LLVM  8.0.1
PPCVSXSwapRemoval.cpp
Go to the documentation of this file.
1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===---------------------------------------------------------------------===//
9 //
10 // This pass analyzes vector computations and removes unnecessary
11 // doubleword swaps (xxswapd instructions). This pass is performed
12 // only for little-endian VSX code generation.
13 //
14 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
15 // and v2f64 vectors are inefficient. These are implemented using
16 // the lxvd2x and stxvd2x instructions, which invert the order of
17 // doublewords in a vector register. Thus code generation inserts
18 // an xxswapd after each such load, and prior to each such store.
19 //
20 // The extra xxswapd instructions reduce performance. The purpose
21 // of this pass is to reduce the number of xxswapd instructions
22 // required for correctness.
23 //
24 // The primary insight is that much code that operates on vectors
25 // does not care about the relative order of elements in a register,
26 // so long as the correct memory order is preserved. If we have a
27 // computation where all input values are provided by lxvd2x/xxswapd,
28 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
29 // computations are lane-insensitive (independent of element order),
30 // then all the xxswapd instructions associated with the loads and
31 // stores may be removed without changing observable semantics.
32 //
33 // This pass uses standard equivalence class infrastructure to create
34 // maximal webs of computations fitting the above description. Each
35 // such web is then optimized by removing its unnecessary xxswapd
36 // instructions.
37 //
38 // There are some lane-sensitive operations for which we can still
39 // permit the optimization, provided we modify those operations
40 // accordingly. Such operations are identified as using "special
41 // handling" within this module.
42 //
43 //===---------------------------------------------------------------------===//
44 
45 #include "PPC.h"
46 #include "PPCInstrBuilder.h"
47 #include "PPCInstrInfo.h"
48 #include "PPCTargetMachine.h"
49 #include "llvm/ADT/DenseMap.h"
54 #include "llvm/Config/llvm-config.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/Format.h"
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "ppc-vsx-swaps"
62 
63 namespace llvm {
65 }
66 
67 namespace {
68 
69 // A PPCVSXSwapEntry is created for each machine instruction that
70 // is relevant to a vector computation.
71 struct PPCVSXSwapEntry {
72  // Pointer to the instruction.
73  MachineInstr *VSEMI;
74 
75  // Unique ID (position in the swap vector).
76  int VSEId;
77 
78  // Attributes of this node.
79  unsigned int IsLoad : 1;
80  unsigned int IsStore : 1;
81  unsigned int IsSwap : 1;
82  unsigned int MentionsPhysVR : 1;
83  unsigned int IsSwappable : 1;
84  unsigned int MentionsPartialVR : 1;
85  unsigned int SpecialHandling : 3;
86  unsigned int WebRejected : 1;
87  unsigned int WillRemove : 1;
88 };
89 
90 enum SHValues {
91  SH_NONE = 0,
92  SH_EXTRACT,
93  SH_INSERT,
94  SH_NOSWAP_LD,
95  SH_NOSWAP_ST,
96  SH_SPLAT,
97  SH_XXPERMDI,
98  SH_COPYWIDEN
99 };
100 
101 struct PPCVSXSwapRemoval : public MachineFunctionPass {
102 
103  static char ID;
104  const PPCInstrInfo *TII;
105  MachineFunction *MF;
107 
108  // Swap entries are allocated in a vector for better performance.
109  std::vector<PPCVSXSwapEntry> SwapVector;
110 
111  // A mapping is maintained between machine instructions and
112  // their swap entries. The key is the address of the MI.
114 
115  // Equivalence classes are used to gather webs of related computation.
116  // Swap entries are represented by their VSEId fields.
118 
119  PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
121  }
122 
123 private:
124  // Initialize data structures.
125  void initialize(MachineFunction &MFParm);
126 
127  // Walk the machine instructions to gather vector usage information.
128  // Return true iff vector mentions are present.
129  bool gatherVectorInstructions();
130 
131  // Add an entry to the swap vector and swap map.
132  int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
133 
134  // Hunt backwards through COPY and SUBREG_TO_REG chains for a
135  // source register. VecIdx indicates the swap vector entry to
136  // mark as mentioning a physical register if the search leads
137  // to one.
138  unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
139 
140  // Generate equivalence classes for related computations (webs).
141  void formWebs();
142 
143  // Analyze webs and determine those that cannot be optimized.
144  void recordUnoptimizableWebs();
145 
146  // Record which swap instructions can be safely removed.
147  void markSwapsForRemoval();
148 
149  // Remove swaps and update other instructions requiring special
150  // handling. Return true iff any changes are made.
151  bool removeSwaps();
152 
153  // Insert a swap instruction from SrcReg to DstReg at the given
154  // InsertPoint.
155  void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
156  unsigned DstReg, unsigned SrcReg);
157 
158  // Update instructions requiring special handling.
159  void handleSpecialSwappables(int EntryIdx);
160 
161  // Dump a description of the entries in the swap vector.
162  void dumpSwapVector();
163 
164  // Return true iff the given register is in the given class.
165  bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
167  return RC->hasSubClassEq(MRI->getRegClass(Reg));
168  return RC->contains(Reg);
169  }
170 
171  // Return true iff the given register is a full vector register.
172  bool isVecReg(unsigned Reg) {
173  return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
174  isRegInClass(Reg, &PPC::VRRCRegClass));
175  }
176 
177  // Return true iff the given register is a partial vector register.
178  bool isScalarVecReg(unsigned Reg) {
179  return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
180  isRegInClass(Reg, &PPC::VSSRCRegClass));
181  }
182 
183  // Return true iff the given register mentions all or part of a
184  // vector register. Also sets Partial to true if the mention
185  // is for just the floating-point register overlap of the register.
186  bool isAnyVecReg(unsigned Reg, bool &Partial) {
187  if (isScalarVecReg(Reg))
188  Partial = true;
189  return isScalarVecReg(Reg) || isVecReg(Reg);
190  }
191 
192 public:
193  // Main entry point for this pass.
194  bool runOnMachineFunction(MachineFunction &MF) override {
195  if (skipFunction(MF.getFunction()))
196  return false;
197 
198  // If we don't have VSX on the subtarget, don't do anything.
199  // Also, on Power 9 the load and store ops preserve element order and so
200  // the swaps are not required.
201  const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
202  if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
203  return false;
204 
205  bool Changed = false;
206  initialize(MF);
207 
208  if (gatherVectorInstructions()) {
209  formWebs();
210  recordUnoptimizableWebs();
211  markSwapsForRemoval();
212  Changed = removeSwaps();
213  }
214 
215  // FIXME: See the allocation of EC in initialize().
216  delete EC;
217  return Changed;
218  }
219 };
220 
221 // Initialize data structures for this pass. In particular, clear the
222 // swap vector and allocate the equivalence class mapping before
223 // processing each function.
225  MF = &MFParm;
226  MRI = &MF->getRegInfo();
227  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
228 
229  // An initial vector size of 256 appears to work well in practice.
230  // Small/medium functions with vector content tend not to incur a
231  // reallocation at this size. Three of the vector tests in
232  // projects/test-suite reallocate, which seems like a reasonable rate.
233  const int InitialVectorSize(256);
234  SwapVector.clear();
235  SwapVector.reserve(InitialVectorSize);
236 
237  // FIXME: Currently we allocate EC each time because we don't have
238  // access to the set representation on which to call clear(). Should
239  // consider adding a clear() method to the EquivalenceClasses class.
240  EC = new EquivalenceClasses<int>;
241 }
242 
243 // Create an entry in the swap vector for each instruction that mentions
244 // a full vector register, recording various characteristics of the
245 // instructions there.
246 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
247  bool RelevantFunction = false;
248 
249  for (MachineBasicBlock &MBB : *MF) {
250  for (MachineInstr &MI : MBB) {
251 
252  if (MI.isDebugInstr())
253  continue;
254 
255  bool RelevantInstr = false;
256  bool Partial = false;
257 
258  for (const MachineOperand &MO : MI.operands()) {
259  if (!MO.isReg())
260  continue;
261  unsigned Reg = MO.getReg();
262  if (isAnyVecReg(Reg, Partial)) {
263  RelevantInstr = true;
264  break;
265  }
266  }
267 
268  if (!RelevantInstr)
269  continue;
270 
271  RelevantFunction = true;
272 
273  // Create a SwapEntry initialized to zeros, then fill in the
274  // instruction and ID fields before pushing it to the back
275  // of the swap vector.
276  PPCVSXSwapEntry SwapEntry{};
277  int VecIdx = addSwapEntry(&MI, SwapEntry);
278 
279  switch(MI.getOpcode()) {
280  default:
281  // Unless noted otherwise, an instruction is considered
282  // safe for the optimization. There are a large number of
283  // such true-SIMD instructions (all vector math, logical,
284  // select, compare, etc.). However, if the instruction
285  // mentions a partial vector register and does not have
286  // special handling defined, it is not swappable.
287  if (Partial)
288  SwapVector[VecIdx].MentionsPartialVR = 1;
289  else
290  SwapVector[VecIdx].IsSwappable = 1;
291  break;
292  case PPC::XXPERMDI: {
293  // This is a swap if it is of the form XXPERMDI t, s, s, 2.
294  // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
295  // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
296  // for example. We have to look through chains of COPY and
297  // SUBREG_TO_REG to find the real source value for comparison.
298  // If the real source value is a physical register, then mark the
299  // XXPERMDI as mentioning a physical register.
300  int immed = MI.getOperand(3).getImm();
301  if (immed == 2) {
302  unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
303  VecIdx);
304  unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
305  VecIdx);
306  if (trueReg1 == trueReg2)
307  SwapVector[VecIdx].IsSwap = 1;
308  else {
309  // We can still handle these if the two registers are not
310  // identical, by adjusting the form of the XXPERMDI.
311  SwapVector[VecIdx].IsSwappable = 1;
312  SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
313  }
314  // This is a doubleword splat if it is of the form
315  // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we
316  // must look through chains of copy-likes to find the source
317  // register. We turn off the marking for mention of a physical
318  // register, because splatting it is safe; the optimization
319  // will not swap the value in the physical register. Whether
320  // or not the two input registers are identical, we can handle
321  // these by adjusting the form of the XXPERMDI.
322  } else if (immed == 0 || immed == 3) {
323 
324  SwapVector[VecIdx].IsSwappable = 1;
325  SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
326 
327  unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
328  VecIdx);
329  unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
330  VecIdx);
331  if (trueReg1 == trueReg2)
332  SwapVector[VecIdx].MentionsPhysVR = 0;
333 
334  } else {
335  // We can still handle these by adjusting the form of the XXPERMDI.
336  SwapVector[VecIdx].IsSwappable = 1;
337  SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
338  }
339  break;
340  }
341  case PPC::LVX:
342  // Non-permuting loads are currently unsafe. We can use special
343  // handling for this in the future. By not marking these as
344  // IsSwap, we ensure computations containing them will be rejected
345  // for now.
346  SwapVector[VecIdx].IsLoad = 1;
347  break;
348  case PPC::LXVD2X:
349  case PPC::LXVW4X:
350  // Permuting loads are marked as both load and swap, and are
351  // safe for optimization.
352  SwapVector[VecIdx].IsLoad = 1;
353  SwapVector[VecIdx].IsSwap = 1;
354  break;
355  case PPC::LXSDX:
356  case PPC::LXSSPX:
357  case PPC::XFLOADf64:
358  case PPC::XFLOADf32:
359  // A load of a floating-point value into the high-order half of
360  // a vector register is safe, provided that we introduce a swap
361  // following the load, which will be done by the SUBREG_TO_REG
362  // support. So just mark these as safe.
363  SwapVector[VecIdx].IsLoad = 1;
364  SwapVector[VecIdx].IsSwappable = 1;
365  break;
366  case PPC::STVX:
367  // Non-permuting stores are currently unsafe. We can use special
368  // handling for this in the future. By not marking these as
369  // IsSwap, we ensure computations containing them will be rejected
370  // for now.
371  SwapVector[VecIdx].IsStore = 1;
372  break;
373  case PPC::STXVD2X:
374  case PPC::STXVW4X:
375  // Permuting stores are marked as both store and swap, and are
376  // safe for optimization.
377  SwapVector[VecIdx].IsStore = 1;
378  SwapVector[VecIdx].IsSwap = 1;
379  break;
380  case PPC::COPY:
381  // These are fine provided they are moving between full vector
382  // register classes.
383  if (isVecReg(MI.getOperand(0).getReg()) &&
384  isVecReg(MI.getOperand(1).getReg()))
385  SwapVector[VecIdx].IsSwappable = 1;
386  // If we have a copy from one scalar floating-point register
387  // to another, we can accept this even if it is a physical
388  // register. The only way this gets involved is if it feeds
389  // a SUBREG_TO_REG, which is handled by introducing a swap.
390  else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
391  isScalarVecReg(MI.getOperand(1).getReg()))
392  SwapVector[VecIdx].IsSwappable = 1;
393  break;
394  case PPC::SUBREG_TO_REG: {
395  // These are fine provided they are moving between full vector
396  // register classes. If they are moving from a scalar
397  // floating-point class to a vector class, we can handle those
398  // as well, provided we introduce a swap. It is generally the
399  // case that we will introduce fewer swaps than we remove, but
400  // (FIXME) a cost model could be used. However, introduced
401  // swaps could potentially be CSEd, so this is not trivial.
402  if (isVecReg(MI.getOperand(0).getReg()) &&
403  isVecReg(MI.getOperand(2).getReg()))
404  SwapVector[VecIdx].IsSwappable = 1;
405  else if (isVecReg(MI.getOperand(0).getReg()) &&
406  isScalarVecReg(MI.getOperand(2).getReg())) {
407  SwapVector[VecIdx].IsSwappable = 1;
408  SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
409  }
410  break;
411  }
412  case PPC::VSPLTB:
413  case PPC::VSPLTH:
414  case PPC::VSPLTW:
415  case PPC::XXSPLTW:
416  // Splats are lane-sensitive, but we can use special handling
417  // to adjust the source lane for the splat.
418  SwapVector[VecIdx].IsSwappable = 1;
419  SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
420  break;
421  // The presence of the following lane-sensitive operations in a
422  // web will kill the optimization, at least for now. For these
423  // we do nothing, causing the optimization to fail.
424  // FIXME: Some of these could be permitted with special handling,
425  // and will be phased in as time permits.
426  // FIXME: There is no simple and maintainable way to express a set
427  // of opcodes having a common attribute in TableGen. Should this
428  // change, this is a prime candidate to use such a mechanism.
429  case PPC::INLINEASM:
430  case PPC::EXTRACT_SUBREG:
431  case PPC::INSERT_SUBREG:
432  case PPC::COPY_TO_REGCLASS:
433  case PPC::LVEBX:
434  case PPC::LVEHX:
435  case PPC::LVEWX:
436  case PPC::LVSL:
437  case PPC::LVSR:
438  case PPC::LVXL:
439  case PPC::STVEBX:
440  case PPC::STVEHX:
441  case PPC::STVEWX:
442  case PPC::STVXL:
443  // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
444  // by adding special handling for narrowing copies as well as
445  // widening ones. However, I've experimented with this, and in
446  // practice we currently do not appear to use STXSDX fed by
447  // a narrowing copy from a full vector register. Since I can't
448  // generate any useful test cases, I've left this alone for now.
449  case PPC::STXSDX:
450  case PPC::STXSSPX:
451  case PPC::VCIPHER:
452  case PPC::VCIPHERLAST:
453  case PPC::VMRGHB:
454  case PPC::VMRGHH:
455  case PPC::VMRGHW:
456  case PPC::VMRGLB:
457  case PPC::VMRGLH:
458  case PPC::VMRGLW:
459  case PPC::VMULESB:
460  case PPC::VMULESH:
461  case PPC::VMULESW:
462  case PPC::VMULEUB:
463  case PPC::VMULEUH:
464  case PPC::VMULEUW:
465  case PPC::VMULOSB:
466  case PPC::VMULOSH:
467  case PPC::VMULOSW:
468  case PPC::VMULOUB:
469  case PPC::VMULOUH:
470  case PPC::VMULOUW:
471  case PPC::VNCIPHER:
472  case PPC::VNCIPHERLAST:
473  case PPC::VPERM:
474  case PPC::VPERMXOR:
475  case PPC::VPKPX:
476  case PPC::VPKSHSS:
477  case PPC::VPKSHUS:
478  case PPC::VPKSDSS:
479  case PPC::VPKSDUS:
480  case PPC::VPKSWSS:
481  case PPC::VPKSWUS:
482  case PPC::VPKUDUM:
483  case PPC::VPKUDUS:
484  case PPC::VPKUHUM:
485  case PPC::VPKUHUS:
486  case PPC::VPKUWUM:
487  case PPC::VPKUWUS:
488  case PPC::VPMSUMB:
489  case PPC::VPMSUMD:
490  case PPC::VPMSUMH:
491  case PPC::VPMSUMW:
492  case PPC::VRLB:
493  case PPC::VRLD:
494  case PPC::VRLH:
495  case PPC::VRLW:
496  case PPC::VSBOX:
497  case PPC::VSHASIGMAD:
498  case PPC::VSHASIGMAW:
499  case PPC::VSL:
500  case PPC::VSLDOI:
501  case PPC::VSLO:
502  case PPC::VSR:
503  case PPC::VSRO:
504  case PPC::VSUM2SWS:
505  case PPC::VSUM4SBS:
506  case PPC::VSUM4SHS:
507  case PPC::VSUM4UBS:
508  case PPC::VSUMSWS:
509  case PPC::VUPKHPX:
510  case PPC::VUPKHSB:
511  case PPC::VUPKHSH:
512  case PPC::VUPKHSW:
513  case PPC::VUPKLPX:
514  case PPC::VUPKLSB:
515  case PPC::VUPKLSH:
516  case PPC::VUPKLSW:
517  case PPC::XXMRGHW:
518  case PPC::XXMRGLW:
519  // XXSLDWI could be replaced by a general permute with one of three
520  // permute control vectors (for shift values 1, 2, 3). However,
521  // VPERM has a more restrictive register class.
522  case PPC::XXSLDWI:
523  case PPC::XSCVDPSPN:
524  case PPC::XSCVSPDPN:
525  break;
526  }
527  }
528  }
529 
530  if (RelevantFunction) {
531  LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
532  LLVM_DEBUG(dumpSwapVector());
533  }
534 
535  return RelevantFunction;
536 }
537 
538 // Add an entry to the swap vector and swap map, and make a
539 // singleton equivalence class for the entry.
540 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
541  PPCVSXSwapEntry& SwapEntry) {
542  SwapEntry.VSEMI = MI;
543  SwapEntry.VSEId = SwapVector.size();
544  SwapVector.push_back(SwapEntry);
545  EC->insert(SwapEntry.VSEId);
546  SwapMap[MI] = SwapEntry.VSEId;
547  return SwapEntry.VSEId;
548 }
549 
550 // This is used to find the "true" source register for an
551 // XXPERMDI instruction, since MachineCSE does not handle the
552 // "copy-like" operations (Copy and SubregToReg). Returns
553 // the original SrcReg unless it is the target of a copy-like
554 // operation, in which case we chain backwards through all
555 // such operations to the ultimate source register. If a
556 // physical register is encountered, we stop the search and
557 // flag the swap entry indicated by VecIdx (the original
558 // XXPERMDI) as mentioning a physical register.
559 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
560  unsigned VecIdx) {
561  MachineInstr *MI = MRI->getVRegDef(SrcReg);
562  if (!MI->isCopyLike())
563  return SrcReg;
564 
565  unsigned CopySrcReg;
566  if (MI->isCopy())
567  CopySrcReg = MI->getOperand(1).getReg();
568  else {
569  assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
570  CopySrcReg = MI->getOperand(2).getReg();
571  }
572 
573  if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) {
574  if (!isScalarVecReg(CopySrcReg))
575  SwapVector[VecIdx].MentionsPhysVR = 1;
576  return CopySrcReg;
577  }
578 
579  return lookThruCopyLike(CopySrcReg, VecIdx);
580 }
581 
582 // Generate equivalence classes for related computations (webs) by
583 // def-use relationships of virtual registers. Mention of a physical
584 // register terminates the generation of equivalence classes as this
585 // indicates a use of a parameter, definition of a return value, use
586 // of a value returned from a call, or definition of a parameter to a
587 // call. Computations with physical register mentions are flagged
588 // as such so their containing webs will not be optimized.
589 void PPCVSXSwapRemoval::formWebs() {
590 
591  LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
592 
593  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
594 
595  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
596 
597  LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
598  LLVM_DEBUG(MI->dump());
599 
600  // It's sufficient to walk vector uses and join them to their unique
601  // definitions. In addition, check full vector register operands
602  // for physical regs. We exclude partial-vector register operands
603  // because we can handle them if copied to a full vector.
604  for (const MachineOperand &MO : MI->operands()) {
605  if (!MO.isReg())
606  continue;
607 
608  unsigned Reg = MO.getReg();
609  if (!isVecReg(Reg) && !isScalarVecReg(Reg))
610  continue;
611 
613  if (!(MI->isCopy() && isScalarVecReg(Reg)))
614  SwapVector[EntryIdx].MentionsPhysVR = 1;
615  continue;
616  }
617 
618  if (!MO.isUse())
619  continue;
620 
621  MachineInstr* DefMI = MRI->getVRegDef(Reg);
622  assert(SwapMap.find(DefMI) != SwapMap.end() &&
623  "Inconsistency: def of vector reg not found in swap map!");
624  int DefIdx = SwapMap[DefMI];
625  (void)EC->unionSets(SwapVector[DefIdx].VSEId,
626  SwapVector[EntryIdx].VSEId);
627 
628  LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
629  SwapVector[DefIdx].VSEId,
630  SwapVector[EntryIdx].VSEId));
631  LLVM_DEBUG(dbgs() << " Def: ");
632  LLVM_DEBUG(DefMI->dump());
633  }
634  }
635 }
636 
637 // Walk the swap vector entries looking for conditions that prevent their
638 // containing computations from being optimized. When such conditions are
639 // found, mark the representative of the computation's equivalence class
640 // as rejected.
641 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
642 
643  LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
644 
645  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
646  int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
647 
648  // If representative is already rejected, don't waste further time.
649  if (SwapVector[Repr].WebRejected)
650  continue;
651 
652  // Reject webs containing mentions of physical or partial registers, or
653  // containing operations that we don't know how to handle in a lane-
654  // permuted region.
655  if (SwapVector[EntryIdx].MentionsPhysVR ||
656  SwapVector[EntryIdx].MentionsPartialVR ||
657  !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
658 
659  SwapVector[Repr].WebRejected = 1;
660 
661  LLVM_DEBUG(
662  dbgs() << format("Web %d rejected for physreg, partial reg, or not "
663  "swap[pable]\n",
664  Repr));
665  LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": ");
666  LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump());
667  LLVM_DEBUG(dbgs() << "\n");
668  }
669 
670  // Reject webs than contain swapping loads that feed something other
671  // than a swap instruction.
672  else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
673  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
674  unsigned DefReg = MI->getOperand(0).getReg();
675 
676  // We skip debug instructions in the analysis. (Note that debug
677  // location information is still maintained by this optimization
678  // because it remains on the LXVD2X and STXVD2X instructions after
679  // the XXPERMDIs are removed.)
680  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
681  int UseIdx = SwapMap[&UseMI];
682 
683  if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
684  SwapVector[UseIdx].IsStore) {
685 
686  SwapVector[Repr].WebRejected = 1;
687 
688  LLVM_DEBUG(dbgs() << format(
689  "Web %d rejected for load not feeding swap\n", Repr));
690  LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": ");
691  LLVM_DEBUG(MI->dump());
692  LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
693  LLVM_DEBUG(UseMI.dump());
694  LLVM_DEBUG(dbgs() << "\n");
695  }
696  }
697 
698  // Reject webs that contain swapping stores that are fed by something
699  // other than a swap instruction.
700  } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
701  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
702  unsigned UseReg = MI->getOperand(0).getReg();
703  MachineInstr *DefMI = MRI->getVRegDef(UseReg);
704  unsigned DefReg = DefMI->getOperand(0).getReg();
705  int DefIdx = SwapMap[DefMI];
706 
707  if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
708  SwapVector[DefIdx].IsStore) {
709 
710  SwapVector[Repr].WebRejected = 1;
711 
712  LLVM_DEBUG(dbgs() << format(
713  "Web %d rejected for store not fed by swap\n", Repr));
714  LLVM_DEBUG(dbgs() << " def " << DefIdx << ": ");
715  LLVM_DEBUG(DefMI->dump());
716  LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": ");
717  LLVM_DEBUG(MI->dump());
718  LLVM_DEBUG(dbgs() << "\n");
719  }
720 
721  // Ensure all uses of the register defined by DefMI feed store
722  // instructions
723  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
724  int UseIdx = SwapMap[&UseMI];
725 
726  if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
727  SwapVector[Repr].WebRejected = 1;
728 
729  LLVM_DEBUG(
730  dbgs() << format(
731  "Web %d rejected for swap not feeding only stores\n", Repr));
732  LLVM_DEBUG(dbgs() << " def "
733  << " : ");
734  LLVM_DEBUG(DefMI->dump());
735  LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
736  LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump());
737  LLVM_DEBUG(dbgs() << "\n");
738  }
739  }
740  }
741  }
742 
743  LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
744  LLVM_DEBUG(dumpSwapVector());
745 }
746 
747 // Walk the swap vector entries looking for swaps fed by permuting loads
748 // and swaps that feed permuting stores. If the containing computation
749 // has not been marked rejected, mark each such swap for removal.
750 // (Removal is delayed in case optimization has disturbed the pattern,
751 // such that multiple loads feed the same swap, etc.)
752 void PPCVSXSwapRemoval::markSwapsForRemoval() {
753 
754  LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
755 
756  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
757 
758  if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
759  int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
760 
761  if (!SwapVector[Repr].WebRejected) {
762  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
763  unsigned DefReg = MI->getOperand(0).getReg();
764 
765  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
766  int UseIdx = SwapMap[&UseMI];
767  SwapVector[UseIdx].WillRemove = 1;
768 
769  LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
770  LLVM_DEBUG(UseMI.dump());
771  }
772  }
773 
774  } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
775  int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
776 
777  if (!SwapVector[Repr].WebRejected) {
778  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
779  unsigned UseReg = MI->getOperand(0).getReg();
780  MachineInstr *DefMI = MRI->getVRegDef(UseReg);
781  int DefIdx = SwapMap[DefMI];
782  SwapVector[DefIdx].WillRemove = 1;
783 
784  LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
785  LLVM_DEBUG(DefMI->dump());
786  }
787 
788  } else if (SwapVector[EntryIdx].IsSwappable &&
789  SwapVector[EntryIdx].SpecialHandling != 0) {
790  int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
791 
792  if (!SwapVector[Repr].WebRejected)
793  handleSpecialSwappables(EntryIdx);
794  }
795  }
796 }
797 
798 // Create an xxswapd instruction and insert it prior to the given point.
799 // MI is used to determine basic block and debug loc information.
800 // FIXME: When inserting a swap, we should check whether SrcReg is
801 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so,
802 // then instead we should generate a copy from Reg to DstReg.
803 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
804  MachineBasicBlock::iterator InsertPoint,
805  unsigned DstReg, unsigned SrcReg) {
806  BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
807  TII->get(PPC::XXPERMDI), DstReg)
808  .addReg(SrcReg)
809  .addReg(SrcReg)
810  .addImm(2);
811 }
812 
813 // The identified swap entry requires special handling to allow its
814 // containing computation to be optimized. Perform that handling
815 // here.
816 // FIXME: Additional opportunities will be phased in with subsequent
817 // patches.
818 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
819  switch (SwapVector[EntryIdx].SpecialHandling) {
820 
821  default:
822  llvm_unreachable("Unexpected special handling type");
823 
824  // For splats based on an index into a vector, add N/2 modulo N
825  // to the index, where N is the number of vector elements.
826  case SHValues::SH_SPLAT: {
827  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
828  unsigned NElts;
829 
830  LLVM_DEBUG(dbgs() << "Changing splat: ");
831  LLVM_DEBUG(MI->dump());
832 
833  switch (MI->getOpcode()) {
834  default:
835  llvm_unreachable("Unexpected splat opcode");
836  case PPC::VSPLTB: NElts = 16; break;
837  case PPC::VSPLTH: NElts = 8; break;
838  case PPC::VSPLTW:
839  case PPC::XXSPLTW: NElts = 4; break;
840  }
841 
842  unsigned EltNo;
843  if (MI->getOpcode() == PPC::XXSPLTW)
844  EltNo = MI->getOperand(2).getImm();
845  else
846  EltNo = MI->getOperand(1).getImm();
847 
848  EltNo = (EltNo + NElts / 2) % NElts;
849  if (MI->getOpcode() == PPC::XXSPLTW)
850  MI->getOperand(2).setImm(EltNo);
851  else
852  MI->getOperand(1).setImm(EltNo);
853 
854  LLVM_DEBUG(dbgs() << " Into: ");
855  LLVM_DEBUG(MI->dump());
856  break;
857  }
858 
859  // For an XXPERMDI that isn't handled otherwise, we need to
860  // reverse the order of the operands. If the selector operand
861  // has a value of 0 or 3, we need to change it to 3 or 0,
862  // respectively. Otherwise we should leave it alone. (This
863  // is equivalent to reversing the two bits of the selector
864  // operand and complementing the result.)
865  case SHValues::SH_XXPERMDI: {
866  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
867 
868  LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
869  LLVM_DEBUG(MI->dump());
870 
871  unsigned Selector = MI->getOperand(3).getImm();
872  if (Selector == 0 || Selector == 3)
873  Selector = 3 - Selector;
874  MI->getOperand(3).setImm(Selector);
875 
876  unsigned Reg1 = MI->getOperand(1).getReg();
877  unsigned Reg2 = MI->getOperand(2).getReg();
878  MI->getOperand(1).setReg(Reg2);
879  MI->getOperand(2).setReg(Reg1);
880 
881  // We also need to swap kill flag associated with the register.
882  bool IsKill1 = MI->getOperand(1).isKill();
883  bool IsKill2 = MI->getOperand(2).isKill();
884  MI->getOperand(1).setIsKill(IsKill2);
885  MI->getOperand(2).setIsKill(IsKill1);
886 
887  LLVM_DEBUG(dbgs() << " Into: ");
888  LLVM_DEBUG(MI->dump());
889  break;
890  }
891 
892  // For a copy from a scalar floating-point register to a vector
893  // register, removing swaps will leave the copied value in the
894  // wrong lane. Insert a swap following the copy to fix this.
895  case SHValues::SH_COPYWIDEN: {
896  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
897 
898  LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
899  LLVM_DEBUG(MI->dump());
900 
901  unsigned DstReg = MI->getOperand(0).getReg();
902  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
903  unsigned NewVReg = MRI->createVirtualRegister(DstRC);
904 
905  MI->getOperand(0).setReg(NewVReg);
906  LLVM_DEBUG(dbgs() << " Into: ");
907  LLVM_DEBUG(MI->dump());
908 
909  auto InsertPoint = ++MachineBasicBlock::iterator(MI);
910 
911  // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
912  // is copying to a VRRC, we need to be careful to avoid a register
913  // assignment problem. In this case we must copy from VRRC to VSRC
914  // prior to the swap, and from VSRC to VRRC following the swap.
915  // Coalescing will usually remove all this mess.
916  if (DstRC == &PPC::VRRCRegClass) {
917  unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
918  unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
919 
920  BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
921  TII->get(PPC::COPY), VSRCTmp1)
922  .addReg(NewVReg);
923  LLVM_DEBUG(std::prev(InsertPoint)->dump());
924 
925  insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
926  LLVM_DEBUG(std::prev(InsertPoint)->dump());
927 
928  BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
929  TII->get(PPC::COPY), DstReg)
930  .addReg(VSRCTmp2);
931  LLVM_DEBUG(std::prev(InsertPoint)->dump());
932 
933  } else {
934  insertSwap(MI, InsertPoint, DstReg, NewVReg);
935  LLVM_DEBUG(std::prev(InsertPoint)->dump());
936  }
937  break;
938  }
939  }
940 }
941 
942 // Walk the swap vector and replace each entry marked for removal with
943 // a copy operation.
944 bool PPCVSXSwapRemoval::removeSwaps() {
945 
946  LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
947 
948  bool Changed = false;
949 
950  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
951  if (SwapVector[EntryIdx].WillRemove) {
952  Changed = true;
953  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
954  MachineBasicBlock *MBB = MI->getParent();
955  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
956  MI->getOperand(0).getReg())
957  .add(MI->getOperand(1));
958 
959  LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
960  SwapVector[EntryIdx].VSEId));
961  LLVM_DEBUG(MI->dump());
962 
963  MI->eraseFromParent();
964  }
965  }
966 
967  return Changed;
968 }
969 
970 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
971 // For debug purposes, dump the contents of the swap vector.
972 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
973 
974  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
975 
976  MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
977  int ID = SwapVector[EntryIdx].VSEId;
978 
979  dbgs() << format("%6d", ID);
980  dbgs() << format("%6d", EC->getLeaderValue(ID));
981  dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
982  dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str());
983 
984  if (SwapVector[EntryIdx].IsLoad)
985  dbgs() << "load ";
986  if (SwapVector[EntryIdx].IsStore)
987  dbgs() << "store ";
988  if (SwapVector[EntryIdx].IsSwap)
989  dbgs() << "swap ";
990  if (SwapVector[EntryIdx].MentionsPhysVR)
991  dbgs() << "physreg ";
992  if (SwapVector[EntryIdx].MentionsPartialVR)
993  dbgs() << "partialreg ";
994 
995  if (SwapVector[EntryIdx].IsSwappable) {
996  dbgs() << "swappable ";
997  switch(SwapVector[EntryIdx].SpecialHandling) {
998  default:
999  dbgs() << "special:**unknown**";
1000  break;
1001  case SH_NONE:
1002  break;
1003  case SH_EXTRACT:
1004  dbgs() << "special:extract ";
1005  break;
1006  case SH_INSERT:
1007  dbgs() << "special:insert ";
1008  break;
1009  case SH_NOSWAP_LD:
1010  dbgs() << "special:load ";
1011  break;
1012  case SH_NOSWAP_ST:
1013  dbgs() << "special:store ";
1014  break;
1015  case SH_SPLAT:
1016  dbgs() << "special:splat ";
1017  break;
1018  case SH_XXPERMDI:
1019  dbgs() << "special:xxpermdi ";
1020  break;
1021  case SH_COPYWIDEN:
1022  dbgs() << "special:copywiden ";
1023  break;
1024  }
1025  }
1026 
1027  if (SwapVector[EntryIdx].WebRejected)
1028  dbgs() << "rejected ";
1029  if (SwapVector[EntryIdx].WillRemove)
1030  dbgs() << "remove ";
1031 
1032  dbgs() << "\n";
1033 
1034  // For no-asserts builds.
1035  (void)MI;
1036  (void)ID;
1037  }
1038 
1039  dbgs() << "\n";
1040 }
1041 #endif
1042 
1043 } // end default namespace
1044 
1045 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1046  "PowerPC VSX Swap Removal", false, false)
1047 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1048  "PowerPC VSX Swap Removal", false, false)
1049 
1050 char PPCVSXSwapRemoval::ID = 0;
1051 FunctionPass*
1052 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
bool contains(unsigned Reg) const
Return true if the specified register is included in this register class.
const TargetRegisterClass * getRegClass(unsigned Reg) const
Return the register class of the specified virtual register.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
FunctionPass * createPPCVSXSwapRemovalPass()
bool isSubregToReg() const
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
unsigned getReg() const
getReg - Returns the register number.
static bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
unsigned Reg
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:124
bool hasVSX() const
Definition: PPCSubtarget.h:246
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:459
bool isCopyLike() const
Return true if the instruction behaves like a copy.
PowerPC VSX Swap Removal
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, "PowerPC VSX Swap Removal", false, false) INITIALIZE_PASS_END(PPCVSXSwapRemoval
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
#define LLVM_DUMP_METHOD
Definition: Compiler.h:74
INLINEASM - Represents an inline asm block.
Definition: ISDOpcodes.h:667
CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they&#39;re not in a MachineFuncti...
void initializePPCVSXSwapRemovalPass(PassRegistry &)
VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
MachineInstrBundleIterator< MachineInstr > iterator
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
unsigned const MachineRegisterInfo * MRI
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineInstrBuilder & UseMI
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
void setImm(int64_t immVal)
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
static bool isVecReg(unsigned Reg)
bool isCopy() const
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
void setIsKill(bool Val=true)
MachineOperand class - Representation of each machine instruction operand.
MachineInstrBuilder MachineInstrBuilder & DefMI
VPERM - The PPC VPERM Instruction.
int64_t getImm() const
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringRef > StandardNames)
Initialize the set of available library functions based on the specified target triple.
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
static unsigned UseReg(const MachineOperand &MO)
void setReg(unsigned Reg)
Change the register this operand corresponds to.
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool needsSwapsForVSXMemOps() const
Definition: PPCSubtarget.h:292
#define DEBUG_TYPE
IRTranslator LLVM IR MI
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:39
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
XXPERMDI - The PPC XXPERMDI instruction.