LLVM  8.0.1
SIFixWWMLiveness.cpp
Go to the documentation of this file.
1 //===-- SIFixWWMLiveness.cpp - Fix WWM live intervals ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Computations in WWM can overwrite values in inactive channels for
12 /// variables that the register allocator thinks are dead. This pass adds fake
13 /// uses of those variables to their def(s) to make sure that they aren't
14 /// overwritten.
15 ///
16 /// As an example, consider this snippet:
17 /// %vgpr0 = V_MOV_B32_e32 0.0
18 /// if (...) {
19 /// %vgpr1 = ...
20 /// %vgpr2 = WWM killed %vgpr1
21 /// ... = killed %vgpr2
22 /// %vgpr0 = V_MOV_B32_e32 1.0
23 /// }
24 /// ... = %vgpr0
25 ///
26 /// The live intervals of %vgpr0 don't overlap with those of %vgpr1. Normally,
27 /// we can safely allocate %vgpr0 and %vgpr1 in the same register, since
28 /// writing %vgpr1 would only write to channels that would be clobbered by the
29 /// second write to %vgpr0 anyways. But if %vgpr1 is written with WWM enabled,
30 /// it would clobber even the inactive channels for which the if-condition is
31 /// false, for which %vgpr0 is supposed to be 0. This pass adds an implicit use
32 /// of %vgpr0 to its def to make sure they aren't allocated to the
33 /// same register.
34 ///
35 /// In general, we need to figure out what registers might have their inactive
36 /// channels which are eventually used accidentally clobbered by a WWM
37 /// instruction. We do that by spotting three separate cases of registers:
38 ///
39 /// 1. A "then phi": the value resulting from phi elimination of a phi node at
40 /// the end of an if..endif. If there is WWM code in the "then", then we
41 /// make the def at the end of the "then" branch a partial def by adding an
42 /// implicit use of the register.
43 ///
44 /// 2. A "loop exit register": a value written inside a loop but used outside the
45 /// loop, where there is WWM code inside the loop (the case in the example
46 /// above). We add an implicit_def of the register in the loop pre-header,
47 /// and make the original def a partial def by adding an implicit use of the
48 /// register.
49 ///
50 /// 3. A "loop exit phi": the value resulting from phi elimination of a phi node
51 /// in a loop header. If there is WWM code inside the loop, then we make all
52 /// defs inside the loop partial defs by adding an implicit use of the
53 /// register on each one.
54 ///
55 /// Note that we do not need to consider an if..else..endif phi. We only need to
56 /// consider non-uniform control flow, and control flow structurization would
57 /// have transformed a non-uniform if..else..endif into two if..endifs.
58 ///
59 /// The analysis to detect these cases relies on a property of the MIR
60 /// arising from this pass running straight after PHIElimination and before any
61 /// coalescing: that any virtual register with more than one definition must be
62 /// the new register added to lower a phi node by PHIElimination.
63 ///
64 /// FIXME: We should detect whether a register in one of the above categories is
65 /// already live at the WWM code before deciding to add the implicit uses to
66 /// synthesize its liveness.
67 ///
68 /// FIXME: I believe this whole scheme may be flawed due to the possibility of
69 /// the register allocator doing live interval splitting.
70 ///
71 //===----------------------------------------------------------------------===//
72 
73 #include "AMDGPU.h"
74 #include "AMDGPUSubtarget.h"
75 #include "SIInstrInfo.h"
76 #include "SIRegisterInfo.h"
84 #include "llvm/CodeGen/Passes.h"
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "si-fix-wwm-liveness"
90 
91 namespace {
92 
93 class SIFixWWMLiveness : public MachineFunctionPass {
94 private:
95  MachineDominatorTree *DomTree;
97  LiveIntervals *LIS = nullptr;
98  const SIInstrInfo *TII;
99  const SIRegisterInfo *TRI;
101 
102  std::vector<MachineInstr *> WWMs;
103  std::vector<MachineOperand *> ThenDefs;
104  std::vector<std::pair<MachineOperand *, MachineLoop *>> LoopExitDefs;
105  std::vector<std::pair<MachineOperand *, MachineLoop *>> LoopPhiDefs;
106 
107 public:
108  static char ID;
109 
110  SIFixWWMLiveness() : MachineFunctionPass(ID) {
112  }
113 
114  bool runOnMachineFunction(MachineFunction &MF) override;
115 
116  StringRef getPassName() const override { return "SI Fix WWM Liveness"; }
117 
118  void getAnalysisUsage(AnalysisUsage &AU) const override {
121  // Should preserve the same set that TwoAddressInstructions does.
127  AU.setPreservesCFG();
129  }
130 
131 private:
132  void processDef(MachineOperand &DefOpnd);
133  bool processThenDef(MachineOperand *DefOpnd);
134  bool processLoopExitDef(MachineOperand *DefOpnd, MachineLoop *Loop);
135  bool processLoopPhiDef(MachineOperand *DefOpnd, MachineLoop *Loop);
136 };
137 
138 } // End anonymous namespace.
139 
140 INITIALIZE_PASS_BEGIN(SIFixWWMLiveness, DEBUG_TYPE,
141  "SI fix WWM liveness", false, false)
144 INITIALIZE_PASS_END(SIFixWWMLiveness, DEBUG_TYPE,
145  "SI fix WWM liveness", false, false)
146 
147 char SIFixWWMLiveness::ID = 0;
148 
149 char &llvm::SIFixWWMLivenessID = SIFixWWMLiveness::ID;
150 
152  return new SIFixWWMLiveness();
153 }
154 
155 bool SIFixWWMLiveness::runOnMachineFunction(MachineFunction &MF) {
156  LLVM_DEBUG(dbgs() << "SIFixWWMLiveness: function " << MF.getName() << "\n");
157  bool Modified = false;
158 
159  // This doesn't actually need LiveIntervals, but we can preserve them.
160  LIS = getAnalysisIfAvailable<LiveIntervals>();
161 
162  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
163 
164  TII = ST.getInstrInfo();
165  TRI = &TII->getRegisterInfo();
166  MRI = &MF.getRegInfo();
167 
168  DomTree = &getAnalysis<MachineDominatorTree>();
169  LoopInfo = &getAnalysis<MachineLoopInfo>();
170 
171  // Scan the function to find the WWM sections and the candidate registers for
172  // having liveness modified.
173  for (MachineBasicBlock &MBB : MF) {
174  for (MachineInstr &MI : MBB) {
175  if (MI.getOpcode() == AMDGPU::EXIT_WWM)
176  WWMs.push_back(&MI);
177  else {
178  for (MachineOperand &DefOpnd : MI.defs()) {
179  if (DefOpnd.isReg()) {
180  unsigned Reg = DefOpnd.getReg();
181  if (TRI->isVGPR(*MRI, Reg))
182  processDef(DefOpnd);
183  }
184  }
185  }
186  }
187  }
188  if (!WWMs.empty()) {
189  // Synthesize liveness over WWM sections as required.
190  for (auto ThenDef : ThenDefs)
191  Modified |= processThenDef(ThenDef);
192  for (auto LoopExitDef : LoopExitDefs)
193  Modified |= processLoopExitDef(LoopExitDef.first, LoopExitDef.second);
194  for (auto LoopPhiDef : LoopPhiDefs)
195  Modified |= processLoopPhiDef(LoopPhiDef.first, LoopPhiDef.second);
196  }
197 
198  WWMs.clear();
199  ThenDefs.clear();
200  LoopExitDefs.clear();
201  LoopPhiDefs.clear();
202 
203  return Modified;
204 }
205 
206 // During the function scan, process an operand that defines a VGPR.
207 // This categorizes the register and puts it in the appropriate list for later
208 // use when processing a WWM section.
209 void SIFixWWMLiveness::processDef(MachineOperand &DefOpnd) {
210  unsigned Reg = DefOpnd.getReg();
211  // Get all the defining instructions. For convenience, make Defs[0] the def
212  // we are on now.
214  Defs.push_back(DefOpnd.getParent());
215  for (auto &MI : MRI->def_instructions(Reg)) {
216  if (&MI != DefOpnd.getParent())
217  Defs.push_back(&MI);
218  }
219  // Check whether this def dominates all the others. If not, ignore this def.
220  // Either it is going to be processed when the scan encounters its other def
221  // that dominates all defs, or there is no def that dominates all others.
222  // The latter case is an eliminated phi from an if..else..endif or similar,
223  // which must be for uniform control flow so can be ignored.
224  // Because this pass runs shortly after PHIElimination, we assume that any
225  // multi-def register is a lowered phi, and thus has each def in a separate
226  // basic block.
227  for (unsigned I = 1; I != Defs.size(); ++I) {
228  if (!DomTree->dominates(Defs[0]->getParent(), Defs[I]->getParent()))
229  return;
230  }
231  // Check for the case of an if..endif lowered phi: It has two defs, one
232  // dominates the other, and there is a single use in a successor of the
233  // dominant def.
234  // Later we will spot any WWM code inside
235  // the "then" clause and turn the second def into a partial def so its
236  // liveness goes through the WWM code in the "then" clause.
237  if (Defs.size() == 2) {
238  auto DomDefBlock = Defs[0]->getParent();
239  if (DomDefBlock->succ_size() == 2 && MRI->hasOneUse(Reg)) {
240  auto UseBlock = MRI->use_begin(Reg)->getParent()->getParent();
241  for (auto Succ : DomDefBlock->successors()) {
242  if (Succ == UseBlock) {
243  LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << " is a then phi reg\n");
244  ThenDefs.push_back(&DefOpnd);
245  return;
246  }
247  }
248  }
249  }
250  // Check for the case of a non-lowered-phi register (single def) that exits
251  // a loop, that is, it has a use that is outside a loop that the def is
252  // inside. We find the outermost loop that the def is inside but a use is
253  // outside. Later we will spot any WWM code inside that loop and then make
254  // the def a partial def so its liveness goes round the loop and through the
255  // WWM code.
256  if (Defs.size() == 1) {
257  auto Loop = LoopInfo->getLoopFor(Defs[0]->getParent());
258  if (!Loop)
259  return;
260  bool IsLoopExit = false;
261  for (auto &Use : MRI->use_instructions(Reg)) {
262  auto UseBlock = Use.getParent();
263  if (Loop->contains(UseBlock))
264  continue;
265  IsLoopExit = true;
266  while (auto Parent = Loop->getParentLoop()) {
267  if (Parent->contains(UseBlock))
268  break;
269  Loop = Parent;
270  }
271  }
272  if (!IsLoopExit)
273  return;
274  LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
275  << " is a loop exit reg with loop header at "
276  << "bb." << Loop->getHeader()->getNumber() << "\n");
277  LoopExitDefs.push_back(std::pair<MachineOperand *, MachineLoop *>(
278  &DefOpnd, Loop));
279  return;
280  }
281  // Check for the case of a lowered single-preheader-loop phi, that is, a
282  // multi-def register where the dominating def is in the loop pre-header and
283  // all other defs are in backedges. Later we will spot any WWM code inside
284  // that loop and then make the backedge defs partial defs so the liveness
285  // goes through the WWM code.
286  // Note that we are ignoring multi-preheader loops on the basis that the
287  // structurizer does not allow that for non-uniform loops.
288  // There must be a single use in the loop header.
289  if (!MRI->hasOneUse(Reg))
290  return;
291  auto UseBlock = MRI->use_begin(Reg)->getParent()->getParent();
292  auto Loop = LoopInfo->getLoopFor(UseBlock);
293  if (!Loop || Loop->getHeader() != UseBlock
294  || Loop->contains(Defs[0]->getParent())) {
295  LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
296  << " is multi-def but single use not in loop header\n");
297  return;
298  }
299  for (unsigned I = 1; I != Defs.size(); ++I) {
300  if (!Loop->contains(Defs[I]->getParent()))
301  return;
302  }
303  LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
304  << " is a loop phi reg with loop header at "
305  << "bb." << Loop->getHeader()->getNumber() << "\n");
306  LoopPhiDefs.push_back(
307  std::pair<MachineOperand *, MachineLoop *>(&DefOpnd, Loop));
308 }
309 
310 // Process a then phi def: It has two defs, one dominates the other, and there
311 // is a single use in a successor of the dominant def. Here we spot any WWM
312 // code inside the "then" clause and turn the second def into a partial def so
313 // its liveness goes through the WWM code in the "then" clause.
314 bool SIFixWWMLiveness::processThenDef(MachineOperand *DefOpnd) {
315  LLVM_DEBUG(dbgs() << "Processing then def: " << *DefOpnd->getParent());
316  if (DefOpnd->getParent()->getOpcode() == TargetOpcode::IMPLICIT_DEF) {
317  // Ignore if dominating def is undef.
318  LLVM_DEBUG(dbgs() << " ignoring as dominating def is undef\n");
319  return false;
320  }
321  unsigned Reg = DefOpnd->getReg();
322  // Get the use block, which is the endif block.
323  auto UseBlock = MRI->use_instr_begin(Reg)->getParent();
324  // Check whether there is WWM code inside the then branch. The WWM code must
325  // be dominated by the if but not dominated by the endif.
326  bool ContainsWWM = false;
327  for (auto WWM : WWMs) {
328  if (DomTree->dominates(DefOpnd->getParent()->getParent(), WWM->getParent())
329  && !DomTree->dominates(UseBlock, WWM->getParent())) {
330  LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
331  ContainsWWM = true;
332  break;
333  }
334  }
335  if (!ContainsWWM)
336  return false;
337  // Get the other def.
338  MachineInstr *OtherDef = nullptr;
339  for (auto &MI : MRI->def_instructions(Reg)) {
340  if (&MI != DefOpnd->getParent())
341  OtherDef = &MI;
342  }
343  // Make it a partial def.
344  OtherDef->addOperand(MachineOperand::CreateReg(Reg, false, /*isImp=*/true));
345  LLVM_DEBUG(dbgs() << *OtherDef);
346  return true;
347 }
348 
349 // Process a loop exit def, that is, a register with a single use in a loop
350 // that has a use outside the loop. Here we spot any WWM code inside that loop
351 // and then make the def a partial def so its liveness goes round the loop and
352 // through the WWM code.
353 bool SIFixWWMLiveness::processLoopExitDef(MachineOperand *DefOpnd,
354  MachineLoop *Loop) {
355  LLVM_DEBUG(dbgs() << "Processing loop exit def: " << *DefOpnd->getParent());
356  // Check whether there is WWM code inside the loop.
357  bool ContainsWWM = false;
358  for (auto WWM : WWMs) {
359  if (Loop->contains(WWM->getParent())) {
360  LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
361  ContainsWWM = true;
362  break;
363  }
364  }
365  if (!ContainsWWM)
366  return false;
367  unsigned Reg = DefOpnd->getReg();
368  // Add a new implicit_def in loop preheader(s).
369  for (auto Pred : Loop->getHeader()->predecessors()) {
370  if (!Loop->contains(Pred)) {
371  auto ImplicitDef = BuildMI(*Pred, Pred->getFirstTerminator(), DebugLoc(),
372  TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
373  LLVM_DEBUG(dbgs() << *ImplicitDef);
374  (void)ImplicitDef;
375  }
376  }
377  // Make the original def partial.
379  Reg, false, /*isImp=*/true));
380  LLVM_DEBUG(dbgs() << *DefOpnd->getParent());
381  return true;
382 }
383 
384 // Process a loop phi def, that is, a multi-def register where the dominating
385 // def is in the loop pre-header and all other defs are in backedges. Here we
386 // spot any WWM code inside that loop and then make the backedge defs partial
387 // defs so the liveness goes through the WWM code.
388 bool SIFixWWMLiveness::processLoopPhiDef(MachineOperand *DefOpnd,
389  MachineLoop *Loop) {
390  LLVM_DEBUG(dbgs() << "Processing loop phi def: " << *DefOpnd->getParent());
391  // Check whether there is WWM code inside the loop.
392  bool ContainsWWM = false;
393  for (auto WWM : WWMs) {
394  if (Loop->contains(WWM->getParent())) {
395  LLVM_DEBUG(dbgs() << " contains WWM: " << *WWM);
396  ContainsWWM = true;
397  break;
398  }
399  }
400  if (!ContainsWWM)
401  return false;
402  unsigned Reg = DefOpnd->getReg();
403  // Remove kill mark from uses.
404  for (auto &Use : MRI->use_operands(Reg))
405  Use.setIsKill(false);
406  // Make all defs except the dominating one partial defs.
408  for (auto &Def : MRI->def_instructions(Reg))
409  Defs.push_back(&Def);
410  for (auto Def : Defs) {
411  if (DefOpnd->getParent() == Def)
412  continue;
413  Def->addOperand(MachineOperand::CreateReg(Reg, false, /*isImp=*/true));
414  LLVM_DEBUG(dbgs() << *Def);
415  }
416  return true;
417 }
418 
Interface definition for SIRegisterInfo.
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AMDGPU specific subclass of TargetSubtarget.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
#define DEBUG_TYPE
char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
unsigned getReg() const
getReg - Returns the register number.
unsigned Reg
unsigned const TargetRegisterInfo * TRI
A debug info location.
Definition: DebugLoc.h:34
static MachineOperand CreateReg(unsigned Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
char & MachineLoopInfoID
MachineLoopInfo - This pass is a loop analysis pass.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Definition: LoopInfo.h:690
const HexagonInstrInfo * TII
Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
BlockT * getHeader() const
Definition: LoopInfo.h:100
SI fix WWM liveness
SlotIndexes pass.
Definition: SlotIndexes.h:331
AnalysisUsage & addPreservedID(const void *ID)
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
char & LiveVariablesID
LiveVariables pass - This pass computes the set of blocks in which each variable is life and sets mac...
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
unsigned const MachineRegisterInfo * MRI
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
Represent the analysis usage information of a pass.
INITIALIZE_PASS_BEGIN(SIFixWWMLiveness, DEBUG_TYPE, "SI fix WWM liveness", false, false) INITIALIZE_PASS_END(SIFixWWMLiveness
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
iterator_range< pred_iterator > predecessors()
size_t size() const
Definition: SmallVector.h:53
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
char & SIFixWWMLivenessID
FunctionPass * createSIFixWWMLivenessPass()
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
Definition: LoopInfo.h:110
arm execution domain fix
void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
void initializeSIFixWWMLivenessPass(PassRegistry &)
AnalysisUsage & addRequiredID(const void *ID)
Definition: Pass.cpp:299
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
LoopT * getParentLoop() const
Definition: LoopInfo.h:101
Provides AMDGPU specific target descriptions.
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
Interface definition for SIInstrInfo.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
#define I(x, y, z)
Definition: MD5.cpp:58
static const Function * getParent(const Value *V)
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
#define LLVM_DEBUG(X)
Definition: Debug.h:123
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
const SIRegisterInfo * getRegisterInfo() const override