LLVM  8.0.1
Classes | Enumerations | Functions | Variables
llvm::ISD Namespace Reference

ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types and value types. More...

Classes

struct  ArgFlagsTy
 
struct  InputArg
 InputArg - This struct carries flags and type information about a single incoming (formal) argument or incoming (from the perspective of the caller) return value virtual register. More...
 
struct  OutputArg
 OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing (from the perspective of the caller) return value virtual register. More...
 

Enumerations

enum  NodeType {
  DELETED_NODE, EntryToken, TokenFactor, AssertSext,
  AssertZext, BasicBlock, VALUETYPE, CONDCODE,
  Register, RegisterMask, Constant, ConstantFP,
  GlobalAddress, GlobalTLSAddress, FrameIndex, JumpTable,
  ConstantPool, ExternalSymbol, BlockAddress, GLOBAL_OFFSET_TABLE,
  FRAMEADDR, RETURNADDR, ADDROFRETURNADDR, SPONENTRY,
  LOCAL_RECOVER, READ_REGISTER, WRITE_REGISTER, FRAME_TO_ARGS_OFFSET,
  EH_DWARF_CFA, EH_RETURN, EH_SJLJ_SETJMP, EH_SJLJ_LONGJMP,
  EH_SJLJ_SETUP_DISPATCH, TargetConstant, TargetConstantFP, TargetGlobalAddress,
  TargetGlobalTLSAddress, TargetFrameIndex, TargetJumpTable, TargetConstantPool,
  TargetExternalSymbol, TargetBlockAddress, MCSymbol, TargetIndex,
  INTRINSIC_WO_CHAIN, INTRINSIC_W_CHAIN, INTRINSIC_VOID, CopyToReg,
  CopyFromReg, UNDEF, EXTRACT_ELEMENT, BUILD_PAIR,
  MERGE_VALUES, ADD, SUB, MUL,
  SDIV, UDIV, SREM, UREM,
  SMUL_LOHI, UMUL_LOHI, SDIVREM, UDIVREM,
  CARRY_FALSE, ADDC, SUBC, ADDE,
  SUBE, ADDCARRY, SUBCARRY, SADDO,
  UADDO, SSUBO, USUBO, SMULO,
  UMULO, SADDSAT, UADDSAT, SSUBSAT,
  USUBSAT, SMULFIX, FADD, FSUB,
  FMUL, FDIV, FREM, STRICT_FADD,
  STRICT_FSUB, STRICT_FMUL, STRICT_FDIV, STRICT_FREM,
  STRICT_FMA, STRICT_FSQRT, STRICT_FPOW, STRICT_FPOWI,
  STRICT_FSIN, STRICT_FCOS, STRICT_FEXP, STRICT_FEXP2,
  STRICT_FLOG, STRICT_FLOG10, STRICT_FLOG2, STRICT_FRINT,
  STRICT_FNEARBYINT, STRICT_FMAXNUM, STRICT_FMINNUM, STRICT_FCEIL,
  STRICT_FFLOOR, STRICT_FROUND, STRICT_FTRUNC, FMA,
  FMAD, FCOPYSIGN, FGETSIGN, FCANONICALIZE,
  BUILD_VECTOR, INSERT_VECTOR_ELT, EXTRACT_VECTOR_ELT, CONCAT_VECTORS,
  INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, VECTOR_SHUFFLE, SCALAR_TO_VECTOR,
  MULHU, MULHS, SMIN, SMAX,
  UMIN, UMAX, AND, OR,
  XOR, ABS, SHL, SRA,
  SRL, ROTL, ROTR, FSHL,
  FSHR, BSWAP, CTTZ, CTLZ,
  CTPOP, BITREVERSE, CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
  SELECT, VSELECT, SELECT_CC, SETCC,
  SETCCCARRY, SHL_PARTS, SRA_PARTS, SRL_PARTS,
  SIGN_EXTEND, ZERO_EXTEND, ANY_EXTEND, TRUNCATE,
  SINT_TO_FP, UINT_TO_FP, SIGN_EXTEND_INREG, ANY_EXTEND_VECTOR_INREG,
  SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, FP_TO_SINT, FP_TO_UINT,
  FP_ROUND, FLT_ROUNDS_, FP_ROUND_INREG, FP_EXTEND,
  BITCAST, ADDRSPACECAST, FP16_TO_FP, FP_TO_FP16,
  FNEG, FABS, FSQRT, FCBRT,
  FSIN, FCOS, FPOWI, FPOW,
  FLOG, FLOG2, FLOG10, FEXP,
  FEXP2, FCEIL, FTRUNC, FRINT,
  FNEARBYINT, FROUND, FFLOOR, FMINNUM,
  FMAXNUM, FMINNUM_IEEE, FMAXNUM_IEEE, FMINIMUM,
  FMAXIMUM, FSINCOS, LOAD, STORE,
  DYNAMIC_STACKALLOC, BR, BRIND, BR_JT,
  BRCOND, BR_CC, INLINEASM, EH_LABEL,
  ANNOTATION_LABEL, CATCHPAD, CATCHRET, CLEANUPRET,
  STACKSAVE, STACKRESTORE, CALLSEQ_START, CALLSEQ_END,
  VAARG, VACOPY, VAEND, VASTART,
  SRCVALUE, MDNODE_SDNODE, PCMARKER, READCYCLECOUNTER,
  HANDLENODE, INIT_TRAMPOLINE, ADJUST_TRAMPOLINE, TRAP,
  DEBUGTRAP, PREFETCH, ATOMIC_FENCE, ATOMIC_LOAD,
  ATOMIC_STORE, ATOMIC_CMP_SWAP, ATOMIC_CMP_SWAP_WITH_SUCCESS, ATOMIC_SWAP,
  ATOMIC_LOAD_ADD, ATOMIC_LOAD_SUB, ATOMIC_LOAD_AND, ATOMIC_LOAD_CLR,
  ATOMIC_LOAD_OR, ATOMIC_LOAD_XOR, ATOMIC_LOAD_NAND, ATOMIC_LOAD_MIN,
  ATOMIC_LOAD_MAX, ATOMIC_LOAD_UMIN, ATOMIC_LOAD_UMAX, MLOAD,
  MSTORE, MGATHER, MSCATTER, LIFETIME_START,
  LIFETIME_END, GC_TRANSITION_START, GC_TRANSITION_END, GET_DYNAMIC_AREA_OFFSET,
  VECREDUCE_STRICT_FADD, VECREDUCE_STRICT_FMUL, VECREDUCE_FADD, VECREDUCE_FMUL,
  VECREDUCE_ADD, VECREDUCE_MUL, VECREDUCE_AND, VECREDUCE_OR,
  VECREDUCE_XOR, VECREDUCE_SMAX, VECREDUCE_SMIN, VECREDUCE_UMAX,
  VECREDUCE_UMIN, VECREDUCE_FMAX, VECREDUCE_FMIN, BUILTIN_OP_END
}
 ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG. More...
 
enum  MemIndexedMode {
  UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC,
  POST_DEC
}
 MemIndexedMode enum - This enum defines the load / store indexed addressing modes. More...
 
enum  LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD }
 LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension). More...
 
enum  CondCode {
  SETFALSE, SETOEQ, SETOGT, SETOGE,
  SETOLT, SETOLE, SETONE, SETO,
  SETUO, SETUEQ, SETUGT, SETUGE,
  SETULT, SETULE, SETUNE, SETTRUE,
  SETFALSE2, SETEQ, SETGT, SETGE,
  SETLT, SETLE, SETNE, SETTRUE2,
  SETCC_INVALID
}
 ISD::CondCode enum - These are ordered carefully to make the bitfields below work out, when considering SETFALSE (something that never exists dynamically) as 0. More...
 

Functions

NodeType getExtForLoadExtType (bool IsFP, LoadExtType)
 
bool isSignedIntSetCC (CondCode Code)
 Return true if this is a setcc instruction that performs a signed comparison when used with integer operands. More...
 
bool isUnsignedIntSetCC (CondCode Code)
 Return true if this is a setcc instruction that performs an unsigned comparison when used with integer operands. More...
 
bool isTrueWhenEqual (CondCode Cond)
 Return true if the specified condition returns true if the two operands to the condition are equal. More...
 
unsigned getUnorderedFlavor (CondCode Cond)
 This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if the condition is undefined if the operand is a NaN. More...
 
CondCode getSetCCInverse (CondCode Operation, bool isInteger)
 Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation. More...
 
CondCode getSetCCSwappedOperands (CondCode Operation)
 Return the operation corresponding to (Y op X) when given the operation for (X op Y). More...
 
CondCode getSetCCOrOperation (CondCode Op1, CondCode Op2, bool isInteger)
 Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X op2 Y)). More...
 
CondCode getSetCCAndOperation (CondCode Op1, CondCode Op2, bool isInteger)
 Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X op2 Y)). More...
 
bool isConstantSplatVector (const SDNode *N, APInt &SplatValue)
 Node predicates. More...
 
bool isBuildVectorAllOnes (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef. More...
 
bool isBuildVectorAllZeros (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef. More...
 
bool isBuildVectorOfConstantSDNodes (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef. More...
 
bool isBuildVectorOfConstantFPSDNodes (const SDNode *N)
 Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef. More...
 
bool allOperandsUndef (const SDNode *N)
 Return true if the node has at least one operand and all operands of the specified node are ISD::UNDEF. More...
 
bool isNormalLoad (const SDNode *N)
 Returns true if the specified node is a non-extending and unindexed load. More...
 
bool isNON_EXTLoad (const SDNode *N)
 Returns true if the specified node is a non-extending load. More...
 
bool isEXTLoad (const SDNode *N)
 Returns true if the specified node is a EXTLOAD. More...
 
bool isSEXTLoad (const SDNode *N)
 Returns true if the specified node is a SEXTLOAD. More...
 
bool isZEXTLoad (const SDNode *N)
 Returns true if the specified node is a ZEXTLOAD. More...
 
bool isUNINDEXEDLoad (const SDNode *N)
 Returns true if the specified node is an unindexed load. More...
 
bool isNormalStore (const SDNode *N)
 Returns true if the specified node is a non-truncating and unindexed store. More...
 
bool isNON_TRUNCStore (const SDNode *N)
 Returns true if the specified node is a non-truncating store. More...
 
bool isTRUNCStore (const SDNode *N)
 Returns true if the specified node is a truncating store. More...
 
bool isUNINDEXEDStore (const SDNode *N)
 Returns true if the specified node is an unindexed store. More...
 
bool isBinaryOp (const SDNode *N)
 Return true if the node is a math/logic binary operator. More...
 
bool matchUnaryPredicate (SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false)
 Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUILD_VECTOR. More...
 
bool matchBinaryPredicate (SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false)
 Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pair of constant BUILD_VECTORs. More...
 

Variables

static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+400
 FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific memory location should be less than this value. More...
 
static const int LAST_INDEXED_MODE = POST_DEC + 1
 
static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1
 

Detailed Description

ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types and value types.

Enumeration Type Documentation

◆ CondCode

ISD::CondCode enum - These are ordered carefully to make the bitfields below work out, when considering SETFALSE (something that never exists dynamically) as 0.

"U" -> Unsigned (for integer operands) or Unordered (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal to. If the "N" column is 1, the result of the comparison is undefined if the input is a NAN.

All of these (except for the 'always folded ops') should be handled for floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT, SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.

Note that these are laid out in a specific order to allow bit-twiddling to transform conditions.

Enumerator
SETFALSE 
SETOEQ 
SETOGT 
SETOGE 
SETOLT 
SETOLE 
SETONE 
SETO 
SETUO 
SETUEQ 
SETUGT 
SETUGE 
SETULT 
SETULE 
SETUNE 
SETTRUE 
SETFALSE2 
SETEQ 
SETGT 
SETGE 
SETLT 
SETLE 
SETNE 
SETTRUE2 
SETCC_INVALID 

Definition at line 959 of file ISDOpcodes.h.

◆ LoadExtType

LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).

SEXTLOAD loads the integer operand and sign extends it to a larger integer result type. ZEXTLOAD loads the integer operand and zero extends it to a larger integer result type. EXTLOAD is used for two things: floating point extending loads and integer extending loads [the top bits are undefined].

Enumerator
NON_EXTLOAD 
EXTLOAD 
SEXTLOAD 
ZEXTLOAD 

Definition at line 934 of file ISDOpcodes.h.

◆ MemIndexedMode

MemIndexedMode enum - This enum defines the load / store indexed addressing modes.

UNINDEXED "Normal" load / store. The effective address is already computed and is available in the base pointer. The offset operand is always undefined. In addition to producing a chain, an unindexed load produces one value (result of the load); an unindexed store does not produce a value.

PRE_INC Similar to the unindexed mode where the effective address is PRE_DEC the value of the base pointer add / subtract the offset. It considers the computation as being folded into the load / store operation (i.e. the load / store does the address computation as well as performing the memory transaction). The base operand is always undefined. In addition to producing a chain, pre-indexed load produces two values (result of the load and the result of the address computation); a pre-indexed store produces one value (result of the address computation).

POST_INC The effective address is the value of the base pointer. The POST_DEC value of the offset operand is then added to / subtracted from the base after memory transaction. In addition to producing a chain, post-indexed load produces two values (the result of the load and the result of the base +/- offset computation); a post-indexed store produces one value (the the result of the base +/- offset computation).

Enumerator
UNINDEXED 
PRE_INC 
PRE_DEC 
POST_INC 
POST_DEC 

Definition at line 914 of file ISDOpcodes.h.

◆ NodeType

ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.

Targets may also define target-dependent operator codes for SDNodes. For example, on x86, these are the enum values in the X86ISD namespace. Targets should aim to use target-independent operators to model their instruction sets as much as possible, and only use target-dependent operators when they have special requirements.

Finally, during and after selection proper, SNodes may use special operator codes that correspond directly with MachineInstr opcodes. These are used to represent selected instructions. See the isMachineOpcode() and getMachineOpcode() member functions of SDNode.

Enumerator
DELETED_NODE 

DELETED_NODE - This is an illegal value that is used to catch errors.

This opcode is not a legal opcode for any node.

EntryToken 

EntryToken - This is the marker used to indicate the start of a region.

TokenFactor 

TokenFactor - This node takes multiple tokens as input and produces a single token result.

This is used to represent the fact that the operand operators are independent of each other.

AssertSext 

AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero or sign extended from a narrower type.

These nodes take two operands. The first is the node that has already been extended, and the second is a value type node indicating the width of the extension

AssertZext 
BasicBlock 

Various leaf nodes.

VALUETYPE 
CONDCODE 
Register 
RegisterMask 
Constant 
ConstantFP 
GlobalAddress 
GlobalTLSAddress 
FrameIndex 
JumpTable 
ConstantPool 
ExternalSymbol 
BlockAddress 
GLOBAL_OFFSET_TABLE 

The address of the GOT.

FRAMEADDR 

FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.

These nodes take one operand, the index of the frame or return address to return. An index of zero corresponds to the current function's frame or return address, an index of one to the parent's frame or return address, and so on.

RETURNADDR 
ADDROFRETURNADDR 
SPONENTRY 
LOCAL_RECOVER 

LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.

Materializes the offset from the local object pointer of another function to a particular local object passed to llvm.localescape. The operand is the MCSymbol label used to represent this offset, since typically the offset is not known until after code generation of the parent.

READ_REGISTER 

READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the named register global variables extension.

WRITE_REGISTER 
FRAME_TO_ARGS_OFFSET 

FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to first (possible) on-stack argument.

This is needed for correct stack adjustment during unwind.

EH_DWARF_CFA 

EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA), generally the value of the stack pointer at the call site in the previous frame.

EH_RETURN 

OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin, which is used to return from exception.

The general meaning is: adjust stack by OFFSET and pass execution to HANDLER. Many platform-related details also :)

EH_SJLJ_SETJMP 

RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.setjmp intrinsic.

It takes an input chain and a pointer to the jump buffer as inputs and returns an outchain.

EH_SJLJ_LONGJMP 

OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.

It takes an input chain and a pointer to the jump buffer as inputs and returns an outchain.

EH_SJLJ_SETUP_DISPATCH 

OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.

TargetConstant 

TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification, or lowering of the constant.

They are used for constants which are known to fit in the immediate fields of their users, or for carrying magic numbers which are not values which need to be materialized in registers.

TargetConstantFP 
TargetGlobalAddress 

TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node, and this is valid in the target-specific dag, turning into a GlobalAddress operand.

TargetGlobalTLSAddress 
TargetFrameIndex 
TargetJumpTable 
TargetConstantPool 
TargetExternalSymbol 
TargetBlockAddress 
MCSymbol 
TargetIndex 

TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.

Holds target flags, a 32-bit index, and a 64-bit index. Targets can use this however they like.

INTRINSIC_WO_CHAIN 

RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic function with no side effects.

The first operand is the ID number of the intrinsic from the llvm::Intrinsic namespace. The operands to the intrinsic follow. The node returns the result of the intrinsic.

INTRINSIC_W_CHAIN 

RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target intrinsic function with side effects that returns a result.

The first operand is a chain pointer. The second is the ID number of the intrinsic from the llvm::Intrinsic namespace. The operands to the intrinsic follow. The node has two results, the result of the intrinsic and an output chain.

INTRINSIC_VOID 

OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic function with side effects that does not return a result.

The first operand is a chain pointer. The second is the ID number of the intrinsic from the llvm::Intrinsic namespace. The operands to the intrinsic follow.

CopyToReg 

CopyToReg - This node has three operands: a chain, a register number to set to this value, and a value.

CopyFromReg 

CopyFromReg - This node indicates that the input value is a virtual or physical register that is defined outside of the scope of this SelectionDAG.

The register is available from the RegisterSDNode object.

UNDEF 

UNDEF - An undefined node.

EXTRACT_ELEMENT 

EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant, which is required to be operand #1) half of the integer or float value specified as operand #0.

This is only for use before legalization, for values that will be broken into multiple registers.

BUILD_PAIR 

BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.

Given two values of the same integer value type, this produces a value twice as big. Like EXTRACT_ELEMENT, this can only be used before legalization. The lower part of the composite value should be in element 0 and the upper part should be in element 1.

MERGE_VALUES 

MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual results.

This nodes has exactly the same number of inputs and outputs. This node is useful for some pieces of the code generator that want to think about a single node with multiple results, not multiple nodes.

ADD 

Simple integer binary arithmetic operators.

SUB 
MUL 
SDIV 
UDIV 
SREM 
UREM 
SMUL_LOHI 

SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2*N], and return the full value as two results, each of type iN.

UMUL_LOHI 
SDIVREM 

SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.

UDIVREM 
CARRY_FALSE 

CARRY_FALSE - This node is used when folding other nodes, like ADDC/SUBC, which indicate the carry result is always false.

ADDC 

Carry-setting nodes for multiple precision addition and subtraction.

These nodes take two operands of the same value type, and produce two results. The first result is the normal add or sub result, the second result is the carry flag result. FIXME: These nodes are deprecated in favor of ADDCARRY and SUBCARRY. They are kept around for now to provide a smooth transition path toward the use of ADDCARRY/SUBCARRY and will eventually be removed.

SUBC 
ADDE 

Carry-using nodes for multiple precision addition and subtraction.

These nodes take three operands: The first two are the normal lhs and rhs to the add or sub, and the third is the input carry flag. These nodes produce two results; the normal result of the add or sub, and the output carry flag. These nodes both read and write a carry flag to allow them to them to be chained together for add and sub of arbitrarily large values.

SUBE 
ADDCARRY 

Carry-using nodes for multiple precision addition and subtraction.

These nodes take three operands: The first two are the normal lhs and rhs to the add or sub, and the third is a boolean indicating if there is an incoming carry. These nodes produce two results: the normal result of the add or sub, and the output carry so they can be chained together. The use of this opcode is preferable to adde/sube if the target supports it, as the carry is a regular value rather than a glue, which allows further optimisation.

SUBCARRY 
SADDO 

RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.

These nodes take two operands: the normal LHS and RHS to the add. They produce two results: the normal result of the add, and a boolean that indicates if an overflow occurred (not a flag, because it may be store to memory, etc.). If the type of the boolean is not i1 then the high bits conform to getBooleanContents. These nodes are generated from llvm.[su]add.with.overflow intrinsics.

UADDO 
SSUBO 

Same for subtraction.

USUBO 
SMULO 

Same for multiplication.

UMULO 
SADDSAT 

RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W).

If the true value of LHS + RHS exceeds the largest value that can be represented by W bits, the resulting value is this maximum value. Otherwise, if this value is less than the smallest value that can be represented by W bits, the resulting value is this minimum value.

UADDSAT 
SSUBSAT 

RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width (W).

If the true value of LHS - RHS exceeds the largest value that can be represented by W bits, the resulting value is this maximum value. Otherwise, if this value is less than the smallest value that can be represented by W bits, the resulting value is this minimum value.

USUBSAT 
SMULFIX 

RESULT = SMULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same width and scale.

SCALE represents the scale of both operands as fixed point numbers. This SCALE parameter must be a constant integer. A scale of zero is effectively performing multiplication on 2 integers.

FADD 

Simple binary floating point operators.

FSUB 
FMUL 
FDIV 
FREM 
STRICT_FADD 

Constrained versions of the binary floating point operators.

These will be lowered to the simple operators before final selection. They are used to limit optimizations while the DAG is being optimized.

STRICT_FSUB 
STRICT_FMUL 
STRICT_FDIV 
STRICT_FREM 
STRICT_FMA 
STRICT_FSQRT 

Constrained versions of libm-equivalent floating point intrinsics.

These will be lowered to the equivalent non-constrained pseudo-op (or expanded to the equivalent library call) before final selection. They are used to limit optimizations while the DAG is being optimized.

STRICT_FPOW 
STRICT_FPOWI 
STRICT_FSIN 
STRICT_FCOS 
STRICT_FEXP 
STRICT_FEXP2 
STRICT_FLOG 
STRICT_FLOG10 
STRICT_FLOG2 
STRICT_FRINT 
STRICT_FNEARBYINT 
STRICT_FMAXNUM 
STRICT_FMINNUM 
STRICT_FCEIL 
STRICT_FFLOOR 
STRICT_FROUND 
STRICT_FTRUNC 
FMA 

FMA - Perform a * b + c with no intermediate rounding step.

FMAD 

FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.

FCOPYSIGN 

FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.

NOTE: This DAG node does not require that X and Y have the same type, just that they are both floating point. X and the result must have the same type. FCOPYSIGN(f32, f64) is allowed.

FGETSIGN 

INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 value.

FCANONICALIZE 

Returns platform specific canonical encoding of a floating point number.

BUILD_VECTOR 

BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the specified, possibly variable, elements.

The number of elements is required to be a power of two. The types of the operands must all be the same and must match the vector element type, except that integer types are allowed to be larger than the element type, in which case the operands are implicitly truncated.

INSERT_VECTOR_ELT 

INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.

If the type of VAL is larger than the vector element type then VAL is truncated before replacement.

EXTRACT_VECTOR_ELT 

EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially variable) element number IDX.

If the return type is an integer type larger than the element type of the vector, the result is extended to the width of the return type. In that case, the high bits are undefined.

CONCAT_VECTORS 

CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length and element type, this produces a concatenated vector result value, with length equal to the sum of the lengths of the input vectors.

INSERT_SUBVECTOR 

INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1 at the (potentially variable) element number IDX, which must be a multiple of the VECTOR2 vector length.

The elements of VECTOR1 starting at IDX are overwritten with VECTOR2. Elements IDX through vector_length(VECTOR2) must be valid VECTOR1 indices.

EXTRACT_SUBVECTOR 

EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an vector value) starting with the element number IDX, which must be a constant multiple of the result vector length.

VECTOR_SHUFFLE 

VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.

A VECTOR_SHUFFLE node also contains an array of constant int values that indicate which value (or undef) each result element will get. These constant ints are accessible through the ShuffleVectorSDNode class. This is quite similar to the Altivec 'vperm' instruction, except that the indices must be constants and are in terms of the element size of VEC1/VEC2, not in terms of bytes.

SCALAR_TO_VECTOR 

SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the resultant vector type.

The top elements 1 to N-1 of the N-element vector are undefined. The type of the operand must match the vector element type, except when they are integer types. In this case the operand is allowed to be wider than the vector element type, and is implicitly truncated to it.

MULHU 

MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of type i[2*N], then return the top part.

MULHS 
SMIN 

[US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned integers.

SMAX 
UMIN 
UMAX 
AND 

Bitwise operators - logical and, logical or, logical xor.

OR 
XOR 
ABS 

ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.

Note: A value of INT_MIN will return INT_MIN, no saturation or overflow is performed.

SHL 

Shift and rotation operations.

After legalization, the type of the shift amount is known to be TLI.getShiftAmountTy(). Before legalization the shift amount can be any type, but care must be taken to ensure it is large enough. TLI.getShiftAmountTy() is i8 on some targets, but before legalization, types like i1024 can occur and i8 doesn't have enough bits to represent the shift amount. When the 1st operand is a vector, the shift amount must be in the same type. (TLI.getShiftAmountTy() will return the same type when the input type is a vector.) For rotates and funnel shifts, the shift amount is treated as an unsigned amount modulo the element size of the first operand.

Funnel 'double' shifts take 3 operands, 2 inputs and the shift amount. fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))

SRA 
SRL 
ROTL 
ROTR 
FSHL 
FSHR 
BSWAP 

Byte Swap and Counting operators.

CTTZ 
CTLZ 
CTPOP 
BITREVERSE 
CTTZ_ZERO_UNDEF 

Bit counting operators with an undefined result for zero inputs.

CTLZ_ZERO_UNDEF 
SELECT 

Select(COND, TRUEVAL, FALSEVAL).

If the type of the boolean COND is not i1 then the high bits must conform to getBooleanContents.

VSELECT 

Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector result.

All vectors have the same length. Much like the scalar select and setcc, each bit in the condition selects whether the corresponding result element is taken from op #1 or op #2. At first, the VSELECT condition is of vXi1 type. Later, targets may change the condition type in order to match the VSELECT node using a pattern. The condition follows the BooleanContent format of the target.

SELECT_CC 

Select with condition operator - This selects between a true value and a false value (ops #2 and #3) based on the boolean result of comparing the lhs and rhs (ops #0 and #1) of a conditional expression with the condition code in op #4, a CondCodeSDNode.

SETCC 

SetCC operator - This evaluates to a true value iff the condition is true.

If the result value type is not i1 then the high bits conform to getBooleanContents. The operands to this are the left and right operands to compare (ops #0, and #1) and the condition code to compare them with (op #2) as a CondCodeSDNode. If the operands are vector types then the result type must also be a vector type.

SETCCCARRY 

Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating if there is an incoming carry.

This operator checks the result of "LHS - RHS - Carry", and can be used to compare two wide integers: (setcccarry lhshi rhshi (subcarry lhslo rhslo) cc). Only valid for integers.

SHL_PARTS 

SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.

The operation ordering is: [Lo,Hi] = op [LoLHS,HiLHS], Amt

SRA_PARTS 
SRL_PARTS 
SIGN_EXTEND 

Conversion operators.

These are all single input single output operations. For all of these, the result type must be strictly wider or narrower (depending on the operation) than the source type. SIGN_EXTEND - Used for integer types, replicating the sign bit into new bits.

ZERO_EXTEND 

ZERO_EXTEND - Used for integer types, zeroing the new bits.

ANY_EXTEND 

ANY_EXTEND - Used for integer types. The high bits are undefined.

TRUNCATE 

TRUNCATE - Completely drop the high bits.

SINT_TO_FP 

[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter) to floating point.

UINT_TO_FP 
SIGN_EXTEND_INREG 

SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in a large integer register (e.g.

sign extending the low 8 bits of a 32-bit register to fill the top 24 bits with the 7th bit). The size of the smaller type is indicated by the 1th operand, a ValueType node.

ANY_EXTEND_VECTOR_INREG 

ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low lanes of an integer vector.

The result type must have fewer elements than the operand type, and those elements must be larger integer types such that the total size of the operand type is less than or equal to the size of the result type. Each of the low operand elements is any-extended into the corresponding, wider result elements with the high bits becoming undef. NOTE: The type legalizer prefers to make the operand and result size the same to allow expansion to shuffle vector during op legalization.

SIGN_EXTEND_VECTOR_INREG 

SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low lanes of an integer vector.

The result type must have fewer elements than the operand type, and those elements must be larger integer types such that the total size of the operand type is less than or equal to the size of the result type. Each of the low operand elements is sign-extended into the corresponding, wider result elements. NOTE: The type legalizer prefers to make the operand and result size the same to allow expansion to shuffle vector during op legalization.

ZERO_EXTEND_VECTOR_INREG 

ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low lanes of an integer vector.

The result type must have fewer elements than the operand type, and those elements must be larger integer types such that the total size of the operand type is less than or equal to the size of the result type. Each of the low operand elements is zero-extended into the corresponding, wider result elements. NOTE: The type legalizer prefers to make the operand and result size the same to allow expansion to shuffle vector during op legalization.

FP_TO_SINT 

FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.

These have the same semantics as fptosi and fptoui in IR. If the FP value cannot fit in the integer type, the results are undefined.

FP_TO_UINT 
FP_ROUND 

X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the destination VT.

TRUNC is a flag, which is always an integer that is zero or one. If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND is known to not change the value of Y.

The TRUNC = 1 case is used in cases where we know that the value will not be modified by the node, because Y is not using any of the extra precision of source type. This allows certain transformations like FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.

FLT_ROUNDS_ 

FLT_ROUNDS_ - Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf.

FP_ROUND_INREG 

X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and rounds it to a floating point value.

It then promotes it and returns it in a register of the same size. This operation effectively just discards excess precision. The type to round down to is specified by the VT operand, a VTSDNode.

FP_EXTEND 

X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.

BITCAST 

BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to memory with one type and loaded from the same address with the other type (or equivalently for vector format conversions, etc).

The source and result are required to have the same bit size (e.g. f32 <-> i32). This can also be used for int-to-int or fp-to-fp conversions, but that is a noop, deleted by getNode().

This operator is subtly different from the bitcast instruction from LLVM-IR since this node may change the bits in the register. For example, this occurs on big-endian NEON and big-endian MSA where the layout of the bits in the register depends on the vector type and this operator acts as a shuffle operation for some vector type combinations.

ADDRSPACECAST 

ADDRSPACECAST - This operator converts between pointers of different address spaces.

FP16_TO_FP 

FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-precision (16 bit) floating numbers.

These nodes form a semi-softened interface for dealing with f16 (as an i16), which is often a storage-only type but has native conversions.

FP_TO_FP16 
FNEG 

Perform various unary floating-point operations inspired by libm.

FABS 
FSQRT 
FCBRT 
FSIN 
FCOS 
FPOWI 
FPOW 
FLOG 
FLOG2 
FLOG10 
FEXP 
FEXP2 
FCEIL 
FTRUNC 
FRINT 
FNEARBYINT 
FROUND 
FFLOOR 
FMINNUM 

FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.

In the case where a single input is a NaN (either signaling or quiet), the non-NaN input is returned.

The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.

FMAXNUM 
FMINNUM_IEEE 

FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on two values, following the IEEE-754 2008 definition.

This differs from FMINNUM/FMAXNUM in the handling of signaling NaNs. If one input is a signaling NaN, returns a quiet NaN.

FMAXNUM_IEEE 
FMINIMUM 

FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0.0.

While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008 semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2018 draft semantics.

FMAXIMUM 
FSINCOS 

FSINCOS - Compute both fsin and fcos as a single operation.

LOAD 

LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store instruction, then an offset node that is added / subtracted from the base pointer to form the address (for indexed memory ops).

STORE 
DYNAMIC_STACKALLOC 

DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.

This node always has two return values: a new stack pointer value and a chain. The first operand is the token chain, the second is the number of bytes to allocate, and the third is the alignment boundary. The size is guaranteed to be a multiple of the stack alignment, and the alignment is guaranteed to be bigger than the stack alignment (if required) or 0 to get standard stack alignment.

BR 

Control flow instructions. These all have token chains.

BR - Unconditional branch. The first operand is the chain operand, the second is the MBB to branch to.

BRIND 

BRIND - Indirect branch.

The first operand is the chain, the second is the value to branch to, which must be of the same type as the target's pointer type.

BR_JT 

BR_JT - Jumptable branch.

The first operand is the chain, the second is the jumptable index, the last one is the jumptable entry index.

BRCOND 

BRCOND - Conditional branch.

The first operand is the chain, the second is the condition, the third is the block to branch to if the condition is true. If the type of the condition is not i1, then the high bits must conform to getBooleanContents.

BR_CC 

BR_CC - Conditional branch.

The behavior is like that of SELECT_CC, in that the condition is represented as condition code, and two nodes to compare, rather than as a combined SetCC node. The operands in order are chain, cc, lhs, rhs, block to branch to if condition is true.

INLINEASM 

INLINEASM - Represents an inline asm block.

This node always has two return values: a chain and a flag result. The inputs are as follows: Operand #0 : Input chain. Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string. Operand #2 : a MDNodeSDNode with the !srcloc metadata. Operand #3 : HasSideEffect, IsAlignStack bits. After this, it is followed by a list of operands with this format: ConstantSDNode: Flags that encode whether it is a mem or not, the of operands that follow, etc. See InlineAsm.h. ... however many operands ... Operand #last: Optional, an incoming flag.

The variable width operands are required to represent target addressing modes as a single "operand", even though they may have multiple SDOperands.

EH_LABEL 

EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and exception handling tables.

These nodes take a chain as input and return a chain.

ANNOTATION_LABEL 

ANNOTATION_LABEL - Represents a mid basic block label used by annotations.

This should remain within the basic block and be ordered with respect to other call instructions, but loads and stores may float past it.

CATCHPAD 

CATCHPAD - Represents a catchpad instruction.

CATCHRET 

CATCHRET - Represents a return from a catch block funclet.

Used for MSVC compatible exception handling. Takes a chain operand and a destination basic block operand.

CLEANUPRET 

CLEANUPRET - Represents a return from a cleanup block funclet.

Used for MSVC compatible exception handling. Takes only a chain operand.

STACKSAVE 

STACKSAVE - STACKSAVE has one operand, an input chain.

It produces a value, the same type as the pointer type for the system, and an output chain.

STACKRESTORE 

STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.

CALLSEQ_START 

CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence, and carry arbitrary information that target might want to know.

The first operand is a chain, the rest are specified by the target and not touched by the DAG optimizers. Targets that may use stack to pass call arguments define additional operands:

  • size of the call frame part that must be set up within the CALLSEQ_START..CALLSEQ_END pair,
  • part of the call frame prepared prior to CALLSEQ_START. Both these parameters must be constants, their sum is the total call frame size. CALLSEQ_START..CALLSEQ_END pairs may not be nested.
CALLSEQ_END 
VAARG 

VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.

It returns a pair of values: the vaarg value and a new chain.

VACOPY 

VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the source.

VAEND 

VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.

VASTART 
SRCVALUE 

SRCVALUE - This is a node type that holds a Value* that is used to make reference to a value in the LLVM IR.

MDNODE_SDNODE 

MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to reference metadata in the IR.

PCMARKER 

PCMARKER - This corresponds to the pcmarker intrinsic.

READCYCLECOUNTER 

READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.

It produces a chain and one i64 value. The only operand is a chain. If i64 is not legal, the result will be expanded into smaller values. Still, it returns an i64, so targets should set legality for i64. The result is the content of the architecture-specific cycle counter-like register (or other high accuracy low latency clock source).

HANDLENODE 

HANDLENODE node - Used as a handle for various purposes.

INIT_TRAMPOLINE 

INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.

It takes as input a token chain, the pointer to the trampoline, the pointer to the nested function, the pointer to pass for the 'nest' parameter, a SRCVALUE for the trampoline and another for the nested function (allowing targets to access the original Function*). It produces a token chain as output.

ADJUST_TRAMPOLINE 

ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.

It takes a pointer to the trampoline and produces a (possibly) new pointer to the same trampoline with platform-specific adjustments applied. The pointer it returns points to an executable block of code.

TRAP 

TRAP - Trapping instruction.

DEBUGTRAP 

DEBUGTRAP - Trap intended to get the attention of a debugger.

PREFETCH 

PREFETCH - This corresponds to a prefetch intrinsic.

The first operand is the chain. The other operands are the address to prefetch, read / write specifier, locality specifier and instruction / data cache specifier.

ATOMIC_FENCE 

OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.

It takes an input chain, and two integer constants: an AtomicOrdering and a SynchronizationScope.

ATOMIC_LOAD 

Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.

ATOMIC_STORE 

OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val) This corresponds to "store atomic" instruction.

ATOMIC_CMP_SWAP 

Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi, swapLo, swapHi) This corresponds to the cmpxchg instruction.

ATOMIC_CMP_SWAP_WITH_SUCCESS 

Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.

this is still a strong cmpxchg operation, so Success == "Val == cmp".

ATOMIC_SWAP 

Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt) For double-word atomic operations: ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi) ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi) These correspond to the atomicrmw instruction.

ATOMIC_LOAD_ADD 
ATOMIC_LOAD_SUB 
ATOMIC_LOAD_AND 
ATOMIC_LOAD_CLR 
ATOMIC_LOAD_OR 
ATOMIC_LOAD_XOR 
ATOMIC_LOAD_NAND 
ATOMIC_LOAD_MIN 
ATOMIC_LOAD_MAX 
ATOMIC_LOAD_UMIN 
ATOMIC_LOAD_UMAX 
MLOAD 
MSTORE 
MGATHER 
MSCATTER 
LIFETIME_START 

This corresponds to the llvm.lifetime.

  • intrinsics. The first operand is the chain and the second operand is the alloca pointer.
LIFETIME_END 
GC_TRANSITION_START 

GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the beginning and end of GC transition sequence, and carry arbitrary information that target might need for lowering.

The first operand is a chain, the rest are specified by the target and not touched by the DAG optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be nested.

GC_TRANSITION_END 
GET_DYNAMIC_AREA_OFFSET 

GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.

For most targets that would be 0, but for some others (e.g. PowerPC, PowerPC64) that would be compile-time known nonzero constant. The only operand here is the chain.

VECREDUCE_STRICT_FADD 

Generic reduction nodes.

These nodes represent horizontal vector reduction operations, producing a scalar result. The STRICT variants perform reductions in sequential order. The first operand is an initial scalar accumulator value, and the second operand is the vector to reduce.

VECREDUCE_STRICT_FMUL 
VECREDUCE_FADD 

These reductions are non-strict, and have a single vector operand.

VECREDUCE_FMUL 
VECREDUCE_ADD 
VECREDUCE_MUL 
VECREDUCE_AND 
VECREDUCE_OR 
VECREDUCE_XOR 
VECREDUCE_SMAX 
VECREDUCE_SMIN 
VECREDUCE_UMAX 
VECREDUCE_UMIN 
VECREDUCE_FMAX 

FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.

VECREDUCE_FMIN 
BUILTIN_OP_END 

BUILTIN_OP_END - This must be the last enum value in this list.

The target-specific pre-isel opcode values start here.

Definition at line 39 of file ISDOpcodes.h.

Function Documentation

◆ allOperandsUndef()

bool llvm::ISD::allOperandsUndef ( const SDNode N)

Return true if the node has at least one operand and all operands of the specified node are ISD::UNDEF.

Definition at line 259 of file SelectionDAG.cpp.

References llvm::SDNode::getNumOperands(), and llvm::SDNode::op_values().

Referenced by combineConcatVectorOfExtracts(), and reduceBuildVecToShuffleWithZero().

◆ getExtForLoadExtType()

ISD::NodeType llvm::ISD::getExtForLoadExtType ( bool  IsFP,
ISD::LoadExtType  ExtType 
)

◆ getSetCCAndOperation()

ISD::CondCode llvm::ISD::getSetCCAndOperation ( ISD::CondCode  Op1,
ISD::CondCode  Op2,
bool  isInteger 
)

Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X op2 Y)).

This function returns SETCC_INVALID if it is not possible to represent the resultant comparison.

Definition at line 412 of file SelectionDAG.cpp.

References isSignedOp(), SETCC_INVALID, SETEQ, SETFALSE, SETOEQ, SETOGT, SETOLT, SETUEQ, SETUGT, SETULT, and SETUO.

Referenced by getUnorderedFlavor(), and simplifyDivRem().

◆ getSetCCInverse()

ISD::CondCode llvm::ISD::getSetCCInverse ( ISD::CondCode  Op,
bool  isInteger 
)

◆ getSetCCOrOperation()

ISD::CondCode llvm::ISD::getSetCCOrOperation ( ISD::CondCode  Op1,
ISD::CondCode  Op2,
bool  isInteger 
)

Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X op2 Y)).

This function returns SETCC_INVALID if it is not possible to represent the resultant comparison.

Definition at line 392 of file SelectionDAG.cpp.

References isSignedOp(), SETCC_INVALID, SETNE, SETTRUE2, and SETUNE.

Referenced by getUnorderedFlavor(), and simplifyDivRem().

◆ getSetCCSwappedOperands()

ISD::CondCode llvm::ISD::getSetCCSwappedOperands ( ISD::CondCode  Operation)

◆ getUnorderedFlavor()

unsigned llvm::ISD::getUnorderedFlavor ( CondCode  Cond)
inline

This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if the condition is undefined if the operand is a NaN.

Definition at line 1012 of file ISDOpcodes.h.

References getSetCCAndOperation(), getSetCCInverse(), getSetCCOrOperation(), getSetCCSwappedOperands(), and Operation.

Referenced by llvm::TargetLowering::SimplifySetCC().

◆ isBinaryOp()

bool llvm::ISD::isBinaryOp ( const SDNode N)
inline

Return true if the node is a math/logic binary operator.

This corresponds to the IR function of the same name.

Definition at line 2478 of file SelectionDAGNodes.h.

References ADD, AND, FADD, FDIV, FMUL, FREM, FSUB, function, llvm::SDNode::getOpcode(), llvm::Match, matchBinaryPredicate(), matchUnaryPredicate(), MUL, OR, SDIV, SHL, SRA, SREM, SRL, SUB, UDIV, UREM, and XOR.

Referenced by getAsNonOpaqueConstant(), narrowExtractedVectorBinOp(), and scalarizeExtractedBinop().

◆ isBuildVectorAllOnes()

bool llvm::ISD::isBuildVectorAllOnes ( const SDNode N)

◆ isBuildVectorAllZeros()

bool llvm::ISD::isBuildVectorAllZeros ( const SDNode N)

◆ isBuildVectorOfConstantFPSDNodes()

bool llvm::ISD::isBuildVectorOfConstantFPSDNodes ( const SDNode N)

◆ isBuildVectorOfConstantSDNodes()

bool llvm::ISD::isBuildVectorOfConstantSDNodes ( const SDNode N)

◆ isConstantSplatVector()

bool llvm::ISD::isConstantSplatVector ( const SDNode N,
APInt SplatValue 
)

Node predicates.

If N is a BUILD_VECTOR node whose elements are all the same constant or undefined, return true and return the constant value in SplatValue.

Definition at line 135 of file SelectionDAG.cpp.

References llvm::dyn_cast(), llvm::EVT::getSizeInBits(), llvm::SDNode::getValueType(), llvm::EVT::getVectorElementType(), and N.

Referenced by combineAndMaskToShift(), combineMOVMSK(), combinePMULH(), llvm::X86TargetLowering::decomposeMulByConstant(), detectSSatPattern(), detectUSatPattern(), detectZextAbsDiff(), LowerVSETCC(), llvm::X86TargetLowering::ReplaceNodeResults(), and tryFoldToZero().

◆ isEXTLoad()

bool llvm::ISD::isEXTLoad ( const SDNode N)
inline

Returns true if the specified node is a EXTLOAD.

Definition at line 2429 of file SelectionDAGNodes.h.

References EXTLOAD, and N.

Referenced by isFloatingPointZero(), isTruncateOf(), simplifyDivRem(), and tryToFoldExtOfExtload().

◆ isNON_EXTLoad()

bool llvm::ISD::isNON_EXTLoad ( const SDNode N)
inline

◆ isNON_TRUNCStore()

bool llvm::ISD::isNON_TRUNCStore ( const SDNode N)
inline

Returns true if the specified node is a non-truncating store.

Definition at line 2461 of file SelectionDAGNodes.h.

References N.

◆ isNormalLoad()

bool llvm::ISD::isNormalLoad ( const SDNode N)
inline

◆ isNormalStore()

bool llvm::ISD::isNormalStore ( const SDNode N)
inline

◆ isSEXTLoad()

bool llvm::ISD::isSEXTLoad ( const SDNode N)
inline

◆ isSignedIntSetCC()

bool llvm::ISD::isSignedIntSetCC ( CondCode  Code)
inline

Return true if this is a setcc instruction that performs a signed comparison when used with integer operands.

Definition at line 992 of file ISDOpcodes.h.

References SETGE, SETGT, SETLE, and SETLT.

Referenced by combineSetCC(), ConvertSelectToConcatVector(), ExtendUsesToFormExtLoad(), generateEquivalentSub(), mayUseP9Setb(), and llvm::TargetLowering::SimplifySetCC().

◆ isTrueWhenEqual()

bool llvm::ISD::isTrueWhenEqual ( CondCode  Cond)
inline

Return true if the specified condition returns true if the two operands to the condition are equal.

Note that if one of the two operands is a NaN, this value is meaningless.

Definition at line 1005 of file ISDOpcodes.h.

Referenced by llvm::CmpInst::isFalseWhenEqual(), llvm::CmpInst::isTrueWhenEqual(), LowerVSETCC(), and llvm::TargetLowering::SimplifySetCC().

◆ isTRUNCStore()

bool llvm::ISD::isTRUNCStore ( const SDNode N)
inline

Returns true if the specified node is a truncating store.

Definition at line 2466 of file SelectionDAGNodes.h.

References N.

◆ isUNINDEXEDLoad()

bool llvm::ISD::isUNINDEXEDLoad ( const SDNode N)
inline

◆ isUNINDEXEDStore()

bool llvm::ISD::isUNINDEXEDStore ( const SDNode N)
inline

Returns true if the specified node is an unindexed store.

Definition at line 2471 of file SelectionDAGNodes.h.

References N, and UNINDEXED.

Referenced by getExpandedMinMaxOps(), GetFPLibCall(), and getShiftAmountTyForConstant().

◆ isUnsignedIntSetCC()

bool llvm::ISD::isUnsignedIntSetCC ( CondCode  Code)
inline

Return true if this is a setcc instruction that performs an unsigned comparison when used with integer operands.

Definition at line 998 of file ISDOpcodes.h.

References SETUGE, SETUGT, SETULE, and SETULT.

Referenced by combineExtSetcc(), emitComparison(), generateEquivalentSub(), LowerVSETCC(), and selectI64Imm().

◆ isZEXTLoad()

bool llvm::ISD::isZEXTLoad ( const SDNode N)
inline

Returns true if the specified node is a ZEXTLOAD.

Definition at line 2441 of file SelectionDAGNodes.h.

References N, and ZEXTLOAD.

Referenced by llvm::SelectionDAG::computeKnownBits(), isTruncateOf(), isZeroExtended(), selectI64Imm(), SkipExtensionForVMULL(), and tryToFoldExtOfExtload().

◆ matchBinaryPredicate()

bool llvm::ISD::matchBinaryPredicate ( SDValue  LHS,
SDValue  RHS,
std::function< bool(ConstantSDNode *, ConstantSDNode *)>  Match,
bool  AllowUndefs = false 
)

Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pair of constant BUILD_VECTORs.

If AllowUndef is true, then UNDEF elements will pass nullptr to Match.

Definition at line 299 of file SelectionDAG.cpp.

References BUILD_VECTOR, llvm::dyn_cast(), llvm::SDValue::getNumOperands(), llvm::SDValue::getOpcode(), llvm::SDValue::getOperand(), llvm::EVT::getScalarType(), llvm::SDValue::getValueType(), llvm::SDValue::isUndef(), and llvm::Match.

Referenced by calculateByteProvider(), combineAddToSUBUS(), combineSelect(), isBinaryOp(), isBSwapHWordElement(), matchRotateSub(), and simplifyDivRem().

◆ matchUnaryPredicate()

bool llvm::ISD::matchUnaryPredicate ( SDValue  Op,
std::function< bool(ConstantSDNode *)>  Match,
bool  AllowUndefs = false 
)

Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUILD_VECTOR.

If AllowUndef is true, then UNDEF elements will pass nullptr to Match.

Definition at line 273 of file SelectionDAG.cpp.

References BUILD_VECTOR, llvm::dyn_cast(), llvm::SDValue::getNumOperands(), llvm::SDValue::getOpcode(), llvm::SDValue::getOperand(), llvm::EVT::getScalarType(), llvm::SDValue::getValueType(), llvm::SDValue::isUndef(), and llvm::Match.

Referenced by BuildExactSDIV(), llvm::TargetLowering::BuildSDIV(), llvm::TargetLowering::BuildUDIV(), isBinaryOp(), llvm::SelectionDAG::isKnownNeverZero(), simplifyDivRem(), and llvm::SelectionDAG::simplifyShift().

Variable Documentation

◆ FIRST_TARGET_MEMORY_OPCODE

const int llvm::ISD::FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+400
static

FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific memory location should be less than this value.

Those that do must not be less than this value, and can be used with SelectionDAG::getMemIntrinsicNode.

Definition at line 884 of file ISDOpcodes.h.

Referenced by llvm::SelectionDAG::getMemIntrinsicNode(), and llvm::SDNode::isTargetMemoryOpcode().

◆ LAST_INDEXED_MODE

const int llvm::ISD::LAST_INDEXED_MODE = POST_DEC + 1
static

◆ LAST_LOADEXT_TYPE

const int llvm::ISD::LAST_LOADEXT_TYPE = ZEXTLOAD + 1
static