LLVM  8.0.1
SIWholeQuadMode.cpp
Go to the documentation of this file.
1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass adds instructions to enable whole quad mode for pixel
12 /// shaders, and whole wavefront mode for all programs.
13 ///
14 /// Whole quad mode is required for derivative computations, but it interferes
15 /// with shader side effects (stores and atomics). This pass is run on the
16 /// scheduled machine IR but before register coalescing, so that machine SSA is
17 /// available for analysis. It ensures that WQM is enabled when necessary, but
18 /// disabled around stores and atomics.
19 ///
20 /// When necessary, this pass creates a function prolog
21 ///
22 /// S_MOV_B64 LiveMask, EXEC
23 /// S_WQM_B64 EXEC, EXEC
24 ///
25 /// to enter WQM at the top of the function and surrounds blocks of Exact
26 /// instructions by
27 ///
28 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask
29 /// ...
30 /// S_MOV_B64 EXEC, Tmp
31 ///
32 /// We also compute when a sequence of instructions requires Whole Wavefront
33 /// Mode (WWM) and insert instructions to save and restore it:
34 ///
35 /// S_OR_SAVEEXEC_B64 Tmp, -1
36 /// ...
37 /// S_MOV_B64 EXEC, Tmp
38 ///
39 /// In order to avoid excessive switching during sequences of Exact
40 /// instructions, the pass first analyzes which instructions must be run in WQM
41 /// (aka which instructions produce values that lead to derivative
42 /// computations).
43 ///
44 /// Basic blocks are always exited in WQM as long as some successor needs WQM.
45 ///
46 /// There is room for improvement given better control flow analysis:
47 ///
48 /// (1) at the top level (outside of control flow statements, and as long as
49 /// kill hasn't been used), one SGPR can be saved by recovering WQM from
50 /// the LiveMask (this is implemented for the entry block).
51 ///
52 /// (2) when entire regions (e.g. if-else blocks or entire loops) only
53 /// consist of exact and don't-care instructions, the switch only has to
54 /// be done at the entry and exit points rather than potentially in each
55 /// block of the region.
56 ///
57 //===----------------------------------------------------------------------===//
58 
59 #include "AMDGPU.h"
60 #include "AMDGPUSubtarget.h"
61 #include "SIInstrInfo.h"
62 #include "SIMachineFunctionInfo.h"
64 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/StringRef.h"
79 #include "llvm/IR/CallingConv.h"
80 #include "llvm/IR/DebugLoc.h"
81 #include "llvm/MC/MCRegisterInfo.h"
82 #include "llvm/Pass.h"
83 #include "llvm/Support/Debug.h"
85 #include <cassert>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "si-wqm"
91 
92 namespace {
93 
94 enum {
95  StateWQM = 0x1,
96  StateWWM = 0x2,
97  StateExact = 0x4,
98 };
99 
100 struct PrintState {
101 public:
102  int State;
103 
104  explicit PrintState(int State) : State(State) {}
105 };
106 
107 #ifndef NDEBUG
108 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
109  if (PS.State & StateWQM)
110  OS << "WQM";
111  if (PS.State & StateWWM) {
112  if (PS.State & StateWQM)
113  OS << '|';
114  OS << "WWM";
115  }
116  if (PS.State & StateExact) {
117  if (PS.State & (StateWQM | StateWWM))
118  OS << '|';
119  OS << "Exact";
120  }
121 
122  return OS;
123 }
124 #endif
125 
126 struct InstrInfo {
127  char Needs = 0;
128  char Disabled = 0;
129  char OutNeeds = 0;
130 };
131 
132 struct BlockInfo {
133  char Needs = 0;
134  char InNeeds = 0;
135  char OutNeeds = 0;
136 };
137 
138 struct WorkItem {
139  MachineBasicBlock *MBB = nullptr;
140  MachineInstr *MI = nullptr;
141 
142  WorkItem() = default;
143  WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
144  WorkItem(MachineInstr *MI) : MI(MI) {}
145 };
146 
147 class SIWholeQuadMode : public MachineFunctionPass {
148 private:
150  const SIInstrInfo *TII;
151  const SIRegisterInfo *TRI;
153  LiveIntervals *LIS;
154 
157  SmallVector<MachineInstr *, 1> LiveMaskQueries;
158  SmallVector<MachineInstr *, 4> LowerToCopyInstrs;
159 
160  void printInfo();
161 
162  void markInstruction(MachineInstr &MI, char Flag,
163  std::vector<WorkItem> &Worklist);
164  void markInstructionUses(const MachineInstr &MI, char Flag,
165  std::vector<WorkItem> &Worklist);
166  char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
167  void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
168  void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
169  char analyzeFunction(MachineFunction &MF);
170 
171  bool requiresCorrectState(const MachineInstr &MI) const;
172 
176  prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
177  MachineBasicBlock::iterator Last, bool PreferLast,
178  bool SaveSCC);
179  void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
180  unsigned SaveWQM, unsigned LiveMaskReg);
181  void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
182  unsigned SavedWQM);
183  void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
184  unsigned SaveOrig);
185  void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
186  unsigned SavedOrig);
187  void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry);
188 
189  void lowerLiveMaskQueries(unsigned LiveMaskReg);
190  void lowerCopyInstrs();
191 
192 public:
193  static char ID;
194 
195  SIWholeQuadMode() :
196  MachineFunctionPass(ID) { }
197 
198  bool runOnMachineFunction(MachineFunction &MF) override;
199 
200  StringRef getPassName() const override { return "SI Whole Quad Mode"; }
201 
202  void getAnalysisUsage(AnalysisUsage &AU) const override {
204  AU.setPreservesCFG();
206  }
207 };
208 
209 } // end anonymous namespace
210 
211 char SIWholeQuadMode::ID = 0;
212 
213 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
214  false)
216 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
217  false)
218 
219 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
220 
222  return new SIWholeQuadMode;
223 }
224 
225 #ifndef NDEBUG
226 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
227  for (const auto &BII : Blocks) {
228  dbgs() << "\n"
229  << printMBBReference(*BII.first) << ":\n"
230  << " InNeeds = " << PrintState(BII.second.InNeeds)
231  << ", Needs = " << PrintState(BII.second.Needs)
232  << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";
233 
234  for (const MachineInstr &MI : *BII.first) {
235  auto III = Instructions.find(&MI);
236  if (III == Instructions.end())
237  continue;
238 
239  dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs)
240  << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
241  }
242  }
243 }
244 #endif
245 
246 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
247  std::vector<WorkItem> &Worklist) {
248  InstrInfo &II = Instructions[&MI];
249 
250  assert(!(Flag & StateExact) && Flag != 0);
251 
252  // Remove any disabled states from the flag. The user that required it gets
253  // an undefined value in the helper lanes. For example, this can happen if
254  // the result of an atomic is used by instruction that requires WQM, where
255  // ignoring the request for WQM is correct as per the relevant specs.
256  Flag &= ~II.Disabled;
257 
258  // Ignore if the flag is already encompassed by the existing needs, or we
259  // just disabled everything.
260  if ((II.Needs & Flag) == Flag)
261  return;
262 
263  II.Needs |= Flag;
264  Worklist.push_back(&MI);
265 }
266 
267 /// Mark all instructions defining the uses in \p MI with \p Flag.
268 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
269  std::vector<WorkItem> &Worklist) {
270  for (const MachineOperand &Use : MI.uses()) {
271  if (!Use.isReg() || !Use.isUse())
272  continue;
273 
274  unsigned Reg = Use.getReg();
275 
276  // Handle physical registers that we need to track; this is mostly relevant
277  // for VCC, which can appear as the (implicit) input of a uniform branch,
278  // e.g. when a loop counter is stored in a VGPR.
280  if (Reg == AMDGPU::EXEC)
281  continue;
282 
283  for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) {
284  LiveRange &LR = LIS->getRegUnit(*RegUnit);
285  const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
286  if (!Value)
287  continue;
288 
289  // Since we're in machine SSA, we do not need to track physical
290  // registers across basic blocks.
291  if (Value->isPHIDef())
292  continue;
293 
294  markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag,
295  Worklist);
296  }
297 
298  continue;
299  }
300 
301  for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg()))
302  markInstruction(DefMI, Flag, Worklist);
303  }
304 }
305 
306 // Scan instructions to determine which ones require an Exact execmask and
307 // which ones seed WQM requirements.
308 char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
309  std::vector<WorkItem> &Worklist) {
310  char GlobalFlags = 0;
311  bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
312  SmallVector<MachineInstr *, 4> SetInactiveInstrs;
313 
314  // We need to visit the basic blocks in reverse post-order so that we visit
315  // defs before uses, in particular so that we don't accidentally mark an
316  // instruction as needing e.g. WQM before visiting it and realizing it needs
317  // WQM disabled.
319  for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) {
320  MachineBasicBlock &MBB = **BI;
321  BlockInfo &BBI = Blocks[&MBB];
322 
323  for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
324  MachineInstr &MI = *II;
325  InstrInfo &III = Instructions[&MI];
326  unsigned Opcode = MI.getOpcode();
327  char Flags = 0;
328 
329  if (TII->isWQM(Opcode)) {
330  // Sampling instructions don't need to produce results for all pixels
331  // in a quad, they just require all inputs of a quad to have been
332  // computed for derivatives.
333  markInstructionUses(MI, StateWQM, Worklist);
334  GlobalFlags |= StateWQM;
335  continue;
336  } else if (Opcode == AMDGPU::WQM) {
337  // The WQM intrinsic requires its output to have all the helper lanes
338  // correct, so we need it to be in WQM.
339  Flags = StateWQM;
340  LowerToCopyInstrs.push_back(&MI);
341  } else if (Opcode == AMDGPU::WWM) {
342  // The WWM intrinsic doesn't make the same guarantee, and plus it needs
343  // to be executed in WQM or Exact so that its copy doesn't clobber
344  // inactive lanes.
345  markInstructionUses(MI, StateWWM, Worklist);
346  GlobalFlags |= StateWWM;
347  LowerToCopyInstrs.push_back(&MI);
348  continue;
349  } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
350  Opcode == AMDGPU::V_SET_INACTIVE_B64) {
351  III.Disabled = StateWWM;
352  MachineOperand &Inactive = MI.getOperand(2);
353  if (Inactive.isReg()) {
354  if (Inactive.isUndef()) {
355  LowerToCopyInstrs.push_back(&MI);
356  } else {
357  unsigned Reg = Inactive.getReg();
359  for (MachineInstr &DefMI : MRI->def_instructions(Reg))
360  markInstruction(DefMI, StateWWM, Worklist);
361  }
362  }
363  }
364  SetInactiveInstrs.push_back(&MI);
365  continue;
366  } else if (TII->isDisableWQM(MI)) {
367  BBI.Needs |= StateExact;
368  if (!(BBI.InNeeds & StateExact)) {
369  BBI.InNeeds |= StateExact;
370  Worklist.push_back(&MBB);
371  }
372  GlobalFlags |= StateExact;
373  III.Disabled = StateWQM | StateWWM;
374  continue;
375  } else {
376  if (Opcode == AMDGPU::SI_PS_LIVE) {
377  LiveMaskQueries.push_back(&MI);
378  } else if (WQMOutputs) {
379  // The function is in machine SSA form, which means that physical
380  // VGPRs correspond to shader inputs and outputs. Inputs are
381  // only used, outputs are only defined.
382  for (const MachineOperand &MO : MI.defs()) {
383  if (!MO.isReg())
384  continue;
385 
386  unsigned Reg = MO.getReg();
387 
388  if (!TRI->isVirtualRegister(Reg) &&
389  TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) {
390  Flags = StateWQM;
391  break;
392  }
393  }
394  }
395 
396  if (!Flags)
397  continue;
398  }
399 
400  markInstruction(MI, Flags, Worklist);
401  GlobalFlags |= Flags;
402  }
403  }
404 
405  // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
406  // ever used anywhere in the function. This implements the corresponding
407  // semantics of @llvm.amdgcn.set.inactive.
408  if (GlobalFlags & StateWQM) {
409  for (MachineInstr *MI : SetInactiveInstrs)
410  markInstruction(*MI, StateWQM, Worklist);
411  }
412 
413  return GlobalFlags;
414 }
415 
416 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
417  std::vector<WorkItem>& Worklist) {
418  MachineBasicBlock *MBB = MI.getParent();
419  InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
420  BlockInfo &BI = Blocks[MBB];
421 
422  // Control flow-type instructions and stores to temporary memory that are
423  // followed by WQM computations must themselves be in WQM.
424  if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
425  (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
426  Instructions[&MI].Needs = StateWQM;
427  II.Needs = StateWQM;
428  }
429 
430  // Propagate to block level
431  if (II.Needs & StateWQM) {
432  BI.Needs |= StateWQM;
433  if (!(BI.InNeeds & StateWQM)) {
434  BI.InNeeds |= StateWQM;
435  Worklist.push_back(MBB);
436  }
437  }
438 
439  // Propagate backwards within block
440  if (MachineInstr *PrevMI = MI.getPrevNode()) {
441  char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds;
442  if (!PrevMI->isPHI()) {
443  InstrInfo &PrevII = Instructions[PrevMI];
444  if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
445  PrevII.OutNeeds |= InNeeds;
446  Worklist.push_back(PrevMI);
447  }
448  }
449  }
450 
451  // Propagate WQM flag to instruction inputs
452  assert(!(II.Needs & StateExact));
453 
454  if (II.Needs != 0)
455  markInstructionUses(MI, II.Needs, Worklist);
456 
457  // Ensure we process a block containing WWM, even if it does not require any
458  // WQM transitions.
459  if (II.Needs & StateWWM)
460  BI.Needs |= StateWWM;
461 }
462 
463 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
464  std::vector<WorkItem>& Worklist) {
465  BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.
466 
467  // Propagate through instructions
468  if (!MBB.empty()) {
469  MachineInstr *LastMI = &*MBB.rbegin();
470  InstrInfo &LastII = Instructions[LastMI];
471  if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
472  LastII.OutNeeds |= BI.OutNeeds;
473  Worklist.push_back(LastMI);
474  }
475  }
476 
477  // Predecessor blocks must provide for our WQM/Exact needs.
478  for (MachineBasicBlock *Pred : MBB.predecessors()) {
479  BlockInfo &PredBI = Blocks[Pred];
480  if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
481  continue;
482 
483  PredBI.OutNeeds |= BI.InNeeds;
484  PredBI.InNeeds |= BI.InNeeds;
485  Worklist.push_back(Pred);
486  }
487 
488  // All successors must be prepared to accept the same set of WQM/Exact data.
489  for (MachineBasicBlock *Succ : MBB.successors()) {
490  BlockInfo &SuccBI = Blocks[Succ];
491  if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
492  continue;
493 
494  SuccBI.InNeeds |= BI.OutNeeds;
495  Worklist.push_back(Succ);
496  }
497 }
498 
499 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
500  std::vector<WorkItem> Worklist;
501  char GlobalFlags = scanInstructions(MF, Worklist);
502 
503  while (!Worklist.empty()) {
504  WorkItem WI = Worklist.back();
505  Worklist.pop_back();
506 
507  if (WI.MI)
508  propagateInstruction(*WI.MI, Worklist);
509  else
510  propagateBlock(*WI.MBB, Worklist);
511  }
512 
513  return GlobalFlags;
514 }
515 
516 /// Whether \p MI really requires the exec state computed during analysis.
517 ///
518 /// Scalar instructions must occasionally be marked WQM for correct propagation
519 /// (e.g. thread masks leading up to branches), but when it comes to actual
520 /// execution, they don't care about EXEC.
521 bool SIWholeQuadMode::requiresCorrectState(const MachineInstr &MI) const {
522  if (MI.isTerminator())
523  return true;
524 
525  // Skip instructions that are not affected by EXEC
526  if (TII->isScalarUnit(MI))
527  return false;
528 
529  // Generic instructions such as COPY will either disappear by register
530  // coalescing or be lowered to SALU or VALU instructions.
531  if (MI.isTransient()) {
532  if (MI.getNumExplicitOperands() >= 1) {
533  const MachineOperand &Op = MI.getOperand(0);
534  if (Op.isReg()) {
535  if (TRI->isSGPRReg(*MRI, Op.getReg())) {
536  // SGPR instructions are not affected by EXEC
537  return false;
538  }
539  }
540  }
541  }
542 
543  return true;
544 }
545 
547 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
549  unsigned SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
550 
551  MachineInstr *Save =
552  BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
553  .addReg(AMDGPU::SCC);
554  MachineInstr *Restore =
555  BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
556  .addReg(SaveReg);
557 
558  LIS->InsertMachineInstrInMaps(*Save);
559  LIS->InsertMachineInstrInMaps(*Restore);
560  LIS->createAndComputeVirtRegInterval(SaveReg);
561 
562  return Restore;
563 }
564 
565 // Return an iterator in the (inclusive) range [First, Last] at which
566 // instructions can be safely inserted, keeping in mind that some of the
567 // instructions we want to add necessarily clobber SCC.
568 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
570  MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
571  if (!SaveSCC)
572  return PreferLast ? Last : First;
573 
574  LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
575  auto MBBE = MBB.end();
576  SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
577  : LIS->getMBBEndIdx(&MBB);
578  SlotIndex LastIdx =
579  Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
580  SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
581  const LiveRange::Segment *S;
582 
583  for (;;) {
584  S = LR.getSegmentContaining(Idx);
585  if (!S)
586  break;
587 
588  if (PreferLast) {
589  SlotIndex Next = S->start.getBaseIndex();
590  if (Next < FirstIdx)
591  break;
592  Idx = Next;
593  } else {
594  SlotIndex Next = S->end.getNextIndex().getBaseIndex();
595  if (Next > LastIdx)
596  break;
597  Idx = Next;
598  }
599  }
600 
602 
603  if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
604  MBBI = MI;
605  else {
606  assert(Idx == LIS->getMBBEndIdx(&MBB));
607  MBBI = MBB.end();
608  }
609 
610  if (S)
611  MBBI = saveSCC(MBB, MBBI);
612 
613  return MBBI;
614 }
615 
616 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
618  unsigned SaveWQM, unsigned LiveMaskReg) {
619  MachineInstr *MI;
620 
621  if (SaveWQM) {
622  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
623  SaveWQM)
624  .addReg(LiveMaskReg);
625  } else {
626  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64),
627  AMDGPU::EXEC)
628  .addReg(AMDGPU::EXEC)
629  .addReg(LiveMaskReg);
630  }
631 
632  LIS->InsertMachineInstrInMaps(*MI);
633 }
634 
635 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
637  unsigned SavedWQM) {
638  MachineInstr *MI;
639 
640  if (SavedWQM) {
641  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC)
642  .addReg(SavedWQM);
643  } else {
644  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
645  AMDGPU::EXEC)
646  .addReg(AMDGPU::EXEC);
647  }
648 
649  LIS->InsertMachineInstrInMaps(*MI);
650 }
651 
652 void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB,
654  unsigned SaveOrig) {
655  MachineInstr *MI;
656 
657  assert(SaveOrig);
658  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_OR_SAVEEXEC_B64),
659  SaveOrig)
660  .addImm(-1);
661  LIS->InsertMachineInstrInMaps(*MI);
662 }
663 
664 void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB,
666  unsigned SavedOrig) {
667  MachineInstr *MI;
668 
669  assert(SavedOrig);
670  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), AMDGPU::EXEC)
671  .addReg(SavedOrig);
672  LIS->InsertMachineInstrInMaps(*MI);
673 }
674 
675 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
676  bool isEntry) {
677  auto BII = Blocks.find(&MBB);
678  if (BII == Blocks.end())
679  return;
680 
681  const BlockInfo &BI = BII->second;
682 
683  // This is a non-entry block that is WQM throughout, so no need to do
684  // anything.
685  if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact)
686  return;
687 
688  LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
689  << ":\n");
690 
691  unsigned SavedWQMReg = 0;
692  unsigned SavedNonWWMReg = 0;
693  bool WQMFromExec = isEntry;
694  char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
695  char NonWWMState = 0;
696 
697  auto II = MBB.getFirstNonPHI(), IE = MBB.end();
698  if (isEntry)
699  ++II; // Skip the instruction that saves LiveMask
700 
701  // This stores the first instruction where it's safe to switch from WQM to
702  // Exact or vice versa.
703  MachineBasicBlock::iterator FirstWQM = IE;
704 
705  // This stores the first instruction where it's safe to switch from WWM to
706  // Exact/WQM or to switch to WWM. It must always be the same as, or after,
707  // FirstWQM since if it's safe to switch to/from WWM, it must be safe to
708  // switch to/from WQM as well.
709  MachineBasicBlock::iterator FirstWWM = IE;
710  for (;;) {
711  MachineBasicBlock::iterator Next = II;
712  char Needs = StateExact | StateWQM; // WWM is disabled by default
713  char OutNeeds = 0;
714 
715  if (FirstWQM == IE)
716  FirstWQM = II;
717 
718  if (FirstWWM == IE)
719  FirstWWM = II;
720 
721  // First, figure out the allowed states (Needs) based on the propagated
722  // flags.
723  if (II != IE) {
724  MachineInstr &MI = *II;
725 
726  if (requiresCorrectState(MI)) {
727  auto III = Instructions.find(&MI);
728  if (III != Instructions.end()) {
729  if (III->second.Needs & StateWWM)
730  Needs = StateWWM;
731  else if (III->second.Needs & StateWQM)
732  Needs = StateWQM;
733  else
734  Needs &= ~III->second.Disabled;
735  OutNeeds = III->second.OutNeeds;
736  }
737  } else {
738  // If the instruction doesn't actually need a correct EXEC, then we can
739  // safely leave WWM enabled.
740  Needs = StateExact | StateWQM | StateWWM;
741  }
742 
743  if (MI.isTerminator() && OutNeeds == StateExact)
744  Needs = StateExact;
745 
746  if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact)
747  MI.getOperand(3).setImm(1);
748 
749  ++Next;
750  } else {
751  // End of basic block
752  if (BI.OutNeeds & StateWQM)
753  Needs = StateWQM;
754  else if (BI.OutNeeds == StateExact)
755  Needs = StateExact;
756  else
757  Needs = StateWQM | StateExact;
758  }
759 
760  // Now, transition if necessary.
761  if (!(Needs & State)) {
763  if (State == StateWWM || Needs == StateWWM) {
764  // We must switch to or from WWM
765  First = FirstWWM;
766  } else {
767  // We only need to switch to/from WQM, so we can use FirstWQM
768  First = FirstWQM;
769  }
770 
772  prepareInsertion(MBB, First, II, Needs == StateWQM,
773  Needs == StateExact || WQMFromExec);
774 
775  if (State == StateWWM) {
776  assert(SavedNonWWMReg);
777  fromWWM(MBB, Before, SavedNonWWMReg);
778  State = NonWWMState;
779  }
780 
781  if (Needs == StateWWM) {
782  NonWWMState = State;
783  SavedNonWWMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
784  toWWM(MBB, Before, SavedNonWWMReg);
785  State = StateWWM;
786  } else {
787  if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
788  if (!WQMFromExec && (OutNeeds & StateWQM))
789  SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
790 
791  toExact(MBB, Before, SavedWQMReg, LiveMaskReg);
792  State = StateExact;
793  } else if (State == StateExact && (Needs & StateWQM) &&
794  !(Needs & StateExact)) {
795  assert(WQMFromExec == (SavedWQMReg == 0));
796 
797  toWQM(MBB, Before, SavedWQMReg);
798 
799  if (SavedWQMReg) {
800  LIS->createAndComputeVirtRegInterval(SavedWQMReg);
801  SavedWQMReg = 0;
802  }
803  State = StateWQM;
804  } else {
805  // We can get here if we transitioned from WWM to a non-WWM state that
806  // already matches our needs, but we shouldn't need to do anything.
807  assert(Needs & State);
808  }
809  }
810  }
811 
812  if (Needs != (StateExact | StateWQM | StateWWM)) {
813  if (Needs != (StateExact | StateWQM))
814  FirstWQM = IE;
815  FirstWWM = IE;
816  }
817 
818  if (II == IE)
819  break;
820  II = Next;
821  }
822 }
823 
824 void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) {
825  for (MachineInstr *MI : LiveMaskQueries) {
826  const DebugLoc &DL = MI->getDebugLoc();
827  unsigned Dest = MI->getOperand(0).getReg();
828  MachineInstr *Copy =
829  BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
830  .addReg(LiveMaskReg);
831 
832  LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
833  MI->eraseFromParent();
834  }
835 }
836 
837 void SIWholeQuadMode::lowerCopyInstrs() {
838  for (MachineInstr *MI : LowerToCopyInstrs) {
839  for (unsigned i = MI->getNumExplicitOperands() - 1; i > 1; i--)
840  MI->RemoveOperand(i);
841  MI->setDesc(TII->get(AMDGPU::COPY));
842  }
843 }
844 
845 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
846  Instructions.clear();
847  Blocks.clear();
848  LiveMaskQueries.clear();
849  LowerToCopyInstrs.clear();
851 
852  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
853 
854  TII = ST.getInstrInfo();
855  TRI = &TII->getRegisterInfo();
856  MRI = &MF.getRegInfo();
857  LIS = &getAnalysis<LiveIntervals>();
858 
859  char GlobalFlags = analyzeFunction(MF);
860  unsigned LiveMaskReg = 0;
861  if (!(GlobalFlags & StateWQM)) {
862  lowerLiveMaskQueries(AMDGPU::EXEC);
863  if (!(GlobalFlags & StateWWM))
864  return !LiveMaskQueries.empty();
865  } else {
866  // Store a copy of the original live mask when required
867  MachineBasicBlock &Entry = MF.front();
869 
870  if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) {
871  LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
872  MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(),
873  TII->get(AMDGPU::COPY), LiveMaskReg)
874  .addReg(AMDGPU::EXEC);
875  LIS->InsertMachineInstrInMaps(*MI);
876  }
877 
878  lowerLiveMaskQueries(LiveMaskReg);
879 
880  if (GlobalFlags == StateWQM) {
881  // For a shader that needs only WQM, we can just set it once.
882  BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
883  AMDGPU::EXEC)
884  .addReg(AMDGPU::EXEC);
885 
886  lowerCopyInstrs();
887  // EntryMI may become invalid here
888  return true;
889  }
890  }
891 
892  LLVM_DEBUG(printInfo());
893 
894  lowerCopyInstrs();
895 
896  // Handle the general case
897  for (auto BII : Blocks)
898  processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin());
899 
900  // Physical registers like SCC aren't tracked by default anyway, so just
901  // removing the ranges we computed is the simplest option for maintaining
902  // the analysis results.
903  LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
904 
905  return true;
906 }
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
Definition: LiveInterval.h:78
char & SIWholeQuadModeID
AMDGPU specific subclass of TargetSubtarget.
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
Definition: SlotIndexes.h:242
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:61
SI Whole Quad Mode
This class represents lattice values for constants.
Definition: AllocatorList.h:24
iterator_range< mop_iterator > uses()
Returns a range that includes all operands that are register uses.
Definition: MachineInstr.h:492
INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, false) INITIALIZE_PASS_END(SIWholeQuadMode
void push_back(const T &Elt)
Definition: SmallVector.h:218
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
unsigned getReg() const
getReg - Returns the register number.
static bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
unsigned Reg
const SIInstrInfo * getInstrInfo() const override
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:321
bool isTransient() const
Return true if this is a transient instruction that is either very likely to be eliminated during reg...
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:162
unsigned const TargetRegisterInfo * TRI
A debug info location.
Definition: DebugLoc.h:34
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
iterator_range< succ_iterator > successors()
This class represents the liveness of a register, stack slot, etc.
Definition: LiveInterval.h:157
static const AMDGPUSubtarget & get(const MachineFunction &MF)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
SlotIndex getNextIndex() const
Returns the next index.
Definition: SlotIndexes.h:280
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
MachineBasicBlock iterator that automatically skips over MIs that are inside bundles (i...
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
bool isTerminator(QueryType Type=AnyInBundle) const
Returns true if this instruction part of the terminator for a basic block.
Definition: MachineInstr.h:649
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
#define LLVM_DUMP_METHOD
Definition: Compiler.h:74
reverse_iterator rbegin()
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
Definition: LiveInterval.h:529
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:118
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
Definition: MachineInstr.h:820
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ParseOptionalThreadLocal := /*empty.
unsigned const MachineRegisterInfo * MRI
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
FunctionPass * createSIWholeQuadModePass()
Represent the analysis usage information of a pass.
iterator_range< mop_iterator > defs()
Returns a range over all explicit operands that are register definitions.
Definition: MachineInstr.h:481
void setImm(int64_t immVal)
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
iterator_range< pred_iterator > predecessors()
const MachineBasicBlock & front() const
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
void setDesc(const MCInstrDesc &tid)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one...
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:213
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
MachineInstrBuilder MachineInstrBuilder & DefMI
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
#define DEBUG_TYPE
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Provides AMDGPU specific target descriptions.
Representation of each machine instruction.
Definition: MachineInstr.h:64
Interface definition for SIInstrInfo.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:2039
bool isReg() const
isReg - Tests if this is a MO_Register operand.
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
Definition: LiveInterval.h:396
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
void RemoveOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with...
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:84
const SIRegisterInfo * getRegisterInfo() const override