LLVM  8.0.1
X86FlagsCopyLowering.cpp
Go to the documentation of this file.
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
12 /// flag bits.
13 ///
14 /// We have to do this by carefully analyzing and rewriting the usage of the
15 /// copied EFLAGS register because there is no general way to rematerialize the
16 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
17 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
18 /// and other non-status flags being overwritten. Using sequences involving
19 /// SAHF don't work on all x86 processors and are often quite slow compared to
20 /// directly testing a single status preserved in its own GPR.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "X86.h"
25 #include "X86InstrBuilder.h"
26 #include "X86InstrInfo.h"
27 #include "X86Subtarget.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/MC/MCSchedule.h"
55 #include "llvm/Pass.h"
57 #include "llvm/Support/Debug.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define PASS_KEY "x86-flags-copy-lowering"
67 #define DEBUG_TYPE PASS_KEY
68 
69 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
70 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
71 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
72 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
73 
74 namespace llvm {
75 
77 
78 } // end namespace llvm
79 
80 namespace {
81 
82 // Convenient array type for storing registers associated with each condition.
83 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
84 
85 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
86 public:
87  X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
89  }
90 
91  StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
92  bool runOnMachineFunction(MachineFunction &MF) override;
93  void getAnalysisUsage(AnalysisUsage &AU) const override;
94 
95  /// Pass identification, replacement for typeid.
96  static char ID;
97 
98 private:
100  const X86Subtarget *Subtarget;
101  const X86InstrInfo *TII;
102  const TargetRegisterInfo *TRI;
103  const TargetRegisterClass *PromoteRC;
105 
106  CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
107  MachineBasicBlock::iterator CopyDefI);
108 
109  unsigned promoteCondToReg(MachineBasicBlock &MBB,
111  DebugLoc TestLoc, X86::CondCode Cond);
112  std::pair<unsigned, bool>
113  getCondOrInverseInReg(MachineBasicBlock &TestMBB,
114  MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
115  X86::CondCode Cond, CondRegArray &CondRegs);
116  void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
117  DebugLoc Loc, unsigned Reg);
118 
119  void rewriteArithmetic(MachineBasicBlock &TestMBB,
120  MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
121  MachineInstr &MI, MachineOperand &FlagUse,
122  CondRegArray &CondRegs);
123  void rewriteCMov(MachineBasicBlock &TestMBB,
124  MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
125  MachineInstr &CMovI, MachineOperand &FlagUse,
126  CondRegArray &CondRegs);
127  void rewriteCondJmp(MachineBasicBlock &TestMBB,
128  MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
129  MachineInstr &JmpI, CondRegArray &CondRegs);
130  void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
131  MachineInstr &CopyDefI);
132  void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
134  DebugLoc TestLoc, MachineInstr &SetBI,
135  MachineOperand &FlagUse, CondRegArray &CondRegs);
136  void rewriteSetCC(MachineBasicBlock &TestMBB,
137  MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
138  MachineInstr &SetCCI, MachineOperand &FlagUse,
139  CondRegArray &CondRegs);
140 };
141 
142 } // end anonymous namespace
143 
144 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
145  "X86 EFLAGS copy lowering", false, false)
146 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
147  "X86 EFLAGS copy lowering", false, false)
148 
150  return new X86FlagsCopyLoweringPass();
151 }
152 
154 
155 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
158 }
159 
160 namespace {
161 /// An enumeration of the arithmetic instruction mnemonics which have
162 /// interesting flag semantics.
163 ///
164 /// We can map instruction opcodes into these mnemonics to make it easy to
165 /// dispatch with specific functionality.
166 enum class FlagArithMnemonic {
167  ADC,
168  ADCX,
169  ADOX,
170  RCL,
171  RCR,
172  SBB,
173 };
174 } // namespace
175 
176 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
177  switch (Opcode) {
178  default:
179  report_fatal_error("No support for lowering a copy into EFLAGS when used "
180  "by this instruction!");
181 
182 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
183  case X86::MNEMONIC##8##SUFFIX: \
184  case X86::MNEMONIC##16##SUFFIX: \
185  case X86::MNEMONIC##32##SUFFIX: \
186  case X86::MNEMONIC##64##SUFFIX:
187 
188 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
189  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
190  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
191  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
192  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
193  case X86::MNEMONIC##8ri: \
194  case X86::MNEMONIC##16ri8: \
195  case X86::MNEMONIC##32ri8: \
196  case X86::MNEMONIC##64ri8: \
197  case X86::MNEMONIC##16ri: \
198  case X86::MNEMONIC##32ri: \
199  case X86::MNEMONIC##64ri32: \
200  case X86::MNEMONIC##8mi: \
201  case X86::MNEMONIC##16mi8: \
202  case X86::MNEMONIC##32mi8: \
203  case X86::MNEMONIC##64mi8: \
204  case X86::MNEMONIC##16mi: \
205  case X86::MNEMONIC##32mi: \
206  case X86::MNEMONIC##64mi32: \
207  case X86::MNEMONIC##8i8: \
208  case X86::MNEMONIC##16i16: \
209  case X86::MNEMONIC##32i32: \
210  case X86::MNEMONIC##64i32:
211 
213  return FlagArithMnemonic::ADC;
214 
216  return FlagArithMnemonic::SBB;
217 
218 #undef LLVM_EXPAND_ADC_SBB_INSTR
219 
220  LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
222  LLVM_EXPAND_INSTR_SIZES(RCL, ri)
223  return FlagArithMnemonic::RCL;
224 
225  LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
227  LLVM_EXPAND_INSTR_SIZES(RCR, ri)
228  return FlagArithMnemonic::RCR;
229 
230 #undef LLVM_EXPAND_INSTR_SIZES
231 
232  case X86::ADCX32rr:
233  case X86::ADCX64rr:
234  case X86::ADCX32rm:
235  case X86::ADCX64rm:
236  return FlagArithMnemonic::ADCX;
237 
238  case X86::ADOX32rr:
239  case X86::ADOX64rr:
240  case X86::ADOX32rm:
241  case X86::ADOX64rm:
242  return FlagArithMnemonic::ADOX;
243  }
244 }
245 
247  MachineInstr &SplitI,
248  const X86InstrInfo &TII) {
249  MachineFunction &MF = *MBB.getParent();
250 
251  assert(SplitI.getParent() == &MBB &&
252  "Split instruction must be in the split block!");
253  assert(SplitI.isBranch() &&
254  "Only designed to split a tail of branch instructions!");
256  "Must split on an actual jCC instruction!");
257 
258  // Dig out the previous instruction to the split point.
259  MachineInstr &PrevI = *std::prev(SplitI.getIterator());
260  assert(PrevI.isBranch() && "Must split after a branch!");
262  "Must split after an actual jCC instruction!");
263  assert(!std::prev(PrevI.getIterator())->isTerminator() &&
264  "Must only have this one terminator prior to the split!");
265 
266  // Grab the one successor edge that will stay in `MBB`.
267  MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
268 
269  // Analyze the original block to see if we are actually splitting an edge
270  // into two edges. This can happen when we have multiple conditional jumps to
271  // the same successor.
272  bool IsEdgeSplit =
273  std::any_of(SplitI.getIterator(), MBB.instr_end(),
274  [&](MachineInstr &MI) {
275  assert(MI.isTerminator() &&
276  "Should only have spliced terminators!");
277  return llvm::any_of(
278  MI.operands(), [&](MachineOperand &MOp) {
279  return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
280  });
281  }) ||
282  MBB.getFallThrough() == &UnsplitSucc;
283 
285 
286  // Insert the new block immediately after the current one. Any existing
287  // fallthrough will be sunk into this new block anyways.
288  MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
289 
290  // Splice the tail of instructions into the new block.
291  NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
292 
293  // Copy the necessary succesors (and their probability info) into the new
294  // block.
295  for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
296  if (IsEdgeSplit || *SI != &UnsplitSucc)
297  NewMBB.copySuccessor(&MBB, SI);
298  // Normalize the probabilities if we didn't end up splitting the edge.
299  if (!IsEdgeSplit)
300  NewMBB.normalizeSuccProbs();
301 
302  // Now replace all of the moved successors in the original block with the new
303  // block. This will merge their probabilities.
304  for (MachineBasicBlock *Succ : NewMBB.successors())
305  if (Succ != &UnsplitSucc)
306  MBB.replaceSuccessor(Succ, &NewMBB);
307 
308  // We should always end up replacing at least one successor.
309  assert(MBB.isSuccessor(&NewMBB) &&
310  "Failed to make the new block a successor!");
311 
312  // Now update all the PHIs.
313  for (MachineBasicBlock *Succ : NewMBB.successors()) {
314  for (MachineInstr &MI : *Succ) {
315  if (!MI.isPHI())
316  break;
317 
318  for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
319  OpIdx += 2) {
320  MachineOperand &OpV = MI.getOperand(OpIdx);
321  MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
322  assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
323  if (OpMBB.getMBB() != &MBB)
324  continue;
325 
326  // Replace the operand for unsplit successors
327  if (!IsEdgeSplit || Succ != &UnsplitSucc) {
328  OpMBB.setMBB(&NewMBB);
329 
330  // We have to continue scanning as there may be multiple entries in
331  // the PHI.
332  continue;
333  }
334 
335  // When we have split the edge append a new successor.
336  MI.addOperand(MF, OpV);
337  MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
338  break;
339  }
340  }
341  }
342 
343  return NewMBB;
344 }
345 
346 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
347  LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
348  << " **********\n");
349 
350  Subtarget = &MF.getSubtarget<X86Subtarget>();
351  MRI = &MF.getRegInfo();
352  TII = Subtarget->getInstrInfo();
353  TRI = Subtarget->getRegisterInfo();
354  MDT = &getAnalysis<MachineDominatorTree>();
355  PromoteRC = &X86::GR8RegClass;
356 
357  if (MF.begin() == MF.end())
358  // Nothing to do for a degenerate empty function...
359  return false;
360 
361  // Collect the copies in RPO so that when there are chains where a copy is in
362  // turn copied again we visit the first one first. This ensures we can find
363  // viable locations for testing the original EFLAGS that dominate all the
364  // uses across complex CFGs.
367  for (MachineBasicBlock *MBB : RPOT)
368  for (MachineInstr &MI : *MBB)
369  if (MI.getOpcode() == TargetOpcode::COPY &&
370  MI.getOperand(0).getReg() == X86::EFLAGS)
371  Copies.push_back(&MI);
372 
373  for (MachineInstr *CopyI : Copies) {
374  MachineBasicBlock &MBB = *CopyI->getParent();
375 
376  MachineOperand &VOp = CopyI->getOperand(1);
377  assert(VOp.isReg() &&
378  "The input to the copy for EFLAGS should always be a register!");
379  MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
380  if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
381  // FIXME: The big likely candidate here are PHI nodes. We could in theory
382  // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
383  // enough that it is probably better to change every other part of LLVM
384  // to avoid creating them. The issue is that once we have PHIs we won't
385  // know which original EFLAGS value we need to capture with our setCCs
386  // below. The end result will be computing a complete set of setCCs that
387  // we *might* want, computing them in every place where we copy *out* of
388  // EFLAGS and then doing SSA formation on all of them to insert necessary
389  // PHI nodes and consume those here. Then hoping that somehow we DCE the
390  // unnecessary ones. This DCE seems very unlikely to be successful and so
391  // we will almost certainly end up with a glut of dead setCC
392  // instructions. Until we have a motivating test case and fail to avoid
393  // it by changing other parts of LLVM's lowering, we refuse to handle
394  // this complex case here.
395  LLVM_DEBUG(
396  dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
397  CopyDefI.dump());
399  "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
400  }
401 
402  auto Cleanup = make_scope_exit([&] {
403  // All uses of the EFLAGS copy are now rewritten, kill the copy into
404  // eflags and if dead the copy from.
405  CopyI->eraseFromParent();
406  if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
407  CopyDefI.eraseFromParent();
408  ++NumCopiesEliminated;
409  });
410 
411  MachineOperand &DOp = CopyI->getOperand(0);
412  assert(DOp.isDef() && "Expected register def!");
413  assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
414  if (DOp.isDead())
415  continue;
416 
417  MachineBasicBlock *TestMBB = CopyDefI.getParent();
418  auto TestPos = CopyDefI.getIterator();
419  DebugLoc TestLoc = CopyDefI.getDebugLoc();
420 
421  LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
422 
423  // Walk up across live-in EFLAGS to find where they were actually def'ed.
424  //
425  // This copy's def may just be part of a region of blocks covered by
426  // a single def of EFLAGS and we want to find the top of that region where
427  // possible.
428  //
429  // This is essentially a search for a *candidate* reaching definition
430  // location. We don't need to ever find the actual reaching definition here,
431  // but we want to walk up the dominator tree to find the highest point which
432  // would be viable for such a definition.
433  auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
435  // Scan backwards as we expect these to be relatively short and often find
436  // a clobber near the end.
437  return llvm::any_of(
438  llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
439  // Flag any instruction (other than the copy we are
440  // currently rewriting) that defs EFLAGS.
441  return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
442  });
443  };
444  auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
445  MachineBasicBlock *EndMBB) {
446  assert(MDT->dominates(BeginMBB, EndMBB) &&
447  "Only support paths down the dominator tree!");
450  // We terminate at the beginning. No need to scan it.
451  Visited.insert(BeginMBB);
452  Worklist.push_back(EndMBB);
453  do {
454  auto *MBB = Worklist.pop_back_val();
455  for (auto *PredMBB : MBB->predecessors()) {
456  if (!Visited.insert(PredMBB).second)
457  continue;
458  if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
459  return true;
460  // Enqueue this block to walk its predecessors.
461  Worklist.push_back(PredMBB);
462  }
463  } while (!Worklist.empty());
464  // No clobber found along a path from the begin to end.
465  return false;
466  };
467  while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
468  !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
469  // Find the nearest common dominator of the predecessors, as
470  // that will be the best candidate to hoist into.
471  MachineBasicBlock *HoistMBB =
472  std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
473  *TestMBB->pred_begin(),
474  [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
475  return MDT->findNearestCommonDominator(LHS, RHS);
476  });
477 
478  // Now we need to scan all predecessors that may be reached along paths to
479  // the hoist block. A clobber anywhere in any of these blocks the hoist.
480  // Note that this even handles loops because we require *no* clobbers.
481  if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
482  break;
483 
484  // We also need the terminators to not sneakily clobber flags.
485  if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
486  HoistMBB->instr_end()))
487  break;
488 
489  // We found a viable location, hoist our test position to it.
490  TestMBB = HoistMBB;
491  TestPos = TestMBB->getFirstTerminator()->getIterator();
492  // Clear the debug location as it would just be confusing after hoisting.
493  TestLoc = DebugLoc();
494  }
495  LLVM_DEBUG({
496  auto DefIt = llvm::find_if(
497  llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
498  [&](MachineInstr &MI) {
499  return MI.findRegisterDefOperand(X86::EFLAGS);
500  });
501  if (DefIt.base() != TestMBB->instr_begin()) {
502  dbgs() << " Using EFLAGS defined by: ";
503  DefIt->dump();
504  } else {
505  dbgs() << " Using live-in flags for BB:\n";
506  TestMBB->dump();
507  }
508  });
509 
510  // While rewriting uses, we buffer jumps and rewrite them in a second pass
511  // because doing so will perturb the CFG that we are walking to find the
512  // uses in the first place.
514 
515  // Gather the condition flags that have already been preserved in
516  // registers. We do this from scratch each time as we expect there to be
517  // very few of them and we expect to not revisit the same copy definition
518  // many times. If either of those change sufficiently we could build a map
519  // of these up front instead.
520  CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
521 
522  // Collect the basic blocks we need to scan. Typically this will just be
523  // a single basic block but we may have to scan multiple blocks if the
524  // EFLAGS copy lives into successors.
527  Blocks.push_back(&MBB);
528 
529  do {
530  MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
531 
532  // Track when if/when we find a kill of the flags in this block.
533  bool FlagsKilled = false;
534 
535  // In most cases, we walk from the beginning to the end of the block. But
536  // when the block is the same block as the copy is from, we will visit it
537  // twice. The first time we start from the copy and go to the end. The
538  // second time we start from the beginning and go to the copy. This lets
539  // us handle copies inside of cycles.
540  // FIXME: This loop is *super* confusing. This is at least in part
541  // a symptom of all of this routine needing to be refactored into
542  // documentable components. Once done, there may be a better way to write
543  // this loop.
544  for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
545  ? std::next(CopyI->getIterator())
546  : UseMBB.instr_begin(),
547  MIE = UseMBB.instr_end();
548  MII != MIE;) {
549  MachineInstr &MI = *MII++;
550  // If we are in the original copy block and encounter either the copy
551  // def or the copy itself, break so that we don't re-process any part of
552  // the block or process the instructions in the range that was copied
553  // over.
554  if (&MI == CopyI || &MI == &CopyDefI) {
555  assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
556  "Should only encounter these on the second pass over the "
557  "original block.");
558  break;
559  }
560 
561  MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
562  if (!FlagUse) {
563  if (MI.findRegisterDefOperand(X86::EFLAGS)) {
564  // If EFLAGS are defined, it's as-if they were killed. We can stop
565  // scanning here.
566  //
567  // NB!!! Many instructions only modify some flags. LLVM currently
568  // models this as clobbering all flags, but if that ever changes
569  // this will need to be carefully updated to handle that more
570  // complex logic.
571  FlagsKilled = true;
572  break;
573  }
574  continue;
575  }
576 
577  LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
578 
579  // Check the kill flag before we rewrite as that may change it.
580  if (FlagUse->isKill())
581  FlagsKilled = true;
582 
583  // Once we encounter a branch, the rest of the instructions must also be
584  // branches. We can't rewrite in place here, so we handle them below.
585  //
586  // Note that we don't have to handle tail calls here, even conditional
587  // tail calls, as those are not introduced into the X86 MI until post-RA
588  // branch folding or black placement. As a consequence, we get to deal
589  // with the simpler formulation of conditional branches followed by tail
590  // calls.
592  auto JmpIt = MI.getIterator();
593  do {
594  JmpIs.push_back(&*JmpIt);
595  ++JmpIt;
596  } while (JmpIt != UseMBB.instr_end() &&
597  X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
599  break;
600  }
601 
602  // Otherwise we can just rewrite in-place.
604  rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
605  } else if (X86::getCondFromSETOpc(MI.getOpcode()) !=
607  rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
608  } else if (MI.getOpcode() == TargetOpcode::COPY) {
609  rewriteCopy(MI, *FlagUse, CopyDefI);
610  } else {
611  // We assume all other instructions that use flags also def them.
612  assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
613  "Expected a def of EFLAGS for this instruction!");
614 
615  // NB!!! Several arithmetic instructions only *partially* update
616  // flags. Theoretically, we could generate MI code sequences that
617  // would rely on this fact and observe different flags independently.
618  // But currently LLVM models all of these instructions as clobbering
619  // all the flags in an undef way. We rely on that to simplify the
620  // logic.
621  FlagsKilled = true;
622 
623  switch (MI.getOpcode()) {
624  case X86::SETB_C8r:
625  case X86::SETB_C16r:
626  case X86::SETB_C32r:
627  case X86::SETB_C64r:
628  // Use custom lowering for arithmetic that is merely extending the
629  // carry flag. We model this as the SETB_C* pseudo instructions.
630  rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
631  CondRegs);
632  break;
633 
634  default:
635  // Generically handle remaining uses as arithmetic instructions.
636  rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
637  CondRegs);
638  break;
639  }
640  break;
641  }
642 
643  // If this was the last use of the flags, we're done.
644  if (FlagsKilled)
645  break;
646  }
647 
648  // If the flags were killed, we're done with this block.
649  if (FlagsKilled)
650  continue;
651 
652  // Otherwise we need to scan successors for ones where the flags live-in
653  // and queue those up for processing.
654  for (MachineBasicBlock *SuccMBB : UseMBB.successors())
655  if (SuccMBB->isLiveIn(X86::EFLAGS) &&
656  VisitedBlocks.insert(SuccMBB).second) {
657  // We currently don't do any PHI insertion and so we require that the
658  // test basic block dominates all of the use basic blocks. Further, we
659  // can't have a cycle from the test block back to itself as that would
660  // create a cycle requiring a PHI to break it.
661  //
662  // We could in theory do PHI insertion here if it becomes useful by
663  // just taking undef values in along every edge that we don't trace
664  // this EFLAGS copy along. This isn't as bad as fully general PHI
665  // insertion, but still seems like a great deal of complexity.
666  //
667  // Because it is theoretically possible that some earlier MI pass or
668  // other lowering transformation could induce this to happen, we do
669  // a hard check even in non-debug builds here.
670  if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
671  LLVM_DEBUG({
672  dbgs()
673  << "ERROR: Encountered use that is not dominated by our test "
674  "basic block! Rewriting this would require inserting PHI "
675  "nodes to track the flag state across the CFG.\n\nTest "
676  "block:\n";
677  TestMBB->dump();
678  dbgs() << "Use block:\n";
679  SuccMBB->dump();
680  });
682  "Cannot lower EFLAGS copy when original copy def "
683  "does not dominate all uses.");
684  }
685 
686  Blocks.push_back(SuccMBB);
687  }
688  } while (!Blocks.empty());
689 
690  // Now rewrite the jumps that use the flags. These we handle specially
691  // because if there are multiple jumps in a single basic block we'll have
692  // to do surgery on the CFG.
693  MachineBasicBlock *LastJmpMBB = nullptr;
694  for (MachineInstr *JmpI : JmpIs) {
695  // Past the first jump within a basic block we need to split the blocks
696  // apart.
697  if (JmpI->getParent() == LastJmpMBB)
698  splitBlock(*JmpI->getParent(), *JmpI, *TII);
699  else
700  LastJmpMBB = JmpI->getParent();
701 
702  rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
703  }
704 
705  // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
706  // the copy's def operand is itself a kill.
707  }
708 
709 #ifndef NDEBUG
710  for (MachineBasicBlock &MBB : MF)
711  for (MachineInstr &MI : MBB)
712  if (MI.getOpcode() == TargetOpcode::COPY &&
713  (MI.getOperand(0).getReg() == X86::EFLAGS ||
714  MI.getOperand(1).getReg() == X86::EFLAGS)) {
715  LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
716  MI.dump());
717  llvm_unreachable("Unlowered EFLAGS copy!");
718  }
719 #endif
720 
721  return true;
722 }
723 
724 /// Collect any conditions that have already been set in registers so that we
725 /// can re-use them rather than adding duplicates.
726 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
728  CondRegArray CondRegs = {};
729 
730  // Scan backwards across the range of instructions with live EFLAGS.
731  for (MachineInstr &MI :
732  llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
733  X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
734  if (Cond != X86::COND_INVALID && !MI.mayStore() && MI.getOperand(0).isReg() &&
735  TRI->isVirtualRegister(MI.getOperand(0).getReg())) {
736  assert(MI.getOperand(0).isDef() &&
737  "A non-storing SETcc should always define a register!");
738  CondRegs[Cond] = MI.getOperand(0).getReg();
739  }
740 
741  // Stop scanning when we see the first definition of the EFLAGS as prior to
742  // this we would potentially capture the wrong flag state.
743  if (MI.findRegisterDefOperand(X86::EFLAGS))
744  break;
745  }
746  return CondRegs;
747 }
748 
749 unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
751  DebugLoc TestLoc, X86::CondCode Cond) {
752  unsigned Reg = MRI->createVirtualRegister(PromoteRC);
753  auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
754  TII->get(X86::getSETFromCond(Cond)), Reg);
755  (void)SetI;
756  LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
757  ++NumSetCCsInserted;
758  return Reg;
759 }
760 
761 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
763  DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
764  unsigned &CondReg = CondRegs[Cond];
765  unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
766  if (!CondReg && !InvCondReg)
767  CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
768 
769  if (CondReg)
770  return {CondReg, false};
771  else
772  return {InvCondReg, true};
773 }
774 
775 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
777  DebugLoc Loc, unsigned Reg) {
778  auto TestI =
779  BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
780  (void)TestI;
781  LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
782  ++NumTestsInserted;
783 }
784 
785 void X86FlagsCopyLoweringPass::rewriteArithmetic(
787  DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
788  CondRegArray &CondRegs) {
789  // Arithmetic is either reading CF or OF. Figure out which condition we need
790  // to preserve in a register.
791  X86::CondCode Cond;
792 
793  // The addend to use to reset CF or OF when added to the flag value.
794  int Addend;
795 
796  switch (getMnemonicFromOpcode(MI.getOpcode())) {
798  case FlagArithMnemonic::ADCX:
799  case FlagArithMnemonic::RCL:
800  case FlagArithMnemonic::RCR:
802  Cond = X86::COND_B; // CF == 1
803  // Set up an addend that when one is added will need a carry due to not
804  // having a higher bit available.
805  Addend = 255;
806  break;
807 
808  case FlagArithMnemonic::ADOX:
809  Cond = X86::COND_O; // OF == 1
810  // Set up an addend that when one is added will turn from positive to
811  // negative and thus overflow in the signed domain.
812  Addend = 127;
813  break;
814  }
815 
816  // Now get a register that contains the value of the flag input to the
817  // arithmetic. We require exactly this flag to simplify the arithmetic
818  // required to materialize it back into the flag.
819  unsigned &CondReg = CondRegs[Cond];
820  if (!CondReg)
821  CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
822 
823  MachineBasicBlock &MBB = *MI.getParent();
824 
825  // Insert an instruction that will set the flag back to the desired value.
826  unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
827  auto AddI =
828  BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
829  .addDef(TmpReg, RegState::Dead)
830  .addReg(CondReg)
831  .addImm(Addend);
832  (void)AddI;
833  LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
834  ++NumAddsInserted;
835  FlagUse.setIsKill(true);
836 }
837 
838 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
840  DebugLoc TestLoc,
841  MachineInstr &CMovI,
842  MachineOperand &FlagUse,
843  CondRegArray &CondRegs) {
844  // First get the register containing this specific condition.
846  unsigned CondReg;
847  bool Inverted;
848  std::tie(CondReg, Inverted) =
849  getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
850 
851  MachineBasicBlock &MBB = *CMovI.getParent();
852 
853  // Insert a direct test of the saved register.
854  insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
855 
856  // Rewrite the CMov to use the !ZF flag from the test (but match register
857  // size and memory operand), and then kill its use of the flags afterward.
858  auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
859  CMovI.setDesc(TII->get(X86::getCMovFromCond(
860  Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
861  !CMovI.memoperands_empty())));
862  FlagUse.setIsKill(true);
863  LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
864 }
865 
866 void X86FlagsCopyLoweringPass::rewriteCondJmp(
868  DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
869  // First get the register containing this specific condition.
871  unsigned CondReg;
872  bool Inverted;
873  std::tie(CondReg, Inverted) =
874  getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
875 
876  MachineBasicBlock &JmpMBB = *JmpI.getParent();
877 
878  // Insert a direct test of the saved register.
879  insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
880 
881  // Rewrite the jump to use the !ZF flag from the test, and kill its use of
882  // flags afterward.
883  JmpI.setDesc(TII->get(
885  const int ImplicitEFLAGSOpIdx = 1;
886  JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
887  LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
888 }
889 
890 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
891  MachineOperand &FlagUse,
892  MachineInstr &CopyDefI) {
893  // Just replace this copy with the original copy def.
894  MRI->replaceRegWith(MI.getOperand(0).getReg(),
895  CopyDefI.getOperand(0).getReg());
896  MI.eraseFromParent();
897 }
898 
899 void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
901  DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
902  CondRegArray &CondRegs) {
903  // This routine is only used to handle pseudos for setting a register to zero
904  // or all ones based on CF. This is essentially the sign extended from 1-bit
905  // form of SETB and modeled with the SETB_C* pseudos. They require special
906  // handling as they aren't normal SETcc instructions and are lowered to an
907  // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
908  // they are only provided in reg-defining forms. A complicating factor is that
909  // they can define many different register widths.
910  assert(SetBI.getOperand(0).isReg() &&
911  "Cannot have a non-register defined operand to this variant of SETB!");
912 
913  // Little helper to do the common final step of replacing the register def'ed
914  // by this SETB instruction with a new register and removing the SETB
915  // instruction.
916  auto RewriteToReg = [&](unsigned Reg) {
917  MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
918  SetBI.eraseFromParent();
919  };
920 
921  // Grab the register class used for this particular instruction.
922  auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());
923 
924  MachineBasicBlock &MBB = *SetBI.getParent();
925  auto SetPos = SetBI.getIterator();
926  auto SetLoc = SetBI.getDebugLoc();
927 
928  auto AdjustReg = [&](unsigned Reg) {
929  auto &OrigRC = *MRI->getRegClass(Reg);
930  if (&OrigRC == &SetBRC)
931  return Reg;
932 
933  unsigned NewReg;
934 
935  int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
936  int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
937  assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
938  assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
939  int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
940  X86::NoSubRegister, X86::sub_32bit};
941 
942  // If the original size is smaller than the target *and* is smaller than 4
943  // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
944  // to maximize the chance of being able to CSE that operation and to avoid
945  // partial dependency stalls extending to 2-bytes.
946  if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
947  NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
948  BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
949  .addReg(Reg);
950  if (&SetBRC == &X86::GR32RegClass)
951  return NewReg;
952  Reg = NewReg;
953  OrigRegSize = 4;
954  }
955 
956  NewReg = MRI->createVirtualRegister(&SetBRC);
957  if (OrigRegSize < TargetRegSize) {
958  BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
959  NewReg)
960  .addImm(0)
961  .addReg(Reg)
962  .addImm(SubRegIdx[OrigRegSize]);
963  } else if (OrigRegSize > TargetRegSize) {
964  if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
965  // Need to constrain the register class.
966  MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
967  }
968 
969  BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
970  NewReg)
971  .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
972  } else {
973  BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
974  .addReg(Reg);
975  }
976  return NewReg;
977  };
978 
979  unsigned &CondReg = CondRegs[X86::COND_B];
980  if (!CondReg)
981  CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);
982 
983  // Adjust the condition to have the desired register width by zero-extending
984  // as needed.
985  // FIXME: We should use a better API to avoid the local reference and using a
986  // different variable here.
987  unsigned ExtCondReg = AdjustReg(CondReg);
988 
989  // Now we need to turn this into a bitmask. We do this by subtracting it from
990  // zero.
991  unsigned ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
992  BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
993  ZeroReg = AdjustReg(ZeroReg);
994 
995  unsigned Sub;
996  switch (SetBI.getOpcode()) {
997  case X86::SETB_C8r:
998  Sub = X86::SUB8rr;
999  break;
1000 
1001  case X86::SETB_C16r:
1002  Sub = X86::SUB16rr;
1003  break;
1004 
1005  case X86::SETB_C32r:
1006  Sub = X86::SUB32rr;
1007  break;
1008 
1009  case X86::SETB_C64r:
1010  Sub = X86::SUB64rr;
1011  break;
1012 
1013  default:
1014  llvm_unreachable("Invalid SETB_C* opcode!");
1015  }
1016  unsigned ResultReg = MRI->createVirtualRegister(&SetBRC);
1017  BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
1018  .addReg(ZeroReg)
1019  .addReg(ExtCondReg);
1020  return RewriteToReg(ResultReg);
1021 }
1022 
1023 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
1025  DebugLoc TestLoc,
1026  MachineInstr &SetCCI,
1027  MachineOperand &FlagUse,
1028  CondRegArray &CondRegs) {
1030  // Note that we can't usefully rewrite this to the inverse without complex
1031  // analysis of the users of the setCC. Largely we rely on duplicates which
1032  // could have been avoided already being avoided here.
1033  unsigned &CondReg = CondRegs[Cond];
1034  if (!CondReg)
1035  CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
1036 
1037  // Rewriting a register def is trivial: we just replace the register and
1038  // remove the setcc.
1039  if (!SetCCI.mayStore()) {
1040  assert(SetCCI.getOperand(0).isReg() &&
1041  "Cannot have a non-register defined operand to SETcc!");
1042  MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
1043  SetCCI.eraseFromParent();
1044  return;
1045  }
1046 
1047  // Otherwise, we need to emit a store.
1048  auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
1049  SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
1050  // Copy the address operands.
1051  for (int i = 0; i < X86::AddrNumOperands; ++i)
1052  MIB.add(SetCCI.getOperand(i));
1053 
1054  MIB.addReg(CondReg);
1055 
1056  MIB.setMemRefs(SetCCI.memoperands());
1057 
1058  SetCCI.eraseFromParent();
1059  return;
1060 }
unsigned GetCondBranchFromCond(CondCode CC)
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand *> MMOs) const
const MachineInstrBuilder & add(const MachineOperand &MO) const
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
instr_iterator instr_begin()
instr_iterator instr_end()
MachineBasicBlock * getMBB() const
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:140
This class represents lattice values for constants.
Definition: AllocatorList.h:24
MachineOperand * findRegisterDefOperand(unsigned Reg, bool isDead=false, const TargetRegisterInfo *TRI=nullptr)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
X86 EFLAGS copy lowering
CondCode getCondFromCMovOpc(unsigned Opc)
Return condition code of a CMov opcode.
void push_back(const T &Elt)
Definition: SmallVector.h:218
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
unsigned getReg() const
getReg - Returns the register number.
MachineOperand * findRegisterUseOperand(unsigned Reg, bool isKill=false, const TargetRegisterInfo *TRI=nullptr)
Wrapper for findRegisterUseOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
unsigned Reg
CondCode getCondFromSETOpc(unsigned Opc)
Return condition code of a SET opcode.
AddrNumOperands - Total number of operands in a memory reference.
Definition: X86BaseInfo.h:42
LLVM_NODISCARD detail::scope_exit< typename std::decay< Callable >::type > make_scope_exit(Callable &&F)
Definition: ScopeExit.h:59
STATISTIC(NumFunctions, "Total number of functions")
unsigned const TargetRegisterInfo * TRI
A debug info location.
Definition: DebugLoc.h:34
iterator_range< succ_iterator > successors()
AnalysisUsage & addRequired()
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
MachineBasicBlock * getFallThrough()
Return the fallthrough block if the block can implicitly transfer control to the block after it by fa...
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
CondCode getCondFromBranchOpc(unsigned Opc)
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:267
void dump() const
Definition: Pass.cpp:130
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *bb=nullptr)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
bool isBranch(QueryType Type=AnyInBundle) const
Returns true if this is a conditional, unconditional, or indirect branch.
Definition: MachineInstr.h:657
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
FlagArithMnemonic
An enumeration of the arithmetic instruction mnemonics which have interesting flag semantics...
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
Definition: MachineInstr.h:820
unsigned const MachineRegisterInfo * MRI
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:516
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
void setMBB(MachineBasicBlock *MBB)
#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)
Represent the analysis usage information of a pass.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1193
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
self_iterator getIterator()
Definition: ilist_node.h:82
iterator_range< pred_iterator > predecessors()
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1214
static void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:49
unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand=false)
Return a set opcode for the given condition and whether it has a memory operand.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void setIsKill(bool Val=true)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Iterator for intrusive lists based on ilist_node.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
void setDesc(const MCInstrDesc &tid)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one...
MachineOperand class - Representation of each machine instruction operand.
CondCode GetOppositeBranchCondition(CondCode CC)
GetOppositeBranchCondition - Return the inverse of the specified cond, e.g.
SI Lower i1 Copies
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
FunctionPass * createX86FlagsCopyLoweringPass()
Return a pass that lowers EFLAGS copy pseudo instructions.
INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE, "X86 EFLAGS copy lowering", false, false) INITIALIZE_PASS_END(X86FlagsCopyLoweringPass
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
unsigned getCMovFromCond(CondCode CC, unsigned RegBytes, bool HasMemoryOperand=false)
Return a cmov opcode for the given condition, register size in bytes, and operand type...
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New)
Replace successor OLD with NEW and update probability info.
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:478
void copySuccessor(MachineBasicBlock *Orig, succ_iterator I)
Copy a successor (and any probability info) from original block to this block&#39;s.
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Representation of each machine instruction.
Definition: MachineInstr.h:64
static MachineBasicBlock & splitBlock(MachineBasicBlock &MBB, MachineInstr &SplitI, const X86InstrInfo &TII)
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0)
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB &#39;Other&#39; at the position From, and insert it into this MBB right before &#39;...
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
void initializeX86FlagsCopyLoweringPassPass(PassRegistry &)
static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode)
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool memoperands_empty() const
Return true if we don&#39;t have any memory operands which described the memory access done by this instr...
Definition: MachineInstr.h:546
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
void insert(iterator MBBI, MachineBasicBlock *MBB)
IRTranslator LLVM IR MI
#define DEBUG_TYPE
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:39
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1238
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...