LLVM  8.0.1
ARMAsmBackend.cpp
Go to the documentation of this file.
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/MC/MCAsmBackend.h"
21 #include "llvm/MC/MCAssembler.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDirectives.h"
25 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/Format.h"
39 using namespace llvm;
40 
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
44  ARMELFObjectWriter(uint8_t OSABI)
45  : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46  /*HasRelocationAddend*/ false) {}
47 };
48 } // end anonymous namespace
49 
51  const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
52  // This table *must* be in the order that the fixup_* kinds are defined in
53  // ARMFixupKinds.h.
54  //
55  // Name Offset (bits) Size (bits) Flags
56  {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
57  {"fixup_t2_ldst_pcrel_12", 0, 32,
60  {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
61  {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
62  {"fixup_t2_pcrel_10", 0, 32,
65  {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
66  {"fixup_t2_pcrel_9", 0, 32,
69  {"fixup_thumb_adr_pcrel_10", 0, 8,
72  {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
73  {"fixup_t2_adr_pcrel_12", 0, 32,
76  {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
77  {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
78  {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
79  {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
80  {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
81  {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
82  {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83  {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84  {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85  {"fixup_arm_thumb_blx", 0, 32,
88  {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
89  {"fixup_arm_thumb_cp", 0, 8,
92  {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
93  // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
94  // - 19.
95  {"fixup_arm_movt_hi16", 0, 20, 0},
96  {"fixup_arm_movw_lo16", 0, 20, 0},
97  {"fixup_t2_movt_hi16", 0, 20, 0},
98  {"fixup_t2_movw_lo16", 0, 20, 0},
99  {"fixup_arm_mod_imm", 0, 12, 0},
100  {"fixup_t2_so_imm", 0, 26, 0},
101  };
102  const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
103  // This table *must* be in the order that the fixup_* kinds are defined in
104  // ARMFixupKinds.h.
105  //
106  // Name Offset (bits) Size (bits) Flags
107  {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108  {"fixup_t2_ldst_pcrel_12", 0, 32,
111  {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112  {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
113  {"fixup_t2_pcrel_10", 0, 32,
116  {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
117  {"fixup_t2_pcrel_9", 0, 32,
120  {"fixup_thumb_adr_pcrel_10", 8, 8,
123  {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124  {"fixup_t2_adr_pcrel_12", 0, 32,
127  {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
128  {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
129  {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
130  {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
131  {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
132  {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
133  {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
134  {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
135  {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
136  {"fixup_arm_thumb_blx", 0, 32,
139  {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
140  {"fixup_arm_thumb_cp", 8, 8,
143  {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
144  // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
145  // - 19.
146  {"fixup_arm_movt_hi16", 12, 20, 0},
147  {"fixup_arm_movw_lo16", 12, 20, 0},
148  {"fixup_t2_movt_hi16", 12, 20, 0},
149  {"fixup_t2_movw_lo16", 12, 20, 0},
150  {"fixup_arm_mod_imm", 20, 12, 0},
151  {"fixup_t2_so_imm", 26, 6, 0},
152  };
153 
154  if (Kind < FirstTargetFixupKind)
155  return MCAsmBackend::getFixupKindInfo(Kind);
156 
157  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
158  "Invalid kind!");
159  return (Endian == support::little ? InfosLE
160  : InfosBE)[Kind - FirstTargetFixupKind];
161 }
162 
164  switch (Flag) {
165  default:
166  break;
167  case MCAF_Code16:
168  setIsThumb(true);
169  break;
170  case MCAF_Code32:
171  setIsThumb(false);
172  break;
173  }
174 }
175 
177  const MCSubtargetInfo &STI) const {
178  bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
179  bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
180 
181  switch (Op) {
182  default:
183  return Op;
184  case ARM::tBcc:
185  return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
186  case ARM::tLDRpci:
187  return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
188  case ARM::tADR:
189  return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
190  case ARM::tB:
191  return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
192  case ARM::tCBZ:
193  return ARM::tHINT;
194  case ARM::tCBNZ:
195  return ARM::tHINT;
196  }
197 }
198 
200  const MCSubtargetInfo &STI) const {
201  if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
202  return true;
203  return false;
204 }
205 
207  uint64_t Value) const {
208  switch ((unsigned)Fixup.getKind()) {
210  // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
211  // low bit being an implied zero. There's an implied +4 offset for the
212  // branch, so we adjust the other way here to determine what's
213  // encodable.
214  //
215  // Relax if the value is too big for a (signed) i8.
216  int64_t Offset = int64_t(Value) - 4;
217  if (Offset > 2046 || Offset < -2048)
218  return "out of range pc-relative fixup value";
219  break;
220  }
222  // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
223  // low bit being an implied zero. There's an implied +4 offset for the
224  // branch, so we adjust the other way here to determine what's
225  // encodable.
226  //
227  // Relax if the value is too big for a (signed) i8.
228  int64_t Offset = int64_t(Value) - 4;
229  if (Offset > 254 || Offset < -256)
230  return "out of range pc-relative fixup value";
231  break;
232  }
235  // If the immediate is negative, greater than 1020, or not a multiple
236  // of four, the wide version of the instruction must be used.
237  int64_t Offset = int64_t(Value) - 4;
238  if (Offset & 3)
239  return "misaligned pc-relative fixup value";
240  else if (Offset > 1020 || Offset < 0)
241  return "out of range pc-relative fixup value";
242  break;
243  }
245  // If we have a Thumb CBZ or CBNZ instruction and its target is the next
246  // instruction it is actually out of range for the instruction.
247  // It will be changed to a NOP.
248  int64_t Offset = (Value & ~1);
249  if (Offset == 2)
250  return "will be converted to nop";
251  break;
252  }
253  default:
254  llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
255  }
256  return nullptr;
257 }
258 
260  const MCRelaxableFragment *DF,
261  const MCAsmLayout &Layout) const {
262  return reasonForFixupRelaxation(Fixup, Value);
263 }
264 
266  const MCSubtargetInfo &STI,
267  MCInst &Res) const {
268  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
269 
270  // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
271  if (RelaxedOp == Inst.getOpcode()) {
272  SmallString<256> Tmp;
273  raw_svector_ostream OS(Tmp);
274  Inst.dump_pretty(OS);
275  OS << "\n";
276  report_fatal_error("unexpected instruction to relax: " + OS.str());
277  }
278 
279  // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
280  // have to change the operands too.
281  if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
282  RelaxedOp == ARM::tHINT) {
283  Res.setOpcode(RelaxedOp);
287  return;
288  }
289 
290  // The rest of instructions we're relaxing have the same operands.
291  // We just need to update to the proper opcode.
292  Res = Inst;
293  Res.setOpcode(RelaxedOp);
294 }
295 
296 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
297  const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
298  const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
299  const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
300  const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
301  if (isThumb()) {
302  const uint16_t nopEncoding =
303  hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
304  uint64_t NumNops = Count / 2;
305  for (uint64_t i = 0; i != NumNops; ++i)
306  support::endian::write(OS, nopEncoding, Endian);
307  if (Count & 1)
308  OS << '\0';
309  return true;
310  }
311  // ARM mode
312  const uint32_t nopEncoding =
313  hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
314  uint64_t NumNops = Count / 4;
315  for (uint64_t i = 0; i != NumNops; ++i)
316  support::endian::write(OS, nopEncoding, Endian);
317  // FIXME: should this function return false when unable to write exactly
318  // 'Count' bytes with NOP encodings?
319  switch (Count % 4) {
320  default:
321  break; // No leftover bytes to write
322  case 1:
323  OS << '\0';
324  break;
325  case 2:
326  OS.write("\0\0", 2);
327  break;
328  case 3:
329  OS.write("\0\0\xa0", 3);
330  break;
331  }
332 
333  return true;
334 }
335 
336 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
337  if (IsLittleEndian) {
338  // Note that the halfwords are stored high first and low second in thumb;
339  // so we need to swap the fixup value here to map properly.
340  uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
341  Swapped |= (Value & 0x0000FFFF) << 16;
342  return Swapped;
343  } else
344  return Value;
345 }
346 
347 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
348  bool IsLittleEndian) {
349  uint32_t Value;
350 
351  if (IsLittleEndian) {
352  Value = (SecondHalf & 0xFFFF) << 16;
353  Value |= (FirstHalf & 0xFFFF);
354  } else {
355  Value = (SecondHalf & 0xFFFF);
356  Value |= (FirstHalf & 0xFFFF) << 16;
357  }
358 
359  return Value;
360 }
361 
363  const MCFixup &Fixup,
364  const MCValue &Target, uint64_t Value,
365  bool IsResolved, MCContext &Ctx,
366  const MCSubtargetInfo* STI) const {
367  unsigned Kind = Fixup.getKind();
368 
369  // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
370  // and .word relocations they put the Thumb bit into the addend if possible.
371  // Other relocation types don't want this bit though (branches couldn't encode
372  // it if it *was* present, and no other relocations exist) and it can
373  // interfere with checking valid expressions.
374  if (const MCSymbolRefExpr *A = Target.getSymA()) {
375  if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
376  A->getSymbol().isExternal() &&
377  (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
379  Kind == ARM::fixup_t2_movt_hi16))
380  Value |= 1;
381  }
382 
383  switch (Kind) {
384  default:
385  Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
386  return 0;
387  case FK_Data_1:
388  case FK_Data_2:
389  case FK_Data_4:
390  return Value;
391  case FK_SecRel_2:
392  return Value;
393  case FK_SecRel_4:
394  return Value;
396  assert(STI != nullptr);
397  if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
398  Value >>= 16;
401  unsigned Hi4 = (Value & 0xF000) >> 12;
402  unsigned Lo12 = Value & 0x0FFF;
403  // inst{19-16} = Hi4;
404  // inst{11-0} = Lo12;
405  Value = (Hi4 << 16) | (Lo12);
406  return Value;
407  }
409  assert(STI != nullptr);
410  if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
411  Value >>= 16;
414  unsigned Hi4 = (Value & 0xF000) >> 12;
415  unsigned i = (Value & 0x800) >> 11;
416  unsigned Mid3 = (Value & 0x700) >> 8;
417  unsigned Lo8 = Value & 0x0FF;
418  // inst{19-16} = Hi4;
419  // inst{26} = i;
420  // inst{14-12} = Mid3;
421  // inst{7-0} = Lo8;
422  Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
423  return swapHalfWords(Value, Endian == support::little);
424  }
426  // ARM PC-relative values are offset by 8.
427  Value -= 4;
430  // Offset by 4, adjusted by two due to the half-word ordering of thumb.
431  Value -= 4;
432  bool isAdd = true;
433  if ((int64_t)Value < 0) {
434  Value = -Value;
435  isAdd = false;
436  }
437  if (Value >= 4096) {
438  Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
439  return 0;
440  }
441  Value |= isAdd << 23;
442 
443  // Same addressing mode as fixup_arm_pcrel_10,
444  // but with 16-bit halfwords swapped.
445  if (Kind == ARM::fixup_t2_ldst_pcrel_12)
446  return swapHalfWords(Value, Endian == support::little);
447 
448  return Value;
449  }
451  // ARM PC-relative values are offset by 8.
452  Value -= 8;
453  unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
454  if ((int64_t)Value < 0) {
455  Value = -Value;
456  opc = 2; // 0b0010
457  }
458  if (ARM_AM::getSOImmVal(Value) == -1) {
459  Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
460  return 0;
461  }
462  // Encode the immediate and shift the opcode into place.
463  return ARM_AM::getSOImmVal(Value) | (opc << 21);
464  }
465 
467  Value -= 4;
468  unsigned opc = 0;
469  if ((int64_t)Value < 0) {
470  Value = -Value;
471  opc = 5;
472  }
473 
474  uint32_t out = (opc << 21);
475  out |= (Value & 0x800) << 15;
476  out |= (Value & 0x700) << 4;
477  out |= (Value & 0x0FF);
478 
479  return swapHalfWords(out, Endian == support::little);
480  }
481 
486  case ARM::fixup_arm_blx:
487  // These values don't encode the low two bits since they're always zero.
488  // Offset by 8 just as above.
489  if (const MCSymbolRefExpr *SRE =
490  dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
491  if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
492  return 0;
493  return 0xffffff & ((Value - 8) >> 2);
495  Value = Value - 4;
496  if (!isInt<25>(Value)) {
497  Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
498  return 0;
499  }
500 
501  Value >>= 1; // Low bit is not encoded.
502 
503  uint32_t out = 0;
504  bool I = Value & 0x800000;
505  bool J1 = Value & 0x400000;
506  bool J2 = Value & 0x200000;
507  J1 ^= I;
508  J2 ^= I;
509 
510  out |= I << 26; // S bit
511  out |= !J1 << 13; // J1 bit
512  out |= !J2 << 11; // J2 bit
513  out |= (Value & 0x1FF800) << 5; // imm6 field
514  out |= (Value & 0x0007FF); // imm11 field
515 
516  return swapHalfWords(out, Endian == support::little);
517  }
519  Value = Value - 4;
520  if (!isInt<21>(Value)) {
521  Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
522  return 0;
523  }
524 
525  Value >>= 1; // Low bit is not encoded.
526 
527  uint64_t out = 0;
528  out |= (Value & 0x80000) << 7; // S bit
529  out |= (Value & 0x40000) >> 7; // J2 bit
530  out |= (Value & 0x20000) >> 4; // J1 bit
531  out |= (Value & 0x1F800) << 5; // imm6 field
532  out |= (Value & 0x007FF); // imm11 field
533 
534  return swapHalfWords(out, Endian == support::little);
535  }
537  if (!isInt<25>(Value - 4) ||
538  (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
539  !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
540  !STI->getFeatureBits()[ARM::HasV6MOps] &&
541  !isInt<23>(Value - 4))) {
542  Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
543  return 0;
544  }
545 
546  // The value doesn't encode the low bit (always zero) and is offset by
547  // four. The 32-bit immediate value is encoded as
548  // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
549  // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
550  // The value is encoded into disjoint bit positions in the destination
551  // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
552  // J = either J1 or J2 bit
553  //
554  // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
555  //
556  // Note that the halfwords are stored high first, low second; so we need
557  // to transpose the fixup value here to map properly.
558  uint32_t offset = (Value - 4) >> 1;
559  uint32_t signBit = (offset & 0x800000) >> 23;
560  uint32_t I1Bit = (offset & 0x400000) >> 22;
561  uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
562  uint32_t I2Bit = (offset & 0x200000) >> 21;
563  uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
564  uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
565  uint32_t imm11Bits = (offset & 0x000007FF);
566 
567  uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
568  uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
569  (uint16_t)imm11Bits);
570  return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
571  }
573  // The value doesn't encode the low two bits (always zero) and is offset by
574  // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
575  // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
576  // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
577  // The value is encoded into disjoint bit positions in the destination
578  // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
579  // J = either J1 or J2 bit, 0 = zero.
580  //
581  // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
582  //
583  // Note that the halfwords are stored high first, low second; so we need
584  // to transpose the fixup value here to map properly.
585  if (Value % 4 != 0) {
586  Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
587  return 0;
588  }
589 
590  uint32_t offset = (Value - 4) >> 2;
591  if (const MCSymbolRefExpr *SRE =
592  dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
593  if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
594  offset = 0;
595  uint32_t signBit = (offset & 0x400000) >> 22;
596  uint32_t I1Bit = (offset & 0x200000) >> 21;
597  uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
598  uint32_t I2Bit = (offset & 0x100000) >> 20;
599  uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
600  uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
601  uint32_t imm10LBits = (offset & 0x3FF);
602 
603  uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
604  uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
605  ((uint16_t)imm10LBits) << 1);
606  return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
607  }
610  // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
611  // could have an error on our hands.
612  assert(STI != nullptr);
613  if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
614  const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
615  if (FixupDiagnostic) {
616  Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
617  return 0;
618  }
619  }
620  // Offset by 4, and don't encode the low two bits.
621  return ((Value - 4) >> 2) & 0xff;
623  // CB instructions can only branch to offsets in [4, 126] in multiples of 2
624  // so ensure that the raw value LSB is zero and it lies in [2, 130].
625  // An offset of 2 will be relaxed to a NOP.
626  if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
627  Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
628  return 0;
629  }
630  // Offset by 4 and don't encode the lower bit, which is always 0.
631  // FIXME: diagnose if no Thumb2
632  uint32_t Binary = (Value - 4) >> 1;
633  return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
634  }
636  // Offset by 4 and don't encode the lower bit, which is always 0.
637  assert(STI != nullptr);
638  if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
639  !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
640  const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
641  if (FixupDiagnostic) {
642  Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
643  return 0;
644  }
645  }
646  return ((Value - 4) >> 1) & 0x7ff;
648  // Offset by 4 and don't encode the lower bit, which is always 0.
649  assert(STI != nullptr);
650  if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
651  const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
652  if (FixupDiagnostic) {
653  Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
654  return 0;
655  }
656  }
657  return ((Value - 4) >> 1) & 0xff;
659  Value = Value - 8; // ARM fixups offset by an additional word and don't
660  // need to adjust for the half-word ordering.
661  bool isAdd = true;
662  if ((int64_t)Value < 0) {
663  Value = -Value;
664  isAdd = false;
665  }
666  // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
667  if (Value >= 256) {
668  Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
669  return 0;
670  }
671  Value = (Value & 0xf) | ((Value & 0xf0) << 4);
672  return Value | (isAdd << 23);
673  }
675  Value = Value - 4; // ARM fixups offset by an additional word and don't
676  // need to adjust for the half-word ordering.
678  case ARM::fixup_t2_pcrel_10: {
679  // Offset by 4, adjusted by two due to the half-word ordering of thumb.
680  Value = Value - 4;
681  bool isAdd = true;
682  if ((int64_t)Value < 0) {
683  Value = -Value;
684  isAdd = false;
685  }
686  // These values don't encode the low two bits since they're always zero.
687  Value >>= 2;
688  if (Value >= 256) {
689  Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
690  return 0;
691  }
692  Value |= isAdd << 23;
693 
694  // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
695  // swapped.
696  if (Kind == ARM::fixup_t2_pcrel_10)
697  return swapHalfWords(Value, Endian == support::little);
698 
699  return Value;
700  }
702  Value = Value - 4; // ARM fixups offset by an additional word and don't
703  // need to adjust for the half-word ordering.
705  case ARM::fixup_t2_pcrel_9: {
706  // Offset by 4, adjusted by two due to the half-word ordering of thumb.
707  Value = Value - 4;
708  bool isAdd = true;
709  if ((int64_t)Value < 0) {
710  Value = -Value;
711  isAdd = false;
712  }
713  // These values don't encode the low bit since it's always zero.
714  if (Value & 1) {
715  Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
716  return 0;
717  }
718  Value >>= 1;
719  if (Value >= 256) {
720  Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
721  return 0;
722  }
723  Value |= isAdd << 23;
724 
725  // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
726  // swapped.
727  if (Kind == ARM::fixup_t2_pcrel_9)
728  return swapHalfWords(Value, Endian == support::little);
729 
730  return Value;
731  }
733  Value = ARM_AM::getSOImmVal(Value);
734  if (Value >> 12) {
735  Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
736  return 0;
737  }
738  return Value;
739  case ARM::fixup_t2_so_imm: {
740  Value = ARM_AM::getT2SOImmVal(Value);
741  if ((int64_t)Value < 0) {
742  Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
743  return 0;
744  }
745  // Value will contain a 12-bit value broken up into a 4-bit shift in bits
746  // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
747  // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
748  // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
749  // half-word.
750  uint64_t EncValue = 0;
751  EncValue |= (Value & 0x800) << 15;
752  EncValue |= (Value & 0x700) << 4;
753  EncValue |= (Value & 0xff);
754  return swapHalfWords(EncValue, Endian == support::little);
755  }
756  }
757 }
758 
760  const MCFixup &Fixup,
761  const MCValue &Target) {
762  const MCSymbolRefExpr *A = Target.getSymA();
763  const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
764  const unsigned FixupKind = Fixup.getKind() ;
765  if ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
766  assert(Sym && "How did we resolve this?");
767 
768  // If the symbol is external the linker will handle it.
769  // FIXME: Should we handle it as an optimization?
770 
771  // If the symbol is out of range, produce a relocation and hope the
772  // linker can handle it. GNU AS produces an error in this case.
773  if (Sym->isExternal())
774  return true;
775  }
776  // Create relocations for unconditional branches to function symbols with
777  // different execution mode in ELF binaries.
778  if (Sym && Sym->isELF()) {
779  unsigned Type = cast<MCSymbolELF>(Sym)->getType();
780  if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
781  if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
782  return true;
783  if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
784  FixupKind == ARM::fixup_arm_thumb_bl ||
785  FixupKind == ARM::fixup_t2_condbranch ||
786  FixupKind == ARM::fixup_t2_uncondbranch))
787  return true;
788  }
789  }
790  // We must always generate a relocation for BL/BLX instructions if we have
791  // a symbol to reference, as the linker relies on knowing the destination
792  // symbol's thumb-ness to get interworking right.
793  if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
794  FixupKind == ARM::fixup_arm_blx ||
795  FixupKind == ARM::fixup_arm_uncondbl ||
796  FixupKind == ARM::fixup_arm_condbl))
797  return true;
798  return false;
799 }
800 
801 /// getFixupKindNumBytes - The number of bytes the fixup may change.
802 static unsigned getFixupKindNumBytes(unsigned Kind) {
803  switch (Kind) {
804  default:
805  llvm_unreachable("Unknown fixup kind!");
806 
807  case FK_Data_1:
811  return 1;
812 
813  case FK_Data_2:
817  return 2;
818 
826  case ARM::fixup_arm_blx:
829  return 3;
830 
831  case FK_Data_4:
845  return 4;
846 
847  case FK_SecRel_2:
848  return 2;
849  case FK_SecRel_4:
850  return 4;
851  }
852 }
853 
854 /// getFixupKindContainerSizeBytes - The number of bytes of the
855 /// container involved in big endian.
856 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
857  switch (Kind) {
858  default:
859  llvm_unreachable("Unknown fixup kind!");
860 
861  case FK_Data_1:
862  return 1;
863  case FK_Data_2:
864  return 2;
865  case FK_Data_4:
866  return 4;
867 
873  // Instruction size is 2 bytes.
874  return 2;
875 
882  case ARM::fixup_arm_blx:
898  // Instruction size is 4 bytes.
899  return 4;
900  }
901 }
902 
904  const MCValue &Target,
905  MutableArrayRef<char> Data, uint64_t Value,
906  bool IsResolved,
907  const MCSubtargetInfo* STI) const {
908  unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
909  MCContext &Ctx = Asm.getContext();
910  Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
911  if (!Value)
912  return; // Doesn't change encoding.
913 
914  unsigned Offset = Fixup.getOffset();
915  assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
916 
917  // Used to point to big endian bytes.
918  unsigned FullSizeBytes;
919  if (Endian == support::big) {
920  FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
921  assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
922  assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
923  }
924 
925  // For each byte of the fragment that the fixup touches, mask in the bits from
926  // the fixup value. The Value has been "split up" into the appropriate
927  // bitfields above.
928  for (unsigned i = 0; i != NumBytes; ++i) {
929  unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
930  Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
931  }
932 }
933 
934 namespace CU {
935 
936 /// Compact unwind encoding values.
938  UNWIND_ARM_MODE_MASK = 0x0F000000,
939  UNWIND_ARM_MODE_FRAME = 0x01000000,
941  UNWIND_ARM_MODE_DWARF = 0x04000000,
942 
944 
948 
954 
956 
958 };
959 
960 } // end CU namespace
961 
962 /// Generate compact unwind encoding for the function based on the CFI
963 /// instructions. If the CFI instructions describe a frame that cannot be
964 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
965 /// tells the runtime to fallback and unwind using dwarf.
967  ArrayRef<MCCFIInstruction> Instrs) const {
968  DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
969  // Only armv7k uses CFI based unwinding.
970  if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
971  return 0;
972  // No .cfi directives means no frame.
973  if (Instrs.empty())
974  return 0;
975  // Start off assuming CFA is at SP+0.
976  int CFARegister = ARM::SP;
977  int CFARegisterOffset = 0;
978  // Mark savable registers as initially unsaved
979  DenseMap<unsigned, int> RegOffsets;
980  int FloatRegCount = 0;
981  // Process each .cfi directive and build up compact unwind info.
982  for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
983  int Reg;
984  const MCCFIInstruction &Inst = Instrs[i];
985  switch (Inst.getOperation()) {
986  case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
987  CFARegisterOffset = -Inst.getOffset();
988  CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
989  break;
990  case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
991  CFARegisterOffset = -Inst.getOffset();
992  break;
993  case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
994  CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
995  break;
996  case MCCFIInstruction::OpOffset: // DW_CFA_offset
997  Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
998  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
999  RegOffsets[Reg] = Inst.getOffset();
1000  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1001  RegOffsets[Reg] = Inst.getOffset();
1002  ++FloatRegCount;
1003  } else {
1004  DEBUG_WITH_TYPE("compact-unwind",
1005  llvm::dbgs() << ".cfi_offset on unknown register="
1006  << Inst.getRegister() << "\n");
1008  }
1009  break;
1010  case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1011  // Ignore
1012  break;
1013  default:
1014  // Directive not convertable to compact unwind, bail out.
1015  DEBUG_WITH_TYPE("compact-unwind",
1016  llvm::dbgs()
1017  << "CFI directive not compatiable with comact "
1018  "unwind encoding, opcode=" << Inst.getOperation()
1019  << "\n");
1021  break;
1022  }
1023  }
1024 
1025  // If no frame set up, return no unwind info.
1026  if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1027  return 0;
1028 
1029  // Verify standard frame (lr/r7) was used.
1030  if (CFARegister != ARM::R7) {
1031  DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1032  << CFARegister
1033  << " instead of r7\n");
1035  }
1036  int StackAdjust = CFARegisterOffset - 8;
1037  if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1038  DEBUG_WITH_TYPE("compact-unwind",
1039  llvm::dbgs()
1040  << "LR not saved as standard frame, StackAdjust="
1041  << StackAdjust
1042  << ", CFARegisterOffset=" << CFARegisterOffset
1043  << ", lr save at offset=" << RegOffsets[14] << "\n");
1045  }
1046  if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1047  DEBUG_WITH_TYPE("compact-unwind",
1048  llvm::dbgs() << "r7 not saved as standard frame\n");
1050  }
1051  uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1052 
1053  // If var-args are used, there may be a stack adjust required.
1054  switch (StackAdjust) {
1055  case 0:
1056  break;
1057  case 4:
1058  CompactUnwindEncoding |= 0x00400000;
1059  break;
1060  case 8:
1061  CompactUnwindEncoding |= 0x00800000;
1062  break;
1063  case 12:
1064  CompactUnwindEncoding |= 0x00C00000;
1065  break;
1066  default:
1067  DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1068  << ".cfi_def_cfa stack adjust ("
1069  << StackAdjust << ") out of range\n");
1071  }
1072 
1073  // If r6 is saved, it must be right below r7.
1074  static struct {
1075  unsigned Reg;
1076  unsigned Encoding;
1077  } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1085 
1086  int CurOffset = -8 - StackAdjust;
1087  for (auto CSReg : GPRCSRegs) {
1088  auto Offset = RegOffsets.find(CSReg.Reg);
1089  if (Offset == RegOffsets.end())
1090  continue;
1091 
1092  int RegOffset = Offset->second;
1093  if (RegOffset != CurOffset - 4) {
1094  DEBUG_WITH_TYPE("compact-unwind",
1095  llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1096  << RegOffset << " but only supported at "
1097  << CurOffset << "\n");
1099  }
1100  CompactUnwindEncoding |= CSReg.Encoding;
1101  CurOffset -= 4;
1102  }
1103 
1104  // If no floats saved, we are done.
1105  if (FloatRegCount == 0)
1106  return CompactUnwindEncoding;
1107 
1108  // Switch mode to include D register saving.
1109  CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1110  CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1111 
1112  // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1113  // but needs coordination with the linker and libunwind.
1114  if (FloatRegCount > 4) {
1115  DEBUG_WITH_TYPE("compact-unwind",
1116  llvm::dbgs() << "unsupported number of D registers saved ("
1117  << FloatRegCount << ")\n");
1119  }
1120 
1121  // Floating point registers must either be saved sequentially, or we defer to
1122  // DWARF. No gaps allowed here so check that each saved d-register is
1123  // precisely where it should be.
1124  static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1125  for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1126  auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1127  if (Offset == RegOffsets.end()) {
1128  DEBUG_WITH_TYPE("compact-unwind",
1129  llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1130  << MRI.getName(FPRCSRegs[Idx])
1131  << " not saved\n");
1133  } else if (Offset->second != CurOffset - 8) {
1134  DEBUG_WITH_TYPE("compact-unwind",
1135  llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1136  << MRI.getName(FPRCSRegs[Idx])
1137  << " saved at " << Offset->second
1138  << ", expected at " << CurOffset - 8
1139  << "\n");
1141  }
1142  CurOffset -= 8;
1143  }
1144 
1145  return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1146 }
1147 
1149  ARM::ArchKind AK = ARM::parseArch(Arch);
1150  switch (AK) {
1151  default:
1153  case ARM::ArchKind::ARMV4T:
1155  case ARM::ArchKind::ARMV5T:
1156  case ARM::ArchKind::ARMV5TE:
1157  case ARM::ArchKind::ARMV5TEJ:
1159  case ARM::ArchKind::ARMV6:
1160  case ARM::ArchKind::ARMV6K:
1162  case ARM::ArchKind::ARMV7A:
1164  case ARM::ArchKind::ARMV7S:
1166  case ARM::ArchKind::ARMV7K:
1168  case ARM::ArchKind::ARMV6M:
1170  case ARM::ArchKind::ARMV7M:
1172  case ARM::ArchKind::ARMV7EM:
1174  }
1175 }
1176 
1178  const MCSubtargetInfo &STI,
1179  const MCRegisterInfo &MRI,
1180  const MCTargetOptions &Options,
1181  support::endianness Endian) {
1182  const Triple &TheTriple = STI.getTargetTriple();
1183  switch (TheTriple.getObjectFormat()) {
1184  default:
1185  llvm_unreachable("unsupported object format");
1186  case Triple::MachO: {
1188  return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1189  }
1190  case Triple::COFF:
1191  assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1192  return new ARMAsmBackendWinCOFF(T, STI);
1193  case Triple::ELF:
1194  assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1195  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1196  return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1197  }
1198 }
1199 
1201  const MCSubtargetInfo &STI,
1202  const MCRegisterInfo &MRI,
1203  const MCTargetOptions &Options) {
1204  return createARMAsmBackend(T, STI, MRI, Options, support::little);
1205 }
1206 
1208  const MCSubtargetInfo &STI,
1209  const MCRegisterInfo &MRI,
1210  const MCTargetOptions &Options) {
1211  return createARMAsmBackend(T, STI, MRI, Options, support::big);
1212 }
MCAsmBackend * createARMLEAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
unsigned getRelaxedOpcode(unsigned Op, const MCSubtargetInfo &STI) const
#define R4(n)
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:140
This class represents lattice values for constants.
Definition: AllocatorList.h:24
This represents an "assembler immediate".
Definition: MCValue.h:40
const char * reasonForFixupRelaxation(const MCFixup &Fixup, uint64_t Value) const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Definition: Triple.h:604
OSType getOS() const
getOS - Get the parsed operating system type of this triple.
Definition: Triple.h:299
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
void dump_pretty(raw_ostream &OS, const MCInstPrinter *Printer=nullptr, StringRef Separator=" ") const
Dump the MCInst as prettily as possible using the additional MC structures, if given.
Definition: MCInst.cpp:73
unsigned Reg
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:510
static Lanai::Fixups FixupKind(const MCExpr *Expr)
static bool isThumb(const MCSubtargetInfo &STI)
return AArch64::GPR64RegClass contains(Reg)
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition: MCFixup.h:74
const Triple & getTargetTriple() const
Is this fixup kind PCrelative? This is used by the assembler backend to evaluate fixup values in a ta...
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:65
MCContext & getContext() const
Definition: MCAssembler.h:285
static MCOperand createReg(unsigned Reg)
Definition: MCInst.h:116
const FeatureBitset & getFeatureBits() const
static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch)
Encapsulates the layout of an assembly file at a particular point in time.
Definition: MCAsmLayout.h:29
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:166
A four-byte section relative fixup.
Definition: MCFixup.h:42
A four-byte fixup.
Definition: MCFixup.h:26
Context object for machine code objects.
Definition: MCContext.h:63
A two-byte section relative fixup.
Definition: MCFixup.h:41
.code16 (X86) / .code 16 (ARM)
Definition: MCDirectives.h:51
MCAsmBackend * createARMBEAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:161
static MCAsmBackend * createARMAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options, support::endianness Endian)
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:118
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:176
void write(void *memory, value_type value, endianness endian)
Write a value to memory with a particular endianness.
Definition: Endian.h:100
bool isOSWindows() const
Tests whether the OS is Windows.
Definition: Triple.h:567
A relaxable fragment holds on to its MCInst, since it may need to be relaxed during the assembler lay...
Definition: MCFragment.h:271
uint32_t generateCompactUnwindEncoding(ArrayRef< MCCFIInstruction > Instrs) const override
Generate compact unwind encoding for the function based on the CFI instructions.
unsigned const MachineRegisterInfo * MRI
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:291
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
CompactUnwindEncodings
Compact unwind encoding values.
static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian)
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const override
Simple predicate for targets where !Resolved implies requiring relaxation.
MCFixupKind
Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:23
static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, uint64_t Value, MCContext &Ctx, const Triple &TheTriple, bool IsResolved)
int getOffset() const
Definition: MCDwarf.h:574
const MCSymbolRefExpr * getSymA() const
Definition: MCValue.h:48
OpType getOperation() const
Definition: MCDwarf.h:558
const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const override
Get information on a fixup kind.
int getT2SOImmVal(unsigned Arg)
getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit into a Thumb-2 shifter_oper...
void reportError(SMLoc L, const Twine &Msg)
Definition: MCContext.cpp:612
Should this fixup kind force a 4-byte aligned effective PC value?
uint32_t getOffset() const
Definition: MCFixup.h:125
unsigned adjustFixupValue(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, uint64_t Value, bool IsResolved, MCContext &Ctx, const MCSubtargetInfo *STI) const
bool writeNopData(raw_ostream &OS, uint64_t Count) const override
Write an (optimal) nop sequence of Count bytes to the given output.
bool isExternal() const
Definition: MCSymbol.h:393
static wasm::ValType getType(const TargetRegisterClass *RC)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
A one-byte fixup.
Definition: MCFixup.h:24
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
raw_ostream & write(unsigned char C)
unsigned getRegister() const
Definition: MCDwarf.h:561
SMLoc getLoc() const
Definition: MCFixup.h:166
static unsigned getFixupKindContainerSizeBytes(unsigned Kind)
getFixupKindContainerSizeBytes - The number of bytes of the container involved in big endian...
StringRef getArchName() const
getArchName - Get the architecture (first) component of the triple.
Definition: Triple.cpp:967
void setOpcode(unsigned Op)
Definition: MCInst.h:173
int getSOImmVal(unsigned Arg)
getSOImmVal - Given a 32-bit immediate, if it is something that can fit into an shifter_operand immed...
#define R6(n)
ArchKind parseArch(StringRef Arch)
const MCSymbol & getSymbol() const
Definition: MCExpr.h:336
void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI, MCInst &Res) const override
Relax the instruction in the given fragment to the next wider instruction.
StringRef str()
Return a StringRef for the vector contents.
Definition: raw_ostream.h:535
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
Target - Wrapper for Target specific information.
bool isThumbFunc(const MCSymbol *Func) const
Check whether a given symbol has been flagged with .thumb_func.
.code32 (X86) / .code 32 (ARM)
Definition: MCDirectives.h:52
void handleAssemblerFlag(MCAssemblerFlag Flag) override
Handle any target-specific assembler flags. By default, do nothing.
ObjectFormatType getObjectFormat() const
getFormat - Get the object format for this triple.
Definition: Triple.h:320
MCAssemblerFlag
Definition: MCDirectives.h:48
static unsigned getRelaxedOpcode(const MCInst &Inst, bool is16BitMode)
#define I(x, y, z)
Definition: MD5.cpp:58
iterator end()
Definition: DenseMap.h:109
Generic base class for all target subtargets.
Target independent information on a fixup kind.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:211
const unsigned Kind
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool mayNeedRelaxation(const MCInst &Inst, const MCSubtargetInfo &STI) const override
Check whether the given instruction may need relaxation.
void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef< char > Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const override
Apply the Value for given Fixup into the provided data fragment, at the offset specified by the fixup...
LLVM Value Representation.
Definition: Value.h:73
Generic interface to target specific assembler backends.
Definition: MCAsmBackend.h:42
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
const MCExpr * getValue() const
Definition: MCFixup.h:128
void addOperand(const MCOperand &Op)
Definition: MCInst.h:186
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
bool isELF() const
Definition: MCSymbol.h:281
unsigned getOpcode() const
Definition: MCInst.h:174
static unsigned getFixupKindNumBytes(unsigned Kind)
getFixupKindNumBytes - The number of bytes the fixup may change.
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:123
A two-byte fixup.
Definition: MCFixup.h:25
static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, bool IsLittleEndian)
MCFixupKind getKind() const
Definition: MCFixup.h:123
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target) override
Hook to check if a relocation is needed for some target specific reason.