LLVM  8.0.1
X86FloatingPoint.cpp
Go to the documentation of this file.
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "X86.h"
27 #include "X86InstrInfo.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
39 #include "llvm/CodeGen/Passes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/Support/Debug.h"
48 #include <algorithm>
49 #include <bitset>
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-codegen"
53 
54 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
55 STATISTIC(NumFP , "Number of floating point instructions");
56 
57 namespace {
58  const unsigned ScratchFPReg = 7;
59 
60  struct FPS : public MachineFunctionPass {
61  static char ID;
62  FPS() : MachineFunctionPass(ID) {
64  // This is really only to keep valgrind quiet.
65  // The logic in isLive() is too much for it.
66  memset(Stack, 0, sizeof(Stack));
67  memset(RegMap, 0, sizeof(RegMap));
68  }
69 
70  void getAnalysisUsage(AnalysisUsage &AU) const override {
71  AU.setPreservesCFG();
76  }
77 
78  bool runOnMachineFunction(MachineFunction &MF) override;
79 
80  MachineFunctionProperties getRequiredProperties() const override {
83  }
84 
85  StringRef getPassName() const override { return "X86 FP Stackifier"; }
86 
87  private:
88  const TargetInstrInfo *TII; // Machine instruction info.
89 
90  // Two CFG edges are related if they leave the same block, or enter the same
91  // block. The transitive closure of an edge under this relation is a
92  // LiveBundle. It represents a set of CFG edges where the live FP stack
93  // registers must be allocated identically in the x87 stack.
94  //
95  // A LiveBundle is usually all the edges leaving a block, or all the edges
96  // entering a block, but it can contain more edges if critical edges are
97  // present.
98  //
99  // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
100  // but the exact mapping of FP registers to stack slots is fixed later.
101  struct LiveBundle {
102  // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
103  unsigned Mask;
104 
105  // Number of pre-assigned live registers in FixStack. This is 0 when the
106  // stack order has not yet been fixed.
107  unsigned FixCount;
108 
109  // Assigned stack order for live-in registers.
110  // FixStack[i] == getStackEntry(i) for all i < FixCount.
111  unsigned char FixStack[8];
112 
113  LiveBundle() : Mask(0), FixCount(0) {}
114 
115  // Have the live registers been assigned a stack order yet?
116  bool isFixed() const { return !Mask || FixCount; }
117  };
118 
119  // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
120  // with no live FP registers.
121  SmallVector<LiveBundle, 8> LiveBundles;
122 
123  // The edge bundle analysis provides indices into the LiveBundles vector.
124  EdgeBundles *Bundles;
125 
126  // Return a bitmask of FP registers in block's live-in list.
127  static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
128  unsigned Mask = 0;
130  I != MBB->livein_end(); ) {
131  MCPhysReg Reg = I->PhysReg;
132  static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
133  if (Reg >= X86::FP0 && Reg <= X86::FP6) {
134  Mask |= 1 << (Reg - X86::FP0);
135  if (RemoveFPs) {
136  I = MBB->removeLiveIn(I);
137  continue;
138  }
139  }
140  ++I;
141  }
142  return Mask;
143  }
144 
145  // Partition all the CFG edges into LiveBundles.
146  void bundleCFGRecomputeKillFlags(MachineFunction &MF);
147 
148  MachineBasicBlock *MBB; // Current basic block
149 
150  // The hardware keeps track of how many FP registers are live, so we have
151  // to model that exactly. Usually, each live register corresponds to an
152  // FP<n> register, but when dealing with calls, returns, and inline
153  // assembly, it is sometimes necessary to have live scratch registers.
154  unsigned Stack[8]; // FP<n> Registers in each stack slot...
155  unsigned StackTop; // The current top of the FP stack.
156 
157  enum {
158  NumFPRegs = 8 // Including scratch pseudo-registers.
159  };
160 
161  // For each live FP<n> register, point to its Stack[] entry.
162  // The first entries correspond to FP0-FP6, the rest are scratch registers
163  // used when we need slightly different live registers than what the
164  // register allocator thinks.
165  unsigned RegMap[NumFPRegs];
166 
167  // Set up our stack model to match the incoming registers to MBB.
168  void setupBlockStack();
169 
170  // Shuffle live registers to match the expectations of successor blocks.
171  void finishBlockStack();
172 
173 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
174  void dumpStack() const {
175  dbgs() << "Stack contents:";
176  for (unsigned i = 0; i != StackTop; ++i) {
177  dbgs() << " FP" << Stack[i];
178  assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
179  }
180  }
181 #endif
182 
183  /// getSlot - Return the stack slot number a particular register number is
184  /// in.
185  unsigned getSlot(unsigned RegNo) const {
186  assert(RegNo < NumFPRegs && "Regno out of range!");
187  return RegMap[RegNo];
188  }
189 
190  /// isLive - Is RegNo currently live in the stack?
191  bool isLive(unsigned RegNo) const {
192  unsigned Slot = getSlot(RegNo);
193  return Slot < StackTop && Stack[Slot] == RegNo;
194  }
195 
196  /// getStackEntry - Return the X86::FP<n> register in register ST(i).
197  unsigned getStackEntry(unsigned STi) const {
198  if (STi >= StackTop)
199  report_fatal_error("Access past stack top!");
200  return Stack[StackTop-1-STi];
201  }
202 
203  /// getSTReg - Return the X86::ST(i) register which contains the specified
204  /// FP<RegNo> register.
205  unsigned getSTReg(unsigned RegNo) const {
206  return StackTop - 1 - getSlot(RegNo) + X86::ST0;
207  }
208 
209  // pushReg - Push the specified FP<n> register onto the stack.
210  void pushReg(unsigned Reg) {
211  assert(Reg < NumFPRegs && "Register number out of range!");
212  if (StackTop >= 8)
213  report_fatal_error("Stack overflow!");
214  Stack[StackTop] = Reg;
215  RegMap[Reg] = StackTop++;
216  }
217 
218  // popReg - Pop a register from the stack.
219  void popReg() {
220  if (StackTop == 0)
221  report_fatal_error("Cannot pop empty stack!");
222  RegMap[Stack[--StackTop]] = ~0; // Update state
223  }
224 
225  bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
226  void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
227  DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
228  if (isAtTop(RegNo)) return;
229 
230  unsigned STReg = getSTReg(RegNo);
231  unsigned RegOnTop = getStackEntry(0);
232 
233  // Swap the slots the regs are in.
234  std::swap(RegMap[RegNo], RegMap[RegOnTop]);
235 
236  // Swap stack slot contents.
237  if (RegMap[RegOnTop] >= StackTop)
238  report_fatal_error("Access past stack top!");
239  std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
240 
241  // Emit an fxch to update the runtime processors version of the state.
242  BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
243  ++NumFXCH;
244  }
245 
246  void duplicateToTop(unsigned RegNo, unsigned AsReg,
248  DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
249  unsigned STReg = getSTReg(RegNo);
250  pushReg(AsReg); // New register on top of stack
251 
252  BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
253  }
254 
255  /// popStackAfter - Pop the current value off of the top of the FP stack
256  /// after the specified instruction.
257  void popStackAfter(MachineBasicBlock::iterator &I);
258 
259  /// freeStackSlotAfter - Free the specified register from the register
260  /// stack, so that it is no longer in a register. If the register is
261  /// currently at the top of the stack, we just pop the current instruction,
262  /// otherwise we store the current top-of-stack into the specified slot,
263  /// then pop the top of stack.
264  void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
265 
266  /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
267  /// instruction.
269  freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
270 
271  /// Adjust the live registers to be the set in Mask.
272  void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
273 
274  /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
275  /// st(0), FP reg FixStack[1] is st(1) etc.
276  void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
278 
279  bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
280 
281  void handleCall(MachineBasicBlock::iterator &I);
282  void handleReturn(MachineBasicBlock::iterator &I);
283  void handleZeroArgFP(MachineBasicBlock::iterator &I);
284  void handleOneArgFP(MachineBasicBlock::iterator &I);
285  void handleOneArgFPRW(MachineBasicBlock::iterator &I);
286  void handleTwoArgFP(MachineBasicBlock::iterator &I);
287  void handleCompareFP(MachineBasicBlock::iterator &I);
288  void handleCondMovFP(MachineBasicBlock::iterator &I);
289  void handleSpecialFP(MachineBasicBlock::iterator &I);
290 
291  // Check if a COPY instruction is using FP registers.
292  static bool isFPCopy(MachineInstr &MI) {
293  unsigned DstReg = MI.getOperand(0).getReg();
294  unsigned SrcReg = MI.getOperand(1).getReg();
295 
296  return X86::RFP80RegClass.contains(DstReg) ||
297  X86::RFP80RegClass.contains(SrcReg);
298  }
299 
300  void setKillFlags(MachineBasicBlock &MBB) const;
301  };
302  char FPS::ID = 0;
303 }
304 
306 
307 /// getFPReg - Return the X86::FPx register number for the specified operand.
308 /// For example, this returns 3 for X86::FP3.
309 static unsigned getFPReg(const MachineOperand &MO) {
310  assert(MO.isReg() && "Expected an FP register!");
311  unsigned Reg = MO.getReg();
312  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
313  return Reg - X86::FP0;
314 }
315 
316 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
317 /// register references into FP stack references.
318 ///
319 bool FPS::runOnMachineFunction(MachineFunction &MF) {
320  // We only need to run this pass if there are any FP registers used in this
321  // function. If it is all integer, there is nothing for us to do!
322  bool FPIsUsed = false;
323 
324  static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
325  const MachineRegisterInfo &MRI = MF.getRegInfo();
326  for (unsigned i = 0; i <= 6; ++i)
327  if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
328  FPIsUsed = true;
329  break;
330  }
331 
332  // Early exit.
333  if (!FPIsUsed) return false;
334 
335  Bundles = &getAnalysis<EdgeBundles>();
336  TII = MF.getSubtarget().getInstrInfo();
337 
338  // Prepare cross-MBB liveness.
339  bundleCFGRecomputeKillFlags(MF);
340 
341  StackTop = 0;
342 
343  // Process the function in depth first order so that we process at least one
344  // of the predecessors for every reachable block in the function.
346  MachineBasicBlock *Entry = &MF.front();
347 
348  LiveBundle &Bundle =
349  LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
350 
351  // In regcall convention, some FP registers may not be passed through
352  // the stack, so they will need to be assigned to the stack first
353  if ((Entry->getParent()->getFunction().getCallingConv() ==
354  CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
355  // In the register calling convention, up to one FP argument could be
356  // saved in the first FP register.
357  // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
358  // that the FP registers contain arguments.
359  // The actual value is passed in FP0.
360  // Here we fix the stack and mark FP0 as pre-assigned register.
361  assert((Bundle.Mask & 0xFE) == 0 &&
362  "Only FP0 could be passed as an argument");
363  Bundle.FixCount = 1;
364  Bundle.FixStack[0] = 0;
365  }
366 
367  bool Changed = false;
368  for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
369  Changed |= processBasicBlock(MF, *BB);
370 
371  // Process any unreachable blocks in arbitrary order now.
372  if (MF.size() != Processed.size())
373  for (MachineBasicBlock &BB : MF)
374  if (Processed.insert(&BB).second)
375  Changed |= processBasicBlock(MF, BB);
376 
377  LiveBundles.clear();
378 
379  return Changed;
380 }
381 
382 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
383 /// live-out sets for the FP registers. Consistent means that the set of
384 /// registers live-out from a block is identical to the live-in set of all
385 /// successors. This is not enforced by the normal live-in lists since
386 /// registers may be implicitly defined, or not used by all successors.
387 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
388  assert(LiveBundles.empty() && "Stale data in LiveBundles");
389  LiveBundles.resize(Bundles->getNumBundles());
390 
391  // Gather the actual live-in masks for all MBBs.
392  for (MachineBasicBlock &MBB : MF) {
393  setKillFlags(MBB);
394 
395  const unsigned Mask = calcLiveInMask(&MBB, false);
396  if (!Mask)
397  continue;
398  // Update MBB ingoing bundle mask.
399  LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
400  }
401 }
402 
403 /// processBasicBlock - Loop over all of the instructions in the basic block,
404 /// transforming FP instructions into their stack form.
405 ///
406 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
407  bool Changed = false;
408  MBB = &BB;
409 
410  setupBlockStack();
411 
412  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
413  MachineInstr &MI = *I;
414  uint64_t Flags = MI.getDesc().TSFlags;
415 
416  unsigned FPInstClass = Flags & X86II::FPTypeMask;
417  if (MI.isInlineAsm())
418  FPInstClass = X86II::SpecialFP;
419 
420  if (MI.isCopy() && isFPCopy(MI))
421  FPInstClass = X86II::SpecialFP;
422 
423  if (MI.isImplicitDef() &&
424  X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
425  FPInstClass = X86II::SpecialFP;
426 
427  if (MI.isCall())
428  FPInstClass = X86II::SpecialFP;
429 
430  if (FPInstClass == X86II::NotFP)
431  continue; // Efficiently ignore non-fp insts!
432 
433  MachineInstr *PrevMI = nullptr;
434  if (I != BB.begin())
435  PrevMI = &*std::prev(I);
436 
437  ++NumFP; // Keep track of # of pseudo instrs
438  LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
439 
440  // Get dead variables list now because the MI pointer may be deleted as part
441  // of processing!
442  SmallVector<unsigned, 8> DeadRegs;
443  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
444  const MachineOperand &MO = MI.getOperand(i);
445  if (MO.isReg() && MO.isDead())
446  DeadRegs.push_back(MO.getReg());
447  }
448 
449  switch (FPInstClass) {
450  case X86II::ZeroArgFP: handleZeroArgFP(I); break;
451  case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
452  case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
453  case X86II::TwoArgFP: handleTwoArgFP(I); break;
454  case X86II::CompareFP: handleCompareFP(I); break;
455  case X86II::CondMovFP: handleCondMovFP(I); break;
456  case X86II::SpecialFP: handleSpecialFP(I); break;
457  default: llvm_unreachable("Unknown FP Type!");
458  }
459 
460  // Check to see if any of the values defined by this instruction are dead
461  // after definition. If so, pop them.
462  for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
463  unsigned Reg = DeadRegs[i];
464  // Check if Reg is live on the stack. An inline-asm register operand that
465  // is in the clobber list and marked dead might not be live on the stack.
466  static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
467  if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
468  LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
469  freeStackSlotAfter(I, Reg-X86::FP0);
470  }
471  }
472 
473  // Print out all of the instructions expanded to if -debug
474  LLVM_DEBUG({
475  MachineBasicBlock::iterator PrevI = PrevMI;
476  if (I == PrevI) {
477  dbgs() << "Just deleted pseudo instruction\n";
478  } else {
480  // Rewind to first instruction newly inserted.
481  while (Start != BB.begin() && std::prev(Start) != PrevI)
482  --Start;
483  dbgs() << "Inserted instructions:\n\t";
484  Start->print(dbgs());
485  while (++Start != std::next(I)) {
486  }
487  }
488  dumpStack();
489  });
490  (void)PrevMI;
491 
492  Changed = true;
493  }
494 
495  finishBlockStack();
496 
497  return Changed;
498 }
499 
500 /// setupBlockStack - Use the live bundles to set up our model of the stack
501 /// to match predecessors' live out stack.
502 void FPS::setupBlockStack() {
503  LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
504  << " derived from " << MBB->getName() << ".\n");
505  StackTop = 0;
506  // Get the live-in bundle for MBB.
507  const LiveBundle &Bundle =
508  LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
509 
510  if (!Bundle.Mask) {
511  LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
512  return;
513  }
514 
515  // Depth-first iteration should ensure that we always have an assigned stack.
516  assert(Bundle.isFixed() && "Reached block before any predecessors");
517 
518  // Push the fixed live-in registers.
519  for (unsigned i = Bundle.FixCount; i > 0; --i) {
520  LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
521  << unsigned(Bundle.FixStack[i - 1]) << '\n');
522  pushReg(Bundle.FixStack[i-1]);
523  }
524 
525  // Kill off unwanted live-ins. This can happen with a critical edge.
526  // FIXME: We could keep these live registers around as zombies. They may need
527  // to be revived at the end of a short block. It might save a few instrs.
528  unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
529  adjustLiveRegs(Mask, MBB->begin());
530  LLVM_DEBUG(MBB->dump());
531 }
532 
533 /// finishBlockStack - Revive live-outs that are implicitly defined out of
534 /// MBB. Shuffle live registers to match the expected fixed stack of any
535 /// predecessors, and ensure that all predecessors are expecting the same
536 /// stack.
537 void FPS::finishBlockStack() {
538  // The RET handling below takes care of return blocks for us.
539  if (MBB->succ_empty())
540  return;
541 
542  LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
543  << " derived from " << MBB->getName() << ".\n");
544 
545  // Get MBB's live-out bundle.
546  unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
547  LiveBundle &Bundle = LiveBundles[BundleIdx];
548 
549  // We may need to kill and define some registers to match successors.
550  // FIXME: This can probably be combined with the shuffle below.
552  adjustLiveRegs(Bundle.Mask, Term);
553 
554  if (!Bundle.Mask) {
555  LLVM_DEBUG(dbgs() << "No live-outs.\n");
556  return;
557  }
558 
559  // Has the stack order been fixed yet?
560  LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
561  if (Bundle.isFixed()) {
562  LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
563  shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
564  } else {
565  // Not fixed yet, we get to choose.
566  LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
567  Bundle.FixCount = StackTop;
568  for (unsigned i = 0; i < StackTop; ++i)
569  Bundle.FixStack[i] = getStackEntry(i);
570  }
571 }
572 
573 
574 //===----------------------------------------------------------------------===//
575 // Efficient Lookup Table Support
576 //===----------------------------------------------------------------------===//
577 
578 namespace {
579  struct TableEntry {
580  uint16_t from;
581  uint16_t to;
582  bool operator<(const TableEntry &TE) const { return from < TE.from; }
583  friend bool operator<(const TableEntry &TE, unsigned V) {
584  return TE.from < V;
585  }
586  friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
587  const TableEntry &TE) {
588  return V < TE.from;
589  }
590  };
591 }
592 
593 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
594  const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
595  if (I != Table.end() && I->from == Opcode)
596  return I->to;
597  return -1;
598 }
599 
600 #ifdef NDEBUG
601 #define ASSERT_SORTED(TABLE)
602 #else
603 #define ASSERT_SORTED(TABLE) \
604  { \
605  static std::atomic<bool> TABLE##Checked(false); \
606  if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
607  assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \
608  "All lookup tables must be sorted for efficient access!"); \
609  TABLE##Checked.store(true, std::memory_order_relaxed); \
610  } \
611  }
612 #endif
613 
614 //===----------------------------------------------------------------------===//
615 // Register File -> Register Stack Mapping Methods
616 //===----------------------------------------------------------------------===//
617 
618 // OpcodeTable - Sorted map of register instructions to their stack version.
619 // The first element is an register file pseudo instruction, the second is the
620 // concrete X86 instruction which uses the register stack.
621 //
622 static const TableEntry OpcodeTable[] = {
623  { X86::ABS_Fp32 , X86::ABS_F },
624  { X86::ABS_Fp64 , X86::ABS_F },
625  { X86::ABS_Fp80 , X86::ABS_F },
626  { X86::ADD_Fp32m , X86::ADD_F32m },
627  { X86::ADD_Fp64m , X86::ADD_F64m },
628  { X86::ADD_Fp64m32 , X86::ADD_F32m },
629  { X86::ADD_Fp80m32 , X86::ADD_F32m },
630  { X86::ADD_Fp80m64 , X86::ADD_F64m },
631  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
632  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
633  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
634  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
635  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
636  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
637  { X86::CHS_Fp32 , X86::CHS_F },
638  { X86::CHS_Fp64 , X86::CHS_F },
639  { X86::CHS_Fp80 , X86::CHS_F },
640  { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
641  { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
642  { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
643  { X86::CMOVB_Fp32 , X86::CMOVB_F },
644  { X86::CMOVB_Fp64 , X86::CMOVB_F },
645  { X86::CMOVB_Fp80 , X86::CMOVB_F },
646  { X86::CMOVE_Fp32 , X86::CMOVE_F },
647  { X86::CMOVE_Fp64 , X86::CMOVE_F },
648  { X86::CMOVE_Fp80 , X86::CMOVE_F },
649  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
650  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
651  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
652  { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
653  { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
654  { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
655  { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
656  { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
657  { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
658  { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
659  { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
660  { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
661  { X86::CMOVP_Fp32 , X86::CMOVP_F },
662  { X86::CMOVP_Fp64 , X86::CMOVP_F },
663  { X86::CMOVP_Fp80 , X86::CMOVP_F },
664  { X86::COS_Fp32 , X86::COS_F },
665  { X86::COS_Fp64 , X86::COS_F },
666  { X86::COS_Fp80 , X86::COS_F },
667  { X86::DIVR_Fp32m , X86::DIVR_F32m },
668  { X86::DIVR_Fp64m , X86::DIVR_F64m },
669  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
670  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
671  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
672  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
673  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
674  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
675  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
676  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
677  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
678  { X86::DIV_Fp32m , X86::DIV_F32m },
679  { X86::DIV_Fp64m , X86::DIV_F64m },
680  { X86::DIV_Fp64m32 , X86::DIV_F32m },
681  { X86::DIV_Fp80m32 , X86::DIV_F32m },
682  { X86::DIV_Fp80m64 , X86::DIV_F64m },
683  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
684  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
685  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
686  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
687  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
688  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
689  { X86::ILD_Fp16m32 , X86::ILD_F16m },
690  { X86::ILD_Fp16m64 , X86::ILD_F16m },
691  { X86::ILD_Fp16m80 , X86::ILD_F16m },
692  { X86::ILD_Fp32m32 , X86::ILD_F32m },
693  { X86::ILD_Fp32m64 , X86::ILD_F32m },
694  { X86::ILD_Fp32m80 , X86::ILD_F32m },
695  { X86::ILD_Fp64m32 , X86::ILD_F64m },
696  { X86::ILD_Fp64m64 , X86::ILD_F64m },
697  { X86::ILD_Fp64m80 , X86::ILD_F64m },
698  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
699  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
700  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
701  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
702  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
703  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
704  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
705  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
706  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
707  { X86::IST_Fp16m32 , X86::IST_F16m },
708  { X86::IST_Fp16m64 , X86::IST_F16m },
709  { X86::IST_Fp16m80 , X86::IST_F16m },
710  { X86::IST_Fp32m32 , X86::IST_F32m },
711  { X86::IST_Fp32m64 , X86::IST_F32m },
712  { X86::IST_Fp32m80 , X86::IST_F32m },
713  { X86::IST_Fp64m32 , X86::IST_FP64m },
714  { X86::IST_Fp64m64 , X86::IST_FP64m },
715  { X86::IST_Fp64m80 , X86::IST_FP64m },
716  { X86::LD_Fp032 , X86::LD_F0 },
717  { X86::LD_Fp064 , X86::LD_F0 },
718  { X86::LD_Fp080 , X86::LD_F0 },
719  { X86::LD_Fp132 , X86::LD_F1 },
720  { X86::LD_Fp164 , X86::LD_F1 },
721  { X86::LD_Fp180 , X86::LD_F1 },
722  { X86::LD_Fp32m , X86::LD_F32m },
723  { X86::LD_Fp32m64 , X86::LD_F32m },
724  { X86::LD_Fp32m80 , X86::LD_F32m },
725  { X86::LD_Fp64m , X86::LD_F64m },
726  { X86::LD_Fp64m80 , X86::LD_F64m },
727  { X86::LD_Fp80m , X86::LD_F80m },
728  { X86::MUL_Fp32m , X86::MUL_F32m },
729  { X86::MUL_Fp64m , X86::MUL_F64m },
730  { X86::MUL_Fp64m32 , X86::MUL_F32m },
731  { X86::MUL_Fp80m32 , X86::MUL_F32m },
732  { X86::MUL_Fp80m64 , X86::MUL_F64m },
733  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
734  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
735  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
736  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
737  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
738  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
739  { X86::SIN_Fp32 , X86::SIN_F },
740  { X86::SIN_Fp64 , X86::SIN_F },
741  { X86::SIN_Fp80 , X86::SIN_F },
742  { X86::SQRT_Fp32 , X86::SQRT_F },
743  { X86::SQRT_Fp64 , X86::SQRT_F },
744  { X86::SQRT_Fp80 , X86::SQRT_F },
745  { X86::ST_Fp32m , X86::ST_F32m },
746  { X86::ST_Fp64m , X86::ST_F64m },
747  { X86::ST_Fp64m32 , X86::ST_F32m },
748  { X86::ST_Fp80m32 , X86::ST_F32m },
749  { X86::ST_Fp80m64 , X86::ST_F64m },
750  { X86::ST_FpP80m , X86::ST_FP80m },
751  { X86::SUBR_Fp32m , X86::SUBR_F32m },
752  { X86::SUBR_Fp64m , X86::SUBR_F64m },
753  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
754  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
755  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
756  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
757  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
758  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
759  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
760  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
761  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
762  { X86::SUB_Fp32m , X86::SUB_F32m },
763  { X86::SUB_Fp64m , X86::SUB_F64m },
764  { X86::SUB_Fp64m32 , X86::SUB_F32m },
765  { X86::SUB_Fp80m32 , X86::SUB_F32m },
766  { X86::SUB_Fp80m64 , X86::SUB_F64m },
767  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
768  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
769  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
770  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
771  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
772  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
773  { X86::TST_Fp32 , X86::TST_F },
774  { X86::TST_Fp64 , X86::TST_F },
775  { X86::TST_Fp80 , X86::TST_F },
776  { X86::UCOM_FpIr32 , X86::UCOM_FIr },
777  { X86::UCOM_FpIr64 , X86::UCOM_FIr },
778  { X86::UCOM_FpIr80 , X86::UCOM_FIr },
779  { X86::UCOM_Fpr32 , X86::UCOM_Fr },
780  { X86::UCOM_Fpr64 , X86::UCOM_Fr },
781  { X86::UCOM_Fpr80 , X86::UCOM_Fr },
782 };
783 
784 static unsigned getConcreteOpcode(unsigned Opcode) {
785  ASSERT_SORTED(OpcodeTable);
786  int Opc = Lookup(OpcodeTable, Opcode);
787  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
788  return Opc;
789 }
790 
791 //===----------------------------------------------------------------------===//
792 // Helper Methods
793 //===----------------------------------------------------------------------===//
794 
795 // PopTable - Sorted map of instructions to their popping version. The first
796 // element is an instruction, the second is the version which pops.
797 //
798 static const TableEntry PopTable[] = {
799  { X86::ADD_FrST0 , X86::ADD_FPrST0 },
800 
801  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
802  { X86::DIV_FrST0 , X86::DIV_FPrST0 },
803 
804  { X86::IST_F16m , X86::IST_FP16m },
805  { X86::IST_F32m , X86::IST_FP32m },
806 
807  { X86::MUL_FrST0 , X86::MUL_FPrST0 },
808 
809  { X86::ST_F32m , X86::ST_FP32m },
810  { X86::ST_F64m , X86::ST_FP64m },
811  { X86::ST_Frr , X86::ST_FPrr },
812 
813  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
814  { X86::SUB_FrST0 , X86::SUB_FPrST0 },
815 
816  { X86::UCOM_FIr , X86::UCOM_FIPr },
817 
818  { X86::UCOM_FPr , X86::UCOM_FPPr },
819  { X86::UCOM_Fr , X86::UCOM_FPr },
820 };
821 
822 /// popStackAfter - Pop the current value off of the top of the FP stack after
823 /// the specified instruction. This attempts to be sneaky and combine the pop
824 /// into the instruction itself if possible. The iterator is left pointing to
825 /// the last instruction, be it a new pop instruction inserted, or the old
826 /// instruction if it was modified in place.
827 ///
828 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
829  MachineInstr &MI = *I;
830  const DebugLoc &dl = MI.getDebugLoc();
831  ASSERT_SORTED(PopTable);
832 
833  popReg();
834 
835  // Check to see if there is a popping version of this instruction...
836  int Opcode = Lookup(PopTable, I->getOpcode());
837  if (Opcode != -1) {
838  I->setDesc(TII->get(Opcode));
839  if (Opcode == X86::UCOM_FPPr)
840  I->RemoveOperand(0);
841  } else { // Insert an explicit pop
842  I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
843  }
844 }
845 
846 /// freeStackSlotAfter - Free the specified register from the register stack, so
847 /// that it is no longer in a register. If the register is currently at the top
848 /// of the stack, we just pop the current instruction, otherwise we store the
849 /// current top-of-stack into the specified slot, then pop the top of stack.
850 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851  if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
852  popStackAfter(I);
853  return;
854  }
855 
856  // Otherwise, store the top of stack into the dead slot, killing the operand
857  // without having to add in an explicit xchg then pop.
858  //
859  I = freeStackSlotBefore(++I, FPRegNo);
860 }
861 
862 /// freeStackSlotBefore - Free the specified register without trying any
863 /// folding.
865 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
866  unsigned STReg = getSTReg(FPRegNo);
867  unsigned OldSlot = getSlot(FPRegNo);
868  unsigned TopReg = Stack[StackTop-1];
869  Stack[OldSlot] = TopReg;
870  RegMap[TopReg] = OldSlot;
871  RegMap[FPRegNo] = ~0;
872  Stack[--StackTop] = ~0;
873  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
874  .addReg(STReg)
875  .getInstr();
876 }
877 
878 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
879 /// registers with a bit in Mask are live.
880 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
881  unsigned Defs = Mask;
882  unsigned Kills = 0;
883  for (unsigned i = 0; i < StackTop; ++i) {
884  unsigned RegNo = Stack[i];
885  if (!(Defs & (1 << RegNo)))
886  // This register is live, but we don't want it.
887  Kills |= (1 << RegNo);
888  else
889  // We don't need to imp-def this live register.
890  Defs &= ~(1 << RegNo);
891  }
892  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
893 
894  // Produce implicit-defs for free by using killed registers.
895  while (Kills && Defs) {
896  unsigned KReg = countTrailingZeros(Kills);
897  unsigned DReg = countTrailingZeros(Defs);
898  LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
899  << "\n");
900  std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
901  std::swap(RegMap[KReg], RegMap[DReg]);
902  Kills &= ~(1 << KReg);
903  Defs &= ~(1 << DReg);
904  }
905 
906  // Kill registers by popping.
907  if (Kills && I != MBB->begin()) {
908  MachineBasicBlock::iterator I2 = std::prev(I);
909  while (StackTop) {
910  unsigned KReg = getStackEntry(0);
911  if (!(Kills & (1 << KReg)))
912  break;
913  LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
914  popStackAfter(I2);
915  Kills &= ~(1 << KReg);
916  }
917  }
918 
919  // Manually kill the rest.
920  while (Kills) {
921  unsigned KReg = countTrailingZeros(Kills);
922  LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
923  freeStackSlotBefore(I, KReg);
924  Kills &= ~(1 << KReg);
925  }
926 
927  // Load zeros for all the imp-defs.
928  while(Defs) {
929  unsigned DReg = countTrailingZeros(Defs);
930  LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
931  BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
932  pushReg(DReg);
933  Defs &= ~(1 << DReg);
934  }
935 
936  // Now we should have the correct registers live.
937  LLVM_DEBUG(dumpStack());
938  assert(StackTop == countPopulation(Mask) && "Live count mismatch");
939 }
940 
941 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
942 /// FixCount entries into the order given by FixStack.
943 /// FIXME: Is there a better algorithm than insertion sort?
944 void FPS::shuffleStackTop(const unsigned char *FixStack,
945  unsigned FixCount,
947  // Move items into place, starting from the desired stack bottom.
948  while (FixCount--) {
949  // Old register at position FixCount.
950  unsigned OldReg = getStackEntry(FixCount);
951  // Desired register at position FixCount.
952  unsigned Reg = FixStack[FixCount];
953  if (Reg == OldReg)
954  continue;
955  // (Reg st0) (OldReg st0) = (Reg OldReg st0)
956  moveToTop(Reg, I);
957  if (FixCount > 0)
958  moveToTop(OldReg, I);
959  }
960  LLVM_DEBUG(dumpStack());
961 }
962 
963 
964 //===----------------------------------------------------------------------===//
965 // Instruction transformation implementation
966 //===----------------------------------------------------------------------===//
967 
968 void FPS::handleCall(MachineBasicBlock::iterator &I) {
969  unsigned STReturns = 0;
970  const MachineFunction* MF = I->getParent()->getParent();
971 
972  for (const auto &MO : I->operands()) {
973  if (!MO.isReg())
974  continue;
975 
976  unsigned R = MO.getReg() - X86::FP0;
977 
978  if (R < 8) {
980  assert(MO.isDef() && MO.isImplicit());
981  }
982 
983  STReturns |= 1 << R;
984  }
985  }
986 
987  unsigned N = countTrailingOnes(STReturns);
988 
989  // FP registers used for function return must be consecutive starting at
990  // FP0
991  assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
992 
993  // Reset the FP Stack - It is required because of possible leftovers from
994  // passed arguments. The caller should assume that the FP stack is
995  // returned empty (unless the callee returns values on FP stack).
996  while (StackTop > 0)
997  popReg();
998 
999  for (unsigned I = 0; I < N; ++I)
1000  pushReg(N - I - 1);
1001 }
1002 
1003 /// If RET has an FP register use operand, pass the first one in ST(0) and
1004 /// the second one in ST(1).
1005 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1006  MachineInstr &MI = *I;
1007 
1008  // Find the register operands.
1009  unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1010  unsigned LiveMask = 0;
1011 
1012  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1013  MachineOperand &Op = MI.getOperand(i);
1014  if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1015  continue;
1016  // FP Register uses must be kills unless there are two uses of the same
1017  // register, in which case only one will be a kill.
1018  assert(Op.isUse() &&
1019  (Op.isKill() || // Marked kill.
1020  getFPReg(Op) == FirstFPRegOp || // Second instance.
1021  MI.killsRegister(Op.getReg())) && // Later use is marked kill.
1022  "Ret only defs operands, and values aren't live beyond it");
1023 
1024  if (FirstFPRegOp == ~0U)
1025  FirstFPRegOp = getFPReg(Op);
1026  else {
1027  assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1028  SecondFPRegOp = getFPReg(Op);
1029  }
1030  LiveMask |= (1 << getFPReg(Op));
1031 
1032  // Remove the operand so that later passes don't see it.
1033  MI.RemoveOperand(i);
1034  --i;
1035  --e;
1036  }
1037 
1038  // We may have been carrying spurious live-ins, so make sure only the
1039  // returned registers are left live.
1040  adjustLiveRegs(LiveMask, MI);
1041  if (!LiveMask) return; // Quick check to see if any are possible.
1042 
1043  // There are only four possibilities here:
1044  // 1) we are returning a single FP value. In this case, it has to be in
1045  // ST(0) already, so just declare success by removing the value from the
1046  // FP Stack.
1047  if (SecondFPRegOp == ~0U) {
1048  // Assert that the top of stack contains the right FP register.
1049  assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1050  "Top of stack not the right register for RET!");
1051 
1052  // Ok, everything is good, mark the value as not being on the stack
1053  // anymore so that our assertion about the stack being empty at end of
1054  // block doesn't fire.
1055  StackTop = 0;
1056  return;
1057  }
1058 
1059  // Otherwise, we are returning two values:
1060  // 2) If returning the same value for both, we only have one thing in the FP
1061  // stack. Consider: RET FP1, FP1
1062  if (StackTop == 1) {
1063  assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1064  "Stack misconfiguration for RET!");
1065 
1066  // Duplicate the TOS so that we return it twice. Just pick some other FPx
1067  // register to hold it.
1068  unsigned NewReg = ScratchFPReg;
1069  duplicateToTop(FirstFPRegOp, NewReg, MI);
1070  FirstFPRegOp = NewReg;
1071  }
1072 
1073  /// Okay we know we have two different FPx operands now:
1074  assert(StackTop == 2 && "Must have two values live!");
1075 
1076  /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1077  /// in ST(1). In this case, emit an fxch.
1078  if (getStackEntry(0) == SecondFPRegOp) {
1079  assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1080  moveToTop(FirstFPRegOp, MI);
1081  }
1082 
1083  /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1084  /// ST(1). Just remove both from our understanding of the stack and return.
1085  assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1086  assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1087  StackTop = 0;
1088 }
1089 
1090 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1091 ///
1092 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1093  MachineInstr &MI = *I;
1094  unsigned DestReg = getFPReg(MI.getOperand(0));
1095 
1096  // Change from the pseudo instruction to the concrete instruction.
1097  MI.RemoveOperand(0); // Remove the explicit ST(0) operand
1098  MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1099 
1100  // Result gets pushed on the stack.
1101  pushReg(DestReg);
1102 }
1103 
1104 /// handleOneArgFP - fst <mem>, ST(0)
1105 ///
1106 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1107  MachineInstr &MI = *I;
1108  unsigned NumOps = MI.getDesc().getNumOperands();
1109  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1110  "Can only handle fst* & ftst instructions!");
1111 
1112  // Is this the last use of the source register?
1113  unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1114  bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1115 
1116  // FISTP64m is strange because there isn't a non-popping versions.
1117  // If we have one _and_ we don't want to pop the operand, duplicate the value
1118  // on the stack instead of moving it. This ensure that popping the value is
1119  // always ok.
1120  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1121  //
1122  if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1123  MI.getOpcode() == X86::ISTT_Fp16m32 ||
1124  MI.getOpcode() == X86::ISTT_Fp32m32 ||
1125  MI.getOpcode() == X86::ISTT_Fp64m32 ||
1126  MI.getOpcode() == X86::IST_Fp64m64 ||
1127  MI.getOpcode() == X86::ISTT_Fp16m64 ||
1128  MI.getOpcode() == X86::ISTT_Fp32m64 ||
1129  MI.getOpcode() == X86::ISTT_Fp64m64 ||
1130  MI.getOpcode() == X86::IST_Fp64m80 ||
1131  MI.getOpcode() == X86::ISTT_Fp16m80 ||
1132  MI.getOpcode() == X86::ISTT_Fp32m80 ||
1133  MI.getOpcode() == X86::ISTT_Fp64m80 ||
1134  MI.getOpcode() == X86::ST_FpP80m)) {
1135  duplicateToTop(Reg, ScratchFPReg, I);
1136  } else {
1137  moveToTop(Reg, I); // Move to the top of the stack...
1138  }
1139 
1140  // Convert from the pseudo instruction to the concrete instruction.
1141  MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
1142  MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1143 
1144  if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1145  MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1146  MI.getOpcode() == X86::ST_FP80m) {
1147  if (StackTop == 0)
1148  report_fatal_error("Stack empty??");
1149  --StackTop;
1150  } else if (KillsSrc) { // Last use of operand?
1151  popStackAfter(I);
1152  }
1153 }
1154 
1155 
1156 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1157 /// replace the value with a newly computed value. These instructions may have
1158 /// non-fp operands after their FP operands.
1159 ///
1160 /// Examples:
1161 /// R1 = fchs R2
1162 /// R1 = fadd R2, [mem]
1163 ///
1164 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1165  MachineInstr &MI = *I;
1166 #ifndef NDEBUG
1167  unsigned NumOps = MI.getDesc().getNumOperands();
1168  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1169 #endif
1170 
1171  // Is this the last use of the source register?
1172  unsigned Reg = getFPReg(MI.getOperand(1));
1173  bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1174 
1175  if (KillsSrc) {
1176  // If this is the last use of the source register, just make sure it's on
1177  // the top of the stack.
1178  moveToTop(Reg, I);
1179  if (StackTop == 0)
1180  report_fatal_error("Stack cannot be empty!");
1181  --StackTop;
1182  pushReg(getFPReg(MI.getOperand(0)));
1183  } else {
1184  // If this is not the last use of the source register, _copy_ it to the top
1185  // of the stack.
1186  duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1187  }
1188 
1189  // Change from the pseudo instruction to the concrete instruction.
1190  MI.RemoveOperand(1); // Drop the source operand.
1191  MI.RemoveOperand(0); // Drop the destination operand.
1192  MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1193 }
1194 
1195 
1196 //===----------------------------------------------------------------------===//
1197 // Define tables of various ways to map pseudo instructions
1198 //
1199 
1200 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1201 static const TableEntry ForwardST0Table[] = {
1202  { X86::ADD_Fp32 , X86::ADD_FST0r },
1203  { X86::ADD_Fp64 , X86::ADD_FST0r },
1204  { X86::ADD_Fp80 , X86::ADD_FST0r },
1205  { X86::DIV_Fp32 , X86::DIV_FST0r },
1206  { X86::DIV_Fp64 , X86::DIV_FST0r },
1207  { X86::DIV_Fp80 , X86::DIV_FST0r },
1208  { X86::MUL_Fp32 , X86::MUL_FST0r },
1209  { X86::MUL_Fp64 , X86::MUL_FST0r },
1210  { X86::MUL_Fp80 , X86::MUL_FST0r },
1211  { X86::SUB_Fp32 , X86::SUB_FST0r },
1212  { X86::SUB_Fp64 , X86::SUB_FST0r },
1213  { X86::SUB_Fp80 , X86::SUB_FST0r },
1214 };
1215 
1216 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1217 static const TableEntry ReverseST0Table[] = {
1218  { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1219  { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1220  { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1221  { X86::DIV_Fp32 , X86::DIVR_FST0r },
1222  { X86::DIV_Fp64 , X86::DIVR_FST0r },
1223  { X86::DIV_Fp80 , X86::DIVR_FST0r },
1224  { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1225  { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1226  { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1227  { X86::SUB_Fp32 , X86::SUBR_FST0r },
1228  { X86::SUB_Fp64 , X86::SUBR_FST0r },
1229  { X86::SUB_Fp80 , X86::SUBR_FST0r },
1230 };
1231 
1232 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1233 static const TableEntry ForwardSTiTable[] = {
1234  { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1235  { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1236  { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1237  { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1238  { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1239  { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1240  { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1241  { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1242  { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1243  { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1244  { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1245  { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1246 };
1247 
1248 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1249 static const TableEntry ReverseSTiTable[] = {
1250  { X86::ADD_Fp32 , X86::ADD_FrST0 },
1251  { X86::ADD_Fp64 , X86::ADD_FrST0 },
1252  { X86::ADD_Fp80 , X86::ADD_FrST0 },
1253  { X86::DIV_Fp32 , X86::DIV_FrST0 },
1254  { X86::DIV_Fp64 , X86::DIV_FrST0 },
1255  { X86::DIV_Fp80 , X86::DIV_FrST0 },
1256  { X86::MUL_Fp32 , X86::MUL_FrST0 },
1257  { X86::MUL_Fp64 , X86::MUL_FrST0 },
1258  { X86::MUL_Fp80 , X86::MUL_FrST0 },
1259  { X86::SUB_Fp32 , X86::SUB_FrST0 },
1260  { X86::SUB_Fp64 , X86::SUB_FrST0 },
1261  { X86::SUB_Fp80 , X86::SUB_FrST0 },
1262 };
1263 
1264 
1265 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1266 /// instructions which need to be simplified and possibly transformed.
1267 ///
1268 /// Result: ST(0) = fsub ST(0), ST(i)
1269 /// ST(i) = fsub ST(0), ST(i)
1270 /// ST(0) = fsubr ST(0), ST(i)
1271 /// ST(i) = fsubr ST(0), ST(i)
1272 ///
1273 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1274  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1275  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1276  MachineInstr &MI = *I;
1277 
1278  unsigned NumOperands = MI.getDesc().getNumOperands();
1279  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1280  unsigned Dest = getFPReg(MI.getOperand(0));
1281  unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1282  unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1283  bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1284  bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1285  DebugLoc dl = MI.getDebugLoc();
1286 
1287  unsigned TOS = getStackEntry(0);
1288 
1289  // One of our operands must be on the top of the stack. If neither is yet, we
1290  // need to move one.
1291  if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1292  // We can choose to move either operand to the top of the stack. If one of
1293  // the operands is killed by this instruction, we want that one so that we
1294  // can update right on top of the old version.
1295  if (KillsOp0) {
1296  moveToTop(Op0, I); // Move dead operand to TOS.
1297  TOS = Op0;
1298  } else if (KillsOp1) {
1299  moveToTop(Op1, I);
1300  TOS = Op1;
1301  } else {
1302  // All of the operands are live after this instruction executes, so we
1303  // cannot update on top of any operand. Because of this, we must
1304  // duplicate one of the stack elements to the top. It doesn't matter
1305  // which one we pick.
1306  //
1307  duplicateToTop(Op0, Dest, I);
1308  Op0 = TOS = Dest;
1309  KillsOp0 = true;
1310  }
1311  } else if (!KillsOp0 && !KillsOp1) {
1312  // If we DO have one of our operands at the top of the stack, but we don't
1313  // have a dead operand, we must duplicate one of the operands to a new slot
1314  // on the stack.
1315  duplicateToTop(Op0, Dest, I);
1316  Op0 = TOS = Dest;
1317  KillsOp0 = true;
1318  }
1319 
1320  // Now we know that one of our operands is on the top of the stack, and at
1321  // least one of our operands is killed by this instruction.
1322  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1323  "Stack conditions not set up right!");
1324 
1325  // We decide which form to use based on what is on the top of the stack, and
1326  // which operand is killed by this instruction.
1327  ArrayRef<TableEntry> InstTable;
1328  bool isForward = TOS == Op0;
1329  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1330  if (updateST0) {
1331  if (isForward)
1332  InstTable = ForwardST0Table;
1333  else
1334  InstTable = ReverseST0Table;
1335  } else {
1336  if (isForward)
1337  InstTable = ForwardSTiTable;
1338  else
1339  InstTable = ReverseSTiTable;
1340  }
1341 
1342  int Opcode = Lookup(InstTable, MI.getOpcode());
1343  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1344 
1345  // NotTOS - The register which is not on the top of stack...
1346  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1347 
1348  // Replace the old instruction with a new instruction
1349  MBB->remove(&*I++);
1350  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1351 
1352  // If both operands are killed, pop one off of the stack in addition to
1353  // overwriting the other one.
1354  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1355  assert(!updateST0 && "Should have updated other operand!");
1356  popStackAfter(I); // Pop the top of stack
1357  }
1358 
1359  // Update stack information so that we know the destination register is now on
1360  // the stack.
1361  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1362  assert(UpdatedSlot < StackTop && Dest < 7);
1363  Stack[UpdatedSlot] = Dest;
1364  RegMap[Dest] = UpdatedSlot;
1365  MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
1366 }
1367 
1368 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1369 /// register arguments and no explicit destinations.
1370 ///
1371 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1372  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1373  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1374  MachineInstr &MI = *I;
1375 
1376  unsigned NumOperands = MI.getDesc().getNumOperands();
1377  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1378  unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1379  unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1380  bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1381  bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1382 
1383  // Make sure the first operand is on the top of stack, the other one can be
1384  // anywhere.
1385  moveToTop(Op0, I);
1386 
1387  // Change from the pseudo instruction to the concrete instruction.
1388  MI.getOperand(0).setReg(getSTReg(Op1));
1389  MI.RemoveOperand(1);
1390  MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1391 
1392  // If any of the operands are killed by this instruction, free them.
1393  if (KillsOp0) freeStackSlotAfter(I, Op0);
1394  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1395 }
1396 
1397 /// handleCondMovFP - Handle two address conditional move instructions. These
1398 /// instructions move a st(i) register to st(0) iff a condition is true. These
1399 /// instructions require that the first operand is at the top of the stack, but
1400 /// otherwise don't modify the stack at all.
1401 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1402  MachineInstr &MI = *I;
1403 
1404  unsigned Op0 = getFPReg(MI.getOperand(0));
1405  unsigned Op1 = getFPReg(MI.getOperand(2));
1406  bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1407 
1408  // The first operand *must* be on the top of the stack.
1409  moveToTop(Op0, I);
1410 
1411  // Change the second operand to the stack register that the operand is in.
1412  // Change from the pseudo instruction to the concrete instruction.
1413  MI.RemoveOperand(0);
1414  MI.RemoveOperand(1);
1415  MI.getOperand(0).setReg(getSTReg(Op1));
1416  MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1417 
1418  // If we kill the second operand, make sure to pop it from the stack.
1419  if (Op0 != Op1 && KillsOp1) {
1420  // Get this value off of the register stack.
1421  freeStackSlotAfter(I, Op1);
1422  }
1423 }
1424 
1425 
1426 /// handleSpecialFP - Handle special instructions which behave unlike other
1427 /// floating point instructions. This is primarily intended for use by pseudo
1428 /// instructions.
1429 ///
1430 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1431  MachineInstr &MI = *Inst;
1432 
1433  if (MI.isCall()) {
1434  handleCall(Inst);
1435  return;
1436  }
1437 
1438  if (MI.isReturn()) {
1439  handleReturn(Inst);
1440  return;
1441  }
1442 
1443  switch (MI.getOpcode()) {
1444  default: llvm_unreachable("Unknown SpecialFP instruction!");
1445  case TargetOpcode::COPY: {
1446  // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1447  const MachineOperand &MO1 = MI.getOperand(1);
1448  const MachineOperand &MO0 = MI.getOperand(0);
1449  bool KillsSrc = MI.killsRegister(MO1.getReg());
1450 
1451  // FP <- FP copy.
1452  unsigned DstFP = getFPReg(MO0);
1453  unsigned SrcFP = getFPReg(MO1);
1454  assert(isLive(SrcFP) && "Cannot copy dead register");
1455  if (KillsSrc) {
1456  // If the input operand is killed, we can just change the owner of the
1457  // incoming stack slot into the result.
1458  unsigned Slot = getSlot(SrcFP);
1459  Stack[Slot] = DstFP;
1460  RegMap[DstFP] = Slot;
1461  } else {
1462  // For COPY we just duplicate the specified value to a new stack slot.
1463  // This could be made better, but would require substantial changes.
1464  duplicateToTop(SrcFP, DstFP, Inst);
1465  }
1466  break;
1467  }
1468 
1469  case TargetOpcode::IMPLICIT_DEF: {
1470  // All FP registers must be explicitly defined, so load a 0 instead.
1471  unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1472  LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1473  BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1474  pushReg(Reg);
1475  break;
1476  }
1477 
1478  case TargetOpcode::INLINEASM: {
1479  // The inline asm MachineInstr currently only *uses* FP registers for the
1480  // 'f' constraint. These should be turned into the current ST(x) register
1481  // in the machine instr.
1482  //
1483  // There are special rules for x87 inline assembly. The compiler must know
1484  // exactly how many registers are popped and pushed implicitly by the asm.
1485  // Otherwise it is not possible to restore the stack state after the inline
1486  // asm.
1487  //
1488  // There are 3 kinds of input operands:
1489  //
1490  // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1491  // popped input operand must be in a fixed stack slot, and it is either
1492  // tied to an output operand, or in the clobber list. The MI has ST use
1493  // and def operands for these inputs.
1494  //
1495  // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1496  // preserved by the inline asm. The fixed stack slots must be STn-STm
1497  // following the popped inputs. A fixed input operand cannot be tied to
1498  // an output or appear in the clobber list. The MI has ST use operands
1499  // and no defs for these inputs.
1500  //
1501  // 3. Preserved inputs. These inputs use the "f" constraint which is
1502  // represented as an FP register. The inline asm won't change these
1503  // stack slots.
1504  //
1505  // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1506  // registers do not count as output operands. The inline asm changes the
1507  // stack as if it popped all the popped inputs and then pushed all the
1508  // output operands.
1509 
1510  // Scan the assembly for ST registers used, defined and clobbered. We can
1511  // only tell clobbers from defs by looking at the asm descriptor.
1512  unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1513  unsigned NumOps = 0;
1514  SmallSet<unsigned, 1> FRegIdx;
1515  unsigned RCID;
1516 
1517  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1518  i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1519  unsigned Flags = MI.getOperand(i).getImm();
1520 
1521  NumOps = InlineAsm::getNumOperandRegisters(Flags);
1522  if (NumOps != 1)
1523  continue;
1524  const MachineOperand &MO = MI.getOperand(i + 1);
1525  if (!MO.isReg())
1526  continue;
1527  unsigned STReg = MO.getReg() - X86::FP0;
1528  if (STReg >= 8)
1529  continue;
1530 
1531  // If the flag has a register class constraint, this must be an operand
1532  // with constraint "f". Record its index and continue.
1533  if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1534  FRegIdx.insert(i + 1);
1535  continue;
1536  }
1537 
1538  switch (InlineAsm::getKind(Flags)) {
1540  STUses |= (1u << STReg);
1541  break;
1544  STDefs |= (1u << STReg);
1545  if (MO.isDead())
1546  STDeadDefs |= (1u << STReg);
1547  break;
1549  STClobbers |= (1u << STReg);
1550  break;
1551  default:
1552  break;
1553  }
1554  }
1555 
1556  if (STUses && !isMask_32(STUses))
1557  MI.emitError("fixed input regs must be last on the x87 stack");
1558  unsigned NumSTUses = countTrailingOnes(STUses);
1559 
1560  // Defs must be contiguous from the stack top. ST0-STn.
1561  if (STDefs && !isMask_32(STDefs)) {
1562  MI.emitError("output regs must be last on the x87 stack");
1563  STDefs = NextPowerOf2(STDefs) - 1;
1564  }
1565  unsigned NumSTDefs = countTrailingOnes(STDefs);
1566 
1567  // So must the clobbered stack slots. ST0-STm, m >= n.
1568  if (STClobbers && !isMask_32(STDefs | STClobbers))
1569  MI.emitError("clobbers must be last on the x87 stack");
1570 
1571  // Popped inputs are the ones that are also clobbered or defined.
1572  unsigned STPopped = STUses & (STDefs | STClobbers);
1573  if (STPopped && !isMask_32(STPopped))
1574  MI.emitError("implicitly popped regs must be last on the x87 stack");
1575  unsigned NumSTPopped = countTrailingOnes(STPopped);
1576 
1577  LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1578  << NumSTPopped << ", and defines " << NumSTDefs
1579  << " regs.\n");
1580 
1581 #ifndef NDEBUG
1582  // If any input operand uses constraint "f", all output register
1583  // constraints must be early-clobber defs.
1584  for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1585  if (FRegIdx.count(I)) {
1586  assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1587  "Operands with constraint \"f\" cannot overlap with defs");
1588  }
1589 #endif
1590 
1591  // Collect all FP registers (register operands with constraints "t", "u",
1592  // and "f") to kill afer the instruction.
1593  unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1594  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1595  MachineOperand &Op = MI.getOperand(i);
1596  if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1597  continue;
1598  unsigned FPReg = getFPReg(Op);
1599 
1600  // If we kill this operand, make sure to pop it from the stack after the
1601  // asm. We just remember it for now, and pop them all off at the end in
1602  // a batch.
1603  if (Op.isUse() && Op.isKill())
1604  FPKills |= 1U << FPReg;
1605  }
1606 
1607  // Do not include registers that are implicitly popped by defs/clobbers.
1608  FPKills &= ~(STDefs | STClobbers);
1609 
1610  // Now we can rearrange the live registers to match what was requested.
1611  unsigned char STUsesArray[8];
1612 
1613  for (unsigned I = 0; I < NumSTUses; ++I)
1614  STUsesArray[I] = I;
1615 
1616  shuffleStackTop(STUsesArray, NumSTUses, Inst);
1617  LLVM_DEBUG({
1618  dbgs() << "Before asm: ";
1619  dumpStack();
1620  });
1621 
1622  // With the stack layout fixed, rewrite the FP registers.
1623  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1624  MachineOperand &Op = MI.getOperand(i);
1625  if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1626  continue;
1627 
1628  unsigned FPReg = getFPReg(Op);
1629 
1630  if (FRegIdx.count(i))
1631  // Operand with constraint "f".
1632  Op.setReg(getSTReg(FPReg));
1633  else
1634  // Operand with a single register class constraint ("t" or "u").
1635  Op.setReg(X86::ST0 + FPReg);
1636  }
1637 
1638  // Simulate the inline asm popping its inputs and pushing its outputs.
1639  StackTop -= NumSTPopped;
1640 
1641  for (unsigned i = 0; i < NumSTDefs; ++i)
1642  pushReg(NumSTDefs - i - 1);
1643 
1644  // If this asm kills any FP registers (is the last use of them) we must
1645  // explicitly emit pop instructions for them. Do this now after the asm has
1646  // executed so that the ST(x) numbers are not off (which would happen if we
1647  // did this inline with operand rewriting).
1648  //
1649  // Note: this might be a non-optimal pop sequence. We might be able to do
1650  // better by trying to pop in stack order or something.
1651  while (FPKills) {
1652  unsigned FPReg = countTrailingZeros(FPKills);
1653  if (isLive(FPReg))
1654  freeStackSlotAfter(Inst, FPReg);
1655  FPKills &= ~(1U << FPReg);
1656  }
1657 
1658  // Don't delete the inline asm!
1659  return;
1660  }
1661  }
1662 
1663  Inst = MBB->erase(Inst); // Remove the pseudo instruction
1664 
1665  // We want to leave I pointing to the previous instruction, but what if we
1666  // just erased the first instruction?
1667  if (Inst == MBB->begin()) {
1668  LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1669  Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1670  } else
1671  --Inst;
1672 }
1673 
1674 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1675  const TargetRegisterInfo &TRI =
1677  LivePhysRegs LPR(TRI);
1678 
1679  LPR.addLiveOuts(MBB);
1680 
1681  for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1682  I != E; ++I) {
1683  if (I->isDebugInstr())
1684  continue;
1685 
1686  std::bitset<8> Defs;
1688  MachineInstr &MI = *I;
1689 
1690  for (auto &MO : I->operands()) {
1691  if (!MO.isReg())
1692  continue;
1693 
1694  unsigned Reg = MO.getReg() - X86::FP0;
1695 
1696  if (Reg >= 8)
1697  continue;
1698 
1699  if (MO.isDef()) {
1700  Defs.set(Reg);
1701  if (!LPR.contains(MO.getReg()))
1702  MO.setIsDead();
1703  } else
1704  Uses.push_back(&MO);
1705  }
1706 
1707  for (auto *MO : Uses)
1708  if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1709  MO->setIsKill();
1710 
1711  LPR.stepBackward(MI);
1712  }
1713 }
bool reg_nodbg_empty(unsigned RegNo) const
reg_nodbg_empty - Return true if the only instructions using or defining Reg are Debug instructions...
static const TableEntry OpcodeTable[]
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:633
unsigned getBundle(unsigned N, bool Out) const
getBundle - Return the ingoing (Out = false) or outgoing (Out = true) bundle number for basic block N...
Definition: EdgeBundles.h:43
void emitError(StringRef Msg) const
Emit an error referring to the source location of this instruction.
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:140
This class represents lattice values for constants.
Definition: AllocatorList.h:24
static unsigned getConcreteOpcode(unsigned Opcode)
iterator begin() const
Definition: ArrayRef.h:137
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
unsigned size() const
void push_back(const T &Elt)
Definition: SmallVector.h:218
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
unsigned getReg() const
getReg - Returns the register number.
unsigned Reg
bool isInlineAsm() const
Register calling convention used for parameters transfer optimization.
Definition: CallingConv.h:204
AddrNumOperands - Total number of operands in a memory reference.
Definition: X86BaseInfo.h:42
STATISTIC(NumFunctions, "Total number of functions")
unsigned const TargetRegisterInfo * TRI
A debug info location.
Definition: DebugLoc.h:34
bool contains(MCPhysReg Reg) const
Returns true if register Reg is contained in the set.
Definition: LivePhysRegs.h:107
static const TableEntry ReverseSTiTable[]
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
constexpr bool isMask_32(uint32_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
Definition: MathExtras.h:405
void removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll())
Remove the specified register from the live in set.
AnalysisUsage & addRequired()
char & MachineLoopInfoID
MachineLoopInfo - This pass is a loop analysis pass.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:211
const HexagonInstrInfo * TII
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:412
std::size_t countTrailingOnes(T Value, ZeroBehavior ZB=ZB_Width)
Count the number of ones from the least significant bit to the first zero bit.
Definition: MathExtras.h:478
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
MachineBasicBlock iterator that automatically skips over MIs that are inside bundles (i...
static const TableEntry ForwardST0Table[]
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
LiveInVector::const_iterator livein_iterator
INLINEASM - Represents an inline asm block.
Definition: ISDOpcodes.h:667
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:406
static unsigned getFPReg(const MachineOperand &MO)
getFPReg - Return the X86::FPx register number for the specified operand.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
AnalysisUsage & addPreservedID(const void *ID)
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1282
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they&#39;re not in a MachineFuncti...
virtual const TargetInstrInfo * getInstrInfo() const
reverse_iterator rend()
reverse_iterator rbegin()
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
static const TableEntry PopTable[]
TargetInstrInfo - Interface to description of machine instruction set.
bool isReturn(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:623
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
unsigned const MachineRegisterInfo * MRI
std::size_t countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0&#39;s from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:120
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
static const TableEntry ForwardSTiTable[]
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
void addLiveOuts(const MachineBasicBlock &MBB)
Adds all live-out registers of basic block MBB.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
livein_iterator livein_end() const
static unsigned getNumOperandRegisters(unsigned Flag)
getNumOperandRegisters - Extract the number of registers field from the inline asm operand flag...
Definition: InlineAsm.h:336
iterator_range< df_ext_iterator< T, SetTy > > depth_first_ext(const T &G, SetTy &S)
Represent the analysis usage information of a pass.
void stepBackward(const MachineInstr &MI)
Simulates liveness when stepping backwards over an instruction(bundle).
static unsigned getKind(unsigned Flags)
Definition: InlineAsm.h:325
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:181
void DeleteMachineInstr(MachineInstr *MI)
DeleteMachineInstr - Delete the given MachineInstr.
bool isCopy() const
bool isImplicitDef() const
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:640
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
const MachineBasicBlock & front() const
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
size_t size() const
Definition: SmallVector.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
size_type size() const
Definition: SmallPtrSet.h:93
unsigned countPopulation(T Value)
Count the number of set bits in a value.
Definition: MathExtras.h:520
void setDesc(const MCInstrDesc &tid)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one...
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:213
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
iterator end() const
Definition: ArrayRef.h:138
std::pair< iterator, bool > insert(NodeRef N)
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly. ...
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
int64_t getImm() const
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
FunctionPass * createX86FloatingPointStackifierPass()
This function returns a pass which converts floating-point register references and pseudo instruction...
unsigned getNumBundles() const
getNumBundles - Return the total number of bundles in the CFG.
Definition: EdgeBundles.h:46
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
MachineFunctionProperties & set(Property P)
static bool hasRegClassConstraint(unsigned Flag, unsigned &RC)
hasRegClassConstraint - Returns true if the flag contains a register class constraint.
Definition: InlineAsm.h:351
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI=nullptr) const
Return true if the MachineInstr kills the specified register.
static const TableEntry ReverseST0Table[]
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
A set of physical registers with utility functions to track liveness when walking backward/forward th...
Definition: LivePhysRegs.h:49
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
void setReg(unsigned Reg)
Change the register this operand corresponds to.
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
bool isReg() const
isReg - Tests if this is a MO_Register operand.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:326
#define ASSERT_SORTED(TABLE)
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
void initializeEdgeBundlesPass(PassRegistry &)
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
void RemoveOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with...
#define LLVM_ATTRIBUTE_UNUSED
Definition: Compiler.h:160
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
livein_iterator livein_begin() const
Properties which a MachineFunction may have at a given point in time.
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:165
void resize(size_type N)
Definition: SmallVector.h:351