LLVM  8.0.1
ARMMCCodeEmitter.cpp
Go to the documentation of this file.
1 //===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ARMMCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
17 #include "MCTargetDesc/ARMMCExpr.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/MC/MCCodeEmitter.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCExpr.h"
26 #include "llvm/MC/MCFixup.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Compiler.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <cstdlib>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "mccodeemitter"
45 
46 STATISTIC(MCNumEmitted, "Number of MC instructions emitted.");
47 STATISTIC(MCNumCPRelocations, "Number of constant pool relocations created.");
48 
49 namespace {
50 
51 class ARMMCCodeEmitter : public MCCodeEmitter {
52  const MCInstrInfo &MCII;
53  const MCContext &CTX;
54  bool IsLittleEndian;
55 
56 public:
57  ARMMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool IsLittle)
58  : MCII(mcii), CTX(ctx), IsLittleEndian(IsLittle) {
59  }
60  ARMMCCodeEmitter(const ARMMCCodeEmitter &) = delete;
61  ARMMCCodeEmitter &operator=(const ARMMCCodeEmitter &) = delete;
62  ~ARMMCCodeEmitter() override = default;
63 
64  bool isThumb(const MCSubtargetInfo &STI) const {
65  return STI.getFeatureBits()[ARM::ModeThumb];
66  }
67 
68  bool isThumb2(const MCSubtargetInfo &STI) const {
69  return isThumb(STI) && STI.getFeatureBits()[ARM::FeatureThumb2];
70  }
71 
72  bool isTargetMachO(const MCSubtargetInfo &STI) const {
73  const Triple &TT = STI.getTargetTriple();
74  return TT.isOSBinFormatMachO();
75  }
76 
77  unsigned getMachineSoImmOpValue(unsigned SoImm) const;
78 
79  // getBinaryCodeForInstr - TableGen'erated function for getting the
80  // binary encoding for an instruction.
81  uint64_t getBinaryCodeForInstr(const MCInst &MI,
83  const MCSubtargetInfo &STI) const;
84 
85  /// getMachineOpValue - Return binary encoding of operand. If the machine
86  /// operand requires relocation, record the relocation and return zero.
87  unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO,
89  const MCSubtargetInfo &STI) const;
90 
91  /// getHiLo16ImmOpValue - Return the encoding for the hi / low 16-bit of
92  /// the specified operand. This is used for operands with :lower16: and
93  /// :upper16: prefixes.
94  uint32_t getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
96  const MCSubtargetInfo &STI) const;
97 
98  bool EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx,
99  unsigned &Reg, unsigned &Imm,
101  const MCSubtargetInfo &STI) const;
102 
103  /// getThumbBLTargetOpValue - Return encoding info for Thumb immediate
104  /// BL branch target.
105  uint32_t getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
107  const MCSubtargetInfo &STI) const;
108 
109  /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
110  /// BLX branch target.
111  uint32_t getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
113  const MCSubtargetInfo &STI) const;
114 
115  /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
116  uint32_t getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
118  const MCSubtargetInfo &STI) const;
119 
120  /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
121  uint32_t getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
123  const MCSubtargetInfo &STI) const;
124 
125  /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
126  uint32_t getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
128  const MCSubtargetInfo &STI) const;
129 
130  /// getBranchTargetOpValue - Return encoding info for 24-bit immediate
131  /// branch target.
132  uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
134  const MCSubtargetInfo &STI) const;
135 
136  /// getThumbBranchTargetOpValue - Return encoding info for 24-bit
137  /// immediate Thumb2 direct branch target.
138  uint32_t getThumbBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
140  const MCSubtargetInfo &STI) const;
141 
142  /// getARMBranchTargetOpValue - Return encoding info for 24-bit immediate
143  /// branch target.
144  uint32_t getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
146  const MCSubtargetInfo &STI) const;
147  uint32_t getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
149  const MCSubtargetInfo &STI) const;
150  uint32_t getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
152  const MCSubtargetInfo &STI) const;
153 
154  /// getAdrLabelOpValue - Return encoding info for 12-bit immediate
155  /// ADR label target.
156  uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
158  const MCSubtargetInfo &STI) const;
159  uint32_t getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
161  const MCSubtargetInfo &STI) const;
162  uint32_t getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
164  const MCSubtargetInfo &STI) const;
165 
166 
167  /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12'
168  /// operand.
169  uint32_t getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
171  const MCSubtargetInfo &STI) const;
172 
173  /// getThumbAddrModeRegRegOpValue - Return encoding for 'reg + reg' operand.
174  uint32_t getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
176  const MCSubtargetInfo &STI) const;
177 
178  /// getT2AddrModeImm8s4OpValue - Return encoding info for 'reg +/- imm8<<2'
179  /// operand.
180  uint32_t getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
182  const MCSubtargetInfo &STI) const;
183 
184  /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 'reg + imm8<<2'
185  /// operand.
186  uint32_t getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
188  const MCSubtargetInfo &STI) const;
189 
190  /// getT2Imm8s4OpValue - Return encoding info for '+/- imm8<<2'
191  /// operand.
192  uint32_t getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx,
194  const MCSubtargetInfo &STI) const;
195 
196 
197  /// getLdStSORegOpValue - Return encoding info for 'reg +/- reg shop imm'
198  /// operand as needed by load/store instructions.
199  uint32_t getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
201  const MCSubtargetInfo &STI) const;
202 
203  /// getLdStmModeOpValue - Return encoding for load/store multiple mode.
204  uint32_t getLdStmModeOpValue(const MCInst &MI, unsigned OpIdx,
206  const MCSubtargetInfo &STI) const {
208  switch (Mode) {
209  default: llvm_unreachable("Unknown addressing sub-mode!");
210  case ARM_AM::da: return 0;
211  case ARM_AM::ia: return 1;
212  case ARM_AM::db: return 2;
213  case ARM_AM::ib: return 3;
214  }
215  }
216 
217  /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
218  ///
219  unsigned getShiftOp(ARM_AM::ShiftOpc ShOpc) const {
220  switch (ShOpc) {
221  case ARM_AM::no_shift:
222  case ARM_AM::lsl: return 0;
223  case ARM_AM::lsr: return 1;
224  case ARM_AM::asr: return 2;
225  case ARM_AM::ror:
226  case ARM_AM::rrx: return 3;
227  }
228  llvm_unreachable("Invalid ShiftOpc!");
229  }
230 
231  /// getAddrMode2OffsetOpValue - Return encoding for am2offset operands.
232  uint32_t getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
233  SmallVectorImpl<MCFixup> &Fixups,
234  const MCSubtargetInfo &STI) const;
235 
236  /// getPostIdxRegOpValue - Return encoding for postidx_reg operands.
237  uint32_t getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
238  SmallVectorImpl<MCFixup> &Fixups,
239  const MCSubtargetInfo &STI) const;
240 
241  /// getAddrMode3OffsetOpValue - Return encoding for am3offset operands.
242  uint32_t getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
243  SmallVectorImpl<MCFixup> &Fixups,
244  const MCSubtargetInfo &STI) const;
245 
246  /// getAddrMode3OpValue - Return encoding for addrmode3 operands.
247  uint32_t getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
248  SmallVectorImpl<MCFixup> &Fixups,
249  const MCSubtargetInfo &STI) const;
250 
251  /// getAddrModeThumbSPOpValue - Return encoding info for 'reg +/- imm12'
252  /// operand.
253  uint32_t getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
254  SmallVectorImpl<MCFixup> &Fixups,
255  const MCSubtargetInfo &STI) const;
256 
257  /// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
258  uint32_t getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
259  SmallVectorImpl<MCFixup> &Fixups,
260  const MCSubtargetInfo &STI) const;
261 
262  /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
263  uint32_t getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
264  SmallVectorImpl<MCFixup> &Fixups,
265  const MCSubtargetInfo &STI) const;
266 
267  /// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand.
268  uint32_t getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
269  SmallVectorImpl<MCFixup> &Fixups,
270  const MCSubtargetInfo &STI) const;
271 
272  /// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand.
273  uint32_t getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx,
274  SmallVectorImpl<MCFixup> &Fixups,
275  const MCSubtargetInfo &STI) const;
276 
277  /// getCCOutOpValue - Return encoding of the 's' bit.
278  unsigned getCCOutOpValue(const MCInst &MI, unsigned Op,
279  SmallVectorImpl<MCFixup> &Fixups,
280  const MCSubtargetInfo &STI) const {
281  // The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or
282  // '1' respectively.
283  return MI.getOperand(Op).getReg() == ARM::CPSR;
284  }
285 
286  /// getSOImmOpValue - Return an encoded 12-bit shifted-immediate value.
287  unsigned getSOImmOpValue(const MCInst &MI, unsigned Op,
288  SmallVectorImpl<MCFixup> &Fixups,
289  const MCSubtargetInfo &STI) const {
290  const MCOperand &MO = MI.getOperand(Op);
291 
292  // We expect MO to be an immediate or an expression,
293  // if it is an immediate - that's fine, just encode the value.
294  // Otherwise - create a Fixup.
295  if (MO.isExpr()) {
296  const MCExpr *Expr = MO.getExpr();
297  // In instruction code this value always encoded as lowest 12 bits,
298  // so we don't have to perform any specific adjustments.
299  // Due to requirements of relocatable records we have to use FK_Data_4.
300  // See ARMELFObjectWriter::ExplicitRelSym and
301  // ARMELFObjectWriter::GetRelocTypeInner for more details.
303  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
304  return 0;
305  }
306 
307  unsigned SoImm = MO.getImm();
308  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
309  assert(SoImmVal != -1 && "Not a valid so_imm value!");
310 
311  // Encode rotate_imm.
312  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
314 
315  // Encode immed_8.
316  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
317  return Binary;
318  }
319 
320  unsigned getModImmOpValue(const MCInst &MI, unsigned Op,
321  SmallVectorImpl<MCFixup> &Fixups,
322  const MCSubtargetInfo &ST) const {
323  const MCOperand &MO = MI.getOperand(Op);
324 
325  // Support for fixups (MCFixup)
326  if (MO.isExpr()) {
327  const MCExpr *Expr = MO.getExpr();
328  // Fixups resolve to plain values that need to be encoded.
330  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
331  return 0;
332  }
333 
334  // Immediate is already in its encoded format
335  return MO.getImm();
336  }
337 
338  /// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value.
339  unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op,
340  SmallVectorImpl<MCFixup> &Fixups,
341  const MCSubtargetInfo &STI) const {
342  const MCOperand &MO = MI.getOperand(Op);
343 
344  // Support for fixups (MCFixup)
345  if (MO.isExpr()) {
346  const MCExpr *Expr = MO.getExpr();
347  // Fixups resolve to plain values that need to be encoded.
349  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
350  return 0;
351  }
352  unsigned SoImm = MO.getImm();
353  unsigned Encoded = ARM_AM::getT2SOImmVal(SoImm);
354  assert(Encoded != ~0U && "Not a Thumb2 so_imm value?");
355  return Encoded;
356  }
357 
358  unsigned getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
359  SmallVectorImpl<MCFixup> &Fixups,
360  const MCSubtargetInfo &STI) const;
361  unsigned getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum,
362  SmallVectorImpl<MCFixup> &Fixups,
363  const MCSubtargetInfo &STI) const;
364  unsigned getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
365  SmallVectorImpl<MCFixup> &Fixups,
366  const MCSubtargetInfo &STI) const;
367 
368  /// getSORegOpValue - Return an encoded so_reg shifted register value.
369  unsigned getSORegRegOpValue(const MCInst &MI, unsigned Op,
370  SmallVectorImpl<MCFixup> &Fixups,
371  const MCSubtargetInfo &STI) const;
372  unsigned getSORegImmOpValue(const MCInst &MI, unsigned Op,
373  SmallVectorImpl<MCFixup> &Fixups,
374  const MCSubtargetInfo &STI) const;
375  unsigned getT2SORegOpValue(const MCInst &MI, unsigned Op,
376  SmallVectorImpl<MCFixup> &Fixups,
377  const MCSubtargetInfo &STI) const;
378 
379  unsigned getNEONVcvtImm32OpValue(const MCInst &MI, unsigned Op,
380  SmallVectorImpl<MCFixup> &Fixups,
381  const MCSubtargetInfo &STI) const {
382  return 64 - MI.getOperand(Op).getImm();
383  }
384 
385  unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
386  SmallVectorImpl<MCFixup> &Fixups,
387  const MCSubtargetInfo &STI) const;
388 
389  unsigned getRegisterListOpValue(const MCInst &MI, unsigned Op,
390  SmallVectorImpl<MCFixup> &Fixups,
391  const MCSubtargetInfo &STI) const;
392  unsigned getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
393  SmallVectorImpl<MCFixup> &Fixups,
394  const MCSubtargetInfo &STI) const;
395  unsigned getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
396  SmallVectorImpl<MCFixup> &Fixups,
397  const MCSubtargetInfo &STI) const;
398  unsigned getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
399  SmallVectorImpl<MCFixup> &Fixups,
400  const MCSubtargetInfo &STI) const;
401  unsigned getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
402  SmallVectorImpl<MCFixup> &Fixups,
403  const MCSubtargetInfo &STI) const;
404 
405  unsigned getShiftRight8Imm(const MCInst &MI, unsigned Op,
406  SmallVectorImpl<MCFixup> &Fixups,
407  const MCSubtargetInfo &STI) const;
408  unsigned getShiftRight16Imm(const MCInst &MI, unsigned Op,
409  SmallVectorImpl<MCFixup> &Fixups,
410  const MCSubtargetInfo &STI) const;
411  unsigned getShiftRight32Imm(const MCInst &MI, unsigned Op,
412  SmallVectorImpl<MCFixup> &Fixups,
413  const MCSubtargetInfo &STI) const;
414  unsigned getShiftRight64Imm(const MCInst &MI, unsigned Op,
415  SmallVectorImpl<MCFixup> &Fixups,
416  const MCSubtargetInfo &STI) const;
417 
418  unsigned getThumbSRImmOpValue(const MCInst &MI, unsigned Op,
419  SmallVectorImpl<MCFixup> &Fixups,
420  const MCSubtargetInfo &STI) const;
421 
422  unsigned NEONThumb2DataIPostEncoder(const MCInst &MI,
423  unsigned EncodedValue,
424  const MCSubtargetInfo &STI) const;
425  unsigned NEONThumb2LoadStorePostEncoder(const MCInst &MI,
426  unsigned EncodedValue,
427  const MCSubtargetInfo &STI) const;
428  unsigned NEONThumb2DupPostEncoder(const MCInst &MI,
429  unsigned EncodedValue,
430  const MCSubtargetInfo &STI) const;
431  unsigned NEONThumb2V8PostEncoder(const MCInst &MI,
432  unsigned EncodedValue,
433  const MCSubtargetInfo &STI) const;
434 
435  unsigned VFPThumb2PostEncoder(const MCInst &MI,
436  unsigned EncodedValue,
437  const MCSubtargetInfo &STI) const;
438 
439  void EmitByte(unsigned char C, raw_ostream &OS) const {
440  OS << (char)C;
441  }
442 
443  void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
444  // Output the constant in little endian byte order.
445  for (unsigned i = 0; i != Size; ++i) {
446  unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8;
447  EmitByte((Val >> Shift) & 0xff, OS);
448  }
449  }
450 
451  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
452  SmallVectorImpl<MCFixup> &Fixups,
453  const MCSubtargetInfo &STI) const override;
454 };
455 
456 } // end anonymous namespace
457 
458 /// NEONThumb2DataIPostEncoder - Post-process encoded NEON data-processing
459 /// instructions, and rewrite them to their Thumb2 form if we are currently in
460 /// Thumb2 mode.
461 unsigned ARMMCCodeEmitter::NEONThumb2DataIPostEncoder(const MCInst &MI,
462  unsigned EncodedValue,
463  const MCSubtargetInfo &STI) const {
464  if (isThumb2(STI)) {
465  // NEON Thumb2 data-processsing encodings are very simple: bit 24 is moved
466  // to bit 12 of the high half-word (i.e. bit 28), and bits 27-24 are
467  // set to 1111.
468  unsigned Bit24 = EncodedValue & 0x01000000;
469  unsigned Bit28 = Bit24 << 4;
470  EncodedValue &= 0xEFFFFFFF;
471  EncodedValue |= Bit28;
472  EncodedValue |= 0x0F000000;
473  }
474 
475  return EncodedValue;
476 }
477 
478 /// NEONThumb2LoadStorePostEncoder - Post-process encoded NEON load/store
479 /// instructions, and rewrite them to their Thumb2 form if we are currently in
480 /// Thumb2 mode.
481 unsigned ARMMCCodeEmitter::NEONThumb2LoadStorePostEncoder(const MCInst &MI,
482  unsigned EncodedValue,
483  const MCSubtargetInfo &STI) const {
484  if (isThumb2(STI)) {
485  EncodedValue &= 0xF0FFFFFF;
486  EncodedValue |= 0x09000000;
487  }
488 
489  return EncodedValue;
490 }
491 
492 /// NEONThumb2DupPostEncoder - Post-process encoded NEON vdup
493 /// instructions, and rewrite them to their Thumb2 form if we are currently in
494 /// Thumb2 mode.
495 unsigned ARMMCCodeEmitter::NEONThumb2DupPostEncoder(const MCInst &MI,
496  unsigned EncodedValue,
497  const MCSubtargetInfo &STI) const {
498  if (isThumb2(STI)) {
499  EncodedValue &= 0x00FFFFFF;
500  EncodedValue |= 0xEE000000;
501  }
502 
503  return EncodedValue;
504 }
505 
506 /// Post-process encoded NEON v8 instructions, and rewrite them to Thumb2 form
507 /// if we are in Thumb2.
508 unsigned ARMMCCodeEmitter::NEONThumb2V8PostEncoder(const MCInst &MI,
509  unsigned EncodedValue,
510  const MCSubtargetInfo &STI) const {
511  if (isThumb2(STI)) {
512  EncodedValue |= 0xC000000; // Set bits 27-26
513  }
514 
515  return EncodedValue;
516 }
517 
518 /// VFPThumb2PostEncoder - Post-process encoded VFP instructions and rewrite
519 /// them to their Thumb2 form if we are currently in Thumb2 mode.
520 unsigned ARMMCCodeEmitter::
521 VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue,
522  const MCSubtargetInfo &STI) const {
523  if (isThumb2(STI)) {
524  EncodedValue &= 0x0FFFFFFF;
525  EncodedValue |= 0xE0000000;
526  }
527  return EncodedValue;
528 }
529 
530 /// getMachineOpValue - Return binary encoding of operand. If the machine
531 /// operand requires relocation, record the relocation and return zero.
532 unsigned ARMMCCodeEmitter::
533 getMachineOpValue(const MCInst &MI, const MCOperand &MO,
534  SmallVectorImpl<MCFixup> &Fixups,
535  const MCSubtargetInfo &STI) const {
536  if (MO.isReg()) {
537  unsigned Reg = MO.getReg();
538  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);
539 
540  // Q registers are encoded as 2x their register number.
541  switch (Reg) {
542  default:
543  return RegNo;
544  case ARM::Q0: case ARM::Q1: case ARM::Q2: case ARM::Q3:
545  case ARM::Q4: case ARM::Q5: case ARM::Q6: case ARM::Q7:
546  case ARM::Q8: case ARM::Q9: case ARM::Q10: case ARM::Q11:
547  case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15:
548  return 2 * RegNo;
549  }
550  } else if (MO.isImm()) {
551  return static_cast<unsigned>(MO.getImm());
552  } else if (MO.isFPImm()) {
553  return static_cast<unsigned>(APFloat(MO.getFPImm())
554  .bitcastToAPInt().getHiBits(32).getLimitedValue());
555  }
556 
557  llvm_unreachable("Unable to encode MCOperand!");
558 }
559 
560 /// getAddrModeImmOpValue - Return encoding info for 'reg +/- imm' operand.
561 bool ARMMCCodeEmitter::
562 EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg,
563  unsigned &Imm, SmallVectorImpl<MCFixup> &Fixups,
564  const MCSubtargetInfo &STI) const {
565  const MCOperand &MO = MI.getOperand(OpIdx);
566  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
567 
568  Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
569 
570  int32_t SImm = MO1.getImm();
571  bool isAdd = true;
572 
573  // Special value for #-0
574  if (SImm == INT32_MIN) {
575  SImm = 0;
576  isAdd = false;
577  }
578 
579  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
580  if (SImm < 0) {
581  SImm = -SImm;
582  isAdd = false;
583  }
584 
585  Imm = SImm;
586  return isAdd;
587 }
588 
589 /// getBranchTargetOpValue - Helper function to get the branch target operand,
590 /// which is either an immediate or requires a fixup.
591 static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
592  unsigned FixupKind,
593  SmallVectorImpl<MCFixup> &Fixups,
594  const MCSubtargetInfo &STI) {
595  const MCOperand &MO = MI.getOperand(OpIdx);
596 
597  // If the destination is an immediate, we have nothing to do.
598  if (MO.isImm()) return MO.getImm();
599  assert(MO.isExpr() && "Unexpected branch target type!");
600  const MCExpr *Expr = MO.getExpr();
601  MCFixupKind Kind = MCFixupKind(FixupKind);
602  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
603 
604  // All of the information is in the fixup.
605  return 0;
606 }
607 
608 // Thumb BL and BLX use a strange offset encoding where bits 22 and 21 are
609 // determined by negating them and XOR'ing them with bit 23.
610 static int32_t encodeThumbBLOffset(int32_t offset) {
611  offset >>= 1;
612  uint32_t S = (offset & 0x800000) >> 23;
613  uint32_t J1 = (offset & 0x400000) >> 22;
614  uint32_t J2 = (offset & 0x200000) >> 21;
615  J1 = (~J1 & 0x1);
616  J2 = (~J2 & 0x1);
617  J1 ^= S;
618  J2 ^= S;
619 
620  offset &= ~0x600000;
621  offset |= J1 << 22;
622  offset |= J2 << 21;
623 
624  return offset;
625 }
626 
627 /// getThumbBLTargetOpValue - Return encoding info for immediate branch target.
628 uint32_t ARMMCCodeEmitter::
629 getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
630  SmallVectorImpl<MCFixup> &Fixups,
631  const MCSubtargetInfo &STI) const {
632  const MCOperand MO = MI.getOperand(OpIdx);
633  if (MO.isExpr())
635  Fixups, STI);
636  return encodeThumbBLOffset(MO.getImm());
637 }
638 
639 /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
640 /// BLX branch target.
641 uint32_t ARMMCCodeEmitter::
642 getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
643  SmallVectorImpl<MCFixup> &Fixups,
644  const MCSubtargetInfo &STI) const {
645  const MCOperand MO = MI.getOperand(OpIdx);
646  if (MO.isExpr())
648  Fixups, STI);
649  return encodeThumbBLOffset(MO.getImm());
650 }
651 
652 /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
653 uint32_t ARMMCCodeEmitter::
654 getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
655  SmallVectorImpl<MCFixup> &Fixups,
656  const MCSubtargetInfo &STI) const {
657  const MCOperand MO = MI.getOperand(OpIdx);
658  if (MO.isExpr())
660  Fixups, STI);
661  return (MO.getImm() >> 1);
662 }
663 
664 /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
665 uint32_t ARMMCCodeEmitter::
666 getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
667  SmallVectorImpl<MCFixup> &Fixups,
668  const MCSubtargetInfo &STI) const {
669  const MCOperand MO = MI.getOperand(OpIdx);
670  if (MO.isExpr())
672  Fixups, STI);
673  return (MO.getImm() >> 1);
674 }
675 
676 /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
677 uint32_t ARMMCCodeEmitter::
678 getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
679  SmallVectorImpl<MCFixup> &Fixups,
680  const MCSubtargetInfo &STI) const {
681  const MCOperand MO = MI.getOperand(OpIdx);
682  if (MO.isExpr())
684  return (MO.getImm() >> 1);
685 }
686 
687 /// Return true if this branch has a non-always predication
688 static bool HasConditionalBranch(const MCInst &MI) {
689  int NumOp = MI.getNumOperands();
690  if (NumOp >= 2) {
691  for (int i = 0; i < NumOp-1; ++i) {
692  const MCOperand &MCOp1 = MI.getOperand(i);
693  const MCOperand &MCOp2 = MI.getOperand(i + 1);
694  if (MCOp1.isImm() && MCOp2.isReg() &&
695  (MCOp2.getReg() == 0 || MCOp2.getReg() == ARM::CPSR)) {
696  if (ARMCC::CondCodes(MCOp1.getImm()) != ARMCC::AL)
697  return true;
698  }
699  }
700  }
701  return false;
702 }
703 
704 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
705 /// target.
707 getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
708  SmallVectorImpl<MCFixup> &Fixups,
709  const MCSubtargetInfo &STI) const {
710  // FIXME: This really, really shouldn't use TargetMachine. We don't want
711  // coupling between MC and TM anywhere we can help it.
712  if (isThumb2(STI))
713  return
714  ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_condbranch, Fixups, STI);
715  return getARMBranchTargetOpValue(MI, OpIdx, Fixups, STI);
716 }
717 
718 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
719 /// target.
720 uint32_t ARMMCCodeEmitter::
721 getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
722  SmallVectorImpl<MCFixup> &Fixups,
723  const MCSubtargetInfo &STI) const {
724  const MCOperand MO = MI.getOperand(OpIdx);
725  if (MO.isExpr()) {
726  if (HasConditionalBranch(MI))
728  ARM::fixup_arm_condbranch, Fixups, STI);
730  ARM::fixup_arm_uncondbranch, Fixups, STI);
731  }
732 
733  return MO.getImm() >> 2;
734 }
735 
736 uint32_t ARMMCCodeEmitter::
737 getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
738  SmallVectorImpl<MCFixup> &Fixups,
739  const MCSubtargetInfo &STI) const {
740  const MCOperand MO = MI.getOperand(OpIdx);
741  if (MO.isExpr()) {
742  if (HasConditionalBranch(MI))
744  ARM::fixup_arm_condbl, Fixups, STI);
746  }
747 
748  return MO.getImm() >> 2;
749 }
750 
751 uint32_t ARMMCCodeEmitter::
752 getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
753  SmallVectorImpl<MCFixup> &Fixups,
754  const MCSubtargetInfo &STI) const {
755  const MCOperand MO = MI.getOperand(OpIdx);
756  if (MO.isExpr())
757  return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_blx, Fixups, STI);
758 
759  return MO.getImm() >> 1;
760 }
761 
762 /// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit
763 /// immediate branch target.
764 uint32_t ARMMCCodeEmitter::getThumbBranchTargetOpValue(
765  const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
766  const MCSubtargetInfo &STI) const {
767  unsigned Val = 0;
768  const MCOperand MO = MI.getOperand(OpIdx);
769 
770  if(MO.isExpr())
772  else
773  Val = MO.getImm() >> 1;
774 
775  bool I = (Val & 0x800000);
776  bool J1 = (Val & 0x400000);
777  bool J2 = (Val & 0x200000);
778  if (I ^ J1)
779  Val &= ~0x400000;
780  else
781  Val |= 0x400000;
782 
783  if (I ^ J2)
784  Val &= ~0x200000;
785  else
786  Val |= 0x200000;
787 
788  return Val;
789 }
790 
791 /// getAdrLabelOpValue - Return encoding info for 12-bit shifted-immediate
792 /// ADR label target.
793 uint32_t ARMMCCodeEmitter::
794 getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
795  SmallVectorImpl<MCFixup> &Fixups,
796  const MCSubtargetInfo &STI) const {
797  const MCOperand MO = MI.getOperand(OpIdx);
798  if (MO.isExpr())
800  Fixups, STI);
801  int64_t offset = MO.getImm();
802  uint32_t Val = 0x2000;
803 
804  int SoImmVal;
805  if (offset == INT32_MIN) {
806  Val = 0x1000;
807  SoImmVal = 0;
808  } else if (offset < 0) {
809  Val = 0x1000;
810  offset *= -1;
811  SoImmVal = ARM_AM::getSOImmVal(offset);
812  if(SoImmVal == -1) {
813  Val = 0x2000;
814  offset *= -1;
815  SoImmVal = ARM_AM::getSOImmVal(offset);
816  }
817  } else {
818  SoImmVal = ARM_AM::getSOImmVal(offset);
819  if(SoImmVal == -1) {
820  Val = 0x1000;
821  offset *= -1;
822  SoImmVal = ARM_AM::getSOImmVal(offset);
823  }
824  }
825 
826  assert(SoImmVal != -1 && "Not a valid so_imm value!");
827 
828  Val |= SoImmVal;
829  return Val;
830 }
831 
832 /// getT2AdrLabelOpValue - Return encoding info for 12-bit immediate ADR label
833 /// target.
834 uint32_t ARMMCCodeEmitter::
835 getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
836  SmallVectorImpl<MCFixup> &Fixups,
837  const MCSubtargetInfo &STI) const {
838  const MCOperand MO = MI.getOperand(OpIdx);
839  if (MO.isExpr())
841  Fixups, STI);
842  int32_t Val = MO.getImm();
843  if (Val == INT32_MIN)
844  Val = 0x1000;
845  else if (Val < 0) {
846  Val *= -1;
847  Val |= 0x1000;
848  }
849  return Val;
850 }
851 
852 /// getThumbAdrLabelOpValue - Return encoding info for 8-bit immediate ADR label
853 /// target.
854 uint32_t ARMMCCodeEmitter::
855 getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
856  SmallVectorImpl<MCFixup> &Fixups,
857  const MCSubtargetInfo &STI) const {
858  const MCOperand MO = MI.getOperand(OpIdx);
859  if (MO.isExpr())
861  Fixups, STI);
862  return MO.getImm();
863 }
864 
865 /// getThumbAddrModeRegRegOpValue - Return encoding info for 'reg + reg'
866 /// operand.
867 uint32_t ARMMCCodeEmitter::
868 getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
870  const MCSubtargetInfo &STI) const {
871  // [Rn, Rm]
872  // {5-3} = Rm
873  // {2-0} = Rn
874  const MCOperand &MO1 = MI.getOperand(OpIdx);
875  const MCOperand &MO2 = MI.getOperand(OpIdx + 1);
876  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
877  unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
878  return (Rm << 3) | Rn;
879 }
880 
881 /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' operand.
882 uint32_t ARMMCCodeEmitter::
883 getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
884  SmallVectorImpl<MCFixup> &Fixups,
885  const MCSubtargetInfo &STI) const {
886  // {17-13} = reg
887  // {12} = (U)nsigned (add == '1', sub == '0')
888  // {11-0} = imm12
889  unsigned Reg, Imm12;
890  bool isAdd = true;
891  // If The first operand isn't a register, we have a label reference.
892  const MCOperand &MO = MI.getOperand(OpIdx);
893  if (!MO.isReg()) {
894  Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
895  Imm12 = 0;
896 
897  if (MO.isExpr()) {
898  const MCExpr *Expr = MO.getExpr();
899  isAdd = false ; // 'U' bit is set as part of the fixup.
900 
902  if (isThumb2(STI))
904  else
906  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
907 
908  ++MCNumCPRelocations;
909  } else {
910  Reg = ARM::PC;
911  int32_t Offset = MO.getImm();
912  if (Offset == INT32_MIN) {
913  Offset = 0;
914  isAdd = false;
915  } else if (Offset < 0) {
916  Offset *= -1;
917  isAdd = false;
918  }
919  Imm12 = Offset;
920  }
921  } else
922  isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm12, Fixups, STI);
923 
924  uint32_t Binary = Imm12 & 0xfff;
925  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
926  if (isAdd)
927  Binary |= (1 << 12);
928  Binary |= (Reg << 13);
929  return Binary;
930 }
931 
932 /// getT2Imm8s4OpValue - Return encoding info for
933 /// '+/- imm8<<2' operand.
934 uint32_t ARMMCCodeEmitter::
935 getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx,
936  SmallVectorImpl<MCFixup> &Fixups,
937  const MCSubtargetInfo &STI) const {
938  // FIXME: The immediate operand should have already been encoded like this
939  // before ever getting here. The encoder method should just need to combine
940  // the MI operands for the register and the offset into a single
941  // representation for the complex operand in the .td file. This isn't just
942  // style, unfortunately. As-is, we can't represent the distinct encoding
943  // for #-0.
944 
945  // {8} = (U)nsigned (add == '1', sub == '0')
946  // {7-0} = imm8
947  int32_t Imm8 = MI.getOperand(OpIdx).getImm();
948  bool isAdd = Imm8 >= 0;
949 
950  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
951  if (Imm8 < 0)
952  Imm8 = -(uint32_t)Imm8;
953 
954  // Scaled by 4.
955  Imm8 /= 4;
956 
957  uint32_t Binary = Imm8 & 0xff;
958  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
959  if (isAdd)
960  Binary |= (1 << 8);
961  return Binary;
962 }
963 
964 /// getT2AddrModeImm8s4OpValue - Return encoding info for
965 /// 'reg +/- imm8<<2' operand.
966 uint32_t ARMMCCodeEmitter::
967 getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
968  SmallVectorImpl<MCFixup> &Fixups,
969  const MCSubtargetInfo &STI) const {
970  // {12-9} = reg
971  // {8} = (U)nsigned (add == '1', sub == '0')
972  // {7-0} = imm8
973  unsigned Reg, Imm8;
974  bool isAdd = true;
975  // If The first operand isn't a register, we have a label reference.
976  const MCOperand &MO = MI.getOperand(OpIdx);
977  if (!MO.isReg()) {
978  Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
979  Imm8 = 0;
980  isAdd = false ; // 'U' bit is set as part of the fixup.
981 
982  assert(MO.isExpr() && "Unexpected machine operand type!");
983  const MCExpr *Expr = MO.getExpr();
985  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
986 
987  ++MCNumCPRelocations;
988  } else
989  isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
990 
991  // FIXME: The immediate operand should have already been encoded like this
992  // before ever getting here. The encoder method should just need to combine
993  // the MI operands for the register and the offset into a single
994  // representation for the complex operand in the .td file. This isn't just
995  // style, unfortunately. As-is, we can't represent the distinct encoding
996  // for #-0.
997  uint32_t Binary = (Imm8 >> 2) & 0xff;
998  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
999  if (isAdd)
1000  Binary |= (1 << 8);
1001  Binary |= (Reg << 9);
1002  return Binary;
1003 }
1004 
1005 /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for
1006 /// 'reg + imm8<<2' operand.
1007 uint32_t ARMMCCodeEmitter::
1008 getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
1009  SmallVectorImpl<MCFixup> &Fixups,
1010  const MCSubtargetInfo &STI) const {
1011  // {11-8} = reg
1012  // {7-0} = imm8
1013  const MCOperand &MO = MI.getOperand(OpIdx);
1014  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
1015  unsigned Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1016  unsigned Imm8 = MO1.getImm();
1017  return (Reg << 8) | Imm8;
1018 }
1019 
1020 uint32_t
1021 ARMMCCodeEmitter::getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
1022  SmallVectorImpl<MCFixup> &Fixups,
1023  const MCSubtargetInfo &STI) const {
1024  // {20-16} = imm{15-12}
1025  // {11-0} = imm{11-0}
1026  const MCOperand &MO = MI.getOperand(OpIdx);
1027  if (MO.isImm())
1028  // Hi / lo 16 bits already extracted during earlier passes.
1029  return static_cast<unsigned>(MO.getImm());
1030 
1031  // Handle :upper16: and :lower16: assembly prefixes.
1032  const MCExpr *E = MO.getExpr();
1033  MCFixupKind Kind;
1034  if (E->getKind() == MCExpr::Target) {
1035  const ARMMCExpr *ARM16Expr = cast<ARMMCExpr>(E);
1036  E = ARM16Expr->getSubExpr();
1037 
1038  if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(E)) {
1039  const int64_t Value = MCE->getValue();
1040  if (Value > UINT32_MAX)
1041  report_fatal_error("constant value truncated (limited to 32-bit)");
1042 
1043  switch (ARM16Expr->getKind()) {
1045  return (int32_t(Value) & 0xffff0000) >> 16;
1047  return (int32_t(Value) & 0x0000ffff);
1048  default: llvm_unreachable("Unsupported ARMFixup");
1049  }
1050  }
1051 
1052  switch (ARM16Expr->getKind()) {
1053  default: llvm_unreachable("Unsupported ARMFixup");
1057  break;
1061  break;
1062  }
1063 
1064  Fixups.push_back(MCFixup::create(0, E, Kind, MI.getLoc()));
1065  return 0;
1066  }
1067  // If the expression doesn't have :upper16: or :lower16: on it,
1068  // it's just a plain immediate expression, previously those evaluated to
1069  // the lower 16 bits of the expression regardless of whether
1070  // we have a movt or a movw, but that led to misleadingly results.
1071  // This is disallowed in the AsmParser in validateInstruction()
1072  // so this should never happen.
1073  llvm_unreachable("expression without :upper16: or :lower16:");
1074 }
1075 
1076 uint32_t ARMMCCodeEmitter::
1077 getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
1078  SmallVectorImpl<MCFixup> &Fixups,
1079  const MCSubtargetInfo &STI) const {
1080  const MCOperand &MO = MI.getOperand(OpIdx);
1081  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
1082  const MCOperand &MO2 = MI.getOperand(OpIdx+2);
1083  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1084  unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
1085  unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm());
1086  bool isAdd = ARM_AM::getAM2Op(MO2.getImm()) == ARM_AM::add;
1088  unsigned SBits = getShiftOp(ShOp);
1089 
1090  // While "lsr #32" and "asr #32" exist, they are encoded with a 0 in the shift
1091  // amount. However, it would be an easy mistake to make so check here.
1092  assert((ShImm & ~0x1f) == 0 && "Out of range shift amount");
1093 
1094  // {16-13} = Rn
1095  // {12} = isAdd
1096  // {11-0} = shifter
1097  // {3-0} = Rm
1098  // {4} = 0
1099  // {6-5} = type
1100  // {11-7} = imm
1101  uint32_t Binary = Rm;
1102  Binary |= Rn << 13;
1103  Binary |= SBits << 5;
1104  Binary |= ShImm << 7;
1105  if (isAdd)
1106  Binary |= 1 << 12;
1107  return Binary;
1108 }
1109 
1110 uint32_t ARMMCCodeEmitter::
1111 getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
1112  SmallVectorImpl<MCFixup> &Fixups,
1113  const MCSubtargetInfo &STI) const {
1114  // {13} 1 == imm12, 0 == Rm
1115  // {12} isAdd
1116  // {11-0} imm12/Rm
1117  const MCOperand &MO = MI.getOperand(OpIdx);
1118  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
1119  unsigned Imm = MO1.getImm();
1120  bool isAdd = ARM_AM::getAM2Op(Imm) == ARM_AM::add;
1121  bool isReg = MO.getReg() != 0;
1122  uint32_t Binary = ARM_AM::getAM2Offset(Imm);
1123  // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm12
1124  if (isReg) {
1126  Binary <<= 7; // Shift amount is bits [11:7]
1127  Binary |= getShiftOp(ShOp) << 5; // Shift type is bits [6:5]
1128  Binary |= CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Rm is bits [3:0]
1129  }
1130  return Binary | (isAdd << 12) | (isReg << 13);
1131 }
1132 
1133 uint32_t ARMMCCodeEmitter::
1134 getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
1135  SmallVectorImpl<MCFixup> &Fixups,
1136  const MCSubtargetInfo &STI) const {
1137  // {4} isAdd
1138  // {3-0} Rm
1139  const MCOperand &MO = MI.getOperand(OpIdx);
1140  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
1141  bool isAdd = MO1.getImm() != 0;
1142  return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()) | (isAdd << 4);
1143 }
1144 
1145 uint32_t ARMMCCodeEmitter::
1146 getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
1147  SmallVectorImpl<MCFixup> &Fixups,
1148  const MCSubtargetInfo &STI) const {
1149  // {9} 1 == imm8, 0 == Rm
1150  // {8} isAdd
1151  // {7-4} imm7_4/zero
1152  // {3-0} imm3_0/Rm
1153  const MCOperand &MO = MI.getOperand(OpIdx);
1154  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
1155  unsigned Imm = MO1.getImm();
1156  bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
1157  bool isImm = MO.getReg() == 0;
1159  // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
1160  if (!isImm)
1161  Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1162  return Imm8 | (isAdd << 8) | (isImm << 9);
1163 }
1164 
1165 uint32_t ARMMCCodeEmitter::
1166 getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
1167  SmallVectorImpl<MCFixup> &Fixups,
1168  const MCSubtargetInfo &STI) const {
1169  // {13} 1 == imm8, 0 == Rm
1170  // {12-9} Rn
1171  // {8} isAdd
1172  // {7-4} imm7_4/zero
1173  // {3-0} imm3_0/Rm
1174  const MCOperand &MO = MI.getOperand(OpIdx);
1175  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
1176  const MCOperand &MO2 = MI.getOperand(OpIdx+2);
1177 
1178  // If The first operand isn't a register, we have a label reference.
1179  if (!MO.isReg()) {
1180  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
1181 
1182  assert(MO.isExpr() && "Unexpected machine operand type!");
1183  const MCExpr *Expr = MO.getExpr();
1185  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
1186 
1187  ++MCNumCPRelocations;
1188  return (Rn << 9) | (1 << 13);
1189  }
1190  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1191  unsigned Imm = MO2.getImm();
1192  bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
1193  bool isImm = MO1.getReg() == 0;
1195  // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
1196  if (!isImm)
1197  Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
1198  return (Rn << 9) | Imm8 | (isAdd << 8) | (isImm << 13);
1199 }
1200 
1201 /// getAddrModeThumbSPOpValue - Encode the t_addrmode_sp operands.
1202 uint32_t ARMMCCodeEmitter::
1203 getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
1204  SmallVectorImpl<MCFixup> &Fixups,
1205  const MCSubtargetInfo &STI) const {
1206  // [SP, #imm]
1207  // {7-0} = imm8
1208  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
1209  assert(MI.getOperand(OpIdx).getReg() == ARM::SP &&
1210  "Unexpected base register!");
1211 
1212  // The immediate is already shifted for the implicit zeroes, so no change
1213  // here.
1214  return MO1.getImm() & 0xff;
1215 }
1216 
1217 /// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
1218 uint32_t ARMMCCodeEmitter::
1219 getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
1220  SmallVectorImpl<MCFixup> &Fixups,
1221  const MCSubtargetInfo &STI) const {
1222  // [Rn, #imm]
1223  // {7-3} = imm5
1224  // {2-0} = Rn
1225  const MCOperand &MO = MI.getOperand(OpIdx);
1226  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
1227  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1228  unsigned Imm5 = MO1.getImm();
1229  return ((Imm5 & 0x1f) << 3) | Rn;
1230 }
1231 
1232 /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
1233 uint32_t ARMMCCodeEmitter::
1234 getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
1235  SmallVectorImpl<MCFixup> &Fixups,
1236  const MCSubtargetInfo &STI) const {
1237  const MCOperand MO = MI.getOperand(OpIdx);
1238  if (MO.isExpr())
1240  return (MO.getImm() >> 2);
1241 }
1242 
1243 /// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand.
1244 uint32_t ARMMCCodeEmitter::
1245 getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
1246  SmallVectorImpl<MCFixup> &Fixups,
1247  const MCSubtargetInfo &STI) const {
1248  // {12-9} = reg
1249  // {8} = (U)nsigned (add == '1', sub == '0')
1250  // {7-0} = imm8
1251  unsigned Reg, Imm8;
1252  bool isAdd;
1253  // If The first operand isn't a register, we have a label reference.
1254  const MCOperand &MO = MI.getOperand(OpIdx);
1255  if (!MO.isReg()) {
1256  Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
1257  Imm8 = 0;
1258  isAdd = false; // 'U' bit is handled as part of the fixup.
1259 
1260  assert(MO.isExpr() && "Unexpected machine operand type!");
1261  const MCExpr *Expr = MO.getExpr();
1262  MCFixupKind Kind;
1263  if (isThumb2(STI))
1265  else
1267  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
1268 
1269  ++MCNumCPRelocations;
1270  } else {
1271  EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
1272  isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add;
1273  }
1274 
1275  uint32_t Binary = ARM_AM::getAM5Offset(Imm8);
1276  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
1277  if (isAdd)
1278  Binary |= (1 << 8);
1279  Binary |= (Reg << 9);
1280  return Binary;
1281 }
1282 
1283 /// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand.
1284 uint32_t ARMMCCodeEmitter::
1285 getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx,
1286  SmallVectorImpl<MCFixup> &Fixups,
1287  const MCSubtargetInfo &STI) const {
1288  // {12-9} = reg
1289  // {8} = (U)nsigned (add == '1', sub == '0')
1290  // {7-0} = imm8
1291  unsigned Reg, Imm8;
1292  bool isAdd;
1293  // If The first operand isn't a register, we have a label reference.
1294  const MCOperand &MO = MI.getOperand(OpIdx);
1295  if (!MO.isReg()) {
1296  Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC.
1297  Imm8 = 0;
1298  isAdd = false; // 'U' bit is handled as part of the fixup.
1299 
1300  assert(MO.isExpr() && "Unexpected machine operand type!");
1301  const MCExpr *Expr = MO.getExpr();
1302  MCFixupKind Kind;
1303  if (isThumb2(STI))
1305  else
1307  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
1308 
1309  ++MCNumCPRelocations;
1310  } else {
1311  EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
1312  isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add;
1313  }
1314 
1315  uint32_t Binary = ARM_AM::getAM5Offset(Imm8);
1316  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
1317  if (isAdd)
1318  Binary |= (1 << 8);
1319  Binary |= (Reg << 9);
1320  return Binary;
1321 }
1322 
1323 unsigned ARMMCCodeEmitter::
1324 getSORegRegOpValue(const MCInst &MI, unsigned OpIdx,
1325  SmallVectorImpl<MCFixup> &Fixups,
1326  const MCSubtargetInfo &STI) const {
1327  // Sub-operands are [reg, reg, imm]. The first register is Rm, the reg to be
1328  // shifted. The second is Rs, the amount to shift by, and the third specifies
1329  // the type of the shift.
1330  //
1331  // {3-0} = Rm.
1332  // {4} = 1
1333  // {6-5} = type
1334  // {11-8} = Rs
1335  // {7} = 0
1336 
1337  const MCOperand &MO = MI.getOperand(OpIdx);
1338  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
1339  const MCOperand &MO2 = MI.getOperand(OpIdx + 2);
1341 
1342  // Encode Rm.
1343  unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1344 
1345  // Encode the shift opcode.
1346  unsigned SBits = 0;
1347  unsigned Rs = MO1.getReg();
1348  if (Rs) {
1349  // Set shift operand (bit[7:4]).
1350  // LSL - 0001
1351  // LSR - 0011
1352  // ASR - 0101
1353  // ROR - 0111
1354  switch (SOpc) {
1355  default: llvm_unreachable("Unknown shift opc!");
1356  case ARM_AM::lsl: SBits = 0x1; break;
1357  case ARM_AM::lsr: SBits = 0x3; break;
1358  case ARM_AM::asr: SBits = 0x5; break;
1359  case ARM_AM::ror: SBits = 0x7; break;
1360  }
1361  }
1362 
1363  Binary |= SBits << 4;
1364 
1365  // Encode the shift operation Rs.
1366  // Encode Rs bit[11:8].
1367  assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
1368  return Binary | (CTX.getRegisterInfo()->getEncodingValue(Rs) << ARMII::RegRsShift);
1369 }
1370 
1371 unsigned ARMMCCodeEmitter::
1372 getSORegImmOpValue(const MCInst &MI, unsigned OpIdx,
1373  SmallVectorImpl<MCFixup> &Fixups,
1374  const MCSubtargetInfo &STI) const {
1375  // Sub-operands are [reg, imm]. The first register is Rm, the reg to be
1376  // shifted. The second is the amount to shift by.
1377  //
1378  // {3-0} = Rm.
1379  // {4} = 0
1380  // {6-5} = type
1381  // {11-7} = imm
1382 
1383  const MCOperand &MO = MI.getOperand(OpIdx);
1384  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
1386 
1387  // Encode Rm.
1388  unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1389 
1390  // Encode the shift opcode.
1391  unsigned SBits = 0;
1392 
1393  // Set shift operand (bit[6:4]).
1394  // LSL - 000
1395  // LSR - 010
1396  // ASR - 100
1397  // ROR - 110
1398  // RRX - 110 and bit[11:8] clear.
1399  switch (SOpc) {
1400  default: llvm_unreachable("Unknown shift opc!");
1401  case ARM_AM::lsl: SBits = 0x0; break;
1402  case ARM_AM::lsr: SBits = 0x2; break;
1403  case ARM_AM::asr: SBits = 0x4; break;
1404  case ARM_AM::ror: SBits = 0x6; break;
1405  case ARM_AM::rrx:
1406  Binary |= 0x60;
1407  return Binary;
1408  }
1409 
1410  // Encode shift_imm bit[11:7].
1411  Binary |= SBits << 4;
1412  unsigned Offset = ARM_AM::getSORegOffset(MO1.getImm());
1413  assert(Offset < 32 && "Offset must be in range 0-31!");
1414  return Binary | (Offset << 7);
1415 }
1416 
1417 
1418 unsigned ARMMCCodeEmitter::
1419 getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
1420  SmallVectorImpl<MCFixup> &Fixups,
1421  const MCSubtargetInfo &STI) const {
1422  const MCOperand &MO1 = MI.getOperand(OpNum);
1423  const MCOperand &MO2 = MI.getOperand(OpNum+1);
1424  const MCOperand &MO3 = MI.getOperand(OpNum+2);
1425 
1426  // Encoded as [Rn, Rm, imm].
1427  // FIXME: Needs fixup support.
1428  unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
1429  Value <<= 4;
1430  Value |= CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
1431  Value <<= 2;
1432  Value |= MO3.getImm();
1433 
1434  return Value;
1435 }
1436 
1437 unsigned ARMMCCodeEmitter::
1438 getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum,
1439  SmallVectorImpl<MCFixup> &Fixups,
1440  const MCSubtargetInfo &STI) const {
1441  const MCOperand &MO1 = MI.getOperand(OpNum);
1442  const MCOperand &MO2 = MI.getOperand(OpNum+1);
1443 
1444  // FIXME: Needs fixup support.
1445  unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
1446 
1447  // Even though the immediate is 8 bits long, we need 9 bits in order
1448  // to represent the (inverse of the) sign bit.
1449  Value <<= 9;
1450  int32_t tmp = (int32_t)MO2.getImm();
1451  if (tmp < 0)
1452  tmp = abs(tmp);
1453  else
1454  Value |= 256; // Set the ADD bit
1455  Value |= tmp & 255;
1456  return Value;
1457 }
1458 
1459 unsigned ARMMCCodeEmitter::
1460 getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
1461  SmallVectorImpl<MCFixup> &Fixups,
1462  const MCSubtargetInfo &STI) const {
1463  const MCOperand &MO1 = MI.getOperand(OpNum);
1464 
1465  // FIXME: Needs fixup support.
1466  unsigned Value = 0;
1467  int32_t tmp = (int32_t)MO1.getImm();
1468  if (tmp < 0)
1469  tmp = abs(tmp);
1470  else
1471  Value |= 256; // Set the ADD bit
1472  Value |= tmp & 255;
1473  return Value;
1474 }
1475 
1476 unsigned ARMMCCodeEmitter::
1477 getT2SORegOpValue(const MCInst &MI, unsigned OpIdx,
1478  SmallVectorImpl<MCFixup> &Fixups,
1479  const MCSubtargetInfo &STI) const {
1480  // Sub-operands are [reg, imm]. The first register is Rm, the reg to be
1481  // shifted. The second is the amount to shift by.
1482  //
1483  // {3-0} = Rm.
1484  // {4} = 0
1485  // {6-5} = type
1486  // {11-7} = imm
1487 
1488  const MCOperand &MO = MI.getOperand(OpIdx);
1489  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
1491 
1492  // Encode Rm.
1493  unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1494 
1495  // Encode the shift opcode.
1496  unsigned SBits = 0;
1497  // Set shift operand (bit[6:4]).
1498  // LSL - 000
1499  // LSR - 010
1500  // ASR - 100
1501  // ROR - 110
1502  switch (SOpc) {
1503  default: llvm_unreachable("Unknown shift opc!");
1504  case ARM_AM::lsl: SBits = 0x0; break;
1505  case ARM_AM::lsr: SBits = 0x2; break;
1506  case ARM_AM::asr: SBits = 0x4; break;
1508  case ARM_AM::ror: SBits = 0x6; break;
1509  }
1510 
1511  Binary |= SBits << 4;
1512  if (SOpc == ARM_AM::rrx)
1513  return Binary;
1514 
1515  // Encode shift_imm bit[11:7].
1516  return Binary | ARM_AM::getSORegOffset(MO1.getImm()) << 7;
1517 }
1518 
1519 unsigned ARMMCCodeEmitter::
1520 getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
1521  SmallVectorImpl<MCFixup> &Fixups,
1522  const MCSubtargetInfo &STI) const {
1523  // 10 bits. lower 5 bits are the lsb of the mask, high five bits are the
1524  // msb of the mask.
1525  const MCOperand &MO = MI.getOperand(Op);
1526  uint32_t v = ~MO.getImm();
1527  uint32_t lsb = countTrailingZeros(v);
1528  uint32_t msb = (32 - countLeadingZeros (v)) - 1;
1529  assert(v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!");
1530  return lsb | (msb << 5);
1531 }
1532 
1533 unsigned ARMMCCodeEmitter::
1534 getRegisterListOpValue(const MCInst &MI, unsigned Op,
1535  SmallVectorImpl<MCFixup> &Fixups,
1536  const MCSubtargetInfo &STI) const {
1537  // VLDM/VSTM:
1538  // {12-8} = Vd
1539  // {7-0} = Number of registers
1540  //
1541  // LDM/STM:
1542  // {15-0} = Bitfield of GPRs.
1543  unsigned Reg = MI.getOperand(Op).getReg();
1544  bool SPRRegs = ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg);
1545  bool DPRRegs = ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg);
1546 
1547  unsigned Binary = 0;
1548 
1549  if (SPRRegs || DPRRegs) {
1550  // VLDM/VSTM
1551  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);
1552  unsigned NumRegs = (MI.getNumOperands() - Op) & 0xff;
1553  Binary |= (RegNo & 0x1f) << 8;
1554  if (SPRRegs)
1555  Binary |= NumRegs;
1556  else
1557  Binary |= NumRegs * 2;
1558  } else {
1559  const MCRegisterInfo &MRI = *CTX.getRegisterInfo();
1560  assert(std::is_sorted(MI.begin() + Op, MI.end(),
1561  [&](const MCOperand &LHS, const MCOperand &RHS) {
1562  return MRI.getEncodingValue(LHS.getReg()) <
1563  MRI.getEncodingValue(RHS.getReg());
1564  }));
1565 
1566  for (unsigned I = Op, E = MI.getNumOperands(); I < E; ++I) {
1567  unsigned RegNo = MRI.getEncodingValue(MI.getOperand(I).getReg());
1568  Binary |= 1 << RegNo;
1569  }
1570  }
1571 
1572  return Binary;
1573 }
1574 
1575 /// getAddrMode6AddressOpValue - Encode an addrmode6 register number along
1576 /// with the alignment operand.
1577 unsigned ARMMCCodeEmitter::
1578 getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
1579  SmallVectorImpl<MCFixup> &Fixups,
1580  const MCSubtargetInfo &STI) const {
1581  const MCOperand &Reg = MI.getOperand(Op);
1582  const MCOperand &Imm = MI.getOperand(Op + 1);
1583 
1584  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
1585  unsigned Align = 0;
1586 
1587  switch (Imm.getImm()) {
1588  default: break;
1589  case 2:
1590  case 4:
1591  case 8: Align = 0x01; break;
1592  case 16: Align = 0x02; break;
1593  case 32: Align = 0x03; break;
1594  }
1595 
1596  return RegNo | (Align << 4);
1597 }
1598 
1599 /// getAddrMode6OneLane32AddressOpValue - Encode an addrmode6 register number
1600 /// along with the alignment operand for use in VST1 and VLD1 with size 32.
1601 unsigned ARMMCCodeEmitter::
1602 getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
1603  SmallVectorImpl<MCFixup> &Fixups,
1604  const MCSubtargetInfo &STI) const {
1605  const MCOperand &Reg = MI.getOperand(Op);
1606  const MCOperand &Imm = MI.getOperand(Op + 1);
1607 
1608  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
1609  unsigned Align = 0;
1610 
1611  switch (Imm.getImm()) {
1612  default: break;
1613  case 8:
1614  case 16:
1615  case 32: // Default '0' value for invalid alignments of 8, 16, 32 bytes.
1616  case 2: Align = 0x00; break;
1617  case 4: Align = 0x03; break;
1618  }
1619 
1620  return RegNo | (Align << 4);
1621 }
1622 
1623 
1624 /// getAddrMode6DupAddressOpValue - Encode an addrmode6 register number and
1625 /// alignment operand for use in VLD-dup instructions. This is the same as
1626 /// getAddrMode6AddressOpValue except for the alignment encoding, which is
1627 /// different for VLD4-dup.
1628 unsigned ARMMCCodeEmitter::
1629 getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
1630  SmallVectorImpl<MCFixup> &Fixups,
1631  const MCSubtargetInfo &STI) const {
1632  const MCOperand &Reg = MI.getOperand(Op);
1633  const MCOperand &Imm = MI.getOperand(Op + 1);
1634 
1635  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
1636  unsigned Align = 0;
1637 
1638  switch (Imm.getImm()) {
1639  default: break;
1640  case 2:
1641  case 4:
1642  case 8: Align = 0x01; break;
1643  case 16: Align = 0x03; break;
1644  }
1645 
1646  return RegNo | (Align << 4);
1647 }
1648 
1649 unsigned ARMMCCodeEmitter::
1650 getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
1651  SmallVectorImpl<MCFixup> &Fixups,
1652  const MCSubtargetInfo &STI) const {
1653  const MCOperand &MO = MI.getOperand(Op);
1654  if (MO.getReg() == 0) return 0x0D;
1655  return CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
1656 }
1657 
1658 unsigned ARMMCCodeEmitter::
1659 getShiftRight8Imm(const MCInst &MI, unsigned Op,
1660  SmallVectorImpl<MCFixup> &Fixups,
1661  const MCSubtargetInfo &STI) const {
1662  return 8 - MI.getOperand(Op).getImm();
1663 }
1664 
1665 unsigned ARMMCCodeEmitter::
1666 getShiftRight16Imm(const MCInst &MI, unsigned Op,
1667  SmallVectorImpl<MCFixup> &Fixups,
1668  const MCSubtargetInfo &STI) const {
1669  return 16 - MI.getOperand(Op).getImm();
1670 }
1671 
1672 unsigned ARMMCCodeEmitter::
1673 getShiftRight32Imm(const MCInst &MI, unsigned Op,
1674  SmallVectorImpl<MCFixup> &Fixups,
1675  const MCSubtargetInfo &STI) const {
1676  return 32 - MI.getOperand(Op).getImm();
1677 }
1678 
1679 unsigned ARMMCCodeEmitter::
1680 getShiftRight64Imm(const MCInst &MI, unsigned Op,
1681  SmallVectorImpl<MCFixup> &Fixups,
1682  const MCSubtargetInfo &STI) const {
1683  return 64 - MI.getOperand(Op).getImm();
1684 }
1685 
1686 void ARMMCCodeEmitter::
1687 encodeInstruction(const MCInst &MI, raw_ostream &OS,
1688  SmallVectorImpl<MCFixup> &Fixups,
1689  const MCSubtargetInfo &STI) const {
1690  // Pseudo instructions don't get encoded.
1691  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1692  uint64_t TSFlags = Desc.TSFlags;
1693  if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo)
1694  return;
1695 
1696  int Size;
1697  if (Desc.getSize() == 2 || Desc.getSize() == 4)
1698  Size = Desc.getSize();
1699  else
1700  llvm_unreachable("Unexpected instruction size!");
1701 
1702  uint32_t Binary = getBinaryCodeForInstr(MI, Fixups, STI);
1703  // Thumb 32-bit wide instructions need to emit the high order halfword
1704  // first.
1705  if (isThumb(STI) && Size == 4) {
1706  EmitConstant(Binary >> 16, 2, OS);
1707  EmitConstant(Binary & 0xffff, 2, OS);
1708  } else
1709  EmitConstant(Binary, Size, OS);
1710  ++MCNumEmitted; // Keep track of the # of mi's emitted.
1711 }
1712 
1713 #include "ARMGenMCCodeEmitter.inc"
1714 
1716  const MCRegisterInfo &MRI,
1717  MCContext &Ctx) {
1718  return new ARMMCCodeEmitter(MCII, Ctx, true);
1719 }
1720 
1722  const MCRegisterInfo &MRI,
1723  MCContext &Ctx) {
1724  return new ARMMCCodeEmitter(MCII, Ctx, false);
1725 }
static bool isReg(const MCInst &MI, unsigned OpNo)
uint64_t CallInst * C
iterator end()
Definition: MCInst.h:196
iterator begin()
Definition: MCInst.h:194
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
bool isImm() const
Definition: MCInst.h:59
unsigned getSOImmValImm(unsigned Imm)
getSOImmValImm - Given an encoded imm field for the reg/imm form, return the 8-bit imm value...
SI Whole Quad Mode
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:140
This class represents lattice values for constants.
Definition: AllocatorList.h:24
VariantKind getKind() const
getOpcode - Get the kind of this expression.
Definition: ARMMCExpr.h:52
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
unsigned Reg
bool isReg() const
Definition: MCInst.h:58
STATISTIC(NumFunctions, "Total number of functions")
std::size_t countLeadingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0&#39;s from the most significant bit to the least stopping at the first 1...
Definition: MathExtras.h:189
static Lanai::Fixups FixupKind(const MCExpr *Expr)
static bool isThumb(const MCSubtargetInfo &STI)
const Triple & getTargetTriple() const
ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
const FeatureBitset & getFeatureBits() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:36
This file implements a class to represent arbitrary precision integral constant values and operations...
unsigned getReg() const
Returns the register number.
Definition: MCInst.h:65
A four-byte fixup.
Definition: MCFixup.h:26
Context object for machine code objects.
Definition: MCContext.h:63
unsigned char getAM3Offset(unsigned AM3Opc)
const MCExpr * getExpr() const
Definition: MCInst.h:96
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:161
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
AddrOpc getAM2Op(unsigned AM2Opc)
int64_t getImm() const
Definition: MCInst.h:76
unsigned char getAM5Offset(unsigned AM5Opc)
AddrOpc getAM3Op(unsigned AM3Opc)
unsigned const MachineRegisterInfo * MRI
std::size_t countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0&#39;s from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:120
unsigned getSORegOffset(unsigned Op)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
bool isFPImm() const
Definition: MCInst.h:60
MCCodeEmitter - Generic instruction encoding interface.
Definition: MCCodeEmitter.h:22
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:24
MCFixupKind
Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:23
This file declares a class to represent arbitrary precision floating point values and provide a varie...
int getT2SOImmVal(unsigned Arg)
getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit into a Thumb-2 shifter_oper...
bool isExpr() const
Definition: MCInst.h:61
unsigned getSOImmValRot(unsigned Imm)
getSOImmValRot - Given an encoded imm field for the reg/imm form, return the rotate amount...
unsigned getNumOperands() const
Definition: MCInst.h:184
bool isOSBinFormatMachO() const
Tests whether the environment is MachO.
Definition: Triple.h:614
static MCFixup create(uint32_t Offset, const MCExpr *Value, MCFixupKind Kind, SMLoc Loc=SMLoc())
Definition: MCFixup.h:90
static int32_t encodeThumbBLOffset(int32_t offset)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
static bool HasConditionalBranch(const MCInst &MI)
Return true if this branch has a non-always predication.
int getSOImmVal(unsigned Arg)
getSOImmVal - Given a 32-bit immediate, if it is something that can fit into an shifter_operand immed...
ExprKind getKind() const
Definition: MCExpr.h:73
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:182
unsigned getAM2Offset(unsigned AM2Opc)
SMLoc getLoc() const
Definition: MCInst.h:180
ShiftOpc getSORegShOp(unsigned Op)
MCCodeEmitter * createARMLEMCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx)
uint16_t getEncodingValue(unsigned RegNo) const
Returns the encoding for RegNo.
const MCExpr * getSubExpr() const
getSubExpr - Get the child of this expression.
Definition: ARMMCExpr.h:55
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
#define I(x, y, z)
Definition: MD5.cpp:58
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition: APFloat.h:1213
Generic base class for all target subtargets.
uint32_t Size
Definition: Profile.cpp:47
static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, unsigned FixupKind, SmallVectorImpl< MCFixup > &Fixups, const MCSubtargetInfo &STI)
getBranchTargetOpValue - Helper function to get the branch target operand, which is either an immedia...
const unsigned Kind
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
const MCRegisterInfo * getRegisterInfo() const
Definition: MCContext.h:295
LLVM Value Representation.
Definition: Value.h:73
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
IRTranslator LLVM IR MI
Target specific expression.
Definition: MCExpr.h:43
AddrOpc getAM5Op(unsigned AM5Opc)
unsigned getOpcode() const
Definition: MCInst.h:174
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:35
MCCodeEmitter * createARMBEMCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx)
Function Alias Analysis false
double getFPImm() const
Definition: MCInst.h:86
unsigned getSize() const
Return the number of bytes in the encoding of this instruction, or zero if the encoding size cannot b...
Definition: MCInstrDesc.h:581