&
1099  "Only stack pointer as a destination reg is supported");
1100 
1101  SmallVector<unsigned, 4> RegList;
1102  // Skip src & dst reg, and pred ops.
1103  unsigned StartOp = 2 + 2;
1104  // Use all the operands.
1105  unsigned NumOffset = 0;
1106  // Amount of SP adjustment folded into a push.
1107  unsigned Pad = 0;
1108 
1109  switch (Opc) {
1110  default:
1111  MI->print(errs());
1112  llvm_unreachable("Unsupported opcode for unwinding information");
1113  case ARM::tPUSH:
1114  // Special case here: no src & dst reg, but two extra imp ops.
1115  StartOp = 2; NumOffset = 2;
1117  case ARM::STMDB_UPD:
1118  case ARM::t2STMDB_UPD:
1119  case ARM::VSTMDDB_UPD:
1120  assert(SrcReg == ARM::SP &&
1121  "Only stack pointer as a source reg is supported");
1122  for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1123  i != NumOps; ++i) {
1124  const MachineOperand &MO = MI->getOperand(i);
1125  // Actually, there should never be any impdef stuff here. Skip it
1126  // temporary to workaround PR11902.
1127  if (MO.isImplicit())
1128  continue;
1129  // Registers, pushed as a part of folding an SP update into the
1130  // push instruction are marked as undef and should not be
1131  // restored when unwinding, because the function can modify the
1132  // corresponding stack slots.
1133  if (MO.isUndef()) {
1134  assert(RegList.empty() &&
1135  "Pad registers must come before restored ones");
1136  unsigned Width =
1137  TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
1138  Pad += Width;
1139  continue;
1140  }
1141  RegList.push_back(MO.getReg());
1142  }
1143  break;
1144  case ARM::STR_PRE_IMM:
1145  case ARM::STR_PRE_REG:
1146  case ARM::t2STR_PRE:
1147  assert(MI->getOperand(2).getReg() == ARM::SP &&
1148  "Only stack pointer as a source reg is supported");
1149  RegList.push_back(SrcReg);
1150  break;
1151  }
1153  ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1154  // Account for the SP adjustment, folded into the push.
1155  if (Pad)
1156  ATS.emitPad(Pad);
1157  }
1158  } else {
1159  // Changes of stack / frame pointer.
1160  if (SrcReg == ARM::SP) {
1161  int64_t Offset = 0;
1162  switch (Opc) {
1163  default:
1164  MI->print(errs());
1165  llvm_unreachable("Unsupported opcode for unwinding information");
1166  case ARM::MOVr:
1167  case ARM::tMOVr:
1168  Offset = 0;
1169  break;
1170  case ARM::ADDri:
1171  case ARM::t2ADDri:
1172  Offset = -MI->getOperand(2).getImm();
1173  break;
1174  case ARM::SUBri:
1175  case ARM::t2SUBri:
1176  Offset = MI->getOperand(2).getImm();
1177  break;
1178  case ARM::tSUBspi:
1179  Offset = MI->getOperand(2).getImm()*4;
1180  break;
1181  case ARM::tADDspi:
1182  case ARM::tADDrSPi:
1183  Offset = -MI->getOperand(2).getImm()*4;
1184  break;
1185  case ARM::tLDRpci: {
1186  // Grab the constpool index and check, whether it corresponds to
1187  // original or cloned constpool entry.
1188  unsigned CPI = MI->getOperand(1).getIndex();
1189  const MachineConstantPool *MCP = MF.getConstantPool();
1190  if (CPI >= MCP->getConstants().size())
1191  CPI = AFI.getOriginalCPIdx(CPI);
1192  assert(CPI != -1U && "Invalid constpool index");
1193 
1194  // Derive the actual offset.
1195  const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1196  assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1197  // FIXME: Check for user, it should be "add" instruction!
1198  Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1199  break;
1200  }
1201  }
1202 
1204  if (DstReg == FramePtr && FramePtr != ARM::SP)
1205  // Set-up of the frame pointer. Positive values correspond to "add"
1206  // instruction.
1207  ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1208  else if (DstReg == ARM::SP) {
1209  // Change of SP by an offset. Positive values correspond to "sub"
1210  // instruction.
1211  ATS.emitPad(Offset);
1212  } else {
1213  // Move of SP to a register. Positive values correspond to an "add"
1214  // instruction.
1215  ATS.emitMovSP(DstReg, -Offset);
1216  }
1217  }
1218  } else if (DstReg == ARM::SP) {
1219  MI->print(errs());
1220  llvm_unreachable("Unsupported opcode for unwinding information");
1221  }
1222  else {
1223  MI->print(errs());
1224  llvm_unreachable("Unsupported opcode for unwinding information");
1225  }
1226  }
1227 }
1228 
1229 // Simple pseudo-instructions have their lowering (with expansion to real
1230 // instructions) auto-generated.
1231 #include "ARMGenMCPseudoLowering.inc"
1232 
1234  const DataLayout &DL = getDataLayout();
1235  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1236  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1237 
1238  const MachineFunction &MF = *MI->getParent()->getParent();
1239  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
1240  unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
1241 
1242  // If we just ended a constant pool, mark it as such.
1243  if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1244  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1245  InConstantPool = false;
1246  }
1247 
1248  // Emit unwinding stuff for frame-related instructions
1249  if (Subtarget->isTargetEHABICompatible() &&
1251  EmitUnwindingInstruction(MI);
1252 
1253  // Do any auto-generated pseudo lowerings.
1254  if (emitPseudoExpansionLowering(*OutStreamer, MI))
1255  return;
1256 
1258  "Pseudo flag setting opcode should be expanded early");
1259 
1260  // Check for manual lowerings.
1261  unsigned Opc = MI->getOpcode();
1262  switch (Opc) {
1263  case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1264  case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1265  case ARM::LEApcrel:
1266  case ARM::tLEApcrel:
1267  case ARM::t2LEApcrel: {
1268  // FIXME: Need to also handle globals and externals
1269  MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1271  ARM::t2LEApcrel ? ARM::t2ADR
1272  : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1273  : ARM::ADR))
1274  .addReg(MI->getOperand(0).getReg())
1275  .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1276  // Add predicate operands.
1277  .addImm(MI->getOperand(2).getImm())
1278  .addReg(MI->getOperand(3).getReg()));
1279  return;
1280  }
1281  case ARM::LEApcrelJT:
1282  case ARM::tLEApcrelJT:
1283  case ARM::t2LEApcrelJT: {
1284  MCSymbol *JTIPICSymbol =
1285  GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1287  ARM::t2LEApcrelJT ? ARM::t2ADR
1288  : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1289  : ARM::ADR))
1290  .addReg(MI->getOperand(0).getReg())
1291  .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1292  // Add predicate operands.
1293  .addImm(MI->getOperand(2).getImm())
1294  .addReg(MI->getOperand(3).getReg()));
1295  return;
1296  }
1297  // Darwin call instructions are just normal call instructions with different
1298  // clobber semantics (they clobber R9).
1299  case ARM::BX_CALL: {
1301  .addReg(ARM::LR)
1302  .addReg(ARM::PC)
1303  // Add predicate operands.
1304  .addImm(ARMCC::AL)
1305  .addReg(0)
1306  // Add 's' bit operand (always reg0 for this)
1307  .addReg(0));
1308 
1309  assert(Subtarget->hasV4TOps());
1311  .addReg(MI->getOperand(0).getReg()));
1312  return;
1313  }
1314  case ARM::tBX_CALL: {
1315  if (Subtarget->hasV5TOps())
1316  llvm_unreachable("Expected BLX to be selected for v5t+");
1317 
1318  // On ARM v4t, when doing a call from thumb mode, we need to ensure
1319  // that the saved lr has its LSB set correctly (the arch doesn't
1320  // have blx).
1321  // So here we generate a bl to a small jump pad that does bx rN.
1322  // The jump pads are emitted after the function body.
1323 
1324  unsigned TReg = MI->getOperand(0).getReg();
1325  MCSymbol *TRegSym = nullptr;
1326  for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1327  if (TIP.first == TReg) {
1328  TRegSym = TIP.second;
1329  break;
1330  }
1331  }
1332 
1333  if (!TRegSym) {
1334  TRegSym = OutContext.createTempSymbol();
1335  ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1336  }
1337 
1338  // Create a link-saving branch to the Reg Indirect Jump Pad.
1340  // Predicate comes first here.
1341  .addImm(ARMCC::AL).addReg(0)
1342  .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1343  return;
1344  }
1345  case ARM::BMOVPCRX_CALL: {
1347  .addReg(ARM::LR)
1348  .addReg(ARM::PC)
1349  // Add predicate operands.
1350  .addImm(ARMCC::AL)
1351  .addReg(0)
1352  // Add 's' bit operand (always reg0 for this)
1353  .addReg(0));
1354 
1356  .addReg(ARM::PC)
1357  .addReg(MI->getOperand(0).getReg())
1358  // Add predicate operands.
1359  .addImm(ARMCC::AL)
1360  .addReg(0)
1361  // Add 's' bit operand (always reg0 for this)
1362  .addReg(0));
1363  return;
1364  }
1365  case ARM::BMOVPCB_CALL: {
1367  .addReg(ARM::LR)
1368  .addReg(ARM::PC)
1369  // Add predicate operands.
1370  .addImm(ARMCC::AL)
1371  .addReg(0)
1372  // Add 's' bit operand (always reg0 for this)
1373  .addReg(0));
1374 
1375  const MachineOperand &Op = MI->getOperand(0);
1376  const GlobalValue *GV = Op.getGlobal();
1377  const unsigned TF = Op.getTargetFlags();
1378  MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1379  const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1381  .addExpr(GVSymExpr)
1382  // Add predicate operands.
1383  .addImm(ARMCC::AL)
1384  .addReg(0));
1385  return;
1386  }
1387  case ARM::MOVi16_ga_pcrel:
1388  case ARM::t2MOVi16_ga_pcrel: {
1389  MCInst TmpInst;
1390  TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1391  TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1392 
1393  unsigned TF = MI->getOperand(1).getTargetFlags();
1394  const GlobalValue *GV = MI->getOperand(1).getGlobal();
1395  MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1396  const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1397 
1398  MCSymbol *LabelSym =
1400  MI->getOperand(2).getImm(), OutContext);
1401  const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1402  unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1403  const MCExpr *PCRelExpr =
1405  MCBinaryExpr::createAdd(LabelSymExpr,
1408  TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1409 
1410  // Add predicate operands.
1412  TmpInst.addOperand(MCOperand::createReg(0));
1413  // Add 's' bit operand (always reg0 for this)
1414  TmpInst.addOperand(MCOperand::createReg(0));
1415  EmitToStreamer(*OutStreamer, TmpInst);
1416  return;
1417  }
1418  case ARM::MOVTi16_ga_pcrel:
1419  case ARM::t2MOVTi16_ga_pcrel: {
1420  MCInst TmpInst;
1421  TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1422  ? ARM::MOVTi16 : ARM::t2MOVTi16);
1423  TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1424  TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1425 
1426  unsigned TF = MI->getOperand(2).getTargetFlags();
1427  const GlobalValue *GV = MI->getOperand(2).getGlobal();
1428  MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1429  const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1430 
1431  MCSymbol *LabelSym =
1433  MI->getOperand(3).getImm(), OutContext);
1434  const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1435  unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1436  const MCExpr *PCRelExpr =
1438  MCBinaryExpr::createAdd(LabelSymExpr,
1441  TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1442  // Add predicate operands.
1444  TmpInst.addOperand(MCOperand::createReg(0));
1445  // Add 's' bit operand (always reg0 for this)
1446  TmpInst.addOperand(MCOperand::createReg(0));
1447  EmitToStreamer(*OutStreamer, TmpInst);
1448  return;
1449  }
1450  case ARM::tPICADD: {
1451  // This is a pseudo op for a label + instruction sequence, which looks like:
1452  // LPC0:
1453  // add r0, pc
1454  // This adds the address of LPC0 to r0.
1455 
1456  // Emit the label.
1459  MI->getOperand(2).getImm(), OutContext));
1460 
1461  // Form and emit the add.
1462  EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1463  .addReg(MI->getOperand(0).getReg())
1464  .addReg(MI->getOperand(0).getReg())
1465  .addReg(ARM::PC)
1466  // Add predicate operands.
1467  .addImm(ARMCC::AL)
1468  .addReg(0));
1469  return;
1470  }
1471  case ARM::PICADD: {
1472  // This is a pseudo op for a label + instruction sequence, which looks like:
1473  // LPC0:
1474  // add r0, pc, r0
1475  // This adds the address of LPC0 to r0.
1476 
1477  // Emit the label.
1480  MI->getOperand(2).getImm(), OutContext));
1481 
1482  // Form and emit the add.
1484  .addReg(MI->getOperand(0).getReg())
1485  .addReg(ARM::PC)
1486  .addReg(MI->getOperand(1).getReg())
1487  // Add predicate operands.
1488  .addImm(MI->getOperand(3).getImm())
1489  .addReg(MI->getOperand(4).getReg())
1490  // Add 's' bit operand (always reg0 for this)
1491  .addReg(0));
1492  return;
1493  }
1494  case ARM::PICSTR:
1495  case ARM::PICSTRB:
1496  case ARM::PICSTRH:
1497  case ARM::PICLDR:
1498  case ARM::PICLDRB:
1499  case ARM::PICLDRH:
1500  case ARM::PICLDRSB:
1501  case ARM::PICLDRSH: {
1502  // This is a pseudo op for a label + instruction sequence, which looks like:
1503  // LPC0:
1504  // OP r0, [pc, r0]
1505  // The LCP0 label is referenced by a constant pool entry in order to get
1506  // a PC-relative address at the ldr instruction.
1507 
1508  // Emit the label.
1511  MI->getOperand(2).getImm(), OutContext));
1512 
1513  // Form and emit the load
1514  unsigned Opcode;
1515  switch (MI->getOpcode()) {
1516  default:
1517  llvm_unreachable("Unexpected opcode!");
1518  case ARM::PICSTR: Opcode = ARM::STRrs; break;
1519  case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
1520  case ARM::PICSTRH: Opcode = ARM::STRH; break;
1521  case ARM::PICLDR: Opcode = ARM::LDRrs; break;
1522  case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
1523  case ARM::PICLDRH: Opcode = ARM::LDRH; break;
1524  case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1525  case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1526  }
1528  .addReg(MI->getOperand(0).getReg())
1529  .addReg(ARM::PC)
1530  .addReg(MI->getOperand(1).getReg())
1531  .addImm(0)
1532  // Add predicate operands.
1533  .addImm(MI->getOperand(3).getImm())
1534  .addReg(MI->getOperand(4).getReg()));
1535 
1536  return;
1537  }
1538  case ARM::CONSTPOOL_ENTRY: {
1539  if (Subtarget->genExecuteOnly())
1540  llvm_unreachable("execute-only should not generate constant pools");
1541 
1542  /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1543  /// in the function. The first operand is the ID# for this instruction, the
1544  /// second is the index into the MachineConstantPool that this is, the third
1545  /// is the size in bytes of this constant pool entry.
1546  /// The required alignment is specified on the basic block holding this MI.
1547  unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1548  unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
1549 
1550  // If this is the first entry of the pool, mark it.
1551  if (!InConstantPool) {
1552  OutStreamer->EmitDataRegion(MCDR_DataRegion);
1553  InConstantPool = true;
1554  }
1555 
1556  OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1557 
1558  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1559  if (MCPE.isMachineConstantPoolEntry())
1561  else
1562  EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1563  return;
1564  }
1565  case ARM::JUMPTABLE_ADDRS:
1566  EmitJumpTableAddrs(MI);
1567  return;
1568  case ARM::JUMPTABLE_INSTS:
1569  EmitJumpTableInsts(MI);
1570  return;
1571  case ARM::JUMPTABLE_TBB:
1572  case ARM::JUMPTABLE_TBH:
1573  EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1574  return;
1575  case ARM::t2BR_JT: {
1577  .addReg(ARM::PC)
1578  .addReg(MI->getOperand(0).getReg())
1579  // Add predicate operands.
1580  .addImm(ARMCC::AL)
1581  .addReg(0));
1582  return;
1583  }
1584  case ARM::t2TBB_JT:
1585  case ARM::t2TBH_JT: {
1586  unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1587  // Lower and emit the PC label, then the instruction itself.
1588  OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1590  .addReg(MI->getOperand(0).getReg())
1591  .addReg(MI->getOperand(1).getReg())
1592  // Add predicate operands.
1593  .addImm(ARMCC::AL)
1594  .addReg(0));
1595  return;
1596  }
1597  case ARM::tTBB_JT:
1598  case ARM::tTBH_JT: {
1599 
1600  bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1601  unsigned Base = MI->getOperand(0).getReg();
1602  unsigned Idx = MI->getOperand(1).getReg();
1603  assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1604 
1605  // Multiply up idx if necessary.
1606  if (!Is8Bit)
1608  .addReg(Idx)
1609  .addReg(ARM::CPSR)
1610  .addReg(Idx)
1611  .addImm(1)
1612  // Add predicate operands.
1613  .addImm(ARMCC::AL)
1614  .addReg(0));
1615 
1616  if (Base == ARM::PC) {
1617  // TBB [base, idx] =
1618  // ADDS idx, idx, base
1619  // LDRB idx, [idx, #4] ; or LDRH if TBH
1620  // LSLS idx, #1
1621  // ADDS pc, pc, idx
1622 
1623  // When using PC as the base, it's important that there is no padding
1624  // between the last ADDS and the start of the jump table. The jump table
1625  // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1626  //
1627  // FIXME: Ideally we could vary the LDRB index based on the padding
1628  // between the sequence and jump table, however that relies on MCExprs
1629  // for load indexes which are currently not supported.
1630  OutStreamer->EmitCodeAlignment(4);
1631  EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1632  .addReg(Idx)
1633  .addReg(Idx)
1634  .addReg(Base)
1635  // Add predicate operands.
1636  .addImm(ARMCC::AL)
1637  .addReg(0));
1638 
1639  unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1641  .addReg(Idx)
1642  .addReg(Idx)
1643  .addImm(Is8Bit ? 4 : 2)
1644  // Add predicate operands.
1645  .addImm(ARMCC::AL)
1646  .addReg(0));
1647  } else {
1648  // TBB [base, idx] =
1649  // LDRB idx, [base, idx] ; or LDRH if TBH
1650  // LSLS idx, #1
1651  // ADDS pc, pc, idx
1652 
1653  unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1655  .addReg(Idx)
1656  .addReg(Base)
1657  .addReg(Idx)
1658  // Add predicate operands.
1659  .addImm(ARMCC::AL)
1660  .addReg(0));
1661  }
1662 
1664  .addReg(Idx)
1665  .addReg(ARM::CPSR)
1666  .addReg(Idx)
1667  .addImm(1)
1668  // Add predicate operands.
1669  .addImm(ARMCC::AL)
1670  .addReg(0));
1671 
1672  OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1673  EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1674  .addReg(ARM::PC)
1675  .addReg(ARM::PC)
1676  .addReg(Idx)
1677  // Add predicate operands.
1678  .addImm(ARMCC::AL)
1679  .addReg(0));
1680  return;
1681  }
1682  case ARM::tBR_JTr:
1683  case ARM::BR_JTr: {
1684  // mov pc, target
1685  MCInst TmpInst;
1686  unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1687  ARM::MOVr : ARM::tMOVr;
1688  TmpInst.setOpcode(Opc);
1689  TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1690  TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1691  // Add predicate operands.
1693  TmpInst.addOperand(MCOperand::createReg(0));
1694  // Add 's' bit operand (always reg0 for this)
1695  if (Opc == ARM::MOVr)
1696  TmpInst.addOperand(MCOperand::createReg(0));
1697  EmitToStreamer(*OutStreamer, TmpInst);
1698  return;
1699  }
1700  case ARM::BR_JTm_i12: {
1701  // ldr pc, target
1702  MCInst TmpInst;
1703  TmpInst.setOpcode(ARM::LDRi12);
1704  TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1705  TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1706  TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1707  // Add predicate operands.
1709  TmpInst.addOperand(MCOperand::createReg(0));
1710  EmitToStreamer(*OutStreamer, TmpInst);
1711  return;
1712  }
1713  case ARM::BR_JTm_rs: {
1714  // ldr pc, target
1715  MCInst TmpInst;
1716  TmpInst.setOpcode(ARM::LDRrs);
1717  TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1718  TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1719  TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1720  TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1721  // Add predicate operands.
1723  TmpInst.addOperand(MCOperand::createReg(0));
1724  EmitToStreamer(*OutStreamer, TmpInst);
1725  return;
1726  }
1727  case ARM::BR_JTadd: {
1728  // add pc, target, idx
1730  .addReg(ARM::PC)
1731  .addReg(MI->getOperand(0).getReg())
1732  .addReg(MI->getOperand(1).getReg())
1733  // Add predicate operands.
1734  .addImm(ARMCC::AL)
1735  .addReg(0)
1736  // Add 's' bit operand (always reg0 for this)
1737  .addReg(0));
1738  return;
1739  }
1740  case ARM::SPACE:
1741  OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1742  return;
1743  case ARM::TRAP: {
1744  // Non-Darwin binutils don't yet support the "trap" mnemonic.
1745  // FIXME: Remove this special case when they do.
1746  if (!Subtarget->isTargetMachO()) {
1747  uint32_t Val = 0xe7ffdefeUL;
1748  OutStreamer->AddComment("trap");
1749  ATS.emitInst(Val);
1750  return;
1751  }
1752  break;
1753  }
1754  case ARM::TRAPNaCl: {
1755  uint32_t Val = 0xe7fedef0UL;
1756  OutStreamer->AddComment("trap");
1757  ATS.emitInst(Val);
1758  return;
1759  }
1760  case ARM::tTRAP: {
1761  // Non-Darwin binutils don't yet support the "trap" mnemonic.
1762  // FIXME: Remove this special case when they do.
1763  if (!Subtarget->isTargetMachO()) {
1764  uint16_t Val = 0xdefe;
1765  OutStreamer->AddComment("trap");
1766  ATS.emitInst(Val, 'n');
1767  return;
1768  }
1769  break;
1770  }
1771  case ARM::t2Int_eh_sjlj_setjmp:
1772  case ARM::t2Int_eh_sjlj_setjmp_nofp:
1773  case ARM::tInt_eh_sjlj_setjmp: {
1774  // Two incoming args: GPR:$src, GPR:$val
1775  // mov $val, pc
1776  // adds $val, #7
1777  // str $val, [$src, #4]
1778  // movs r0, #0
1779  // b LSJLJEH
1780  // movs r0, #1
1781  // LSJLJEH:
1782  unsigned SrcReg = MI->getOperand(0).getReg();
1783  unsigned ValReg = MI->getOperand(1).getReg();
1784  MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1785  OutStreamer->AddComment("eh_setjmp begin");
1787  .addReg(ValReg)
1788  .addReg(ARM::PC)
1789  // Predicate.
1790  .addImm(ARMCC::AL)
1791  .addReg(0));
1792 
1794  .addReg(ValReg)
1795  // 's' bit operand
1796  .addReg(ARM::CPSR)
1797  .addReg(ValReg)
1798  .addImm(7)
1799  // Predicate.
1800  .addImm(ARMCC::AL)
1801  .addReg(0));
1802 
1804  .addReg(ValReg)
1805  .addReg(SrcReg)
1806  // The offset immediate is #4. The operand value is scaled by 4 for the
1807  // tSTR instruction.
1808  .addImm(1)
1809  // Predicate.
1810  .addImm(ARMCC::AL)
1811  .addReg(0));
1812 
1814  .addReg(ARM::R0)
1815  .addReg(ARM::CPSR)
1816  .addImm(0)
1817  // Predicate.
1818  .addImm(ARMCC::AL)
1819  .addReg(0));
1820 
1821  const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1823  .addExpr(SymbolExpr)
1824  .addImm(ARMCC::AL)
1825  .addReg(0));
1826 
1827  OutStreamer->AddComment("eh_setjmp end");
1829  .addReg(ARM::R0)
1830  .addReg(ARM::CPSR)
1831  .addImm(1)
1832  // Predicate.
1833  .addImm(ARMCC::AL)
1834  .addReg(0));
1835 
1836  OutStreamer->EmitLabel(Label);
1837  return;
1838  }
1839 
1840  case ARM::Int_eh_sjlj_setjmp_nofp:
1841  case ARM::Int_eh_sjlj_setjmp: {
1842  // Two incoming args: GPR:$src, GPR:$val
1843  // add $val, pc, #8
1844  // str $val, [$src, #+4]
1845  // mov r0, #0
1846  // add pc, pc, #0
1847  // mov r0, #1
1848  unsigned SrcReg = MI->getOperand(0).getReg();
1849  unsigned ValReg = MI->getOperand(1).getReg();
1850 
1851  OutStreamer->AddComment("eh_setjmp begin");
1853  .addReg(ValReg)
1854  .addReg(ARM::PC)
1855  .addImm(8)
1856  // Predicate.
1857  .addImm(ARMCC::AL)
1858  .addReg(0)
1859  // 's' bit operand (always reg0 for this).
1860  .addReg(0));
1861 
1863  .addReg(ValReg)
1864  .addReg(SrcReg)
1865  .addImm(4)
1866  // Predicate.
1867  .addImm(ARMCC::AL)
1868  .addReg(0));
1869 
1871  .addReg(ARM::R0)
1872  .addImm(0)
1873  // Predicate.
1874  .addImm(ARMCC::AL)
1875  .addReg(0)
1876  // 's' bit operand (always reg0 for this).
1877  .addReg(0));
1878 
1880  .addReg(ARM::PC)
1881  .addReg(ARM::PC)
1882  .addImm(0)
1883  // Predicate.
1884  .addImm(ARMCC::AL)
1885  .addReg(0)
1886  // 's' bit operand (always reg0 for this).
1887  .addReg(0));
1888 
1889  OutStreamer->AddComment("eh_setjmp end");
1891  .addReg(ARM::R0)
1892  .addImm(1)
1893  // Predicate.
1894  .addImm(ARMCC::AL)
1895  .addReg(0)
1896  // 's' bit operand (always reg0 for this).
1897  .addReg(0));
1898  return;
1899  }
1900  case ARM::Int_eh_sjlj_longjmp: {
1901  // ldr sp, [$src, #8]
1902  // ldr $scratch, [$src, #4]
1903  // ldr r7, [$src]
1904  // bx $scratch
1905  unsigned SrcReg = MI->getOperand(0).getReg();
1906  unsigned ScratchReg = MI->getOperand(1).getReg();
1908  .addReg(ARM::SP)
1909  .addReg(SrcReg)
1910  .addImm(8)
1911  // Predicate.
1912  .addImm(ARMCC::AL)
1913  .addReg(0));
1914 
1916  .addReg(ScratchReg)
1917  .addReg(SrcReg)
1918  .addImm(4)
1919  // Predicate.
1920  .addImm(ARMCC::AL)
1921  .addReg(0));
1922 
1923  if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1924  // These platforms always use the same frame register
1926  .addReg(FramePtr)
1927  .addReg(SrcReg)
1928  .addImm(0)
1929  // Predicate.
1930  .addImm(ARMCC::AL)
1931  .addReg(0));
1932  } else {
1933  // If the calling code might use either R7 or R11 as
1934  // frame pointer register, restore it into both.
1936  .addReg(ARM::R7)
1937  .addReg(SrcReg)
1938  .addImm(0)
1939  // Predicate.
1940  .addImm(ARMCC::AL)
1941  .addReg(0));
1943  .addReg(ARM::R11)
1944  .addReg(SrcReg)
1945  .addImm(0)
1946  // Predicate.
1947  .addImm(ARMCC::AL)
1948  .addReg(0));
1949  }
1950 
1951  assert(Subtarget->hasV4TOps());
1953  .addReg(ScratchReg)
1954  // Predicate.
1955  .addImm(ARMCC::AL)
1956  .addReg(0));
1957  return;
1958  }
1959  case ARM::tInt_eh_sjlj_longjmp: {
1960  // ldr $scratch, [$src, #8]
1961  // mov sp, $scratch
1962  // ldr $scratch, [$src, #4]
1963  // ldr r7, [$src]
1964  // bx $scratch
1965  unsigned SrcReg = MI->getOperand(0).getReg();
1966  unsigned ScratchReg = MI->getOperand(1).getReg();
1967 
1969  .addReg(ScratchReg)
1970  .addReg(SrcReg)
1971  // The offset immediate is #8. The operand value is scaled by 4 for the
1972  // tLDR instruction.
1973  .addImm(2)
1974  // Predicate.
1975  .addImm(ARMCC::AL)
1976  .addReg(0));
1977 
1979  .addReg(ARM::SP)
1980  .addReg(ScratchReg)
1981  // Predicate.
1982  .addImm(ARMCC::AL)
1983  .addReg(0));
1984 
1986  .addReg(ScratchReg)
1987  .addReg(SrcReg)
1988  .addImm(1)
1989  // Predicate.
1990  .addImm(ARMCC::AL)
1991  .addReg(0));
1992 
1993  if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1994  // These platforms always use the same frame register
1996  .addReg(FramePtr)
1997  .addReg(SrcReg)
1998  .addImm(0)
1999  // Predicate.
2000  .addImm(ARMCC::AL)
2001  .addReg(0));
2002  } else {
2003  // If the calling code might use either R7 or R11 as
2004  // frame pointer register, restore it into both.
2006  .addReg(ARM::R7)
2007  .addReg(SrcReg)
2008  .addImm(0)
2009  // Predicate.
2010  .addImm(ARMCC::AL)
2011  .addReg(0));
2013  .addReg(ARM::R11)
2014  .addReg(SrcReg)
2015  .addImm(0)
2016  // Predicate.
2017  .addImm(ARMCC::AL)
2018  .addReg(0));
2019  }
2020 
2022  .addReg(ScratchReg)
2023  // Predicate.
2024  .addImm(ARMCC::AL)
2025  .addReg(0));
2026  return;
2027  }
2028  case ARM::tInt_WIN_eh_sjlj_longjmp: {
2029  // ldr.w r11, [$src, #0]
2030  // ldr.w sp, [$src, #8]
2031  // ldr.w pc, [$src, #4]
2032 
2033  unsigned SrcReg = MI->getOperand(0).getReg();
2034 
2035  EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2036  .addReg(ARM::R11)
2037  .addReg(SrcReg)
2038  .addImm(0)
2039  // Predicate
2040  .addImm(ARMCC::AL)
2041  .addReg(0));
2042  EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2043  .addReg(ARM::SP)
2044  .addReg(SrcReg)
2045  .addImm(8)
2046  // Predicate
2047  .addImm(ARMCC::AL)
2048  .addReg(0));
2049  EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2050  .addReg(ARM::PC)
2051  .addReg(SrcReg)
2052  .addImm(4)
2053  // Predicate
2054  .addImm(ARMCC::AL)
2055  .addReg(0));
2056  return;
2057  }
2058  case ARM::PATCHABLE_FUNCTION_ENTER:
2060  return;
2061  case ARM::PATCHABLE_FUNCTION_EXIT:
2063  return;
2064  case ARM::PATCHABLE_TAIL_CALL:
2066  return;
2067  }
2068 
2069  MCInst TmpInst;
2070  LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2071 
2072  EmitToStreamer(*OutStreamer, TmpInst);
2073 }
2074 
2075 //===----------------------------------------------------------------------===//
2076 // Target Registry Stuff
2077 //===----------------------------------------------------------------------===//
2078 
2079 // Force static initialization.
2080 extern "C" void LLVMInitializeARMAsmPrinter() {
2085 }
unsigned getTargetFlags() const
virtual void EmitGlobalVariable(const GlobalVariable *GV)
Emit the specified global variable to the .s file.
Definition: AsmPrinter.cpp:435
MachineConstantPoolValue * MachineCPVal
MO_DLLIMPORT - On a symbol operand, this represents that the reference to the symbol is for an import...
Definition: ARMBaseInfo.h:266
const TargetLoweringObjectFile & getObjFileLowering() const
Return information about object file lowering.
Definition: AsmPrinter.cpp:212
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
StringRef getTargetFeatureString() const
unsigned NoTrappingFPMath
NoTrappingFPMath - This flag is enabled when the -enable-no-trapping-fp-math is specified on the comm...
SymbolListTy GetGVStubList()
Accessor methods to return the set of stubs in sorted order.
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
bool isTargetGNUAEABI() const
Definition: ARMSubtarget.h:672
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
void EmitStartOfAsmFile(Module &M) override
This virtual method can be overridden by targets that want to emit something at the start of their fi...
const std::vector< MachineJumpTableEntry > & getJumpTables() const
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
MachineBasicBlock * getMBB() const
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition: AsmPrinter.h:94
MCSymbol * GetExternalSymbolSymbol(StringRef Sym) const
Return the MCSymbol for the specified ExternalSymbol.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:323
This class represents lattice values for constants.
Definition: AllocatorList.h:24
PointerTy getPointer() const
StringRef getPrivateGlobalPrefix() const
Definition: DataLayout.h:294
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
void EmitJumpTableTBInst(const MachineInstr *MI, unsigned OffsetWidth)
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Definition: Triple.h:604
MCContext & OutContext
This is the context for the output file that we are streaming.
Definition: AsmPrinter.h:89
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
bool hasV4TOps() const
Definition: ARMSubtarget.h:533
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:137
void push_back(const T &Elt)
Definition: SmallVector.h:218
ARMConstantPoolValue - ARM specific constantpool value.
unsigned getReg() const
getReg - Returns the register number.
Target specific streamer interface.
Definition: MCStreamer.h:84
unsigned Reg
virtual void emitPad(int64_t Offset)
unsigned getSubReg() const
Global Offset Table, Thread Pointer Offset.
unsigned char getPCAdjustment() const
bool isTargetCOFF() const
Definition: ARMSubtarget.h:656
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:321
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:510
MachineBasicBlock reference.
bool runOnMachineFunction(MachineFunction &F) override
runOnMachineFunction - This uses the EmitInstruction() method to print assembly for each instruction...
virtual void finishAttributeSection()
unsigned const TargetRegisterInfo * TRI
F(f)
MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:97
setjmp/longjmp based exceptions
bool isThumb1Only() const
Definition: ARMSubtarget.h:713
bool isTargetMuslAEABI() const
Definition: ARMSubtarget.h:677
void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI)
Global Offset Table, PC Relative.
Thread Pointer Offset.
Target & getTheThumbLETarget()
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
StubValueTy & getThreadLocalGVStubEntry(MCSymbol *Sym)
static bool isThumb(const MCSubtargetInfo &STI)
static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx)
isUseOperandTiedToDef - Return true if the flag of the inline asm operand indicates it is an use oper...
Definition: InlineAsm.h:342
void LLVMInitializeARMAsmPrinter()
const TargetRegisterClass * getRegClass(unsigned i) const
Returns the register class associated with the enumeration value.
void emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, const MCSubtargetInfo *EndInfo) const override
Let the target do anything it needs to do after emitting inlineasm.
return AArch64::GPR64RegClass contains(Reg)
bool genExecuteOnly() const
Definition: ARMSubtarget.h:633
void EmitFunctionBodyEnd() override
Targets can override this to emit stuff after the last basic block in the function.
bool isTargetELF() const
Definition: ARMSubtarget.h:657
ARMCP::ARMCPModifier getModifier() const
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
The address of a basic block.
Definition: Constants.h:840
MCContext & getContext() const
Definition: MCStreamer.h:251
MO_COFFSTUB - On a symbol operand "FOO", this indicates that the reference is actually to the "...
Definition: ARMBaseInfo.h:254
amdgpu Simplify well known AMD library false Value Value const Twine & Name
Definition: BitVector.h:938
virtual void emitInst(uint32_t Inst, char Suffix='\0')
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
static MCOperand createReg(unsigned Reg)
Definition: MCInst.h:116
MCSuperRegIterator enumerates all super-registers of Reg.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
const FeatureBitset & getFeatureBits() const
MachineModuleInfoCOFF - This is a MachineModuleInfoImpl implementation for COFF targets.
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:412
void EmitInstruction(const MachineInstr *MI) override
Targets should implement this to emit instructions.
static const MCBinaryExpr * createDiv(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:471
unsigned SubReg
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:36
.data_region jt16
Definition: MCDirectives.h:59
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
virtual unsigned getFrameRegister(const MachineFunction &MF) const =0
Debug information queries.
Target & getTheARMBETarget()
bool isGVIndirectSymbol(const GlobalValue *GV) const
True if the GV will be accessed via an indirect symbol.
void EmitGlobalVariable(const GlobalVariable *GV) override
Emit the specified global variable to the .s file.
void emitXRayTable()
Emit a table with all XRay instrumentation points.
Context object for machine code objects.
Definition: MCContext.h:63
static const ARMMCExpr * createLower16(const MCExpr *Expr, MCContext &Ctx)
Definition: ARMMCExpr.h:43
void EmitFunctionBody()
This method emits the body and trailer for a function.
unsigned NoNaNsFPMath
NoNaNsFPMath - This flag is enabled when the -enable-no-nans-fp-math flag is specified on the command...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) override
EmitMachineConstantPoolValue - Print a machine constantpool value to the .s file. ...
static const MCBinaryExpr * createSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:546
.code16 (X86) / .code 16 (ARM)
Definition: MCDirectives.h:51
bool isPositionIndependent() const
Definition: AsmPrinter.cpp:203
Target & getTheThumbBETarget()
MCSymbol * GetCPISymbol(unsigned CPID) const override
Return the symbol for the specified constant pool entry.
IntType getInt() const
bool isTargetEHABICompatible() const
Definition: ARMSubtarget.h:685
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
bool isTargetDarwin() const
Definition: ARMSubtarget.h:647
virtual void emitMovSP(unsigned Reg, int64_t Offset=0)
RegisterAsmPrinter - Helper template for registering a target specific assembly printer, for use in the target machine initialization function.
This class is a data container for one entry in a MachineConstantPool.
static MCSymbolRefExpr::VariantKind getModifierVariantKind(ARMCP::ARMCPModifier Modifier)
StringRef getTargetCPU() const
Type is formed as (base + (derived << SCT_COMPLEX_TYPE_SHIFT))
Definition: COFF.h:266
void printOffset(int64_t Offset, raw_ostream &OS) const
This is just convenient handler for printing offsets.
static const char * getRegisterName(unsigned RegNo)
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:461
virtual void EmitIntValue(uint64_t Value, unsigned Size)
Special case of EmitValue that avoids the client having to pass in a MCExpr for constant integers...
Definition: MCStreamer.cpp:124
void EmitValue(const MCExpr *Value, unsigned Size, SMLoc Loc=SMLoc())
Definition: MCStreamer.cpp:155
MachineModuleInfo * MMI
This is a pointer to the current MachineModuleInfo.
Definition: AsmPrinter.h:100
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:161
bool useR7AsFramePointer() const
Definition: ARMSubtarget.h:725
void LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI)
virtual void emitAttribute(unsigned Attribute, unsigned Value)
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
Definition: MachineInstr.h:820
.data_region jt32
Definition: MCDirectives.h:60
Address of a global value.
void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O)
Streaming machine code generation interface.
Definition: MCStreamer.h:189
MCInstBuilder & addReg(unsigned Reg)
Add a new register operand.
Definition: MCInstBuilder.h:32
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
virtual void emitRegSave(const SmallVectorImpl< unsigned > &RegList, bool isVector)
MCSymbol * createTempSymbol(bool CanBeUnnamed=true)
Create and return a new assembler temporary symbol with a unique but unspecified name.
Definition: MCContext.cpp:217
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
CodeGenOpt::Level getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
MCSymbol * CurrentFnSym
The symbol for the current function.
Definition: AsmPrinter.h:113
const MCAsmInfo * MAI
Target Asm Printer information.
Definition: AsmPrinter.h:85
PointerIntPair - This class implements a pair of a pointer and small integer.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const GlobalValue * getGlobal() const
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &OS)
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant...
virtual void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset=0)
MCSection * getNonLazySymbolPointerSection() const
void EmitAlignment(unsigned NumBits, const GlobalObject *GV=nullptr) const
Emit an alignment directive to the specified power of two boundary.
unsigned getSubReg(unsigned Reg, unsigned Idx) const
Returns the physical register number of sub-register "Index" for physical register RegNo...
TargetMachine & TM
Target machine description.
Definition: AsmPrinter.h:82
This class is intended to be used as a driving class for all asm writers.
Definition: AsmPrinter.h:79
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) override
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant as...
static unsigned getNumOperandRegisters(unsigned Flag)
getNumOperandRegisters - Extract the number of registers field from the inline asm operand flag...
Definition: InlineAsm.h:336
static MCSymbol * getPICLabel(StringRef Prefix, unsigned FunctionNumber, unsigned LabelId, MCContext &Ctx)
void getNameWithPrefix(SmallVectorImpl< char > &Name, const GlobalValue *GV) const
Definition: AsmPrinter.cpp:425
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1193
virtual bool EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute)=0
Add the given Attribute to Symbol.
bool hasInternalLinkage() const
Definition: GlobalValue.h:434
bool optForSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:598
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
.subsections_via_symbols (MachO)
Definition: MCDirectives.h:50
TRAP - Trapping instruction.
Definition: ISDOpcodes.h:767
Thread Local Storage (General Dynamic Mode)
const Triple & getTargetTriple() const
unsigned convertAddSubFlagsOpcode(unsigned OldOpc)
Map pseudo instructions that imply an &#39;S&#39; bit onto real opcodes.
MCInstBuilder & addImm(int64_t Val)
Add a new integer immediate operand.
Definition: MCInstBuilder.h:38
Ty & getObjFileInfo()
Keep track of various per-function pieces of information for backends that would like to do so...
ARMAsmPrinter(TargetMachine &TM, std::unique_ptr< MCStreamer > Streamer)
void print(raw_ostream &OS, bool IsStandalone=true, bool SkipOpers=false, bool SkipDebugLoc=false, bool AddNewLine=true, const TargetInstrInfo *TII=nullptr) const
Print this MI to OS.
MachineConstantPool * getConstantPool()
getConstantPool - Return the constant pool object for the current function.
unsigned NoInfsFPMath
NoInfsFPMath - This flag is enabled when the -enable-no-infs-fp-math flag is specified on the command...
bool isOSBinFormatMachO() const
Tests whether the environment is MachO.
Definition: Triple.h:614
SmallPtrSet< const GlobalVariable *, 2 > & getGlobalsPromotedToConstantPool()
FPDenormal::DenormalMode FPDenormalMode
FPDenormalMode - This flags specificies which denormal numbers the code is permitted to require...
const Constant * stripPointerCasts() const
Definition: Constant.h:174
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
void EmitFunctionEntryLabel() override
EmitFunctionEntryLabel - Emit the label that is the entrypoint for the function.
Abstract base class for all machine specific constantpool value subclasses.
StubValueTy & getGVStubEntry(MCSymbol *Sym)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
MO_LO16 - On a symbol operand, this represents a relocation containing lower 16 bit of the address...
Definition: ARMBaseInfo.h:241
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
MCSection * getThreadLocalPointerSection() const
void EmitJumpTableInsts(const MachineInstr *MI)
const std::vector< MachineConstantPoolEntry > & getConstants() const
unsigned getFunctionNumber() const
Return a unique ID for the current function.
Definition: AsmPrinter.cpp:208
void setOpcode(unsigned Op)
Definition: MCInst.h:173
MCSymbol * GetBlockAddressSymbol(const BlockAddress *BA) const
Return the MCSymbol used to satisfy BlockAddress uses of the specified basic block.
static void emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, MachineModuleInfoImpl::StubValueTy &MCSym)
bool isTargetAEABI() const
Definition: ARMSubtarget.h:667
MCSymbol * getSymbol(const GlobalValue *GV) const
Definition: AsmPrinter.cpp:430
MachineOperand class - Representation of each machine instruction operand.
Module.h This file contains the declarations for the Module class.
.indirect_symbol (MachO)
Definition: MCDirectives.h:32
unsigned getOriginalCPIdx(unsigned CloneIdx) const
void EmitToStreamer(MCStreamer &S, const MCInst &Inst)
Definition: AsmPrinter.cpp:231
void emitTargetAttributes(const MCSubtargetInfo &STI)
Emit the build attributes that only depend on the hardware that we expect.
int64_t getImm() const
const Function & getFunction() const
Return the LLVM function that this machine code represents.
SymbolStorageClass
Storage class tells where and what the symbol represents.
Definition: COFF.h:204
StubValueTy & getGVStubEntry(MCSymbol *Sym)
union llvm::MachineConstantPoolEntry::@159 Val
The constant itself.
.syntax (ARM/ELF)
Definition: MCDirectives.h:49
MCSymbol * getCurExceptionSym()
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
void LowerARMMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI, ARMAsmPrinter &AP)
bool isROPI() const
void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI)
.code32 (X86) / .code 32 (ARM)
Definition: MCDirectives.h:52
FunctionNumber(functionNumber)
Definition: LLParser.cpp:2729
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
static bool hasRegClassConstraint(unsigned Flag, unsigned &RC)
hasRegClassConstraint - Returns true if the flag contains a register class constraint.
Definition: InlineAsm.h:351
Section Relative (Windows TLS)
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:436
Representation of each machine instruction.
Definition: MachineInstr.h:64
static bool isPhysicalRegister(unsigned Reg)
Return true if the specified register number is in the physical register namespace.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void SetupMachineFunction(MachineFunction &MF)
This should be called when a new MachineFunction is being processed from runOnMachineFunction.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
bool isThumb() const
Tests whether the target is Thumb (little and big endian).
Definition: Triple.h:665
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:123
static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, StringRef Value)
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
StringRef getValueAsString() const
Return the attribute&#39;s value as a string.
Definition: Attributes.cpp:195
ARMFunctionInfo - This class is derived from MachineFunctionInfo and contains private ARM-specific in...
TargetOptions Options
Definition: TargetMachine.h:97
int64_t getOffset() const
Return the offset from the symbol in this operand.
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) override
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
bool optForMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:595
void EmitJumpTableAddrs(const MachineInstr *MI)
static const ARMMCExpr * createUpper16(const MCExpr *Expr, MCContext &Ctx)
Definition: ARMMCExpr.h:39
Generic base class for all target subtargets.
virtual void print(raw_ostream &OS, const Module *M) const
print - Print out the internal state of the pass.
Definition: Pass.cpp:124
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
bool hasV5TOps() const
Definition: ARMSubtarget.h:534
Type * getType() const
getType - get type of this MachineConstantPoolValue.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const Module * getModule() const
MachineModuleInfoMachO - This is a MachineModuleInfoImpl implementation for MachO targets...
bool isReg() const
isReg - Tests if this is a MO_Register operand.
std::vector< std::pair< MCSymbol *, StubValueTy > > SymbolListTy
const std::string & getModuleInlineAsm() const
Get any module-scope inline assembly blocks.
Definition: Module.h:248
bool isTargetMachO() const
Definition: ARMSubtarget.h:658
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
.data_region jt8
Definition: MCDirectives.h:58
void EmitGlobalConstant(const DataLayout &DL, const Constant *CV)
Print a general LLVM constant to the .s file.
LLVM Value Representation.
Definition: Value.h:73
unsigned HonorSignDependentRoundingFPMathOption
HonorSignDependentRoundingFPMath - This returns true when the -enable-sign-dependent-rounding-fp-math...
virtual void EmitLabel(MCSymbol *Symbol, SMLoc Loc=SMLoc())
Emit a label for Symbol into the current section.
Definition: MCStreamer.cpp:347
MO_NONLAZY - This is an independent flag, on a symbol operand "FOO" it represents a symbol which...
Definition: ARMBaseInfo.h:279
ExceptionHandling getExceptionHandlingType() const
Definition: MCAsmInfo.h:570
std::string ParseARMTriple(const Triple &TT, StringRef CPU)
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.h:331
static const unsigned FramePtr
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
bool isTargetWindows() const
Definition: ARMSubtarget.h:654
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
const DataLayout & getDataLayout() const
Return information about data layout.
Definition: AsmPrinter.cpp:216
bool isThreadLocal() const
If the value is "Thread Local", its value isn&#39;t shared by the threads.
Definition: GlobalValue.h:247
IRTranslator LLVM IR MI
void addOperand(const MCOperand &Op)
Definition: MCInst.h:186
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
Address of indexed Constant in Constant Pool.
unsigned getRegSizeInBits(const TargetRegisterClass &RC) const
Return the size in bits of a register from class RC.
Target & getTheARMLETarget()
MCSymbol * getSymbolWithGlobalValueBase(const GlobalValue *GV, StringRef Suffix) const
Return the MCSymbol for a private symbol with global value name as its base, with the specified suffi...
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
void EmitXXStructor(const DataLayout &DL, const Constant *CV) override
Targets can override this to change how global constants that are part of a C++ static/global constru...
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:123
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
Definition: MachineInstr.h:295
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx)
Definition: MCExpr.cpp:164
.end_data_region
Definition: MCDirectives.h:61
MO_HI16 - On a symbol operand, this represents a relocation containing higher 16 bit of the address...
Definition: ARMBaseInfo.h:245
bool isImplicit() const
virtual void switchVendor(StringRef Vendor)
FloatABI::ABIType FloatABIType
FloatABIType - This setting is set by -float-abi=xxx option is specfied on the command line...
void print(raw_ostream &OS, const MCAsmInfo *MAI) const
print - Print the value to the stream OS.
Definition: MCSymbol.cpp:60
virtual void emitTextAttribute(unsigned Attribute, StringRef String)
void EmitEndOfAsmFile(Module &M) override
This virtual method can be overridden by targets that want to emit something at the end of their file...
A function that returns a base type.
Definition: COFF.h:262