LLVM  8.0.1
X86AvoidStoreForwardingBlocks.cpp
Go to the documentation of this file.
1 //===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // If a load follows a store and reloads data that the store has written to
11 // memory, Intel microarchitectures can in many cases forward the data directly
12 // from the store to the load, This "store forwarding" saves cycles by enabling
13 // the load to directly obtain the data instead of accessing the data from
14 // cache or memory.
15 // A "store forward block" occurs in cases that a store cannot be forwarded to
16 // the load. The most typical case of store forward block on Intel Core
17 // microarchitecture that a small store cannot be forwarded to a large load.
18 // The estimated penalty for a store forward block is ~13 cycles.
19 //
20 // This pass tries to recognize and handle cases where "store forward block"
21 // is created by the compiler when lowering memcpy calls to a sequence
22 // of a load and a store.
23 //
24 // The pass currently only handles cases where memcpy is lowered to
25 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
26 // breaking the memcpy should be possible since there is no atomicity
27 // guarantee for loads and stores to XMM/YMM.
28 //
29 // It could be better for performance to solve the problem by loading
30 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
31 // to memory, but this will result in a more conservative optimization since it
32 // requires we prove that all memory accesses between the blocking store and the
33 // load must alias/don't alias before we can move the store, whereas the
34 // transformation done here is correct regardless to other memory accesses.
35 //===----------------------------------------------------------------------===//
36 
37 #include "X86InstrInfo.h"
38 #include "X86Subtarget.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "x86-avoid-SFB"
54 
56  "x86-disable-avoid-SFB", cl::Hidden,
57  cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
58 
60  "x86-sfb-inspection-limit",
61  cl::desc("X86: Number of instructions backward to "
62  "inspect for store forwarding blocks."),
63  cl::init(20), cl::Hidden);
64 
65 namespace {
66 
67 using DisplacementSizeMap = std::map<int64_t, unsigned>;
68 
69 class X86AvoidSFBPass : public MachineFunctionPass {
70 public:
71  static char ID;
72  X86AvoidSFBPass() : MachineFunctionPass(ID) {
74  }
75 
76  StringRef getPassName() const override {
77  return "X86 Avoid Store Forwarding Blocks";
78  }
79 
80  bool runOnMachineFunction(MachineFunction &MF) override;
81 
82  void getAnalysisUsage(AnalysisUsage &AU) const override {
85  }
86 
87 private:
89  const X86InstrInfo *TII;
90  const X86RegisterInfo *TRI;
92  BlockedLoadsStoresPairs;
94  AliasAnalysis *AA;
95 
96  /// Returns couples of Load then Store to memory which look
97  /// like a memcpy.
98  void findPotentiallylBlockedCopies(MachineFunction &MF);
99  /// Break the memcpy's load and store into smaller copies
100  /// such that each memory load that was blocked by a smaller store
101  /// would now be copied separately.
102  void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
103  const DisplacementSizeMap &BlockingStoresDispSizeMap);
104  /// Break a copy of size Size to smaller copies.
105  void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
106  MachineInstr *StoreInst, int64_t StDispImm,
107  int64_t LMMOffset, int64_t SMMOffset);
108 
109  void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
110  MachineInstr *StoreInst, unsigned NStoreOpcode,
111  int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
112  int64_t SMMOffset);
113 
114  bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;
115 
116  unsigned getRegSizeInBytes(MachineInstr *Inst);
117 };
118 
119 } // end anonymous namespace
120 
121 char X86AvoidSFBPass::ID = 0;
122 
123 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
124  false, false)
127  false)
128 
130  return new X86AvoidSFBPass();
131 }
132 
133 static bool isXMMLoadOpcode(unsigned Opcode) {
134  return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
135  Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
136  Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
137  Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
138  Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
139  Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
140  Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
141  Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
142 }
143 static bool isYMMLoadOpcode(unsigned Opcode) {
144  return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
145  Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
146  Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
147  Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
148  Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
149  Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
150  Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
151 }
152 
153 static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
154  return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
155 }
156 
157 static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) {
158  switch (LdOpcode) {
159  case X86::MOVUPSrm:
160  case X86::MOVAPSrm:
161  return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
162  case X86::VMOVUPSrm:
163  case X86::VMOVAPSrm:
164  return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
165  case X86::VMOVUPDrm:
166  case X86::VMOVAPDrm:
167  return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
168  case X86::VMOVDQUrm:
169  case X86::VMOVDQArm:
170  return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
171  case X86::VMOVUPSZ128rm:
172  case X86::VMOVAPSZ128rm:
173  return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
174  case X86::VMOVUPDZ128rm:
175  case X86::VMOVAPDZ128rm:
176  return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
177  case X86::VMOVUPSYrm:
178  case X86::VMOVAPSYrm:
179  return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
180  case X86::VMOVUPDYrm:
181  case X86::VMOVAPDYrm:
182  return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
183  case X86::VMOVDQUYrm:
184  case X86::VMOVDQAYrm:
185  return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
186  case X86::VMOVUPSZ256rm:
187  case X86::VMOVAPSZ256rm:
188  return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
189  case X86::VMOVUPDZ256rm:
190  case X86::VMOVAPDZ256rm:
191  return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
192  case X86::VMOVDQU64Z128rm:
193  case X86::VMOVDQA64Z128rm:
194  return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
195  case X86::VMOVDQU32Z128rm:
196  case X86::VMOVDQA32Z128rm:
197  return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
198  case X86::VMOVDQU64Z256rm:
199  case X86::VMOVDQA64Z256rm:
200  return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
201  case X86::VMOVDQU32Z256rm:
202  case X86::VMOVDQA32Z256rm:
203  return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
204  default:
205  return false;
206  }
207 }
208 
209 static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
210  bool PBlock = false;
211  PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
212  Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
213  Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
214  Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
215  if (isYMMLoadOpcode(LoadOpcode))
216  PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
217  Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
218  Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
219  Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
220  Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
221  Opcode == X86::VMOVDQU64Z128mr ||
222  Opcode == X86::VMOVDQA64Z128mr ||
223  Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
224  return PBlock;
225 }
226 
227 static const int MOV128SZ = 16;
228 static const int MOV64SZ = 8;
229 static const int MOV32SZ = 4;
230 static const int MOV16SZ = 2;
231 static const int MOV8SZ = 1;
232 
233 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
234  switch (LoadOpcode) {
235  case X86::VMOVUPSYrm:
236  case X86::VMOVAPSYrm:
237  return X86::VMOVUPSrm;
238  case X86::VMOVUPDYrm:
239  case X86::VMOVAPDYrm:
240  return X86::VMOVUPDrm;
241  case X86::VMOVDQUYrm:
242  case X86::VMOVDQAYrm:
243  return X86::VMOVDQUrm;
244  case X86::VMOVUPSZ256rm:
245  case X86::VMOVAPSZ256rm:
246  return X86::VMOVUPSZ128rm;
247  case X86::VMOVUPDZ256rm:
248  case X86::VMOVAPDZ256rm:
249  return X86::VMOVUPDZ128rm;
250  case X86::VMOVDQU64Z256rm:
251  case X86::VMOVDQA64Z256rm:
252  return X86::VMOVDQU64Z128rm;
253  case X86::VMOVDQU32Z256rm:
254  case X86::VMOVDQA32Z256rm:
255  return X86::VMOVDQU32Z128rm;
256  default:
257  llvm_unreachable("Unexpected Load Instruction Opcode");
258  }
259  return 0;
260 }
261 
262 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
263  switch (StoreOpcode) {
264  case X86::VMOVUPSYmr:
265  case X86::VMOVAPSYmr:
266  return X86::VMOVUPSmr;
267  case X86::VMOVUPDYmr:
268  case X86::VMOVAPDYmr:
269  return X86::VMOVUPDmr;
270  case X86::VMOVDQUYmr:
271  case X86::VMOVDQAYmr:
272  return X86::VMOVDQUmr;
273  case X86::VMOVUPSZ256mr:
274  case X86::VMOVAPSZ256mr:
275  return X86::VMOVUPSZ128mr;
276  case X86::VMOVUPDZ256mr:
277  case X86::VMOVAPDZ256mr:
278  return X86::VMOVUPDZ128mr;
279  case X86::VMOVDQU64Z256mr:
280  case X86::VMOVDQA64Z256mr:
281  return X86::VMOVDQU64Z128mr;
282  case X86::VMOVDQU32Z256mr:
283  case X86::VMOVDQA32Z256mr:
284  return X86::VMOVDQU32Z128mr;
285  default:
286  llvm_unreachable("Unexpected Load Instruction Opcode");
287  }
288  return 0;
289 }
290 
292  const MCInstrDesc &Descl = MI->getDesc();
293  int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
294  assert(AddrOffset != -1 && "Expected Memory Operand");
295  AddrOffset += X86II::getOperandBias(Descl);
296  return AddrOffset;
297 }
298 
300  int AddrOffset = getAddrOffset(MI);
301  return MI->getOperand(AddrOffset + X86::AddrBaseReg);
302 }
303 
305  int AddrOffset = getAddrOffset(MI);
306  return MI->getOperand(AddrOffset + X86::AddrDisp);
307 }
308 
309 // Relevant addressing modes contain only base register and immediate
310 // displacement or frameindex and immediate displacement.
311 // TODO: Consider expanding to other addressing modes in the future
313  int AddrOffset = getAddrOffset(MI);
315  MachineOperand &Disp = getDispOperand(MI);
316  MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
317  MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
318  MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
319 
320  if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
321  return false;
322  if (!Disp.isImm())
323  return false;
324  if (Scale.getImm() != 1)
325  return false;
326  if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
327  return false;
328  if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
329  return false;
330  return true;
331 }
332 
333 // Collect potentially blocking stores.
334 // Limit the number of instructions backwards we want to inspect
335 // since the effect of store block won't be visible if the store
336 // and load instructions have enough instructions in between to
337 // keep the core busy.
340  SmallVector<MachineInstr *, 2> PotentialBlockers;
341  unsigned BlockCount = 0;
342  const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
343  for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
344  E = LoadInst->getParent()->rend();
345  PBInst != E; ++PBInst) {
346  BlockCount++;
347  if (BlockCount >= InspectionLimit)
348  break;
349  MachineInstr &MI = *PBInst;
350  if (MI.getDesc().isCall())
351  return PotentialBlockers;
352  PotentialBlockers.push_back(&MI);
353  }
354  // If we didn't get to the instructions limit try predecessing blocks.
355  // Ideally we should traverse the predecessor blocks in depth with some
356  // coloring algorithm, but for now let's just look at the first order
357  // predecessors.
358  if (BlockCount < InspectionLimit) {
359  MachineBasicBlock *MBB = LoadInst->getParent();
360  int LimitLeft = InspectionLimit - BlockCount;
362  PE = MBB->pred_end();
363  PB != PE; ++PB) {
364  MachineBasicBlock *PMBB = *PB;
365  int PredCount = 0;
366  for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(),
367  PME = PMBB->rend();
368  PBInst != PME; ++PBInst) {
369  PredCount++;
370  if (PredCount >= LimitLeft)
371  break;
372  if (PBInst->getDesc().isCall())
373  break;
374  PotentialBlockers.push_back(&*PBInst);
375  }
376  }
377  }
378  return PotentialBlockers;
379 }
380 
381 void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
382  int64_t LoadDisp, MachineInstr *StoreInst,
383  unsigned NStoreOpcode, int64_t StoreDisp,
384  unsigned Size, int64_t LMMOffset,
385  int64_t SMMOffset) {
386  MachineOperand &LoadBase = getBaseOperand(LoadInst);
387  MachineOperand &StoreBase = getBaseOperand(StoreInst);
388  MachineBasicBlock *MBB = LoadInst->getParent();
389  MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
390  MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
391 
392  unsigned Reg1 = MRI->createVirtualRegister(
393  TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
394  MachineInstr *NewLoad =
395  BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode),
396  Reg1)
397  .add(LoadBase)
398  .addImm(1)
399  .addReg(X86::NoRegister)
400  .addImm(LoadDisp)
401  .addReg(X86::NoRegister)
402  .addMemOperand(
403  MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
404  if (LoadBase.isReg())
405  getBaseOperand(NewLoad).setIsKill(false);
406  LLVM_DEBUG(NewLoad->dump());
407  // If the load and store are consecutive, use the loadInst location to
408  // reduce register pressure.
409  MachineInstr *StInst = StoreInst;
410  if (StoreInst->getPrevNode() == LoadInst)
411  StInst = LoadInst;
412  MachineInstr *NewStore =
413  BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
414  .add(StoreBase)
415  .addImm(1)
416  .addReg(X86::NoRegister)
417  .addImm(StoreDisp)
418  .addReg(X86::NoRegister)
419  .addReg(Reg1)
420  .addMemOperand(
421  MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
422  if (StoreBase.isReg())
423  getBaseOperand(NewStore).setIsKill(false);
424  MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands);
425  assert(StoreSrcVReg.isReg() && "Expected virtual register");
426  NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill());
427  LLVM_DEBUG(NewStore->dump());
428 }
429 
430 void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
431  int64_t LdDispImm, MachineInstr *StoreInst,
432  int64_t StDispImm, int64_t LMMOffset,
433  int64_t SMMOffset) {
434  int LdDisp = LdDispImm;
435  int StDisp = StDispImm;
436  while (Size > 0) {
437  if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
438  Size = Size - MOV128SZ;
439  buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
440  StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
441  StDisp, MOV128SZ, LMMOffset, SMMOffset);
442  LdDisp += MOV128SZ;
443  StDisp += MOV128SZ;
444  LMMOffset += MOV128SZ;
445  SMMOffset += MOV128SZ;
446  continue;
447  }
448  if (Size - MOV64SZ >= 0) {
449  Size = Size - MOV64SZ;
450  buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
451  MOV64SZ, LMMOffset, SMMOffset);
452  LdDisp += MOV64SZ;
453  StDisp += MOV64SZ;
454  LMMOffset += MOV64SZ;
455  SMMOffset += MOV64SZ;
456  continue;
457  }
458  if (Size - MOV32SZ >= 0) {
459  Size = Size - MOV32SZ;
460  buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
461  MOV32SZ, LMMOffset, SMMOffset);
462  LdDisp += MOV32SZ;
463  StDisp += MOV32SZ;
464  LMMOffset += MOV32SZ;
465  SMMOffset += MOV32SZ;
466  continue;
467  }
468  if (Size - MOV16SZ >= 0) {
469  Size = Size - MOV16SZ;
470  buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
471  MOV16SZ, LMMOffset, SMMOffset);
472  LdDisp += MOV16SZ;
473  StDisp += MOV16SZ;
474  LMMOffset += MOV16SZ;
475  SMMOffset += MOV16SZ;
476  continue;
477  }
478  if (Size - MOV8SZ >= 0) {
479  Size = Size - MOV8SZ;
480  buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
481  MOV8SZ, LMMOffset, SMMOffset);
482  LdDisp += MOV8SZ;
483  StDisp += MOV8SZ;
484  LMMOffset += MOV8SZ;
485  SMMOffset += MOV8SZ;
486  continue;
487  }
488  }
489  assert(Size == 0 && "Wrong size division");
490 }
491 
492 static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
493  MachineOperand &LoadBase = getBaseOperand(LoadInst);
494  MachineOperand &StoreBase = getBaseOperand(StoreInst);
495  if (LoadBase.isReg()) {
496  MachineInstr *LastLoad = LoadInst->getPrevNode();
497  // If the original load and store to xmm/ymm were consecutive
498  // then the partial copies were also created in
499  // a consecutive order to reduce register pressure,
500  // and the location of the last load is before the last store.
501  if (StoreInst->getPrevNode() == LoadInst)
502  LastLoad = LoadInst->getPrevNode()->getPrevNode();
503  getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
504  }
505  if (StoreBase.isReg()) {
506  MachineInstr *StInst = StoreInst;
507  if (StoreInst->getPrevNode() == LoadInst)
508  StInst = LoadInst;
509  getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
510  }
511 }
512 
513 bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
514  const MachineMemOperand &Op2) const {
515  if (!Op1.getValue() || !Op2.getValue())
516  return true;
517 
518  int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
519  int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
520  int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
521 
522  AliasResult AAResult =
523  AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
524  MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
525  return AAResult != NoAlias;
526 }
527 
528 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
529  for (auto &MBB : MF)
530  for (auto &MI : MBB) {
531  if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
532  continue;
533  int DefVR = MI.getOperand(0).getReg();
534  if (!MRI->hasOneUse(DefVR))
535  continue;
536  for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
537  UI != UE;) {
538  MachineOperand &StoreMO = *UI++;
539  MachineInstr &StoreMI = *StoreMO.getParent();
540  // Skip cases where the memcpy may overlap.
541  if (StoreMI.getParent() == MI.getParent() &&
542  isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
544  isRelevantAddressingMode(&StoreMI)) {
545  assert(MI.hasOneMemOperand() &&
546  "Expected one memory operand for load instruction");
547  assert(StoreMI.hasOneMemOperand() &&
548  "Expected one memory operand for store instruction");
549  if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
550  BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
551  }
552  }
553  }
554 }
555 
556 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
557  auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
558  *LoadInst->getParent()->getParent());
559  return TRI->getRegSizeInBits(*TRC) / 8;
560 }
561 
562 void X86AvoidSFBPass::breakBlockedCopies(
563  MachineInstr *LoadInst, MachineInstr *StoreInst,
564  const DisplacementSizeMap &BlockingStoresDispSizeMap) {
565  int64_t LdDispImm = getDispOperand(LoadInst).getImm();
566  int64_t StDispImm = getDispOperand(StoreInst).getImm();
567  int64_t LMMOffset = 0;
568  int64_t SMMOffset = 0;
569 
570  int64_t LdDisp1 = LdDispImm;
571  int64_t LdDisp2 = 0;
572  int64_t StDisp1 = StDispImm;
573  int64_t StDisp2 = 0;
574  unsigned Size1 = 0;
575  unsigned Size2 = 0;
576  int64_t LdStDelta = StDispImm - LdDispImm;
577 
578  for (auto DispSizePair : BlockingStoresDispSizeMap) {
579  LdDisp2 = DispSizePair.first;
580  StDisp2 = DispSizePair.first + LdStDelta;
581  Size2 = DispSizePair.second;
582  // Avoid copying overlapping areas.
583  if (LdDisp2 < LdDisp1) {
584  int OverlapDelta = LdDisp1 - LdDisp2;
585  LdDisp2 += OverlapDelta;
586  StDisp2 += OverlapDelta;
587  Size2 -= OverlapDelta;
588  }
589  Size1 = LdDisp2 - LdDisp1;
590 
591  // Build a copy for the point until the current blocking store's
592  // displacement.
593  buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
594  SMMOffset);
595  // Build a copy for the current blocking store.
596  buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
597  SMMOffset + Size1);
598  LdDisp1 = LdDisp2 + Size2;
599  StDisp1 = StDisp2 + Size2;
600  LMMOffset += Size1 + Size2;
601  SMMOffset += Size1 + Size2;
602  }
603  unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
604  buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
605  LMMOffset);
606 }
607 
608 static bool hasSameBaseOpValue(MachineInstr *LoadInst,
609  MachineInstr *StoreInst) {
610  MachineOperand &LoadBase = getBaseOperand(LoadInst);
611  MachineOperand &StoreBase = getBaseOperand(StoreInst);
612  if (LoadBase.isReg() != StoreBase.isReg())
613  return false;
614  if (LoadBase.isReg())
615  return LoadBase.getReg() == StoreBase.getReg();
616  return LoadBase.getIndex() == StoreBase.getIndex();
617 }
618 
619 static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
620  int64_t StoreDispImm, unsigned StoreSize) {
621  return ((StoreDispImm >= LoadDispImm) &&
622  (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
623 }
624 
625 // Keep track of all stores blocking a load
626 static void
627 updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
628  int64_t DispImm, unsigned Size) {
629  if (BlockingStoresDispSizeMap.count(DispImm)) {
630  // Choose the smallest blocking store starting at this displacement.
631  if (BlockingStoresDispSizeMap[DispImm] > Size)
632  BlockingStoresDispSizeMap[DispImm] = Size;
633 
634  } else
635  BlockingStoresDispSizeMap[DispImm] = Size;
636 }
637 
638 // Remove blocking stores contained in each other.
639 static void
640 removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
641  if (BlockingStoresDispSizeMap.size() <= 1)
642  return;
643 
645  for (auto DispSizePair : BlockingStoresDispSizeMap) {
646  int64_t CurrDisp = DispSizePair.first;
647  unsigned CurrSize = DispSizePair.second;
648  while (DispSizeStack.size()) {
649  int64_t PrevDisp = DispSizeStack.back().first;
650  unsigned PrevSize = DispSizeStack.back().second;
651  if (CurrDisp + CurrSize > PrevDisp + PrevSize)
652  break;
653  DispSizeStack.pop_back();
654  }
655  DispSizeStack.push_back(DispSizePair);
656  }
657  BlockingStoresDispSizeMap.clear();
658  for (auto Disp : DispSizeStack)
659  BlockingStoresDispSizeMap.insert(Disp);
660 }
661 
662 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
663  bool Changed = false;
664 
665  if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
667  return false;
668 
669  MRI = &MF.getRegInfo();
670  assert(MRI->isSSA() && "Expected MIR to be in SSA form");
671  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
672  TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
673  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
674  LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
675  // Look for a load then a store to XMM/YMM which look like a memcpy
676  findPotentiallylBlockedCopies(MF);
677 
678  for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
679  MachineInstr *LoadInst = LoadStoreInstPair.first;
680  int64_t LdDispImm = getDispOperand(LoadInst).getImm();
681  DisplacementSizeMap BlockingStoresDispSizeMap;
682 
683  SmallVector<MachineInstr *, 2> PotentialBlockers =
684  findPotentialBlockers(LoadInst);
685  for (auto PBInst : PotentialBlockers) {
686  if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
687  LoadInst->getOpcode()) ||
688  !isRelevantAddressingMode(PBInst))
689  continue;
690  int64_t PBstDispImm = getDispOperand(PBInst).getImm();
691  assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
692  unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
693  // This check doesn't cover all cases, but it will suffice for now.
694  // TODO: take branch probability into consideration, if the blocking
695  // store is in an unreached block, breaking the memcopy could lose
696  // performance.
697  if (hasSameBaseOpValue(LoadInst, PBInst) &&
698  isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
699  PBstSize))
700  updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
701  PBstSize);
702  }
703 
704  if (BlockingStoresDispSizeMap.empty())
705  continue;
706 
707  // We found a store forward block, break the memcpy's load and store
708  // into smaller copies such that each smaller store that was causing
709  // a store block would now be copied separately.
710  MachineInstr *StoreInst = LoadStoreInstPair.second;
711  LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
712  LLVM_DEBUG(LoadInst->dump());
713  LLVM_DEBUG(StoreInst->dump());
714  LLVM_DEBUG(dbgs() << "Replaced with:\n");
715  removeRedundantBlockingStores(BlockingStoresDispSizeMap);
716  breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
717  updateKillStatus(LoadInst, StoreInst);
718  ForRemoval.push_back(LoadInst);
719  ForRemoval.push_back(StoreInst);
720  }
721  for (auto RemovedInst : ForRemoval) {
722  RemovedInst->eraseFromParent();
723  }
724  ForRemoval.clear();
725  BlockedLoadsStoresPairs.clear();
726  LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);
727 
728  return Changed;
729 }
bool is64Bit() const
Is this x86_64? (disregarding specific ABI / programming model)
Definition: X86Subtarget.h:522
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
static bool isYMMLoadOpcode(unsigned Opcode)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst)
This class represents lattice values for constants.
Definition: AllocatorList.h:24
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
unsigned getReg() const
getReg - Returns the register number.
The two locations do not alias at all.
Definition: AliasAnalysis.h:84
AddrNumOperands - Total number of operands in a memory reference.
Definition: X86BaseInfo.h:42
uint64_t getSize() const
Return the size in bytes of the memory reference.
unsigned const TargetRegisterInfo * TRI
An instruction for reading from memory.
Definition: Instructions.h:168
static void removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap)
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static cl::opt< bool > DisableX86AvoidStoreForwardBlocks("x86-disable-avoid-SFB", cl::Hidden, cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false))
static void updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap, int64_t DispImm, unsigned Size)
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
A description of a memory reference used in the backend.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
static bool hasSameBaseOpValue(MachineInstr *LoadInst, MachineInstr *StoreInst)
MachineBasicBlock iterator that automatically skips over MIs that are inside bundles (i...
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, unsigned base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize, int64_t StoreDispImm, unsigned StoreSize)
void initializeX86AvoidSFBPassPass(PassRegistry &)
static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode)
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:406
static const int MOV16SZ
static const int MOV32SZ
An instruction for storing to memory.
Definition: Instructions.h:321
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:363
reverse_iterator rend()
reverse_iterator rbegin()
AliasResult
The possible results of an alias query.
Definition: AliasAnalysis.h:78
const Value * getValue() const
Return the base address of the memory access.
static cl::opt< unsigned > X86AvoidSFBInspectionLimit("x86-sfb-inspection-limit", cl::desc("X86: Number of instructions backward to " "inspect for store forwarding blocks."), cl::init(20), cl::Hidden)
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
static int getAddrOffset(MachineInstr *MI)
unsigned const MachineRegisterInfo * MRI
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode)
Represent the analysis usage information of a pass.
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
Definition: MachineInstr.h:549
static bool isPotentialBlockedMemCpyLd(unsigned Opcode)
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
unsigned getOperandBias(const MCInstrDesc &Desc)
getOperandBias - compute whether all of the def operands are repeated in the uses and therefore shoul...
Definition: X86BaseInfo.h:658
std::vector< MachineBasicBlock * >::iterator pred_iterator
static const int MOV128SZ
size_t size() const
Definition: SmallVector.h:53
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void setIsKill(bool Val=true)
Representation for a specific memory location.
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:534
static SmallVector< MachineInstr *, 2 > findPotentialBlockers(MachineInstr *LoadInst)
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
static MachineOperand & getBaseOperand(MachineInstr *MI)
int64_t getImm() const
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
static MachineOperand & getDispOperand(MachineInstr *MI)
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
static bool isRelevantAddressingMode(MachineInstr *MI)
INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false, false) INITIALIZE_PASS_END(X86AvoidSFBPass
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
bool isCall() const
Return true if the instruction is a call.
Definition: MCInstrDesc.h:258
static bool isXMMLoadOpcode(unsigned Opcode)
Machine code sinking
uint32_t Size
Definition: Profile.cpp:47
bool isReg() const
isReg - Tests if this is a MO_Register operand.
static const int MOV64SZ
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
int64_t getOffset() const
For normal values, this is a byte offset added to the base address.
static const int MOV8SZ
FunctionPass * createX86AvoidStoreForwardingBlocks()
Return a pass that avoids creating store forward block issues in the hardware.
static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode)
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode)
AddrSegmentReg - The operand # of the segment in the memory operand.
Definition: X86BaseInfo.h:39
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
int getMemoryOperandNo(uint64_t TSFlags)
getMemoryOperandNo - The function returns the MCInst operand # for the first field of the memory oper...
Definition: X86BaseInfo.h:699