LLVM  8.0.1
AArch64AdvSIMDScalarPass.cpp
Go to the documentation of this file.
1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // When profitable, replace GPR targeting i64 instructions with their
10 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
11 // as minimizing the number of cross-class register copies.
12 //===----------------------------------------------------------------------===//
13 
14 //===----------------------------------------------------------------------===//
15 // TODO: Graph based predicate heuristics.
16 // Walking the instruction list linearly will get many, perhaps most, of
17 // the cases, but to do a truly thorough job of this, we need a more
18 // wholistic approach.
19 //
20 // This optimization is very similar in spirit to the register allocator's
21 // spill placement, only here we're determining where to place cross-class
22 // register copies rather than spills. As such, a similar approach is
23 // called for.
24 //
25 // We want to build up a set of graphs of all instructions which are candidates
26 // for transformation along with instructions which generate their inputs and
27 // consume their outputs. For each edge in the graph, we assign a weight
28 // based on whether there is a copy required there (weight zero if not) and
29 // the block frequency of the block containing the defining or using
30 // instruction, whichever is less. Our optimization is then a graph problem
31 // to minimize the total weight of all the graphs, then transform instructions
32 // and add or remove copy instructions as called for to implement the
33 // solution.
34 //===----------------------------------------------------------------------===//
35 
36 #include "AArch64.h"
37 #include "AArch64InstrInfo.h"
38 #include "AArch64RegisterInfo.h"
39 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Support/Debug.h"
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "aarch64-simd-scalar"
51 
52 // Allow forcing all i64 operations with equivalent SIMD instructions to use
53 // them. For stress-testing the transformation function.
54 static cl::opt<bool>
55 TransformAll("aarch64-simd-scalar-force-all",
56  cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
57  cl::init(false), cl::Hidden);
58 
59 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
60 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
61 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
62 
63 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
64 
65 namespace {
66 class AArch64AdvSIMDScalar : public MachineFunctionPass {
68  const TargetInstrInfo *TII;
69 
70 private:
71  // isProfitableToTransform - Predicate function to determine whether an
72  // instruction should be transformed to its equivalent AdvSIMD scalar
73  // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
74  bool isProfitableToTransform(const MachineInstr &MI) const;
75 
76  // transformInstruction - Perform the transformation of an instruction
77  // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
78  // to be the correct register class, minimizing cross-class copies.
79  void transformInstruction(MachineInstr &MI);
80 
81  // processMachineBasicBlock - Main optimzation loop.
82  bool processMachineBasicBlock(MachineBasicBlock *MBB);
83 
84 public:
85  static char ID; // Pass identification, replacement for typeid.
86  explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
88  }
89 
90  bool runOnMachineFunction(MachineFunction &F) override;
91 
92  StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; }
93 
94  void getAnalysisUsage(AnalysisUsage &AU) const override {
95  AU.setPreservesCFG();
97  }
98 };
100 } // end anonymous namespace
101 
102 INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
103  AARCH64_ADVSIMD_NAME, false, false)
104 
105 static bool isGPR64(unsigned Reg, unsigned SubReg,
107  if (SubReg)
108  return false;
110  return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
111  return AArch64::GPR64RegClass.contains(Reg);
112 }
113 
114 static bool isFPR64(unsigned Reg, unsigned SubReg,
115  const MachineRegisterInfo *MRI) {
117  return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
118  SubReg == 0) ||
119  (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
120  SubReg == AArch64::dsub);
121  // Physical register references just check the register class directly.
122  return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
123  (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
124 }
125 
126 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
127 // copy instruction. Return zero_reg if the instruction is not a copy.
129  const MachineRegisterInfo *MRI,
130  unsigned &SubReg) {
131  SubReg = 0;
132  // The "FMOV Xd, Dn" instruction is the typical form.
133  if (MI->getOpcode() == AArch64::FMOVDXr ||
134  MI->getOpcode() == AArch64::FMOVXDr)
135  return &MI->getOperand(1);
136  // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
137  // these at this stage, but it's easy to check for.
138  if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
139  SubReg = AArch64::dsub;
140  return &MI->getOperand(1);
141  }
142  // Or just a plain COPY instruction. This can be directly to/from FPR64,
143  // or it can be a dsub subreg reference to an FPR128.
144  if (MI->getOpcode() == AArch64::COPY) {
145  if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
146  MRI) &&
147  isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
148  return &MI->getOperand(1);
149  if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
150  MRI) &&
151  isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
152  MRI)) {
153  SubReg = MI->getOperand(1).getSubReg();
154  return &MI->getOperand(1);
155  }
156  }
157 
158  // Otherwise, this is some other kind of instruction.
159  return nullptr;
160 }
161 
162 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
163 // that we're considering transforming to, return that AdvSIMD opcode. For all
164 // others, return the original opcode.
165 static unsigned getTransformOpcode(unsigned Opc) {
166  switch (Opc) {
167  default:
168  break;
169  // FIXME: Lots more possibilities.
170  case AArch64::ADDXrr:
171  return AArch64::ADDv1i64;
172  case AArch64::SUBXrr:
173  return AArch64::SUBv1i64;
174  case AArch64::ANDXrr:
175  return AArch64::ANDv8i8;
176  case AArch64::EORXrr:
177  return AArch64::EORv8i8;
178  case AArch64::ORRXrr:
179  return AArch64::ORRv8i8;
180  }
181  // No AdvSIMD equivalent, so just return the original opcode.
182  return Opc;
183 }
184 
185 static bool isTransformable(const MachineInstr &MI) {
186  unsigned Opc = MI.getOpcode();
187  return Opc != getTransformOpcode(Opc);
188 }
189 
190 // isProfitableToTransform - Predicate function to determine whether an
191 // instruction should be transformed to its equivalent AdvSIMD scalar
192 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
193 bool AArch64AdvSIMDScalar::isProfitableToTransform(
194  const MachineInstr &MI) const {
195  // If this instruction isn't eligible to be transformed (no SIMD equivalent),
196  // early exit since that's the common case.
197  if (!isTransformable(MI))
198  return false;
199 
200  // Count the number of copies we'll need to add and approximate the number
201  // of copies that a transform will enable us to remove.
202  unsigned NumNewCopies = 3;
203  unsigned NumRemovableCopies = 0;
204 
205  unsigned OrigSrc0 = MI.getOperand(1).getReg();
206  unsigned OrigSrc1 = MI.getOperand(2).getReg();
207  unsigned SubReg0;
208  unsigned SubReg1;
209  if (!MRI->def_empty(OrigSrc0)) {
211  MRI->def_instr_begin(OrigSrc0);
212  assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
213  MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
214  // If the source was from a copy, we don't need to insert a new copy.
215  if (MOSrc0)
216  --NumNewCopies;
217  // If there are no other users of the original source, we can delete
218  // that instruction.
219  if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
220  ++NumRemovableCopies;
221  }
222  if (!MRI->def_empty(OrigSrc1)) {
224  MRI->def_instr_begin(OrigSrc1);
225  assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
226  MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
227  if (MOSrc1)
228  --NumNewCopies;
229  // If there are no other users of the original source, we can delete
230  // that instruction.
231  if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
232  ++NumRemovableCopies;
233  }
234 
235  // If any of the uses of the original instructions is a cross class copy,
236  // that's a copy that will be removable if we transform. Likewise, if
237  // any of the uses is a transformable instruction, it's likely the tranforms
238  // will chain, enabling us to save a copy there, too. This is an aggressive
239  // heuristic that approximates the graph based cost analysis described above.
240  unsigned Dst = MI.getOperand(0).getReg();
241  bool AllUsesAreCopies = true;
243  Use = MRI->use_instr_nodbg_begin(Dst),
244  E = MRI->use_instr_nodbg_end();
245  Use != E; ++Use) {
246  unsigned SubReg;
247  if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
248  ++NumRemovableCopies;
249  // If the use is an INSERT_SUBREG, that's still something that can
250  // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
251  // preferable to have it use the FPR64 in most cases, as if the source
252  // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
253  // Ditto for a lane insert.
254  else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
255  Use->getOpcode() == AArch64::INSvi64gpr)
256  ;
257  else
258  AllUsesAreCopies = false;
259  }
260  // If all of the uses of the original destination register are copies to
261  // FPR64, then we won't end up having a new copy back to GPR64 either.
262  if (AllUsesAreCopies)
263  --NumNewCopies;
264 
265  // If a transform will not increase the number of cross-class copies required,
266  // return true.
267  if (NumNewCopies <= NumRemovableCopies)
268  return true;
269 
270  // Finally, even if we otherwise wouldn't transform, check if we're forcing
271  // transformation of everything.
272  return TransformAll;
273 }
274 
276  unsigned Dst, unsigned Src, bool IsKill) {
278  TII->get(AArch64::COPY), Dst)
279  .addReg(Src, getKillRegState(IsKill));
280  LLVM_DEBUG(dbgs() << " adding copy: " << *MIB);
281  ++NumCopiesInserted;
282  return MIB;
283 }
284 
285 // transformInstruction - Perform the transformation of an instruction
286 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
287 // to be the correct register class, minimizing cross-class copies.
288 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
289  LLVM_DEBUG(dbgs() << "Scalar transform: " << MI);
290 
291  MachineBasicBlock *MBB = MI.getParent();
292  unsigned OldOpc = MI.getOpcode();
293  unsigned NewOpc = getTransformOpcode(OldOpc);
294  assert(OldOpc != NewOpc && "transform an instruction to itself?!");
295 
296  // Check if we need a copy for the source registers.
297  unsigned OrigSrc0 = MI.getOperand(1).getReg();
298  unsigned OrigSrc1 = MI.getOperand(2).getReg();
299  unsigned Src0 = 0, SubReg0;
300  unsigned Src1 = 0, SubReg1;
301  bool KillSrc0 = false, KillSrc1 = false;
302  if (!MRI->def_empty(OrigSrc0)) {
304  MRI->def_instr_begin(OrigSrc0);
305  assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
306  MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
307  // If there are no other users of the original source, we can delete
308  // that instruction.
309  if (MOSrc0) {
310  Src0 = MOSrc0->getReg();
311  KillSrc0 = MOSrc0->isKill();
312  // Src0 is going to be reused, thus, it cannot be killed anymore.
313  MOSrc0->setIsKill(false);
314  if (MRI->hasOneNonDBGUse(OrigSrc0)) {
315  assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
316  Def->eraseFromParent();
317  ++NumCopiesDeleted;
318  }
319  }
320  }
321  if (!MRI->def_empty(OrigSrc1)) {
323  MRI->def_instr_begin(OrigSrc1);
324  assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
325  MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
326  // If there are no other users of the original source, we can delete
327  // that instruction.
328  if (MOSrc1) {
329  Src1 = MOSrc1->getReg();
330  KillSrc1 = MOSrc1->isKill();
331  // Src0 is going to be reused, thus, it cannot be killed anymore.
332  MOSrc1->setIsKill(false);
333  if (MRI->hasOneNonDBGUse(OrigSrc1)) {
334  assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
335  Def->eraseFromParent();
336  ++NumCopiesDeleted;
337  }
338  }
339  }
340  // If we weren't able to reference the original source directly, create a
341  // copy.
342  if (!Src0) {
343  SubReg0 = 0;
344  Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
345  insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
346  KillSrc0 = true;
347  }
348  if (!Src1) {
349  SubReg1 = 0;
350  Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
351  insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
352  KillSrc1 = true;
353  }
354 
355  // Create a vreg for the destination.
356  // FIXME: No need to do this if the ultimate user expects an FPR64.
357  // Check for that and avoid the copy if possible.
358  unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
359 
360  // For now, all of the new instructions have the same simple three-register
361  // form, so no need to special case based on what instruction we're
362  // building.
363  BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
364  .addReg(Src0, getKillRegState(KillSrc0), SubReg0)
365  .addReg(Src1, getKillRegState(KillSrc1), SubReg1);
366 
367  // Now copy the result back out to a GPR.
368  // FIXME: Try to avoid this if all uses could actually just use the FPR64
369  // directly.
370  insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
371 
372  // Erase the old instruction.
373  MI.eraseFromParent();
374 
375  ++NumScalarInsnsUsed;
376 }
377 
378 // processMachineBasicBlock - Main optimzation loop.
379 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
380  bool Changed = false;
381  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
382  MachineInstr &MI = *I++;
383  if (isProfitableToTransform(MI)) {
384  transformInstruction(MI);
385  Changed = true;
386  }
387  }
388  return Changed;
389 }
390 
391 // runOnMachineFunction - Pass entry point from PassManager.
392 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
393  bool Changed = false;
394  LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
395 
396  if (skipFunction(mf.getFunction()))
397  return false;
398 
399  MRI = &mf.getRegInfo();
400  TII = mf.getSubtarget().getInstrInfo();
401 
402  // Just check things on a one-block-at-a-time basis.
403  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
404  if (processMachineBasicBlock(&*I))
405  Changed = true;
406  return Changed;
407 }
408 
409 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
410 // to add the pass to the PassManager.
412  return new AArch64AdvSIMDScalar();
413 }
static MachineInstr * insertCopy(const TargetInstrInfo *TII, MachineInstr &MI, unsigned Dst, unsigned Src, bool IsKill)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
const TargetRegisterClass * getRegClass(unsigned Reg) const
Return the register class of the specified virtual register.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
unsigned getReg() const
getReg - Returns the register number.
static bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
unsigned Reg
unsigned getSubReg() const
#define AARCH64_ADVSIMD_NAME
STATISTIC(NumFunctions, "Total number of functions")
F(f)
static bool isTransformable(const MachineInstr &MI)
static MachineOperand * getSrcFromCopy(MachineInstr *MI, const MachineRegisterInfo *MRI, unsigned &SubReg)
return AArch64::GPR64RegClass contains(Reg)
static bool isFPR64(unsigned Reg, unsigned SubReg, const MachineRegisterInfo *MRI)
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar", AARCH64_ADVSIMD_NAME, false, false) static bool isGPR64(unsigned Reg
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
unsigned SubReg
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
defusechain_iterator - This class provides iterator support for machine operands in the function that...
virtual const TargetInstrInfo * getInstrInfo() const
unsigned getKillRegState(bool B)
TargetInstrInfo - Interface to description of machine instruction set.
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
unsigned const MachineRegisterInfo * MRI
bool hasSuperClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a super-class of or equal to this class.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static cl::opt< bool > TransformAll("aarch64-simd-scalar-force-all", cl::desc("Force use of AdvSIMD scalar instructions everywhere"), cl::init(false), cl::Hidden)
Represent the analysis usage information of a pass.
FunctionPass * createAArch64AdvSIMDScalar()
static unsigned getTransformOpcode(unsigned Opc)
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
Iterator for intrusive lists based on ilist_node.
MachineOperand class - Representation of each machine instruction operand.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
int64_t getImm() const
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Representation of each machine instruction.
Definition: MachineInstr.h:64
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
#define I(x, y, z)
Definition: MD5.cpp:58
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
aarch64 promote const
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
void initializeAArch64AdvSIMDScalarPass(PassRegistry &)