LLVM  8.0.1
GCNHazardRecognizer.cpp
Go to the documentation of this file.
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIDefines.h"
17 #include "SIInstrInfo.h"
18 #include "SIRegisterInfo.h"
20 #include "Utils/AMDGPUBaseInfo.h"
26 #include "llvm/MC/MCInstrDesc.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <limits>
31 #include <set>
32 #include <vector>
33 
34 using namespace llvm;
35 
36 //===----------------------------------------------------------------------===//
37 // Hazard Recoginizer Implementation
38 //===----------------------------------------------------------------------===//
39 
41  CurrCycleInstr(nullptr),
42  MF(MF),
43  ST(MF.getSubtarget<GCNSubtarget>()),
44  TII(*ST.getInstrInfo()),
45  TRI(TII.getRegisterInfo()),
46  ClauseUses(TRI.getNumRegUnits()),
47  ClauseDefs(TRI.getNumRegUnits()) {
48  MaxLookAhead = 5;
49 }
50 
53 }
54 
56  CurrCycleInstr = MI;
57 }
58 
59 static bool isDivFMas(unsigned Opcode) {
60  return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
61 }
62 
63 static bool isSGetReg(unsigned Opcode) {
64  return Opcode == AMDGPU::S_GETREG_B32;
65 }
66 
67 static bool isSSetReg(unsigned Opcode) {
68  return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
69 }
70 
71 static bool isRWLane(unsigned Opcode) {
72  return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
73 }
74 
75 static bool isRFE(unsigned Opcode) {
76  return Opcode == AMDGPU::S_RFE_B64;
77 }
78 
79 static bool isSMovRel(unsigned Opcode) {
80  switch (Opcode) {
81  case AMDGPU::S_MOVRELS_B32:
82  case AMDGPU::S_MOVRELS_B64:
83  case AMDGPU::S_MOVRELD_B32:
84  case AMDGPU::S_MOVRELD_B64:
85  return true;
86  default:
87  return false;
88  }
89 }
90 
91 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
92  const MachineInstr &MI) {
93  if (TII.isAlwaysGDS(MI.getOpcode()))
94  return true;
95 
96  switch (MI.getOpcode()) {
97  case AMDGPU::S_SENDMSG:
98  case AMDGPU::S_SENDMSGHALT:
99  case AMDGPU::S_TTRACEDATA:
100  return true;
101  // These DS opcodes don't support GDS.
102  case AMDGPU::DS_NOP:
103  case AMDGPU::DS_PERMUTE_B32:
104  case AMDGPU::DS_BPERMUTE_B32:
105  return false;
106  default:
107  if (TII.isDS(MI.getOpcode())) {
108  int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
109  AMDGPU::OpName::gds);
110  if (MI.getOperand(GDS).getImm())
111  return true;
112  }
113  return false;
114  }
115 }
116 
117 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
118  const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
119  AMDGPU::OpName::simm16);
120  return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
121 }
122 
125  MachineInstr *MI = SU->getInstr();
126 
127  if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
128  return NoopHazard;
129 
130  // FIXME: Should flat be considered vmem?
131  if ((SIInstrInfo::isVMEM(*MI) ||
132  SIInstrInfo::isFLAT(*MI))
133  && checkVMEMHazards(MI) > 0)
134  return NoopHazard;
135 
136  if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
137  return NoopHazard;
138 
139  if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
140  return NoopHazard;
141 
142  if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
143  return NoopHazard;
144 
145  if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
146  return NoopHazard;
147 
148  if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
149  return NoopHazard;
150 
151  if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
152  return NoopHazard;
153 
154  if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
155  return NoopHazard;
156 
157  if (ST.hasReadM0MovRelInterpHazard() &&
158  (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
159  checkReadM0Hazards(MI) > 0)
160  return NoopHazard;
161 
162  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) &&
163  checkReadM0Hazards(MI) > 0)
164  return NoopHazard;
165 
166  if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
167  return NoopHazard;
168 
169  if (checkAnyInstHazards(MI) > 0)
170  return NoopHazard;
171 
172  return NoHazard;
173 }
174 
176  return PreEmitNoops(SU->getInstr());
177 }
178 
180  int WaitStates = std::max(0, checkAnyInstHazards(MI));
181 
182  if (SIInstrInfo::isSMRD(*MI))
183  return std::max(WaitStates, checkSMRDHazards(MI));
184 
185  if (SIInstrInfo::isVALU(*MI))
186  WaitStates = std::max(WaitStates, checkVALUHazards(MI));
187 
188  if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
189  WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
190 
191  if (SIInstrInfo::isDPP(*MI))
192  WaitStates = std::max(WaitStates, checkDPPHazards(MI));
193 
194  if (isDivFMas(MI->getOpcode()))
195  WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
196 
197  if (isRWLane(MI->getOpcode()))
198  WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
199 
200  if (MI->isInlineAsm())
201  return std::max(WaitStates, checkInlineAsmHazards(MI));
202 
203  if (isSGetReg(MI->getOpcode()))
204  return std::max(WaitStates, checkGetRegHazards(MI));
205 
206  if (isSSetReg(MI->getOpcode()))
207  return std::max(WaitStates, checkSetRegHazards(MI));
208 
209  if (isRFE(MI->getOpcode()))
210  return std::max(WaitStates, checkRFEHazards(MI));
211 
212  if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
213  isSMovRel(MI->getOpcode())))
214  return std::max(WaitStates, checkReadM0Hazards(MI));
215 
216  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI))
217  return std::max(WaitStates, checkReadM0Hazards(MI));
218 
219  return WaitStates;
220 }
221 
223  EmittedInstrs.push_front(nullptr);
224 }
225 
227  // When the scheduler detects a stall, it will call AdvanceCycle() without
228  // emitting any instructions.
229  if (!CurrCycleInstr)
230  return;
231 
232  // Do not track non-instructions which do not affect the wait states.
233  // If included, these instructions can lead to buffer overflow such that
234  // detectable hazards are missed.
235  if (CurrCycleInstr->getOpcode() == AMDGPU::IMPLICIT_DEF)
236  return;
237  else if (CurrCycleInstr->isDebugInstr())
238  return;
239 
240  unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
241 
242  // Keep track of emitted instructions
243  EmittedInstrs.push_front(CurrCycleInstr);
244 
245  // Add a nullptr for each additional wait state after the first. Make sure
246  // not to add more than getMaxLookAhead() items to the list, since we
247  // truncate the list to that size right after this loop.
248  for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
249  i < e; ++i) {
250  EmittedInstrs.push_front(nullptr);
251  }
252 
253  // getMaxLookahead() is the largest number of wait states we will ever need
254  // to insert, so there is no point in keeping track of more than that many
255  // wait states.
256  EmittedInstrs.resize(getMaxLookAhead());
257 
258  CurrCycleInstr = nullptr;
259 }
260 
262  llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
263 }
264 
265 //===----------------------------------------------------------------------===//
266 // Helper Functions
267 //===----------------------------------------------------------------------===//
268 
269 int GCNHazardRecognizer::getWaitStatesSince(
270  function_ref<bool(MachineInstr *)> IsHazard) {
271  int WaitStates = 0;
272  for (MachineInstr *MI : EmittedInstrs) {
273  if (MI) {
274  if (IsHazard(MI))
275  return WaitStates;
276 
277  unsigned Opcode = MI->getOpcode();
278  if (Opcode == AMDGPU::INLINEASM)
279  continue;
280  }
281  ++WaitStates;
282  }
284 }
285 
286 int GCNHazardRecognizer::getWaitStatesSinceDef(
287  unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
288  const SIRegisterInfo *TRI = ST.getRegisterInfo();
289 
290  auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
291  return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
292  };
293 
294  return getWaitStatesSince(IsHazardFn);
295 }
296 
297 int GCNHazardRecognizer::getWaitStatesSinceSetReg(
298  function_ref<bool(MachineInstr *)> IsHazard) {
299  auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
300  return isSSetReg(MI->getOpcode()) && IsHazard(MI);
301  };
302 
303  return getWaitStatesSince(IsHazardFn);
304 }
305 
306 //===----------------------------------------------------------------------===//
307 // No-op Hazard Detection
308 //===----------------------------------------------------------------------===//
309 
310 static void addRegUnits(const SIRegisterInfo &TRI,
311  BitVector &BV, unsigned Reg) {
312  for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
313  BV.set(*RUI);
314 }
315 
316 static void addRegsToSet(const SIRegisterInfo &TRI,
318  BitVector &Set) {
319  for (const MachineOperand &Op : Ops) {
320  if (Op.isReg())
321  addRegUnits(TRI, Set, Op.getReg());
322  }
323 }
324 
325 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
326  // XXX: Do we need to worry about implicit operands
327  addRegsToSet(TRI, MI.defs(), ClauseDefs);
328  addRegsToSet(TRI, MI.uses(), ClauseUses);
329 }
330 
331 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
332  // SMEM soft clause are only present on VI+, and only matter if xnack is
333  // enabled.
334  if (!ST.isXNACKEnabled())
335  return 0;
336 
337  bool IsSMRD = TII.isSMRD(*MEM);
338 
339  resetClause();
340 
341  // A soft-clause is any group of consecutive SMEM instructions. The
342  // instructions in this group may return out of order and/or may be
343  // replayed (i.e. the same instruction issued more than once).
344  //
345  // In order to handle these situations correctly we need to make sure
346  // that when a clause has more than one instruction, no instruction in the
347  // clause writes to a register that is read another instruction in the clause
348  // (including itself). If we encounter this situaion, we need to break the
349  // clause by inserting a non SMEM instruction.
350 
351  for (MachineInstr *MI : EmittedInstrs) {
352  // When we hit a non-SMEM instruction then we have passed the start of the
353  // clause and we can stop.
354  if (!MI)
355  break;
356 
357  if (IsSMRD != SIInstrInfo::isSMRD(*MI))
358  break;
359 
360  addClauseInst(*MI);
361  }
362 
363  if (ClauseDefs.none())
364  return 0;
365 
366  // We need to make sure not to put loads and stores in the same clause if they
367  // use the same address. For now, just start a new clause whenever we see a
368  // store.
369  if (MEM->mayStore())
370  return 1;
371 
372  addClauseInst(*MEM);
373 
374  // If the set of defs and uses intersect then we cannot add this instruction
375  // to the clause, so we have a hazard.
376  return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
377 }
378 
379 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
380  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
381  int WaitStatesNeeded = 0;
382 
383  WaitStatesNeeded = checkSoftClauseHazards(SMRD);
384 
385  // This SMRD hazard only affects SI.
387  return WaitStatesNeeded;
388 
389  // A read of an SGPR by SMRD instruction requires 4 wait states when the
390  // SGPR was written by a VALU instruction.
391  int SmrdSgprWaitStates = 4;
392  auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
393  auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };
394 
395  bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
396 
397  for (const MachineOperand &Use : SMRD->uses()) {
398  if (!Use.isReg())
399  continue;
400  int WaitStatesNeededForUse =
401  SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
402  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
403 
404  // This fixes what appears to be undocumented hardware behavior in SI where
405  // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
406  // needs some number of nops in between. We don't know how many we need, but
407  // let's use 4. This wasn't discovered before probably because the only
408  // case when this happens is when we expand a 64-bit pointer into a full
409  // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
410  // probably never encountered in the closed-source land.
411  if (IsBufferSMRD) {
412  int WaitStatesNeededForUse =
413  SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
414  IsBufferHazardDefFn);
415  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
416  }
417  }
418 
419  return WaitStatesNeeded;
420 }
421 
422 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
424  return 0;
425 
426  int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
427 
428  // A read of an SGPR by a VMEM instruction requires 5 wait states when the
429  // SGPR was written by a VALU Instruction.
430  const int VmemSgprWaitStates = 5;
431  auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
432 
433  for (const MachineOperand &Use : VMEM->uses()) {
434  if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
435  continue;
436 
437  int WaitStatesNeededForUse =
438  VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
439  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
440  }
441  return WaitStatesNeeded;
442 }
443 
444 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
445  const SIRegisterInfo *TRI = ST.getRegisterInfo();
446  const SIInstrInfo *TII = ST.getInstrInfo();
447 
448  // Check for DPP VGPR read after VALU VGPR write and EXEC write.
449  int DppVgprWaitStates = 2;
450  int DppExecWaitStates = 5;
451  int WaitStatesNeeded = 0;
452  auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
453 
454  for (const MachineOperand &Use : DPP->uses()) {
455  if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
456  continue;
457  int WaitStatesNeededForUse =
458  DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
459  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
460  }
461 
462  WaitStatesNeeded = std::max(
463  WaitStatesNeeded,
464  DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn));
465 
466  return WaitStatesNeeded;
467 }
468 
469 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
470  const SIInstrInfo *TII = ST.getInstrInfo();
471 
472  // v_div_fmas requires 4 wait states after a write to vcc from a VALU
473  // instruction.
474  const int DivFMasWaitStates = 4;
475  auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
476  int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
477 
478  return DivFMasWaitStates - WaitStatesNeeded;
479 }
480 
481 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
482  const SIInstrInfo *TII = ST.getInstrInfo();
483  unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
484 
485  const int GetRegWaitStates = 2;
486  auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
487  return GetRegHWReg == getHWReg(TII, *MI);
488  };
489  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
490 
491  return GetRegWaitStates - WaitStatesNeeded;
492 }
493 
494 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
495  const SIInstrInfo *TII = ST.getInstrInfo();
496  unsigned HWReg = getHWReg(TII, *SetRegInstr);
497 
498  const int SetRegWaitStates =
500  auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
501  return HWReg == getHWReg(TII, *MI);
502  };
503  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
504  return SetRegWaitStates - WaitStatesNeeded;
505 }
506 
507 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
508  if (!MI.mayStore())
509  return -1;
510 
511  const SIInstrInfo *TII = ST.getInstrInfo();
512  unsigned Opcode = MI.getOpcode();
513  const MCInstrDesc &Desc = MI.getDesc();
514 
515  int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
516  int VDataRCID = -1;
517  if (VDataIdx != -1)
518  VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
519 
520  if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
521  // There is no hazard if the instruction does not use vector regs
522  // (like wbinvl1)
523  if (VDataIdx == -1)
524  return -1;
525  // For MUBUF/MTBUF instructions this hazard only exists if the
526  // instruction is not using a register in the soffset field.
527  const MachineOperand *SOffset =
528  TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
529  // If we have no soffset operand, then assume this field has been
530  // hardcoded to zero.
531  if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
532  (!SOffset || !SOffset->isReg()))
533  return VDataIdx;
534  }
535 
536  // MIMG instructions create a hazard if they don't use a 256-bit T# and
537  // the store size is greater than 8 bytes and they have more than two bits
538  // of their dmask set.
539  // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
540  if (TII->isMIMG(MI)) {
541  int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
542  assert(SRsrcIdx != -1 &&
543  AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
544  (void)SRsrcIdx;
545  }
546 
547  if (TII->isFLAT(MI)) {
548  int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
549  if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
550  return DataIdx;
551  }
552 
553  return -1;
554 }
555 
556 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
557  const MachineRegisterInfo &MRI) {
558  // Helper to check for the hazard where VMEM instructions that store more than
559  // 8 bytes can have there store data over written by the next instruction.
560  const SIRegisterInfo *TRI = ST.getRegisterInfo();
561 
562  const int VALUWaitStates = 1;
563  int WaitStatesNeeded = 0;
564 
565  if (!TRI->isVGPR(MRI, Def.getReg()))
566  return WaitStatesNeeded;
567  unsigned Reg = Def.getReg();
568  auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
569  int DataIdx = createsVALUHazard(*MI);
570  return DataIdx >= 0 &&
571  TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
572  };
573  int WaitStatesNeededForDef =
574  VALUWaitStates - getWaitStatesSince(IsHazardFn);
575  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
576 
577  return WaitStatesNeeded;
578 }
579 
580 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
581  // This checks for the hazard where VMEM instructions that store more than
582  // 8 bytes can have there store data over written by the next instruction.
583  if (!ST.has12DWordStoreHazard())
584  return 0;
585 
586  const MachineRegisterInfo &MRI = MF.getRegInfo();
587  int WaitStatesNeeded = 0;
588 
589  for (const MachineOperand &Def : VALU->defs()) {
590  WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
591  }
592 
593  return WaitStatesNeeded;
594 }
595 
596 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
597  // This checks for hazards associated with inline asm statements.
598  // Since inline asms can contain just about anything, we use this
599  // to call/leverage other check*Hazard routines. Note that
600  // this function doesn't attempt to address all possible inline asm
601  // hazards (good luck), but is a collection of what has been
602  // problematic thus far.
603 
604  // see checkVALUHazards()
605  if (!ST.has12DWordStoreHazard())
606  return 0;
607 
608  const MachineRegisterInfo &MRI = MF.getRegInfo();
609  int WaitStatesNeeded = 0;
610 
611  for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
612  I != E; ++I) {
613  const MachineOperand &Op = IA->getOperand(I);
614  if (Op.isReg() && Op.isDef()) {
615  WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
616  }
617  }
618 
619  return WaitStatesNeeded;
620 }
621 
622 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
623  const SIInstrInfo *TII = ST.getInstrInfo();
624  const SIRegisterInfo *TRI = ST.getRegisterInfo();
625  const MachineRegisterInfo &MRI = MF.getRegInfo();
626 
627  const MachineOperand *LaneSelectOp =
628  TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
629 
630  if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
631  return 0;
632 
633  unsigned LaneSelectReg = LaneSelectOp->getReg();
634  auto IsHazardFn = [TII] (MachineInstr *MI) {
635  return TII->isVALU(*MI);
636  };
637 
638  const int RWLaneWaitStates = 4;
639  int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
640  return RWLaneWaitStates - WaitStatesSince;
641 }
642 
643 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
645  return 0;
646 
647  const SIInstrInfo *TII = ST.getInstrInfo();
648 
649  const int RFEWaitStates = 1;
650 
651  auto IsHazardFn = [TII] (MachineInstr *MI) {
652  return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
653  };
654  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
655  return RFEWaitStates - WaitStatesNeeded;
656 }
657 
658 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
659  if (MI->isDebugInstr())
660  return 0;
661 
662  const SIRegisterInfo *TRI = ST.getRegisterInfo();
663  if (!ST.hasSMovFedHazard())
664  return 0;
665 
666  // Check for any instruction reading an SGPR after a write from
667  // s_mov_fed_b32.
668  int MovFedWaitStates = 1;
669  int WaitStatesNeeded = 0;
670 
671  for (const MachineOperand &Use : MI->uses()) {
672  if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
673  continue;
674  auto IsHazardFn = [] (MachineInstr *MI) {
675  return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
676  };
677  int WaitStatesNeededForUse =
678  MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn);
679  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
680  }
681 
682  return WaitStatesNeeded;
683 }
684 
685 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
686  const SIInstrInfo *TII = ST.getInstrInfo();
687  const int SMovRelWaitStates = 1;
688  auto IsHazardFn = [TII] (MachineInstr *MI) {
689  return TII->isSALU(*MI);
690  };
691  return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn);
692 }
static bool isSMovRel(unsigned Opcode)
BitVector & set()
Definition: BitVector.h:398
Interface definition for SIRegisterInfo.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
AMDGPU specific subclass of TargetSubtarget.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
iterator_range< mop_iterator > uses()
Returns a range that includes all operands that are register uses.
Definition: MachineInstr.h:492
bool hasReadM0MovRelInterpHazard() const
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
unsigned getReg() const
getReg - Returns the register number.
static bool isVINTRP(const MachineInstr &MI)
Definition: SIInstrInfo.h:543
unsigned Reg
bool isInlineAsm() const
unsigned getRegBitWidth(unsigned RCID)
Get the size in bits of a register from the register class RC.
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:117
static bool isRFE(unsigned Opcode)
const SIInstrInfo * getInstrInfo() const override
static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, unsigned Reg)
unsigned const TargetRegisterInfo * TRI
static bool isSMRD(const MachineInstr &MI)
Definition: SIInstrInfo.h:435
LLVM_READONLY int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
void EmitNoop() override
EmitNoop - This callback is invoked when a noop was added to the instruction stream.
static bool isDS(const MachineInstr &MI)
Definition: SIInstrInfo.h:445
static bool isFLAT(const MachineInstr &MI)
Definition: SIInstrInfo.h:471
const HexagonInstrInfo * TII
bool isAlwaysGDS(uint16_t Opcode) const
bool isSGPRReg(const MachineRegisterInfo &MRI, unsigned Reg) const
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:412
static bool isMIMG(const MachineInstr &MI)
Definition: SIInstrInfo.h:455
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
bool hasSMovFedHazard() const
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
static bool isVALU(const MachineInstr &MI)
Definition: SIInstrInfo.h:323
INLINEASM - Represents an inline asm block.
Definition: ISDOpcodes.h:667
bool isVGPR(const MachineRegisterInfo &MRI, unsigned Reg) const
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:406
static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, const MachineInstr &MI)
static bool isMUBUF(const MachineInstr &MI)
Definition: SIInstrInfo.h:419
static bool isSSetReg(unsigned Opcode)
LLVM_READONLY MachineOperand * getNamedOperand(MachineInstr &MI, unsigned OperandName) const
Returns the operand named Op.
unsigned PreEmitNoops(SUnit *SU) override
PreEmitNoops - This callback is invoked prior to emitting an instruction.
void RecedeCycle() override
RecedeCycle - This callback is invoked whenever the next bottom-up instruction to be scheduled cannot...
void EmitInstruction(SUnit *SU) override
EmitInstruction - This callback is invoked when an instruction is emitted, to advance the hazard stat...
unsigned MaxLookAhead
MaxLookAhead - Indicate the number of cycles in the scoreboard state.
static bool isDPP(const MachineInstr &MI)
Definition: SIInstrInfo.h:527
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
Definition: MachineInstr.h:820
static void addRegsToSet(const SIRegisterInfo &TRI, iterator_range< MachineInstr::const_mop_iterator > Ops, BitVector &Set)
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
Definition: ScheduleDAG.h:377
unsigned const MachineRegisterInfo * MRI
bool anyCommon(const BitVector &RHS) const
Test if any common bits are set.
Definition: BitVector.h:524
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
iterator_range< mop_iterator > defs()
Returns a range over all explicit operands that are register definitions.
Definition: MachineInstr.h:481
Generation getGeneration() const
bool isDebugInstr() const
Definition: MachineInstr.h:999
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned getNumWaitStates(const MachineInstr &MI) const
Return the number of wait states that result from executing this instruction.
static bool isSALU(const MachineInstr &MI)
Definition: SIInstrInfo.h:315
HazardType getHazardType(SUnit *SU, int Stalls) override
getHazardType - Return the hazard type of emitting this node.
MachineOperand class - Representation of each machine instruction operand.
GCNHazardRecognizer(const MachineFunction &MF)
int64_t getImm() const
A range adaptor for a pair of iterators.
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
void AdvanceCycle() override
AdvanceCycle - This callback is invoked whenever the next top-down instruction to be scheduled cannot...
static bool isRWLane(unsigned Opcode)
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
bool none() const
none - Returns true if none of the bits are set.
Definition: BitVector.h:202
Provides AMDGPU specific target descriptions.
Representation of each machine instruction.
Definition: MachineInstr.h:64
Interface definition for SIInstrInfo.
static bool isMTBUF(const MachineInstr &MI)
Definition: SIInstrInfo.h:427
bool has12DWordStoreHazard() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
int16_t RegClass
This specifies the register class enumeration of the operand if the operand is a register.
Definition: MCInstrDesc.h:73
bool isXNACKEnabled() const
#define I(x, y, z)
Definition: MD5.cpp:58
static bool isVMEM(const MachineInstr &MI)
Definition: SIInstrInfo.h:331
bool isReg() const
isReg - Tests if this is a MO_Register operand.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isSGetReg(unsigned Opcode)
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:175
IRTranslator LLVM IR MI
static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr)
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
bool hasReadM0SendMsgHazard() const
bool isBufferSMRD(const MachineInstr &MI) const
Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:246
const SIRegisterInfo * getRegisterInfo() const override
static bool isDivFMas(unsigned Opcode)