LLVM  8.0.1
AMDGPULibCalls.cpp
Go to the documentation of this file.
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file does AMD library function optimizations.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "amdgpu-simplifylib"
16 
17 #include "AMDGPU.h"
18 #include "AMDGPULibFunc.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/ADT/StringSet.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
31 #include "llvm/Support/Debug.h"
34 #include <vector>
35 #include <cmath>
36 
37 using namespace llvm;
38 
39 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
40  cl::desc("Enable pre-link mode optimizations"),
41  cl::init(false),
42  cl::Hidden);
43 
44 static cl::list<std::string> UseNative("amdgpu-use-native",
45  cl::desc("Comma separated list of functions to replace with native, or all"),
47  cl::Hidden);
48 
49 #define MATH_PI 3.14159265358979323846264338327950288419716939937511
50 #define MATH_E 2.71828182845904523536028747135266249775724709369996
51 #define MATH_SQRT2 1.41421356237309504880168872420969807856967187537695
52 
53 #define MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859
54 #define MATH_LOG10E 0.4342944819032518276511289189166050822943970058036665
55 // Value of log2(10)
56 #define MATH_LOG2_10 3.3219280948873623478703194294893901758648313930245806
57 // Value of 1 / log2(10)
58 #define MATH_RLOG2_10 0.3010299956639811952137388947244930267681898814621085
59 // Value of 1 / M_LOG2E_F = 1 / log2(e)
60 #define MATH_RLOG2_E 0.6931471805599453094172321214581765680755001343602552
61 
62 namespace llvm {
63 
65 private:
66 
68 
69  // -fuse-native.
70  bool AllNative = false;
71 
72  bool useNativeFunc(const StringRef F) const;
73 
74  // Return a pointer (pointer expr) to the function if function defintion with
75  // "FuncName" exists. It may create a new function prototype in pre-link mode.
76  Constant *getFunction(Module *M, const FuncInfo& fInfo);
77 
78  // Replace a normal function with its native version.
79  bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
80 
81  bool parseFunctionName(const StringRef& FMangledName,
82  FuncInfo *FInfo=nullptr /*out*/);
83 
84  bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
85 
86  /* Specialized optimizations */
87 
88  // recip (half or native)
89  bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
90 
91  // divide (half or native)
92  bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
93 
94  // pow/powr/pown
95  bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
96 
97  // rootn
98  bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
99 
100  // fma/mad
101  bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
102 
103  // -fuse-native for sincos
104  bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
105 
106  // evaluate calls if calls' arguments are constants.
107  bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
108  double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
109  bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
110 
111  // exp
112  bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
113 
114  // exp2
115  bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
116 
117  // exp10
118  bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
119 
120  // log
121  bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
122 
123  // log2
124  bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
125 
126  // log10
127  bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
128 
129  // sqrt
130  bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
131 
132  // sin/cos
133  bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
134 
135  // __read_pipe/__write_pipe
136  bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
137 
138  // Get insertion point at entry.
139  BasicBlock::iterator getEntryIns(CallInst * UI);
140  // Insert an Alloc instruction.
141  AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
142  // Get a scalar native builtin signle argument FP function
143  Constant* getNativeFunction(Module* M, const FuncInfo &FInfo);
144 
145 protected:
147 
148  bool isUnsafeMath(const CallInst *CI) const;
149 
150  void replaceCall(Value *With) {
151  CI->replaceAllUsesWith(With);
152  CI->eraseFromParent();
153  }
154 
155 public:
156  bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
157 
158  void initNativeFuncs();
159 
160  // Replace a normal math function call with that native version
161  bool useNative(CallInst *CI);
162 };
163 
164 } // end llvm namespace
165 
166 namespace {
167 
168  class AMDGPUSimplifyLibCalls : public FunctionPass {
169 
170  AMDGPULibCalls Simplifier;
171 
172  const TargetOptions Options;
173 
174  public:
175  static char ID; // Pass identification
176 
177  AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions())
178  : FunctionPass(ID), Options(Opt) {
180  }
181 
182  void getAnalysisUsage(AnalysisUsage &AU) const override {
184  }
185 
186  bool runOnFunction(Function &M) override;
187  };
188 
189  class AMDGPUUseNativeCalls : public FunctionPass {
190 
191  AMDGPULibCalls Simplifier;
192 
193  public:
194  static char ID; // Pass identification
195 
196  AMDGPUUseNativeCalls() : FunctionPass(ID) {
198  Simplifier.initNativeFuncs();
199  }
200 
201  bool runOnFunction(Function &F) override;
202  };
203 
204 } // end anonymous namespace.
205 
207 char AMDGPUUseNativeCalls::ID = 0;
208 
209 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
210  "Simplify well-known AMD library calls", false, false)
212 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
213  "Simplify well-known AMD library calls", false, false)
214 
215 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
216  "Replace builtin math calls with that native versions.",
217  false, false)
218 
219 template <typename IRB>
220 static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg,
221  const Twine &Name = "") {
222  CallInst *R = B.CreateCall(Callee, Arg, Name);
223  if (Function* F = dyn_cast<Function>(Callee))
224  R->setCallingConv(F->getCallingConv());
225  return R;
226 }
227 
228 template <typename IRB>
229 static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2,
230  const Twine &Name = "") {
231  CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
232  if (Function* F = dyn_cast<Function>(Callee))
233  R->setCallingConv(F->getCallingConv());
234  return R;
235 }
236 
237 // Data structures for table-driven optimizations.
238 // FuncTbl works for both f32 and f64 functions with 1 input argument
239 
240 struct TableEntry {
241  double result;
242  double input;
243 };
244 
245 /* a list of {result, input} */
246 static const TableEntry tbl_acos[] = {
247  {MATH_PI/2.0, 0.0},
248  {MATH_PI/2.0, -0.0},
249  {0.0, 1.0},
250  {MATH_PI, -1.0}
251 };
252 static const TableEntry tbl_acosh[] = {
253  {0.0, 1.0}
254 };
255 static const TableEntry tbl_acospi[] = {
256  {0.5, 0.0},
257  {0.5, -0.0},
258  {0.0, 1.0},
259  {1.0, -1.0}
260 };
261 static const TableEntry tbl_asin[] = {
262  {0.0, 0.0},
263  {-0.0, -0.0},
264  {MATH_PI/2.0, 1.0},
265  {-MATH_PI/2.0, -1.0}
266 };
267 static const TableEntry tbl_asinh[] = {
268  {0.0, 0.0},
269  {-0.0, -0.0}
270 };
271 static const TableEntry tbl_asinpi[] = {
272  {0.0, 0.0},
273  {-0.0, -0.0},
274  {0.5, 1.0},
275  {-0.5, -1.0}
276 };
277 static const TableEntry tbl_atan[] = {
278  {0.0, 0.0},
279  {-0.0, -0.0},
280  {MATH_PI/4.0, 1.0},
281  {-MATH_PI/4.0, -1.0}
282 };
283 static const TableEntry tbl_atanh[] = {
284  {0.0, 0.0},
285  {-0.0, -0.0}
286 };
287 static const TableEntry tbl_atanpi[] = {
288  {0.0, 0.0},
289  {-0.0, -0.0},
290  {0.25, 1.0},
291  {-0.25, -1.0}
292 };
293 static const TableEntry tbl_cbrt[] = {
294  {0.0, 0.0},
295  {-0.0, -0.0},
296  {1.0, 1.0},
297  {-1.0, -1.0},
298 };
299 static const TableEntry tbl_cos[] = {
300  {1.0, 0.0},
301  {1.0, -0.0}
302 };
303 static const TableEntry tbl_cosh[] = {
304  {1.0, 0.0},
305  {1.0, -0.0}
306 };
307 static const TableEntry tbl_cospi[] = {
308  {1.0, 0.0},
309  {1.0, -0.0}
310 };
311 static const TableEntry tbl_erfc[] = {
312  {1.0, 0.0},
313  {1.0, -0.0}
314 };
315 static const TableEntry tbl_erf[] = {
316  {0.0, 0.0},
317  {-0.0, -0.0}
318 };
319 static const TableEntry tbl_exp[] = {
320  {1.0, 0.0},
321  {1.0, -0.0},
322  {MATH_E, 1.0}
323 };
324 static const TableEntry tbl_exp2[] = {
325  {1.0, 0.0},
326  {1.0, -0.0},
327  {2.0, 1.0}
328 };
329 static const TableEntry tbl_exp10[] = {
330  {1.0, 0.0},
331  {1.0, -0.0},
332  {10.0, 1.0}
333 };
334 static const TableEntry tbl_expm1[] = {
335  {0.0, 0.0},
336  {-0.0, -0.0}
337 };
338 static const TableEntry tbl_log[] = {
339  {0.0, 1.0},
340  {1.0, MATH_E}
341 };
342 static const TableEntry tbl_log2[] = {
343  {0.0, 1.0},
344  {1.0, 2.0}
345 };
346 static const TableEntry tbl_log10[] = {
347  {0.0, 1.0},
348  {1.0, 10.0}
349 };
350 static const TableEntry tbl_rsqrt[] = {
351  {1.0, 1.0},
352  {1.0/MATH_SQRT2, 2.0}
353 };
354 static const TableEntry tbl_sin[] = {
355  {0.0, 0.0},
356  {-0.0, -0.0}
357 };
358 static const TableEntry tbl_sinh[] = {
359  {0.0, 0.0},
360  {-0.0, -0.0}
361 };
362 static const TableEntry tbl_sinpi[] = {
363  {0.0, 0.0},
364  {-0.0, -0.0}
365 };
366 static const TableEntry tbl_sqrt[] = {
367  {0.0, 0.0},
368  {1.0, 1.0},
369  {MATH_SQRT2, 2.0}
370 };
371 static const TableEntry tbl_tan[] = {
372  {0.0, 0.0},
373  {-0.0, -0.0}
374 };
375 static const TableEntry tbl_tanh[] = {
376  {0.0, 0.0},
377  {-0.0, -0.0}
378 };
379 static const TableEntry tbl_tanpi[] = {
380  {0.0, 0.0},
381  {-0.0, -0.0}
382 };
383 static const TableEntry tbl_tgamma[] = {
384  {1.0, 1.0},
385  {1.0, 2.0},
386  {2.0, 3.0},
387  {6.0, 4.0}
388 };
389 
391  switch(id) {
407  return true;
408  default:;
409  }
410  return false;
411 }
412 
413 struct TableRef {
414  size_t size;
415  const TableEntry *table; // variable size: from 0 to (size - 1)
416 
417  TableRef() : size(0), table(nullptr) {}
418 
419  template <size_t N>
420  TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
421 };
422 
424  switch(id) {
425  case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
426  case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
427  case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
428  case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
429  case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
430  case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
431  case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
432  case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
433  case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
434  case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
436  case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
437  case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
438  case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
439  case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
440  case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
441  case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
443  case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
444  case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
445  case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
446  case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
448  case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
449  case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
451  case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
453  case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
454  case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
455  case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
457  case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
458  case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
459  case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
460  case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
461  case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
462  default:;
463  }
464  return TableRef();
465 }
466 
467 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
468  return FInfo.getLeads()[0].VectorSize;
469 }
470 
471 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
472  return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
473 }
474 
475 Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) {
476  // If we are doing PreLinkOpt, the function is external. So it is safe to
477  // use getOrInsertFunction() at this stage.
478 
480  : AMDGPULibFunc::getFunction(M, fInfo);
481 }
482 
483 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
484  FuncInfo *FInfo) {
485  return AMDGPULibFunc::parse(FMangledName, *FInfo);
486 }
487 
489  if (auto Op = dyn_cast<FPMathOperator>(CI))
490  if (Op->isFast())
491  return true;
492  const Function *F = CI->getParent()->getParent();
493  Attribute Attr = F->getFnAttribute("unsafe-fp-math");
494  return Attr.getValueAsString() == "true";
495 }
496 
497 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
498  return AllNative ||
499  std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
500 }
501 
503  AllNative = useNativeFunc("all") ||
504  (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
505  UseNative.begin()->empty());
506 }
507 
508 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
509  bool native_sin = useNativeFunc("sin");
510  bool native_cos = useNativeFunc("cos");
511 
512  if (native_sin && native_cos) {
513  Module *M = aCI->getModule();
514  Value *opr0 = aCI->getArgOperand(0);
515 
516  AMDGPULibFunc nf;
517  nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
518  nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
519 
522  Constant *sinExpr = getFunction(M, nf);
523 
526  Constant *cosExpr = getFunction(M, nf);
527  if (sinExpr && cosExpr) {
528  Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
529  Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
530  new StoreInst(cosval, aCI->getArgOperand(1), aCI);
531 
532  DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
533  << " with native version of sin/cos");
534 
535  replaceCall(sinval);
536  return true;
537  }
538  }
539  return false;
540 }
541 
543  CI = aCI;
544  Function *Callee = aCI->getCalledFunction();
545 
546  FuncInfo FInfo;
547  if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
548  FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
549  getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
550  !(AllNative || useNativeFunc(FInfo.getName()))) {
551  return false;
552  }
553 
554  if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
555  return sincosUseNative(aCI, FInfo);
556 
558  Constant *F = getFunction(aCI->getModule(), FInfo);
559  if (!F)
560  return false;
561 
562  aCI->setCalledFunction(F);
563  DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
564  << " with native version");
565  return true;
566 }
567 
568 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
569 // builtin, with appended type size and alignment arguments, where 2 or 4
570 // indicates the original number of arguments. The library has optimized version
571 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
572 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
573 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
574 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
575 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
576  FuncInfo &FInfo) {
577  auto *Callee = CI->getCalledFunction();
578  if (!Callee->isDeclaration())
579  return false;
580 
581  assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
582  auto *M = Callee->getParent();
583  auto &Ctx = M->getContext();
584  std::string Name = Callee->getName();
585  auto NumArg = CI->getNumArgOperands();
586  if (NumArg != 4 && NumArg != 6)
587  return false;
588  auto *PacketSize = CI->getArgOperand(NumArg - 2);
589  auto *PacketAlign = CI->getArgOperand(NumArg - 1);
590  if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
591  return false;
592  unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
593  unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
594  if (Size != Align || !isPowerOf2_32(Size))
595  return false;
596 
597  Type *PtrElemTy;
598  if (Size <= 8)
599  PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
600  else
601  PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
602  unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
603  auto PtrArg = CI->getArgOperand(PtrArgLoc);
604  unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
605  auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
606 
608  for (unsigned I = 0; I != PtrArgLoc; ++I)
609  ArgTys.push_back(CI->getArgOperand(I)->getType());
610  ArgTys.push_back(PtrTy);
611 
612  Name = Name + "_" + std::to_string(Size);
613  auto *FTy = FunctionType::get(Callee->getReturnType(),
614  ArrayRef<Type *>(ArgTys), false);
615  AMDGPULibFunc NewLibFunc(Name, FTy);
616  auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
617  if (!F)
618  return false;
619 
620  auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
622  for (unsigned I = 0; I != PtrArgLoc; ++I)
623  Args.push_back(CI->getArgOperand(I));
624  Args.push_back(BCast);
625 
626  auto *NCI = B.CreateCall(F, Args);
627  NCI->setAttributes(CI->getAttributes());
628  CI->replaceAllUsesWith(NCI);
629  CI->dropAllReferences();
630  CI->eraseFromParent();
631 
632  return true;
633 }
634 
635 // This function returns false if no change; return true otherwise.
637  this->CI = CI;
638  Function *Callee = CI->getCalledFunction();
639 
640  // Ignore indirect calls.
641  if (Callee == 0) return false;
642 
643  FuncInfo FInfo;
644  if (!parseFunctionName(Callee->getName(), &FInfo))
645  return false;
646 
647  // Further check the number of arguments to see if they match.
648  if (CI->getNumArgOperands() != FInfo.getNumArgs())
649  return false;
650 
651  BasicBlock *BB = CI->getParent();
653  IRBuilder<> B(Context);
654 
655  // Set the builder to the instruction after the call.
656  B.SetInsertPoint(BB, CI->getIterator());
657 
658  // Copy fast flags from the original call.
659  if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
660  B.setFastMathFlags(FPOp->getFastMathFlags());
661 
662  if (TDOFold(CI, FInfo))
663  return true;
664 
665  // Under unsafe-math, evaluate calls if possible.
666  // According to Brian Sumner, we can do this for all f32 function calls
667  // using host's double function calls.
668  if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
669  return true;
670 
671  // Specilized optimizations for each function call
672  switch (FInfo.getId()) {
674  // skip vector function
675  assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
676  FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
677  "recip must be an either native or half function");
678  return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
679 
681  // skip vector function
682  assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
683  FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
684  "divide must be an either native or half function");
685  return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
686 
690  return fold_pow(CI, B, FInfo);
691 
693  // skip vector function
694  return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
695 
699  // skip vector function
700  return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
701 
703  return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
706  if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
707  getArgType(FInfo) == AMDGPULibFunc::F64)
708  && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
709  return fold_sincos(CI, B, AA);
710 
711  break;
716  return fold_read_write_pipe(CI, B, FInfo);
717 
718  default:
719  break;
720  }
721 
722  return false;
723 }
724 
725 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
726  // Table-Driven optimization
727  const TableRef tr = getOptTable(FInfo.getId());
728  if (tr.size==0)
729  return false;
730 
731  int const sz = (int)tr.size;
732  const TableEntry * const ftbl = tr.table;
733  Value *opr0 = CI->getArgOperand(0);
734 
735  if (getVecSize(FInfo) > 1) {
736  if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
738  for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
739  ConstantFP *eltval = dyn_cast<ConstantFP>(
740  CV->getElementAsConstant((unsigned)eltNo));
741  assert(eltval && "Non-FP arguments in math function!");
742  bool found = false;
743  for (int i=0; i < sz; ++i) {
744  if (eltval->isExactlyValue(ftbl[i].input)) {
745  DVal.push_back(ftbl[i].result);
746  found = true;
747  break;
748  }
749  }
750  if (!found) {
751  // This vector constants not handled yet.
752  return false;
753  }
754  }
755  LLVMContext &context = CI->getParent()->getParent()->getContext();
756  Constant *nval;
757  if (getArgType(FInfo) == AMDGPULibFunc::F32) {
759  for (unsigned i = 0; i < DVal.size(); ++i) {
760  FVal.push_back((float)DVal[i]);
761  }
762  ArrayRef<float> tmp(FVal);
763  nval = ConstantDataVector::get(context, tmp);
764  } else { // F64
765  ArrayRef<double> tmp(DVal);
766  nval = ConstantDataVector::get(context, tmp);
767  }
768  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
769  replaceCall(nval);
770  return true;
771  }
772  } else {
773  // Scalar version
774  if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
775  for (int i = 0; i < sz; ++i) {
776  if (CF->isExactlyValue(ftbl[i].input)) {
777  Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
778  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
779  replaceCall(nval);
780  return true;
781  }
782  }
783  }
784  }
785 
786  return false;
787 }
788 
789 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
790  Module *M = CI->getModule();
791  if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
792  FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
793  !HasNative(FInfo.getId()))
794  return false;
795 
796  AMDGPULibFunc nf = FInfo;
798  if (Constant *FPExpr = getFunction(M, nf)) {
799  LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
800 
801  CI->setCalledFunction(FPExpr);
802 
803  LLVM_DEBUG(dbgs() << *CI << '\n');
804 
805  return true;
806  }
807  return false;
808 }
809 
810 // [native_]half_recip(c) ==> 1.0/c
811 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
812  const FuncInfo &FInfo) {
813  Value *opr0 = CI->getArgOperand(0);
814  if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
815  // Just create a normal div. Later, InstCombine will be able
816  // to compute the divide into a constant (avoid check float infinity
817  // or subnormal at this point).
818  Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
819  opr0,
820  "recip2div");
821  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
822  replaceCall(nval);
823  return true;
824  }
825  return false;
826 }
827 
828 // [native_]half_divide(x, c) ==> x/c
829 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
830  const FuncInfo &FInfo) {
831  Value *opr0 = CI->getArgOperand(0);
832  Value *opr1 = CI->getArgOperand(1);
833  ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
834  ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
835 
836  if ((CF0 && CF1) || // both are constants
837  (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
838  // CF1 is constant && f32 divide
839  {
840  Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
841  opr1, "__div2recip");
842  Value *nval = B.CreateFMul(opr0, nval1, "__div2mul");
843  replaceCall(nval);
844  return true;
845  }
846  return false;
847 }
848 
849 namespace llvm {
850 static double log2(double V) {
851 #if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
852  return ::log2(V);
853 #else
854  return log(V) / 0.693147180559945309417;
855 #endif
856 }
857 }
858 
859 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
860  const FuncInfo &FInfo) {
861  assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
862  FInfo.getId() == AMDGPULibFunc::EI_POWR ||
863  FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
864  "fold_pow: encounter a wrong function call");
865 
866  Value *opr0, *opr1;
867  ConstantFP *CF;
868  ConstantInt *CINT;
869  ConstantAggregateZero *CZero;
870  Type *eltType;
871 
872  opr0 = CI->getArgOperand(0);
873  opr1 = CI->getArgOperand(1);
874  CZero = dyn_cast<ConstantAggregateZero>(opr1);
875  if (getVecSize(FInfo) == 1) {
876  eltType = opr0->getType();
877  CF = dyn_cast<ConstantFP>(opr1);
878  CINT = dyn_cast<ConstantInt>(opr1);
879  } else {
880  VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
881  assert(VTy && "Oprand of vector function should be of vectortype");
882  eltType = VTy->getElementType();
884 
885  // Now, only Handle vector const whose elements have the same value.
886  CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
887  CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
888  }
889 
890  // No unsafe math , no constant argument, do nothing
891  if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
892  return false;
893 
894  // 0x1111111 means that we don't do anything for this call.
895  int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
896 
897  if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
898  // pow/powr/pown(x, 0) == 1
899  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
900  Constant *cnval = ConstantFP::get(eltType, 1.0);
901  if (getVecSize(FInfo) > 1) {
902  cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
903  }
904  replaceCall(cnval);
905  return true;
906  }
907  if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
908  // pow/powr/pown(x, 1.0) = x
909  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
910  replaceCall(opr0);
911  return true;
912  }
913  if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
914  // pow/powr/pown(x, 2.0) = x*x
915  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
916  << "\n");
917  Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
918  replaceCall(nval);
919  return true;
920  }
921  if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
922  // pow/powr/pown(x, -1.0) = 1.0/x
923  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
924  Constant *cnval = ConstantFP::get(eltType, 1.0);
925  if (getVecSize(FInfo) > 1) {
926  cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
927  }
928  Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
929  replaceCall(nval);
930  return true;
931  }
932 
933  Module *M = CI->getModule();
934  if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
935  // pow[r](x, [-]0.5) = sqrt(x)
936  bool issqrt = CF->isExactlyValue(0.5);
937  if (Constant *FPExpr = getFunction(M,
939  : AMDGPULibFunc::EI_RSQRT, FInfo))) {
940  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
941  << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
942  Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
943  : "__pow2rsqrt");
944  replaceCall(nval);
945  return true;
946  }
947  }
948 
949  if (!isUnsafeMath(CI))
950  return false;
951 
952  // Unsafe Math optimization
953 
954  // Remember that ci_opr1 is set if opr1 is integral
955  if (CF) {
956  double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
957  ? (double)CF->getValueAPF().convertToFloat()
958  : CF->getValueAPF().convertToDouble();
959  int ival = (int)dval;
960  if ((double)ival == dval) {
961  ci_opr1 = ival;
962  } else
963  ci_opr1 = 0x11111111;
964  }
965 
966  // pow/powr/pown(x, c) = [1/](x*x*..x); where
967  // trunc(c) == c && the number of x == c && |c| <= 12
968  unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
969  if (abs_opr1 <= 12) {
970  Constant *cnval;
971  Value *nval;
972  if (abs_opr1 == 0) {
973  cnval = ConstantFP::get(eltType, 1.0);
974  if (getVecSize(FInfo) > 1) {
975  cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
976  }
977  nval = cnval;
978  } else {
979  Value *valx2 = nullptr;
980  nval = nullptr;
981  while (abs_opr1 > 0) {
982  valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
983  if (abs_opr1 & 1) {
984  nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
985  }
986  abs_opr1 >>= 1;
987  }
988  }
989 
990  if (ci_opr1 < 0) {
991  cnval = ConstantFP::get(eltType, 1.0);
992  if (getVecSize(FInfo) > 1) {
993  cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
994  }
995  nval = B.CreateFDiv(cnval, nval, "__1powprod");
996  }
997  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
998  << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
999  << ")\n");
1000  replaceCall(nval);
1001  return true;
1002  }
1003 
1004  // powr ---> exp2(y * log2(x))
1005  // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1006  Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2,
1007  FInfo));
1008  if (!ExpExpr)
1009  return false;
1010 
1011  bool needlog = false;
1012  bool needabs = false;
1013  bool needcopysign = false;
1014  Constant *cnval = nullptr;
1015  if (getVecSize(FInfo) == 1) {
1016  CF = dyn_cast<ConstantFP>(opr0);
1017 
1018  if (CF) {
1019  double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1020  ? (double)CF->getValueAPF().convertToFloat()
1021  : CF->getValueAPF().convertToDouble();
1022 
1023  V = log2(std::abs(V));
1024  cnval = ConstantFP::get(eltType, V);
1025  needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1026  CF->isNegative();
1027  } else {
1028  needlog = true;
1029  needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1030  (!CF || CF->isNegative());
1031  }
1032  } else {
1034 
1035  if (!CDV) {
1036  needlog = true;
1037  needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1038  } else {
1039  assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1040  "Wrong vector size detected");
1041 
1043  for (int i=0; i < getVecSize(FInfo); ++i) {
1044  double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1045  ? (double)CDV->getElementAsFloat(i)
1046  : CDV->getElementAsDouble(i);
1047  if (V < 0.0) needcopysign = true;
1048  V = log2(std::abs(V));
1049  DVal.push_back(V);
1050  }
1051  if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1052  SmallVector<float, 0> FVal;
1053  for (unsigned i=0; i < DVal.size(); ++i) {
1054  FVal.push_back((float)DVal[i]);
1055  }
1056  ArrayRef<float> tmp(FVal);
1057  cnval = ConstantDataVector::get(M->getContext(), tmp);
1058  } else {
1059  ArrayRef<double> tmp(DVal);
1060  cnval = ConstantDataVector::get(M->getContext(), tmp);
1061  }
1062  }
1063  }
1064 
1065  if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1066  // We cannot handle corner cases for a general pow() function, give up
1067  // unless y is a constant integral value. Then proceed as if it were pown.
1068  if (getVecSize(FInfo) == 1) {
1069  if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1070  double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1071  ? (double)CF->getValueAPF().convertToFloat()
1072  : CF->getValueAPF().convertToDouble();
1073  if (y != (double)(int64_t)y)
1074  return false;
1075  } else
1076  return false;
1077  } else {
1078  if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1079  for (int i=0; i < getVecSize(FInfo); ++i) {
1080  double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1081  ? (double)CDV->getElementAsFloat(i)
1082  : CDV->getElementAsDouble(i);
1083  if (y != (double)(int64_t)y)
1084  return false;
1085  }
1086  } else
1087  return false;
1088  }
1089  }
1090 
1091  Value *nval;
1092  if (needabs) {
1093  Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS,
1094  FInfo));
1095  if (!AbsExpr)
1096  return false;
1097  nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1098  } else {
1099  nval = cnval ? cnval : opr0;
1100  }
1101  if (needlog) {
1102  Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2,
1103  FInfo));
1104  if (!LogExpr)
1105  return false;
1106  nval = CreateCallEx(B,LogExpr, nval, "__log2");
1107  }
1108 
1109  if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1110  // convert int(32) to fp(f32 or f64)
1111  opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1112  }
1113  nval = B.CreateFMul(opr1, nval, "__ylogx");
1114  nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1115 
1116  if (needcopysign) {
1117  Value *opr_n;
1118  Type* rTy = opr0->getType();
1119  Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1120  Type *nTy = nTyS;
1121  if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
1122  nTy = VectorType::get(nTyS, vTy->getNumElements());
1123  unsigned size = nTy->getScalarSizeInBits();
1124  opr_n = CI->getArgOperand(1);
1125  if (opr_n->getType()->isIntegerTy())
1126  opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1127  else
1128  opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1129 
1130  Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1131  sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1132  nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1133  nval = B.CreateBitCast(nval, opr0->getType());
1134  }
1135 
1136  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1137  << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1138  replaceCall(nval);
1139 
1140  return true;
1141 }
1142 
1143 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1144  const FuncInfo &FInfo) {
1145  Value *opr0 = CI->getArgOperand(0);
1146  Value *opr1 = CI->getArgOperand(1);
1147 
1148  ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1149  if (!CINT) {
1150  return false;
1151  }
1152  int ci_opr1 = (int)CINT->getSExtValue();
1153  if (ci_opr1 == 1) { // rootn(x, 1) = x
1154  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1155  replaceCall(opr0);
1156  return true;
1157  }
1158  if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x)
1159  std::vector<const Type*> ParamsTys;
1160  ParamsTys.push_back(opr0->getType());
1161  Module *M = CI->getModule();
1162  if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT,
1163  FInfo))) {
1164  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1165  Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1166  replaceCall(nval);
1167  return true;
1168  }
1169  } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1170  Module *M = CI->getModule();
1171  if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT,
1172  FInfo))) {
1173  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1174  Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1175  replaceCall(nval);
1176  return true;
1177  }
1178  } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1179  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1180  Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1181  opr0,
1182  "__rootn2div");
1183  replaceCall(nval);
1184  return true;
1185  } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x)
1186  std::vector<const Type*> ParamsTys;
1187  ParamsTys.push_back(opr0->getType());
1188  Module *M = CI->getModule();
1189  if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT,
1190  FInfo))) {
1191  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1192  << ")\n");
1193  Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1194  replaceCall(nval);
1195  return true;
1196  }
1197  }
1198  return false;
1199 }
1200 
1201 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1202  const FuncInfo &FInfo) {
1203  Value *opr0 = CI->getArgOperand(0);
1204  Value *opr1 = CI->getArgOperand(1);
1205  Value *opr2 = CI->getArgOperand(2);
1206 
1207  ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1208  ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1209  if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1210  // fma/mad(a, b, c) = c if a=0 || b=0
1211  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1212  replaceCall(opr2);
1213  return true;
1214  }
1215  if (CF0 && CF0->isExactlyValue(1.0f)) {
1216  // fma/mad(a, b, c) = b+c if a=1
1217  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1218  << "\n");
1219  Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1220  replaceCall(nval);
1221  return true;
1222  }
1223  if (CF1 && CF1->isExactlyValue(1.0f)) {
1224  // fma/mad(a, b, c) = a+c if b=1
1225  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1226  << "\n");
1227  Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1228  replaceCall(nval);
1229  return true;
1230  }
1231  if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1232  if (CF->isZero()) {
1233  // fma/mad(a, b, c) = a*b if c=0
1234  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1235  << *opr1 << "\n");
1236  Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1237  replaceCall(nval);
1238  return true;
1239  }
1240  }
1241 
1242  return false;
1243 }
1244 
1245 // Get a scalar native builtin signle argument FP function
1246 Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) {
1247  if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1248  return nullptr;
1249  FuncInfo nf = FInfo;
1250  nf.setPrefix(AMDGPULibFunc::NATIVE);
1251  return getFunction(M, nf);
1252 }
1253 
1254 // fold sqrt -> native_sqrt (x)
1255 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1256  const FuncInfo &FInfo) {
1257  if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1258  (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1259  if (Constant *FPExpr = getNativeFunction(
1261  Value *opr0 = CI->getArgOperand(0);
1262  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1263  << "sqrt(" << *opr0 << ")\n");
1264  Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1265  replaceCall(nval);
1266  return true;
1267  }
1268  }
1269  return false;
1270 }
1271 
1272 // fold sin, cos -> sincos.
1273 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1274  AliasAnalysis *AA) {
1275  AMDGPULibFunc fInfo;
1276  if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1277  return false;
1278 
1279  assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1280  fInfo.getId() == AMDGPULibFunc::EI_COS);
1281  bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1282 
1283  Value *CArgVal = CI->getArgOperand(0);
1284  BasicBlock * const CBB = CI->getParent();
1285 
1286  int const MaxScan = 30;
1287 
1288  { // fold in load value.
1289  LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1290  if (LI && LI->getParent() == CBB) {
1291  BasicBlock::iterator BBI = LI->getIterator();
1292  Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1293  if (AvailableVal) {
1294  CArgVal->replaceAllUsesWith(AvailableVal);
1295  if (CArgVal->getNumUses() == 0)
1296  LI->eraseFromParent();
1297  CArgVal = CI->getArgOperand(0);
1298  }
1299  }
1300  }
1301 
1302  Module *M = CI->getModule();
1304  std::string const PairName = fInfo.mangle();
1305 
1306  CallInst *UI = nullptr;
1307  for (User* U : CArgVal->users()) {
1308  CallInst *XI = dyn_cast_or_null<CallInst>(U);
1309  if (!XI || XI == CI || XI->getParent() != CBB)
1310  continue;
1311 
1312  Function *UCallee = XI->getCalledFunction();
1313  if (!UCallee || !UCallee->getName().equals(PairName))
1314  continue;
1315 
1316  BasicBlock::iterator BBI = CI->getIterator();
1317  if (BBI == CI->getParent()->begin())
1318  break;
1319  --BBI;
1320  for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1321  if (cast<Instruction>(BBI) == XI) {
1322  UI = XI;
1323  break;
1324  }
1325  }
1326  if (UI) break;
1327  }
1328 
1329  if (!UI) return false;
1330 
1331  // Merge the sin and cos.
1332 
1333  // for OpenCL 2.0 we have only generic implementation of sincos
1334  // function.
1337  Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf));
1338  if (!Fsincos) return false;
1339 
1341  AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1342  B.SetInsertPoint(UI);
1343 
1344  Value *P = Alloc;
1345  Type *PTy = Fsincos->getFunctionType()->getParamType(1);
1346  // The allocaInst allocates the memory in private address space. This need
1347  // to be bitcasted to point to the address space of cos pointer type.
1348  // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1350  P = B.CreateAddrSpaceCast(Alloc, PTy);
1351  CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1352 
1353  LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1354  << *Call << "\n");
1355 
1356  if (!isSin) { // CI->cos, UI->sin
1357  B.SetInsertPoint(&*ItOld);
1358  UI->replaceAllUsesWith(&*Call);
1359  Instruction *Reload = B.CreateLoad(Alloc);
1360  CI->replaceAllUsesWith(Reload);
1361  UI->eraseFromParent();
1362  CI->eraseFromParent();
1363  } else { // CI->sin, UI->cos
1364  Instruction *Reload = B.CreateLoad(Alloc);
1365  UI->replaceAllUsesWith(Reload);
1366  CI->replaceAllUsesWith(Call);
1367  UI->eraseFromParent();
1368  CI->eraseFromParent();
1369  }
1370  return true;
1371 }
1372 
1373 // Get insertion point at entry.
1374 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1375  Function * Func = UI->getParent()->getParent();
1376  BasicBlock * BB = &Func->getEntryBlock();
1377  assert(BB && "Entry block not found!");
1378  BasicBlock::iterator ItNew = BB->begin();
1379  return ItNew;
1380 }
1381 
1382 // Insert a AllocsInst at the beginning of function entry block.
1383 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1384  const char *prefix) {
1385  BasicBlock::iterator ItNew = getEntryIns(UI);
1386  Function *UCallee = UI->getCalledFunction();
1387  Type *RetType = UCallee->getReturnType();
1388  B.SetInsertPoint(&*ItNew);
1389  AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1390  std::string(prefix) + UI->getName());
1391  Alloc->setAlignment(UCallee->getParent()->getDataLayout()
1392  .getTypeAllocSize(RetType));
1393  return Alloc;
1394 }
1395 
1396 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1397  double& Res0, double& Res1,
1398  Constant *copr0, Constant *copr1,
1399  Constant *copr2) {
1400  // By default, opr0/opr1/opr3 holds values of float/double type.
1401  // If they are not float/double, each function has to its
1402  // operand separately.
1403  double opr0=0.0, opr1=0.0, opr2=0.0;
1404  ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1405  ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1406  ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1407  if (fpopr0) {
1408  opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1409  ? fpopr0->getValueAPF().convertToDouble()
1410  : (double)fpopr0->getValueAPF().convertToFloat();
1411  }
1412 
1413  if (fpopr1) {
1414  opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1415  ? fpopr1->getValueAPF().convertToDouble()
1416  : (double)fpopr1->getValueAPF().convertToFloat();
1417  }
1418 
1419  if (fpopr2) {
1420  opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1421  ? fpopr2->getValueAPF().convertToDouble()
1422  : (double)fpopr2->getValueAPF().convertToFloat();
1423  }
1424 
1425  switch (FInfo.getId()) {
1426  default : return false;
1427 
1429  Res0 = acos(opr0);
1430  return true;
1431 
1433  // acosh(x) == log(x + sqrt(x*x - 1))
1434  Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1435  return true;
1436 
1438  Res0 = acos(opr0) / MATH_PI;
1439  return true;
1440 
1442  Res0 = asin(opr0);
1443  return true;
1444 
1446  // asinh(x) == log(x + sqrt(x*x + 1))
1447  Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1448  return true;
1449 
1451  Res0 = asin(opr0) / MATH_PI;
1452  return true;
1453 
1455  Res0 = atan(opr0);
1456  return true;
1457 
1459  // atanh(x) == (log(x+1) - log(x-1))/2;
1460  Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1461  return true;
1462 
1464  Res0 = atan(opr0) / MATH_PI;
1465  return true;
1466 
1468  Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1469  return true;
1470 
1471  case AMDGPULibFunc::EI_COS:
1472  Res0 = cos(opr0);
1473  return true;
1474 
1476  Res0 = cosh(opr0);
1477  return true;
1478 
1480  Res0 = cos(MATH_PI * opr0);
1481  return true;
1482 
1483  case AMDGPULibFunc::EI_EXP:
1484  Res0 = exp(opr0);
1485  return true;
1486 
1488  Res0 = pow(2.0, opr0);
1489  return true;
1490 
1492  Res0 = pow(10.0, opr0);
1493  return true;
1494 
1496  Res0 = exp(opr0) - 1.0;
1497  return true;
1498 
1499  case AMDGPULibFunc::EI_LOG:
1500  Res0 = log(opr0);
1501  return true;
1502 
1504  Res0 = log(opr0) / log(2.0);
1505  return true;
1506 
1508  Res0 = log(opr0) / log(10.0);
1509  return true;
1510 
1512  Res0 = 1.0 / sqrt(opr0);
1513  return true;
1514 
1515  case AMDGPULibFunc::EI_SIN:
1516  Res0 = sin(opr0);
1517  return true;
1518 
1520  Res0 = sinh(opr0);
1521  return true;
1522 
1524  Res0 = sin(MATH_PI * opr0);
1525  return true;
1526 
1528  Res0 = sqrt(opr0);
1529  return true;
1530 
1531  case AMDGPULibFunc::EI_TAN:
1532  Res0 = tan(opr0);
1533  return true;
1534 
1536  Res0 = tanh(opr0);
1537  return true;
1538 
1540  Res0 = tan(MATH_PI * opr0);
1541  return true;
1542 
1544  Res0 = 1.0 / opr0;
1545  return true;
1546 
1547  // two-arg functions
1549  Res0 = opr0 / opr1;
1550  return true;
1551 
1552  case AMDGPULibFunc::EI_POW:
1554  Res0 = pow(opr0, opr1);
1555  return true;
1556 
1557  case AMDGPULibFunc::EI_POWN: {
1558  if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1559  double val = (double)iopr1->getSExtValue();
1560  Res0 = pow(opr0, val);
1561  return true;
1562  }
1563  return false;
1564  }
1565 
1566  case AMDGPULibFunc::EI_ROOTN: {
1567  if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1568  double val = (double)iopr1->getSExtValue();
1569  Res0 = pow(opr0, 1.0 / val);
1570  return true;
1571  }
1572  return false;
1573  }
1574 
1575  // with ptr arg
1577  Res0 = sin(opr0);
1578  Res1 = cos(opr0);
1579  return true;
1580 
1581  // three-arg functions
1582  case AMDGPULibFunc::EI_FMA:
1583  case AMDGPULibFunc::EI_MAD:
1584  Res0 = opr0 * opr1 + opr2;
1585  return true;
1586  }
1587 
1588  return false;
1589 }
1590 
1591 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1592  int numArgs = (int)aCI->getNumArgOperands();
1593  if (numArgs > 3)
1594  return false;
1595 
1596  Constant *copr0 = nullptr;
1597  Constant *copr1 = nullptr;
1598  Constant *copr2 = nullptr;
1599  if (numArgs > 0) {
1600  if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1601  return false;
1602  }
1603 
1604  if (numArgs > 1) {
1605  if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1606  if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1607  return false;
1608  }
1609  }
1610 
1611  if (numArgs > 2) {
1612  if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1613  return false;
1614  }
1615 
1616  // At this point, all arguments to aCI are constants.
1617 
1618  // max vector size is 16, and sincos will generate two results.
1619  double DVal0[16], DVal1[16];
1620  bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1621  if (getVecSize(FInfo) == 1) {
1622  if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1623  DVal1[0], copr0, copr1, copr2)) {
1624  return false;
1625  }
1626  } else {
1627  ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1628  ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1629  ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1630  for (int i=0; i < getVecSize(FInfo); ++i) {
1631  Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1632  Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1633  Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1634  if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1635  DVal1[i], celt0, celt1, celt2)) {
1636  return false;
1637  }
1638  }
1639  }
1640 
1641  LLVMContext &context = CI->getParent()->getParent()->getContext();
1642  Constant *nval0, *nval1;
1643  if (getVecSize(FInfo) == 1) {
1644  nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1645  if (hasTwoResults)
1646  nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1647  } else {
1648  if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1649  SmallVector <float, 0> FVal0, FVal1;
1650  for (int i=0; i < getVecSize(FInfo); ++i)
1651  FVal0.push_back((float)DVal0[i]);
1652  ArrayRef<float> tmp0(FVal0);
1653  nval0 = ConstantDataVector::get(context, tmp0);
1654  if (hasTwoResults) {
1655  for (int i=0; i < getVecSize(FInfo); ++i)
1656  FVal1.push_back((float)DVal1[i]);
1657  ArrayRef<float> tmp1(FVal1);
1658  nval1 = ConstantDataVector::get(context, tmp1);
1659  }
1660  } else {
1661  ArrayRef<double> tmp0(DVal0);
1662  nval0 = ConstantDataVector::get(context, tmp0);
1663  if (hasTwoResults) {
1664  ArrayRef<double> tmp1(DVal1);
1665  nval1 = ConstantDataVector::get(context, tmp1);
1666  }
1667  }
1668  }
1669 
1670  if (hasTwoResults) {
1671  // sincos
1672  assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1673  "math function with ptr arg not supported yet");
1674  new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1675  }
1676 
1677  replaceCall(nval0);
1678  return true;
1679 }
1680 
1681 // Public interface to the Simplify LibCalls pass.
1683  return new AMDGPUSimplifyLibCalls(Opt);
1684 }
1685 
1687  return new AMDGPUUseNativeCalls();
1688 }
1689 
1690 static bool setFastFlags(Function &F, const TargetOptions &Options) {
1691  AttrBuilder B;
1692 
1693  if (Options.UnsafeFPMath || Options.NoInfsFPMath)
1694  B.addAttribute("no-infs-fp-math", "true");
1695  if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
1696  B.addAttribute("no-nans-fp-math", "true");
1697  if (Options.UnsafeFPMath) {
1698  B.addAttribute("less-precise-fpmad", "true");
1699  B.addAttribute("unsafe-fp-math", "true");
1700  }
1701 
1702  if (!B.hasAttributes())
1703  return false;
1704 
1706 
1707  return true;
1708 }
1709 
1711  if (skipFunction(F))
1712  return false;
1713 
1714  bool Changed = false;
1715  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1716 
1717  LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1718  F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1719 
1720  if (!EnablePreLink)
1721  Changed |= setFastFlags(F, Options);
1722 
1723  for (auto &BB : F) {
1724  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1725  // Ignore non-calls.
1726  CallInst *CI = dyn_cast<CallInst>(I);
1727  ++I;
1728  if (!CI) continue;
1729 
1730  // Ignore indirect calls.
1731  Function *Callee = CI->getCalledFunction();
1732  if (Callee == 0) continue;
1733 
1734  LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1735  dbgs().flush());
1736  if(Simplifier.fold(CI, AA))
1737  Changed = true;
1738  }
1739  }
1740  return Changed;
1741 }
1742 
1744  if (skipFunction(F) || UseNative.empty())
1745  return false;
1746 
1747  bool Changed = false;
1748  for (auto &BB : F) {
1749  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1750  // Ignore non-calls.
1751  CallInst *CI = dyn_cast<CallInst>(I);
1752  ++I;
1753  if (!CI) continue;
1754 
1755  // Ignore indirect calls.
1756  Function *Callee = CI->getCalledFunction();
1757  if (Callee == 0) continue;
1758 
1759  if(Simplifier.useNative(CI))
1760  Changed = true;
1761  }
1762  }
1763  return Changed;
1764 }
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double, and whose elements are just simple data values (i.e.
Definition: Constants.h:762
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
static const TableEntry tbl_sqrt[]
static const TableEntry tbl_log10[]
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
LLVMContext & Context
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Definition: IRBuilder.h:1344
void dropAllReferences()
Drop all references to operands.
Definition: User.h:295
EFuncId getId() const
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1737
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
Constant * getElementAsConstant(unsigned i) const
Return a Constant for a specified index&#39;s element.
Definition: Constants.cpp:2761
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve &#39;CreateLoad(Ty, Ptr, "...")&#39; correctly, instead of converting the string to &#39;bool...
Definition: IRBuilder.h:1357
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
void setAlignment(unsigned Align)
static const TableEntry tbl_cospi[]
amdgpu simplifylib
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
static const TableEntry tbl_cbrt[]
static bool parse(StringRef MangledName, AMDGPULibFunc &Ptr)
void initializeAMDGPUSimplifyLibCallsPass(PassRegistry &)
This class represents a function call, abstracting a target machine&#39;s calling convention.
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space...
Definition: Type.cpp:630
bool isUnsafeMath(const CallInst *CI) const
float convertToFloat() const
Definition: APFloat.h:1098
Address space for private memory.
Definition: AMDGPU.h:261
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
F(f)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
An instruction for reading from memory.
Definition: Instructions.h:168
static const TableEntry tbl_erf[]
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:177
AttrBuilder & addAttribute(Attribute::AttrKind Val)
Add an attribute to the builder.
void setPrefix(ENamePrefix PFX)
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
static const TableEntry tbl_acosh[]
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:65
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:347
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1135
static const TableEntry tbl_atanh[]
std::string getName() const
Get unmangled name for mangled library function and name for unmangled library function.
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
amdgpu Simplify well known AMD library false Value Value const Twine & Name
bool hasAttributes() const
Return true if the builder has IR-level attributes.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition: IRBuilder.h:352
Value * FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=DefMaxInstsToScan, AliasAnalysis *AA=nullptr, bool *IsLoadCSE=nullptr, unsigned *NumScanedInst=nullptr)
Scan backwards to see if we have the value of the given load available locally within a small number ...
Definition: Loads.cpp:321
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:244
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
Param * getLeads()
Get leading parameters for mangled lib functions.
void setCalledFunction(Value *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1210
static const TableEntry tbl_sinh[]
unsigned getNumArgs() const
INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", "Simplify well-known AMD library calls", false, false) INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls
All zero aggregate value.
Definition: Constants.h:341
void setId(EFuncId Id)
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1732
unsigned NoNaNsFPMath
NoNaNsFPMath - This flag is enabled when the -enable-no-nans-fp-math flag is specified on the command...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
amdgpu Simplify well known AMD library false
static const TableEntry tbl_sinpi[]
bool isNegative() const
Return true if the sign bit is set.
Definition: Constants.h:309
static const TableEntry tbl_asinh[]
static const TableEntry tbl_tanpi[]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
Value * CreateSIToFP(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1709
An instruction for storing to memory.
Definition: Instructions.h:321
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
Value * CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1742
amdgpu Simplify well known AMD library false Value * Callee
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:127
static const TableEntry tbl_log2[]
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1182
static AMDGPULibFunc::EType getArgType(const AMDGPULibFunc &FInfo)
const BasicBlock & getEntryBlock() const
Definition: Function.h:640
static bool runOnFunction(Function &F, bool PostInlining)
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
TableRef(const TableEntry(&tbl)[N])
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.h:169
bool fold(CallInst *CI, AliasAnalysis *AA=nullptr)
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Value * CreateFMul(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1247
static const TableEntry tbl_exp2[]
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:429
bool hasName() const
Definition: Value.h:251
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
static Function * getFunction(llvm::Module *M, const AMDGPULibFunc &fInfo)
Constant * getSplatValue() const
If this is a splat constant, meaning that all of the elements have the same value, return that value.
Definition: Constants.cpp:2798
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
Address space for flat memory.
Definition: AMDGPU.h:255
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:264
static cl::opt< bool > EnablePreLink("amdgpu-prelink", cl::desc("Enable pre-link mode optimizations"), cl::init(false), cl::Hidden)
double convertToDouble() const
Definition: APFloat.h:1097
float getElementAsFloat(unsigned i) const
If this is an sequential container of floats, return the specified element as a float.
Definition: Constants.cpp:2749
static const TableEntry tbl_atan[]
static const TableEntry tbl_sin[]
bool isMangled() const
Represent the analysis usage information of a pass.
static const TableEntry tbl_rsqrt[]
static const TableEntry tbl_acospi[]
void setCallingConv(CallingConv::ID CC)
Definition: InstrTypes.h:1229
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
Wrapper class for AMDGPULIbFuncImpl.
static const TableEntry tbl_expm1[]
self_iterator getIterator()
Definition: ilist_node.h:82
static int getVecSize(const AMDGPULibFunc &FInfo)
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
Definition: Constants.cpp:2638
unsigned NoInfsFPMath
NoInfsFPMath - This flag is enabled when the -enable-no-infs-fp-math flag is specified on the command...
static double log2(double V)
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:193
static unsigned getEPtrKindFromAddrSpace(unsigned AS)
size_t size() const
Definition: SmallVector.h:53
void initializeAMDGPUUseNativeCallsPass(PassRegistry &)
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1207
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:4225
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
static const TableEntry tbl_atanpi[]
const APFloat & getValueAPF() const
Definition: Constants.h:303
static const TableEntry tbl_exp10[]
Iterator for intrusive lists based on ilist_node.
TargetPassConfig.
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
static const TableEntry tbl_asinpi[]
static bool setFastFlags(Function &F, const TargetOptions &Options)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
ENamePrefix getPrefix() const
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:240
Module.h This file contains the declarations for the Module class.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition: Type.cpp:180
static Constant * get(Type *Ty, double V)
This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in...
Definition: Constants.cpp:685
const TableEntry * table
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1244
static const TableEntry tbl_log[]
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:164
Class to represent vector types.
Definition: DerivedTypes.h:393
static Function * getOrInsertFunction(llvm::Module *M, const AMDGPULibFunc &fInfo)
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
static const TableEntry tbl_cosh[]
iterator_range< user_iterator > users()
Definition: Value.h:400
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:90
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1103
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool equals(StringRef RHS) const
equals - Check for string equality, this is more efficient than compare() when the relative ordering ...
Definition: StringRef.h:169
Value * CreatePointerCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1778
amdgpu Simplify well known AMD library false Value Value * Arg
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:436
unsigned getNumUses() const
This method computes the number of uses of this Value.
Definition: Value.cpp:160
unsigned getNumArgOperands() const
Definition: InstrTypes.h:1133
static const TableEntry tbl_exp[]
StringRef getValueAsString() const
Return the attribute&#39;s value as a string.
Definition: Attributes.cpp:195
static const TableEntry tbl_tanh[]
bool isZero() const
Return true if the value is positive or negative zero.
Definition: Constants.h:306
double getElementAsDouble(unsigned i) const
If this is an sequential container of doubles, return the specified element as a double.
Definition: Constants.cpp:2755
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation.
Definition: InstrTypes.h:1181
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
#define I(x, y, z)
Definition: MD5.cpp:58
static TableRef getOptTable(AMDGPULibFunc::EFuncId id)
#define N
#define MATH_PI
FunctionPass * createAMDGPUSimplifyLibCallsPass(const TargetOptions &)
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition: APFloat.h:1213
static const TableEntry tbl_asin[]
Value * CreateFPToSI(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1701
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1248
static cl::list< std::string > UseNative("amdgpu-use-native", cl::desc("Comma separated list of functions to replace with native, or all"), cl::CommaSeparated, cl::ValueOptional, cl::Hidden)
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value *> Args=None, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1974
#define MATH_SQRT2
static const TableEntry tbl_tan[]
static const TableEntry tbl_cos[]
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1213
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1164
static bool HasNative(AMDGPULibFunc::EFuncId id)
Value * CreateFDiv(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1264
const std::string to_string(const T &Value)
Definition: ScopedPrinter.h:62
void replaceCall(Value *With)
void addAttributes(unsigned i, const AttrBuilder &Attrs)
adds the attributes to the list of attributes.
Definition: Function.cpp:380
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
FunctionPass * createAMDGPUUseNativeCallsPass()
aarch64 promote const
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
amdgpu Simplify well known AMD library calls
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:606
static const TableEntry tbl_erfc[]
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:220
BasicBlock::iterator GetInsertPoint() const
Definition: IRBuilder.h:122
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.h:331
std::string mangle() const
Type * getElementType() const
Definition: DerivedTypes.h:360
bool isExactlyValue(const APFloat &V) const
We don&#39;t rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: Constants.cpp:824
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
unsigned getNumElements() const
Return the number of elements in the array or vector.
Definition: Constants.cpp:2444
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:157
static Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
Definition: Constants.cpp:2583
#define LLVM_DEBUG(X)
Definition: Debug.h:123
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:150
static const TableEntry tbl_tgamma[]
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
bool useNative(CallInst *CI)
static const TableEntry tbl_acos[]
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
#define MATH_E