LLVM  8.0.1
Mips16ISelLowering.cpp
Go to the documentation of this file.
1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsTargetLowering specialized for mips16.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "Mips16ISelLowering.h"
15 #include "Mips16HardFloatInfo.h"
16 #include "MipsMachineFunction.h"
17 #include "MipsRegisterInfo.h"
18 #include "MipsTargetMachine.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "mips-lower"
26 
28  "mips16-dont-expand-cond-pseudo",
29  cl::init(false),
30  cl::desc("Don't expand conditional move related "
31  "pseudos for Mips 16"),
32  cl::Hidden);
33 
34 namespace {
35 struct Mips16Libcall {
37  const char *Name;
38 
39  bool operator<(const Mips16Libcall &RHS) const {
40  return std::strcmp(Name, RHS.Name) < 0;
41  }
42 };
43 
44 struct Mips16IntrinsicHelperType{
45  const char* Name;
46  const char* Helper;
47 
48  bool operator<(const Mips16IntrinsicHelperType &RHS) const {
49  return std::strcmp(Name, RHS.Name) < 0;
50  }
51  bool operator==(const Mips16IntrinsicHelperType &RHS) const {
52  return std::strcmp(Name, RHS.Name) == 0;
53  }
54 };
55 }
56 
57 // Libcalls for which no helper is generated. Sorted by name for binary search.
58 static const Mips16Libcall HardFloatLibCalls[] = {
59  { RTLIB::ADD_F64, "__mips16_adddf3" },
60  { RTLIB::ADD_F32, "__mips16_addsf3" },
61  { RTLIB::DIV_F64, "__mips16_divdf3" },
62  { RTLIB::DIV_F32, "__mips16_divsf3" },
63  { RTLIB::OEQ_F64, "__mips16_eqdf2" },
64  { RTLIB::OEQ_F32, "__mips16_eqsf2" },
65  { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
66  { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
67  { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
68  { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
69  { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
70  { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
71  { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
72  { RTLIB::OGE_F64, "__mips16_gedf2" },
73  { RTLIB::OGE_F32, "__mips16_gesf2" },
74  { RTLIB::OGT_F64, "__mips16_gtdf2" },
75  { RTLIB::OGT_F32, "__mips16_gtsf2" },
76  { RTLIB::OLE_F64, "__mips16_ledf2" },
77  { RTLIB::OLE_F32, "__mips16_lesf2" },
78  { RTLIB::OLT_F64, "__mips16_ltdf2" },
79  { RTLIB::OLT_F32, "__mips16_ltsf2" },
80  { RTLIB::MUL_F64, "__mips16_muldf3" },
81  { RTLIB::MUL_F32, "__mips16_mulsf3" },
82  { RTLIB::UNE_F64, "__mips16_nedf2" },
83  { RTLIB::UNE_F32, "__mips16_nesf2" },
84  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
85  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
86  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
87  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
88  { RTLIB::SUB_F64, "__mips16_subdf3" },
89  { RTLIB::SUB_F32, "__mips16_subsf3" },
90  { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
91  { RTLIB::UO_F64, "__mips16_unorddf2" },
92  { RTLIB::UO_F32, "__mips16_unordsf2" }
93 };
94 
95 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
96  {"__fixunsdfsi", "__mips16_call_stub_2" },
97  {"ceil", "__mips16_call_stub_df_2"},
98  {"ceilf", "__mips16_call_stub_sf_1"},
99  {"copysign", "__mips16_call_stub_df_10"},
100  {"copysignf", "__mips16_call_stub_sf_5"},
101  {"cos", "__mips16_call_stub_df_2"},
102  {"cosf", "__mips16_call_stub_sf_1"},
103  {"exp2", "__mips16_call_stub_df_2"},
104  {"exp2f", "__mips16_call_stub_sf_1"},
105  {"floor", "__mips16_call_stub_df_2"},
106  {"floorf", "__mips16_call_stub_sf_1"},
107  {"log2", "__mips16_call_stub_df_2"},
108  {"log2f", "__mips16_call_stub_sf_1"},
109  {"nearbyint", "__mips16_call_stub_df_2"},
110  {"nearbyintf", "__mips16_call_stub_sf_1"},
111  {"rint", "__mips16_call_stub_df_2"},
112  {"rintf", "__mips16_call_stub_sf_1"},
113  {"sin", "__mips16_call_stub_df_2"},
114  {"sinf", "__mips16_call_stub_sf_1"},
115  {"sqrt", "__mips16_call_stub_df_2"},
116  {"sqrtf", "__mips16_call_stub_sf_1"},
117  {"trunc", "__mips16_call_stub_df_2"},
118  {"truncf", "__mips16_call_stub_sf_1"},
119 };
120 
122  const MipsSubtarget &STI)
123  : MipsTargetLowering(TM, STI) {
124 
125  // Set up the register classes
126  addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
127 
128  if (!Subtarget.useSoftFloat())
129  setMips16HardFloatLibCalls();
130 
144 
149 
151 }
152 
153 const MipsTargetLowering *
155  const MipsSubtarget &STI) {
156  return new Mips16TargetLowering(TM, STI);
157 }
158 
159 bool
161  unsigned,
162  unsigned,
163  bool *Fast) const {
164  return false;
165 }
166 
169  MachineBasicBlock *BB) const {
170  switch (MI.getOpcode()) {
171  default:
173  case Mips::SelBeqZ:
174  return emitSel16(Mips::BeqzRxImm16, MI, BB);
175  case Mips::SelBneZ:
176  return emitSel16(Mips::BnezRxImm16, MI, BB);
177  case Mips::SelTBteqZCmpi:
178  return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
179  case Mips::SelTBteqZSlti:
180  return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
181  case Mips::SelTBteqZSltiu:
182  return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
183  case Mips::SelTBtneZCmpi:
184  return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
185  case Mips::SelTBtneZSlti:
186  return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
187  case Mips::SelTBtneZSltiu:
188  return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
189  case Mips::SelTBteqZCmp:
190  return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
191  case Mips::SelTBteqZSlt:
192  return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
193  case Mips::SelTBteqZSltu:
194  return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
195  case Mips::SelTBtneZCmp:
196  return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
197  case Mips::SelTBtneZSlt:
198  return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
199  case Mips::SelTBtneZSltu:
200  return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
201  case Mips::BteqzT8CmpX16:
202  return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
203  case Mips::BteqzT8SltX16:
204  return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
205  case Mips::BteqzT8SltuX16:
206  // TBD: figure out a way to get this or remove the instruction
207  // altogether.
208  return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
209  case Mips::BtnezT8CmpX16:
210  return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
211  case Mips::BtnezT8SltX16:
212  return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
213  case Mips::BtnezT8SltuX16:
214  // TBD: figure out a way to get this or remove the instruction
215  // altogether.
216  return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
217  case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
218  Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
219  case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
220  Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
221  case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
222  Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
223  case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
224  Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
225  case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
226  Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
227  case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
228  Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
229  break;
230  case Mips::SltCCRxRy16:
231  return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
232  break;
233  case Mips::SltiCCRxImmX16:
234  return emitFEXT_CCRXI16_ins
235  (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
236  case Mips::SltiuCCRxImmX16:
237  return emitFEXT_CCRXI16_ins
238  (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
239  case Mips::SltuCCRxRy16:
240  return emitFEXT_CCRX16_ins
241  (Mips::SltuRxRy16, MI, BB);
242  }
243 }
244 
245 bool Mips16TargetLowering::isEligibleForTailCallOptimization(
246  const CCState &CCInfo, unsigned NextStackOffset,
247  const MipsFunctionInfo &FI) const {
248  // No tail call optimization for mips16.
249  return false;
250 }
251 
252 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
253  for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
254  assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
255  "Array not sorted!");
256  if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
257  setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
258  }
259 
260  setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
261  setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
262 }
263 
264 //
265 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
266 // cleaner way to do all of this but it will have to wait until the traditional
267 // gcc mechanism is completed.
268 //
269 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
270 // have either arguments or returned values placed in floating point registers,
271 // we use a set of helper functions. (This includes functions which return type
272 // complex which on Mips are returned in a pair of floating point registers).
273 //
274 // This is an encoding that we inherited from gcc.
275 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
276 // floating point argument registers 1,2 only when the first and optionally
277 // the second arguments are float (sf) or double (df).
278 // For Mips16 we are only concerned with the situations where floating point
279 // arguments are being passed in floating point registers by the ABI, because
280 // Mips16 mode code cannot execute floating point instructions to load those
281 // values and hence helper functions are needed.
282 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
283 // the helper function suffixs for these are:
284 // 0, 1, 5, 9, 2, 6, 10
285 // this suffix can then be calculated as follows:
286 // for a given argument Arg:
287 // Arg1x, Arg2x = 1 : Arg is sf
288 // 2 : Arg is df
289 // 0: Arg is neither sf or df
290 // So this stub is the string for number Arg1x + Arg2x*4.
291 // However not all numbers between 0 and 10 are possible, we check anyway and
292 // assert if the impossible exists.
293 //
294 
295 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
296  (ArgListTy &Args) const {
297  unsigned int resultNum = 0;
298  if (Args.size() >= 1) {
299  Type *t = Args[0].Ty;
300  if (t->isFloatTy()) {
301  resultNum = 1;
302  }
303  else if (t->isDoubleTy()) {
304  resultNum = 2;
305  }
306  }
307  if (resultNum) {
308  if (Args.size() >=2) {
309  Type *t = Args[1].Ty;
310  if (t->isFloatTy()) {
311  resultNum += 4;
312  }
313  else if (t->isDoubleTy()) {
314  resultNum += 8;
315  }
316  }
317  }
318  return resultNum;
319 }
320 
321 //
322 // Prefixes are attached to stub numbers depending on the return type.
323 // return type: float sf_
324 // double df_
325 // single complex sc_
326 // double complext dc_
327 // others NO PREFIX
328 //
329 //
330 // The full name of a helper function is__mips16_call_stub +
331 // return type dependent prefix + stub number
332 //
333 // FIXME: This is something that probably should be in a different source file
334 // and perhaps done differently but my main purpose is to not waste runtime
335 // on something that we can enumerate in the source. Another possibility is
336 // to have a python script to generate these mapping tables. This will do
337 // for now. There are a whole series of helper function mapping arrays, one
338 // for each return type class as outlined above. There there are 11 possible
339 // entries. Ones with 0 are ones which should never be selected.
340 //
341 // All the arrays are similar except for ones which return neither
342 // sf, df, sc, dc, in which we only care about ones which have sf or df as a
343 // first parameter.
344 //
345 #define P_ "__mips16_call_stub_"
346 #define MAX_STUB_NUMBER 10
347 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
348 #define T P "0" , T1
349 #define P P_
350 static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
351  {nullptr, T1 };
352 #undef P
353 #define P P_ "sf_"
354 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
355  { T };
356 #undef P
357 #define P P_ "df_"
358 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
359  { T };
360 #undef P
361 #define P P_ "sc_"
362 static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
363  { T };
364 #undef P
365 #define P P_ "dc_"
366 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
367  { T };
368 #undef P
369 #undef P_
370 
371 
372 const char* Mips16TargetLowering::
373  getMips16HelperFunction
374  (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
375  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
376 #ifndef NDEBUG
377  const unsigned int maxStubNum = 10;
378  assert(stubNum <= maxStubNum);
379  const bool validStubNum[maxStubNum+1] =
380  {true, true, true, false, false, true, true, false, false, true, true};
381  assert(validStubNum[stubNum]);
382 #endif
383  const char *result;
384  if (RetTy->isFloatTy()) {
385  result = sfMips16Helper[stubNum];
386  }
387  else if (RetTy ->isDoubleTy()) {
388  result = dfMips16Helper[stubNum];
389  } else if (StructType *SRetTy = dyn_cast<StructType>(RetTy)) {
390  // check if it's complex
391  if (SRetTy->getNumElements() == 2) {
392  if ((SRetTy->getElementType(0)->isFloatTy()) &&
393  (SRetTy->getElementType(1)->isFloatTy())) {
394  result = scMips16Helper[stubNum];
395  } else if ((SRetTy->getElementType(0)->isDoubleTy()) &&
396  (SRetTy->getElementType(1)->isDoubleTy())) {
397  result = dcMips16Helper[stubNum];
398  } else {
399  llvm_unreachable("Uncovered condition");
400  }
401  } else {
402  llvm_unreachable("Uncovered condition");
403  }
404  } else {
405  if (stubNum == 0) {
406  needHelper = false;
407  return "";
408  }
409  result = vMips16Helper[stubNum];
410  }
411  needHelper = true;
412  return result;
413 }
414 
415 void Mips16TargetLowering::
416 getOpndList(SmallVectorImpl<SDValue> &Ops,
417  std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
418  bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
419  bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
420  SDValue Chain) const {
421  SelectionDAG &DAG = CLI.DAG;
423  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
424  const char* Mips16HelperFunction = nullptr;
425  bool NeedMips16Helper = false;
426 
428  //
429  // currently we don't have symbols tagged with the mips16 or mips32
430  // qualifier so we will assume that we don't know what kind it is.
431  // and generate the helper
432  //
433  bool LookupHelper = true;
434  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
435  Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
436 
437  if (std::binary_search(std::begin(HardFloatLibCalls),
438  std::end(HardFloatLibCalls), Find))
439  LookupHelper = false;
440  else {
441  const char *Symbol = S->getSymbol();
442  Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
443  const Mips16HardFloatInfo::FuncSignature *Signature =
445  if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
446  FuncInfo->StubsNeeded.end()))) {
447  FuncInfo->StubsNeeded[Symbol] = Signature;
448  //
449  // S2 is normally saved if the stub is for a function which
450  // returns a float or double value and is not otherwise. This is
451  // because more work is required after the function the stub
452  // is calling completes, and so the stub cannot directly return
453  // and the stub has no stack space to store the return address so
454  // S2 is used for that purpose.
455  // In order to take advantage of not saving S2, we need to also
456  // optimize the call in the stub and this requires some further
457  // functionality in MipsAsmPrinter which we don't have yet.
458  // So for now we always save S2. The optimization will be done
459  // in a follow-on patch.
460  //
461  if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
462  FuncInfo->setSaveS2();
463  }
464  // one more look at list of intrinsics
465  const Mips16IntrinsicHelperType *Helper =
466  std::lower_bound(std::begin(Mips16IntrinsicHelper),
467  std::end(Mips16IntrinsicHelper), IntrinsicFind);
468  if (Helper != std::end(Mips16IntrinsicHelper) &&
469  *Helper == IntrinsicFind) {
470  Mips16HelperFunction = Helper->Helper;
471  NeedMips16Helper = true;
472  LookupHelper = false;
473  }
474 
475  }
476  } else if (GlobalAddressSDNode *G =
477  dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
478  Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
479  G->getGlobal()->getName().data() };
480 
481  if (std::binary_search(std::begin(HardFloatLibCalls),
482  std::end(HardFloatLibCalls), Find))
483  LookupHelper = false;
484  }
485  if (LookupHelper)
486  Mips16HelperFunction =
487  getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
488  }
489 
490  SDValue JumpTarget = Callee;
491 
492  // T9 should contain the address of the callee function if
493  // -relocation-model=pic or it is an indirect call.
494  if (IsPICCall || !GlobalOrExternal) {
495  unsigned V0Reg = Mips::V0;
496  if (NeedMips16Helper) {
497  RegsToPass.push_front(std::make_pair(V0Reg, Callee));
498  JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction,
499  getPointerTy(DAG.getDataLayout()));
500  ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
501  JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
502  MipsII::MO_GOT, Chain,
503  FuncInfo->callPtrInfo(S->getSymbol()));
504  } else
505  RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
506  }
507 
508  Ops.push_back(JumpTarget);
509 
510  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
511  InternalLinkage, IsCallReloc, CLI, Callee,
512  Chain);
513 }
514 
516 Mips16TargetLowering::emitSel16(unsigned Opc, MachineInstr &MI,
517  MachineBasicBlock *BB) const {
519  return BB;
521  DebugLoc DL = MI.getDebugLoc();
522  // To "insert" a SELECT_CC instruction, we actually have to insert the
523  // diamond control-flow pattern. The incoming instruction knows the
524  // destination vreg to set, the condition code register to branch on, the
525  // true/false values to select between, and a branch opcode to use.
526  const BasicBlock *LLVM_BB = BB->getBasicBlock();
528 
529  // thisMBB:
530  // ...
531  // TrueVal = ...
532  // setcc r1, r2, r3
533  // bNE r1, r0, copy1MBB
534  // fallthrough --> copy0MBB
535  MachineBasicBlock *thisMBB = BB;
536  MachineFunction *F = BB->getParent();
537  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
538  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
539  F->insert(It, copy0MBB);
540  F->insert(It, sinkMBB);
541 
542  // Transfer the remainder of BB and its successor edges to sinkMBB.
543  sinkMBB->splice(sinkMBB->begin(), BB,
544  std::next(MachineBasicBlock::iterator(MI)), BB->end());
545  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
546 
547  // Next, add the true and fallthrough blocks as its successors.
548  BB->addSuccessor(copy0MBB);
549  BB->addSuccessor(sinkMBB);
550 
551  BuildMI(BB, DL, TII->get(Opc))
552  .addReg(MI.getOperand(3).getReg())
553  .addMBB(sinkMBB);
554 
555  // copy0MBB:
556  // %FalseValue = ...
557  // # fallthrough to sinkMBB
558  BB = copy0MBB;
559 
560  // Update machine-CFG edges
561  BB->addSuccessor(sinkMBB);
562 
563  // sinkMBB:
564  // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
565  // ...
566  BB = sinkMBB;
567 
568  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
569  .addReg(MI.getOperand(1).getReg())
570  .addMBB(thisMBB)
571  .addReg(MI.getOperand(2).getReg())
572  .addMBB(copy0MBB);
573 
574  MI.eraseFromParent(); // The pseudo instruction is gone now.
575  return BB;
576 }
577 
579 Mips16TargetLowering::emitSelT16(unsigned Opc1, unsigned Opc2, MachineInstr &MI,
580  MachineBasicBlock *BB) const {
582  return BB;
584  DebugLoc DL = MI.getDebugLoc();
585  // To "insert" a SELECT_CC instruction, we actually have to insert the
586  // diamond control-flow pattern. The incoming instruction knows the
587  // destination vreg to set, the condition code register to branch on, the
588  // true/false values to select between, and a branch opcode to use.
589  const BasicBlock *LLVM_BB = BB->getBasicBlock();
591 
592  // thisMBB:
593  // ...
594  // TrueVal = ...
595  // setcc r1, r2, r3
596  // bNE r1, r0, copy1MBB
597  // fallthrough --> copy0MBB
598  MachineBasicBlock *thisMBB = BB;
599  MachineFunction *F = BB->getParent();
600  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
601  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
602  F->insert(It, copy0MBB);
603  F->insert(It, sinkMBB);
604 
605  // Transfer the remainder of BB and its successor edges to sinkMBB.
606  sinkMBB->splice(sinkMBB->begin(), BB,
607  std::next(MachineBasicBlock::iterator(MI)), BB->end());
608  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
609 
610  // Next, add the true and fallthrough blocks as its successors.
611  BB->addSuccessor(copy0MBB);
612  BB->addSuccessor(sinkMBB);
613 
614  BuildMI(BB, DL, TII->get(Opc2))
615  .addReg(MI.getOperand(3).getReg())
616  .addReg(MI.getOperand(4).getReg());
617  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
618 
619  // copy0MBB:
620  // %FalseValue = ...
621  // # fallthrough to sinkMBB
622  BB = copy0MBB;
623 
624  // Update machine-CFG edges
625  BB->addSuccessor(sinkMBB);
626 
627  // sinkMBB:
628  // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
629  // ...
630  BB = sinkMBB;
631 
632  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
633  .addReg(MI.getOperand(1).getReg())
634  .addMBB(thisMBB)
635  .addReg(MI.getOperand(2).getReg())
636  .addMBB(copy0MBB);
637 
638  MI.eraseFromParent(); // The pseudo instruction is gone now.
639  return BB;
640 
641 }
642 
644 Mips16TargetLowering::emitSeliT16(unsigned Opc1, unsigned Opc2,
645  MachineInstr &MI,
646  MachineBasicBlock *BB) const {
648  return BB;
650  DebugLoc DL = MI.getDebugLoc();
651  // To "insert" a SELECT_CC instruction, we actually have to insert the
652  // diamond control-flow pattern. The incoming instruction knows the
653  // destination vreg to set, the condition code register to branch on, the
654  // true/false values to select between, and a branch opcode to use.
655  const BasicBlock *LLVM_BB = BB->getBasicBlock();
657 
658  // thisMBB:
659  // ...
660  // TrueVal = ...
661  // setcc r1, r2, r3
662  // bNE r1, r0, copy1MBB
663  // fallthrough --> copy0MBB
664  MachineBasicBlock *thisMBB = BB;
665  MachineFunction *F = BB->getParent();
666  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
667  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
668  F->insert(It, copy0MBB);
669  F->insert(It, sinkMBB);
670 
671  // Transfer the remainder of BB and its successor edges to sinkMBB.
672  sinkMBB->splice(sinkMBB->begin(), BB,
673  std::next(MachineBasicBlock::iterator(MI)), BB->end());
674  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
675 
676  // Next, add the true and fallthrough blocks as its successors.
677  BB->addSuccessor(copy0MBB);
678  BB->addSuccessor(sinkMBB);
679 
680  BuildMI(BB, DL, TII->get(Opc2))
681  .addReg(MI.getOperand(3).getReg())
682  .addImm(MI.getOperand(4).getImm());
683  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
684 
685  // copy0MBB:
686  // %FalseValue = ...
687  // # fallthrough to sinkMBB
688  BB = copy0MBB;
689 
690  // Update machine-CFG edges
691  BB->addSuccessor(sinkMBB);
692 
693  // sinkMBB:
694  // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
695  // ...
696  BB = sinkMBB;
697 
698  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
699  .addReg(MI.getOperand(1).getReg())
700  .addMBB(thisMBB)
701  .addReg(MI.getOperand(2).getReg())
702  .addMBB(copy0MBB);
703 
704  MI.eraseFromParent(); // The pseudo instruction is gone now.
705  return BB;
706 
707 }
708 
710 Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
711  MachineInstr &MI,
712  MachineBasicBlock *BB) const {
714  return BB;
716  unsigned regX = MI.getOperand(0).getReg();
717  unsigned regY = MI.getOperand(1).getReg();
718  MachineBasicBlock *target = MI.getOperand(2).getMBB();
719  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc))
720  .addReg(regX)
721  .addReg(regY);
722  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
723  MI.eraseFromParent(); // The pseudo instruction is gone now.
724  return BB;
725 }
726 
727 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
728  unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
729  MachineInstr &MI, MachineBasicBlock *BB) const {
731  return BB;
733  unsigned regX = MI.getOperand(0).getReg();
734  int64_t imm = MI.getOperand(1).getImm();
735  MachineBasicBlock *target = MI.getOperand(2).getMBB();
736  unsigned CmpOpc;
737  if (isUInt<8>(imm))
738  CmpOpc = CmpiOpc;
739  else if ((!ImmSigned && isUInt<16>(imm)) ||
740  (ImmSigned && isInt<16>(imm)))
741  CmpOpc = CmpiXOpc;
742  else
743  llvm_unreachable("immediate field not usable");
744  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm);
745  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
746  MI.eraseFromParent(); // The pseudo instruction is gone now.
747  return BB;
748 }
749 
750 static unsigned Mips16WhichOp8uOr16simm
751  (unsigned shortOp, unsigned longOp, int64_t Imm) {
752  if (isUInt<8>(Imm))
753  return shortOp;
754  else if (isInt<16>(Imm))
755  return longOp;
756  else
757  llvm_unreachable("immediate field not usable");
758 }
759 
761 Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc, MachineInstr &MI,
762  MachineBasicBlock *BB) const {
764  return BB;
766  unsigned CC = MI.getOperand(0).getReg();
767  unsigned regX = MI.getOperand(1).getReg();
768  unsigned regY = MI.getOperand(2).getReg();
769  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc))
770  .addReg(regX)
771  .addReg(regY);
772  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
773  .addReg(Mips::T8);
774  MI.eraseFromParent(); // The pseudo instruction is gone now.
775  return BB;
776 }
777 
779 Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc, unsigned SltiXOpc,
780  MachineInstr &MI,
781  MachineBasicBlock *BB) const {
783  return BB;
785  unsigned CC = MI.getOperand(0).getReg();
786  unsigned regX = MI.getOperand(1).getReg();
787  int64_t Imm = MI.getOperand(2).getImm();
788  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
789  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm);
790  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
791  .addReg(Mips::T8);
792  MI.eraseFromParent(); // The pseudo instruction is gone now.
793  return BB;
794 
795 }
bool inMips16HardFloat() const
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:250
MachineBasicBlock * getMBB() const
static char const * vMips16Helper[MAX_STUB_NUMBER+1]
const MipsSubtarget & Subtarget
This class represents lattice values for constants.
Definition: AllocatorList.h:24
const MipsTargetLowering * createMips16TargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI)
Create MipsTargetLowering objects.
Mips16TargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI)
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
unsigned getReg() const
getReg - Returns the register number.
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit...
static char const * scMips16Helper[MAX_STUB_NUMBER+1]
const MipsInstrInfo * getInstrInfo() const override
std::map< const char *, const Mips16HardFloatInfo::FuncSignature * > StubsNeeded
constexpr bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:306
A debug info location.
Definition: DebugLoc.h:34
F(f)
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the &#39;usesCustomInserter&#39; fla...
static unsigned Mips16WhichOp8uOr16simm(unsigned shortOp, unsigned longOp, int64_t Imm)
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
Definition: ISDOpcodes.h:781
SDValue getExternalSymbol(const char *Sym, EVT VT)
MachinePointerInfo callPtrInfo(const char *ES)
Create a MachinePointerInfo that has an ExternalSymbolPseudoSourceValue object representing a GOT ent...
amdgpu Simplify well known AMD library false Value Value const Twine & Name
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the &#39;usesCustomInserter&#39; fla...
const HexagonInstrInfo * TII
Class to represent struct types.
Definition: DerivedTypes.h:201
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt) For double-word atomic operations: ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi) ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi) These correspond to the atomicrmw instruction.
Definition: ISDOpcodes.h:810
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:401
static char const * dfMips16Helper[MAX_STUB_NUMBER+1]
static char const * dcMips16Helper[MAX_STUB_NUMBER+1]
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:398
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose...
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1282
amdgpu Simplify well known AMD library false Value * Callee
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *bb=nullptr)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
const char * getSymbol() const
static const Mips16Libcall HardFloatLibCalls[]
TargetInstrInfo - Interface to description of machine instruction set.
static cl::opt< bool > DontExpandCondPseudos16("mips16-dont-expand-cond-pseudo", cl::init(false), cl::desc("Don't expand conditional move related " "pseudos for Mips 16"), cl::Hidden)
bool isFloatTy() const
Return true if this is &#39;float&#39;, a 32-bit IEEE fp type.
Definition: Type.h:147
virtual void getOpndList(SmallVectorImpl< SDValue > &Ops, std::deque< std::pair< unsigned, SDValue >> &RegsToPass, bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const
This function fills Ops, which is the list of operands that will later be used when a function call n...
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
constexpr bool isUInt< 8 >(uint64_t x)
Definition: MathExtras.h:343
MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type...
static const SubtargetFeatureKV * Find(StringRef S, ArrayRef< SubtargetFeatureKV > A)
Find KV in array using binary search.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
self_iterator getIterator()
Definition: ilist_node.h:82
SDValue getAddrGlobal(NodeTy *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flag, SDValue Chain, const MachinePointerInfo &PtrInfo) const
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo...
Definition: ISDOpcodes.h:796
std::vector< ArgListEntry > ArgListTy
Extended Value Type.
Definition: ValueTypes.h:34
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
FuncSignature const * findFuncSignature(const char *name)
static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[]
MO_GOT - Represents the offset into the global offset table at which the address the relocation entry...
Definition: MipsBaseInfo.h:38
Iterator for intrusive lists based on ilist_node.
CCState - This class holds information needed while lowering arguments and return values...
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MipsRegisterInfo * getRegisterInfo() const override
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:222
constexpr size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:1044
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:413
int64_t getImm() const
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
static char const * sfMips16Helper[MAX_STUB_NUMBER+1]
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB &#39;Other&#39; at the position From, and insert it into this MBB right before &#39;...
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
#define I(x, y, z)
Definition: MD5.cpp:58
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
MipsFunctionInfo - This class is derived from MachineFunction private Mips target-specific informatio...
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
constexpr bool isUInt< 16 >(uint64_t x)
Definition: MathExtras.h:346
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
void insert(iterator MBBI, MachineBasicBlock *MBB)
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:326
bool useSoftFloat() const
IRTranslator LLVM IR MI
#define MAX_STUB_NUMBER
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1967
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, unsigned Align, bool *Fast) const override
Determine if the target supports unaligned memory accesses.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:150
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
#define T1