LLVM  8.0.1
TwoAddressInstructionPass.cpp
Go to the documentation of this file.
1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
13 //
14 // A = B op C
15 //
16 // to:
17 //
18 // A = B
19 // A op= C
20 //
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
24 //
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
47 #include "llvm/CodeGen/Passes.h"
53 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Debug.h"
62 #include <cassert>
63 #include <iterator>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "twoaddressinstruction"
69 
70 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
71 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
72 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
73 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
74 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
75 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
76 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
77 
78 // Temporary flag to disable rescheduling.
79 static cl::opt<bool>
80 EnableRescheduling("twoaddr-reschedule",
81  cl::desc("Coalesce copies by rescheduling (default=true)"),
82  cl::init(true), cl::Hidden);
83 
84 // Limit the number of dataflow edges to traverse when evaluating the benefit
85 // of commuting operands.
87  "dataflow-edge-limit", cl::Hidden, cl::init(3),
88  cl::desc("Maximum number of dataflow edges to traverse when evaluating "
89  "the benefit of commuting operands"));
90 
91 namespace {
92 
93 class TwoAddressInstructionPass : public MachineFunctionPass {
94  MachineFunction *MF;
95  const TargetInstrInfo *TII;
96  const TargetRegisterInfo *TRI;
97  const InstrItineraryData *InstrItins;
99  LiveVariables *LV;
100  LiveIntervals *LIS;
101  AliasAnalysis *AA;
102  CodeGenOpt::Level OptLevel;
103 
104  // The current basic block being processed.
105  MachineBasicBlock *MBB;
106 
107  // Keep track the distance of a MI from the start of the current basic block.
109 
110  // Set of already processed instructions in the current block.
112 
113  // Set of instructions converted to three-address by target and then sunk
114  // down current basic block.
116 
117  // A map from virtual registers to physical registers which are likely targets
118  // to be coalesced to due to copies from physical registers to virtual
119  // registers. e.g. v1024 = move r0.
121 
122  // A map from virtual registers to physical registers which are likely targets
123  // to be coalesced to due to copies to physical registers from virtual
124  // registers. e.g. r1 = move v1024.
126 
127  bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
129 
130  bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
131 
132  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
133 
134  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
135  MachineInstr *MI, unsigned Dist);
136 
137  bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
138  unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
139 
140  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
141 
142  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
144  unsigned RegA, unsigned RegB, unsigned Dist);
145 
146  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
147 
148  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
150  unsigned Reg);
151  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
153  unsigned Reg);
154 
155  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
157  unsigned SrcIdx, unsigned DstIdx,
158  unsigned Dist, bool shouldOnlyCommute);
159 
160  bool tryInstructionCommute(MachineInstr *MI,
161  unsigned DstOpIdx,
162  unsigned BaseOpIdx,
163  bool BaseOpKilled,
164  unsigned Dist);
165  void scanUses(unsigned DstReg);
166 
167  void processCopy(MachineInstr *MI);
168 
169  using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
170  using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
171 
172  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
173  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
174  void eliminateRegSequence(MachineBasicBlock::iterator&);
175 
176 public:
177  static char ID; // Pass identification, replacement for typeid
178 
179  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
181  }
182 
183  void getAnalysisUsage(AnalysisUsage &AU) const override {
184  AU.setPreservesCFG();
193  }
194 
195  /// Pass entry point.
196  bool runOnMachineFunction(MachineFunction&) override;
197 };
198 
199 } // end anonymous namespace
200 
202 
204 
205 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
206  "Two-Address instruction pass", false, false)
208 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
209  "Two-Address instruction pass", false, false)
210 
211 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
212 
213 /// A two-address instruction has been converted to a three-address instruction
214 /// to avoid clobbering a register. Try to sink it past the instruction that
215 /// would kill the above mentioned register to reduce register pressure.
216 bool TwoAddressInstructionPass::
217 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
218  MachineBasicBlock::iterator OldPos) {
219  // FIXME: Shouldn't we be trying to do this before we three-addressify the
220  // instruction? After this transformation is done, we no longer need
221  // the instruction to be in three-address form.
222 
223  // Check if it's safe to move this instruction.
224  bool SeenStore = true; // Be conservative.
225  if (!MI->isSafeToMove(AA, SeenStore))
226  return false;
227 
228  unsigned DefReg = 0;
229  SmallSet<unsigned, 4> UseRegs;
230 
231  for (const MachineOperand &MO : MI->operands()) {
232  if (!MO.isReg())
233  continue;
234  unsigned MOReg = MO.getReg();
235  if (!MOReg)
236  continue;
237  if (MO.isUse() && MOReg != SavedReg)
238  UseRegs.insert(MO.getReg());
239  if (!MO.isDef())
240  continue;
241  if (MO.isImplicit())
242  // Don't try to move it if it implicitly defines a register.
243  return false;
244  if (DefReg)
245  // For now, don't move any instructions that define multiple registers.
246  return false;
247  DefReg = MO.getReg();
248  }
249 
250  // Find the instruction that kills SavedReg.
251  MachineInstr *KillMI = nullptr;
252  if (LIS) {
253  LiveInterval &LI = LIS->getInterval(SavedReg);
254  assert(LI.end() != LI.begin() &&
255  "Reg should not have empty live interval.");
256 
257  SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
258  LiveInterval::const_iterator I = LI.find(MBBEndIdx);
259  if (I != LI.end() && I->start < MBBEndIdx)
260  return false;
261 
262  --I;
263  KillMI = LIS->getInstructionFromIndex(I->end);
264  }
265  if (!KillMI) {
266  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
267  if (!UseMO.isKill())
268  continue;
269  KillMI = UseMO.getParent();
270  break;
271  }
272  }
273 
274  // If we find the instruction that kills SavedReg, and it is in an
275  // appropriate location, we can try to sink the current instruction
276  // past it.
277  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
278  MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator())
279  return false;
280 
281  // If any of the definitions are used by another instruction between the
282  // position and the kill use, then it's not safe to sink it.
283  //
284  // FIXME: This can be sped up if there is an easy way to query whether an
285  // instruction is before or after another instruction. Then we can use
286  // MachineRegisterInfo def / use instead.
287  MachineOperand *KillMO = nullptr;
288  MachineBasicBlock::iterator KillPos = KillMI;
289  ++KillPos;
290 
291  unsigned NumVisited = 0;
292  for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) {
293  // Debug instructions cannot be counted against the limit.
294  if (OtherMI.isDebugInstr())
295  continue;
296  if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
297  return false;
298  ++NumVisited;
299  for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) {
300  MachineOperand &MO = OtherMI.getOperand(i);
301  if (!MO.isReg())
302  continue;
303  unsigned MOReg = MO.getReg();
304  if (!MOReg)
305  continue;
306  if (DefReg == MOReg)
307  return false;
308 
309  if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) {
310  if (&OtherMI == KillMI && MOReg == SavedReg)
311  // Save the operand that kills the register. We want to unset the kill
312  // marker if we can sink MI past it.
313  KillMO = &MO;
314  else if (UseRegs.count(MOReg))
315  // One of the uses is killed before the destination.
316  return false;
317  }
318  }
319  }
320  assert(KillMO && "Didn't find kill");
321 
322  if (!LIS) {
323  // Update kill and LV information.
324  KillMO->setIsKill(false);
325  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
326  KillMO->setIsKill(true);
327 
328  if (LV)
329  LV->replaceKillInstruction(SavedReg, *KillMI, *MI);
330  }
331 
332  // Move instruction to its destination.
333  MBB->remove(MI);
334  MBB->insert(KillPos, MI);
335 
336  if (LIS)
337  LIS->handleMove(*MI);
338 
339  ++Num3AddrSunk;
340  return true;
341 }
342 
343 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
345  const MachineRegisterInfo *MRI) {
346  MachineInstr *Ret = nullptr;
347  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
348  if (DefMI.getParent() != BB || DefMI.isDebugValue())
349  continue;
350  if (!Ret)
351  Ret = &DefMI;
352  else if (Ret != &DefMI)
353  return nullptr;
354  }
355  return Ret;
356 }
357 
358 /// Check if there is a reversed copy chain from FromReg to ToReg:
359 /// %Tmp1 = copy %Tmp2;
360 /// %FromReg = copy %Tmp1;
361 /// %ToReg = add %FromReg ...
362 /// %Tmp2 = copy %ToReg;
363 /// MaxLen specifies the maximum length of the copy chain the func
364 /// can walk through.
365 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
366  int Maxlen) {
367  unsigned TmpReg = FromReg;
368  for (int i = 0; i < Maxlen; i++) {
369  MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
370  if (!Def || !Def->isCopy())
371  return false;
372 
373  TmpReg = Def->getOperand(1).getReg();
374 
375  if (TmpReg == ToReg)
376  return true;
377  }
378  return false;
379 }
380 
381 /// Return true if there are no intervening uses between the last instruction
382 /// in the MBB that defines the specified register and the two-address
383 /// instruction which is being processed. It also returns the last def location
384 /// by reference.
385 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
386  unsigned &LastDef) {
387  LastDef = 0;
388  unsigned LastUse = Dist;
389  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
390  MachineInstr *MI = MO.getParent();
391  if (MI->getParent() != MBB || MI->isDebugValue())
392  continue;
394  if (DI == DistanceMap.end())
395  continue;
396  if (MO.isUse() && DI->second < LastUse)
397  LastUse = DI->second;
398  if (MO.isDef() && DI->second > LastDef)
399  LastDef = DI->second;
400  }
401 
402  return !(LastUse > LastDef && LastUse < Dist);
403 }
404 
405 /// Return true if the specified MI is a copy instruction or an extract_subreg
406 /// instruction. It also returns the source and destination registers and
407 /// whether they are physical registers by reference.
408 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
409  unsigned &SrcReg, unsigned &DstReg,
410  bool &IsSrcPhys, bool &IsDstPhys) {
411  SrcReg = 0;
412  DstReg = 0;
413  if (MI.isCopy()) {
414  DstReg = MI.getOperand(0).getReg();
415  SrcReg = MI.getOperand(1).getReg();
416  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
417  DstReg = MI.getOperand(0).getReg();
418  SrcReg = MI.getOperand(2).getReg();
419  } else
420  return false;
421 
422  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
423  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
424  return true;
425 }
426 
427 /// Test if the given register value, which is used by the
428 /// given instruction, is killed by the given instruction.
429 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
430  LiveIntervals *LIS) {
431  if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
432  !LIS->isNotInMIMap(*MI)) {
433  // FIXME: Sometimes tryInstructionTransform() will add instructions and
434  // test whether they can be folded before keeping them. In this case it
435  // sets a kill before recursively calling tryInstructionTransform() again.
436  // If there is no interval available, we assume that this instruction is
437  // one of those. A kill flag is manually inserted on the operand so the
438  // check below will handle it.
439  LiveInterval &LI = LIS->getInterval(Reg);
440  // This is to match the kill flag version where undefs don't have kill
441  // flags.
442  if (!LI.hasAtLeastOneValue())
443  return false;
444 
445  SlotIndex useIdx = LIS->getInstructionIndex(*MI);
446  LiveInterval::const_iterator I = LI.find(useIdx);
447  assert(I != LI.end() && "Reg must be live-in to use.");
448  return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
449  }
450 
451  return MI->killsRegister(Reg);
452 }
453 
454 /// Test if the given register value, which is used by the given
455 /// instruction, is killed by the given instruction. This looks through
456 /// coalescable copies to see if the original value is potentially not killed.
457 ///
458 /// For example, in this code:
459 ///
460 /// %reg1034 = copy %reg1024
461 /// %reg1035 = copy killed %reg1025
462 /// %reg1036 = add killed %reg1034, killed %reg1035
463 ///
464 /// %reg1034 is not considered to be killed, since it is copied from a
465 /// register which is not killed. Treating it as not killed lets the
466 /// normal heuristics commute the (two-address) add, which lets
467 /// coalescing eliminate the extra copy.
468 ///
469 /// If allowFalsePositives is true then likely kills are treated as kills even
470 /// if it can't be proven that they are kills.
471 static bool isKilled(MachineInstr &MI, unsigned Reg,
472  const MachineRegisterInfo *MRI,
473  const TargetInstrInfo *TII,
474  LiveIntervals *LIS,
475  bool allowFalsePositives) {
476  MachineInstr *DefMI = &MI;
477  while (true) {
478  // All uses of physical registers are likely to be kills.
480  (allowFalsePositives || MRI->hasOneUse(Reg)))
481  return true;
482  if (!isPlainlyKilled(DefMI, Reg, LIS))
483  return false;
485  return true;
487  // If there are multiple defs, we can't do a simple analysis, so just
488  // go with what the kill flag says.
489  if (std::next(Begin) != MRI->def_end())
490  return true;
491  DefMI = Begin->getParent();
492  bool IsSrcPhys, IsDstPhys;
493  unsigned SrcReg, DstReg;
494  // If the def is something other than a copy, then it isn't going to
495  // be coalesced, so follow the kill flag.
496  if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
497  return true;
498  Reg = SrcReg;
499  }
500 }
501 
502 /// Return true if the specified MI uses the specified register as a two-address
503 /// use. If so, return the destination register by reference.
504 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
505  for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
506  const MachineOperand &MO = MI.getOperand(i);
507  if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
508  continue;
509  unsigned ti;
510  if (MI.isRegTiedToDefOperand(i, &ti)) {
511  DstReg = MI.getOperand(ti).getReg();
512  return true;
513  }
514  }
515  return false;
516 }
517 
518 /// Given a register, if has a single in-basic block use, return the use
519 /// instruction if it's a copy or a two-address use.
520 static
522  MachineRegisterInfo *MRI,
523  const TargetInstrInfo *TII,
524  bool &IsCopy,
525  unsigned &DstReg, bool &IsDstPhys) {
526  if (!MRI->hasOneNonDBGUse(Reg))
527  // None or more than one use.
528  return nullptr;
530  if (UseMI.getParent() != MBB)
531  return nullptr;
532  unsigned SrcReg;
533  bool IsSrcPhys;
534  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
535  IsCopy = true;
536  return &UseMI;
537  }
538  IsDstPhys = false;
539  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
540  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
541  return &UseMI;
542  }
543  return nullptr;
544 }
545 
546 /// Return the physical register the specified virtual register might be mapped
547 /// to.
548 static unsigned
552  if (SI == RegMap.end())
553  return 0;
554  Reg = SI->second;
555  }
557  return Reg;
558  return 0;
559 }
560 
561 /// Return true if the two registers are equal or aliased.
562 static bool
563 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
564  if (RegA == RegB)
565  return true;
566  if (!RegA || !RegB)
567  return false;
568  return TRI->regsOverlap(RegA, RegB);
569 }
570 
571 // Returns true if Reg is equal or aliased to at least one register in Set.
572 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg,
573  const TargetRegisterInfo *TRI) {
574  for (unsigned R : Set)
575  if (TRI->regsOverlap(R, Reg))
576  return true;
577 
578  return false;
579 }
580 
581 /// Return true if it's potentially profitable to commute the two-address
582 /// instruction that's being processed.
583 bool
584 TwoAddressInstructionPass::
585 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
586  MachineInstr *MI, unsigned Dist) {
587  if (OptLevel == CodeGenOpt::None)
588  return false;
589 
590  // Determine if it's profitable to commute this two address instruction. In
591  // general, we want no uses between this instruction and the definition of
592  // the two-address register.
593  // e.g.
594  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
595  // %reg1029 = COPY %reg1028
596  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
597  // insert => %reg1030 = COPY %reg1028
598  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
599  // In this case, it might not be possible to coalesce the second COPY
600  // instruction if the first one is coalesced. So it would be profitable to
601  // commute it:
602  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
603  // %reg1029 = COPY %reg1028
604  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
605  // insert => %reg1030 = COPY %reg1029
606  // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
607 
608  if (!isPlainlyKilled(MI, regC, LIS))
609  return false;
610 
611  // Ok, we have something like:
612  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
613  // let's see if it's worth commuting it.
614 
615  // Look for situations like this:
616  // %reg1024 = MOV r1
617  // %reg1025 = MOV r0
618  // %reg1026 = ADD %reg1024, %reg1025
619  // r0 = MOV %reg1026
620  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
621  unsigned ToRegA = getMappedReg(regA, DstRegMap);
622  if (ToRegA) {
623  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
624  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
625  bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
626  bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
627 
628  // Compute if any of the following are true:
629  // -RegB is not tied to a register and RegC is compatible with RegA.
630  // -RegB is tied to the wrong physical register, but RegC is.
631  // -RegB is tied to the wrong physical register, and RegC isn't tied.
632  if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
633  return true;
634  // Don't compute if any of the following are true:
635  // -RegC is not tied to a register and RegB is compatible with RegA.
636  // -RegC is tied to the wrong physical register, but RegB is.
637  // -RegC is tied to the wrong physical register, and RegB isn't tied.
638  if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
639  return false;
640  }
641 
642  // If there is a use of regC between its last def (could be livein) and this
643  // instruction, then bail.
644  unsigned LastDefC = 0;
645  if (!noUseAfterLastDef(regC, Dist, LastDefC))
646  return false;
647 
648  // If there is a use of regB between its last def (could be livein) and this
649  // instruction, then go ahead and make this transformation.
650  unsigned LastDefB = 0;
651  if (!noUseAfterLastDef(regB, Dist, LastDefB))
652  return true;
653 
654  // Look for situation like this:
655  // %reg101 = MOV %reg100
656  // %reg102 = ...
657  // %reg103 = ADD %reg102, %reg101
658  // ... = %reg103 ...
659  // %reg100 = MOV %reg103
660  // If there is a reversed copy chain from reg101 to reg103, commute the ADD
661  // to eliminate an otherwise unavoidable copy.
662  // FIXME:
663  // We can extend the logic further: If an pair of operands in an insn has
664  // been merged, the insn could be regarded as a virtual copy, and the virtual
665  // copy could also be used to construct a copy chain.
666  // To more generally minimize register copies, ideally the logic of two addr
667  // instruction pass should be integrated with register allocation pass where
668  // interference graph is available.
669  if (isRevCopyChain(regC, regA, MaxDataFlowEdge))
670  return true;
671 
672  if (isRevCopyChain(regB, regA, MaxDataFlowEdge))
673  return false;
674 
675  // Since there are no intervening uses for both registers, then commute
676  // if the def of regC is closer. Its live interval is shorter.
677  return LastDefB && LastDefC && LastDefC > LastDefB;
678 }
679 
680 /// Commute a two-address instruction and update the basic block, distance map,
681 /// and live variables if needed. Return true if it is successful.
682 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
683  unsigned DstIdx,
684  unsigned RegBIdx,
685  unsigned RegCIdx,
686  unsigned Dist) {
687  unsigned RegC = MI->getOperand(RegCIdx).getReg();
688  LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
689  MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
690 
691  if (NewMI == nullptr) {
692  LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
693  return false;
694  }
695 
696  LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
697  assert(NewMI == MI &&
698  "TargetInstrInfo::commuteInstruction() should not return a new "
699  "instruction unless it was requested.");
700 
701  // Update source register map.
702  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
703  if (FromRegC) {
704  unsigned RegA = MI->getOperand(DstIdx).getReg();
705  SrcRegMap[RegA] = FromRegC;
706  }
707 
708  return true;
709 }
710 
711 /// Return true if it is profitable to convert the given 2-address instruction
712 /// to a 3-address one.
713 bool
714 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
715  // Look for situations like this:
716  // %reg1024 = MOV r1
717  // %reg1025 = MOV r0
718  // %reg1026 = ADD %reg1024, %reg1025
719  // r2 = MOV %reg1026
720  // Turn ADD into a 3-address instruction to avoid a copy.
721  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
722  if (!FromRegB)
723  return false;
724  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
725  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
726 }
727 
728 /// Convert the specified two-address instruction into a three address one.
729 /// Return true if this transformation was successful.
730 bool
731 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
733  unsigned RegA, unsigned RegB,
734  unsigned Dist) {
735  // FIXME: Why does convertToThreeAddress() need an iterator reference?
737  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
738  assert(MBB->getIterator() == MFI &&
739  "convertToThreeAddress changed iterator reference");
740  if (!NewMI)
741  return false;
742 
743  LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
744  LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
745  bool Sunk = false;
746 
747  if (LIS)
748  LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
749 
750  if (NewMI->findRegisterUseOperand(RegB, false, TRI))
751  // FIXME: Temporary workaround. If the new instruction doesn't
752  // uses RegB, convertToThreeAddress must have created more
753  // then one instruction.
754  Sunk = sink3AddrInstruction(NewMI, RegB, mi);
755 
756  MBB->erase(mi); // Nuke the old inst.
757 
758  if (!Sunk) {
759  DistanceMap.insert(std::make_pair(NewMI, Dist));
760  mi = NewMI;
761  nmi = std::next(mi);
762  }
763  else
764  SunkInstrs.insert(NewMI);
765 
766  // Update source and destination register maps.
767  SrcRegMap.erase(RegA);
768  DstRegMap.erase(RegB);
769  return true;
770 }
771 
772 /// Scan forward recursively for only uses, update maps if the use is a copy or
773 /// a two-address instruction.
774 void
775 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
776  SmallVector<unsigned, 4> VirtRegPairs;
777  bool IsDstPhys;
778  bool IsCopy = false;
779  unsigned NewReg = 0;
780  unsigned Reg = DstReg;
781  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
782  NewReg, IsDstPhys)) {
783  if (IsCopy && !Processed.insert(UseMI).second)
784  break;
785 
787  if (DI != DistanceMap.end())
788  // Earlier in the same MBB.Reached via a back edge.
789  break;
790 
791  if (IsDstPhys) {
792  VirtRegPairs.push_back(NewReg);
793  break;
794  }
795  bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
796  if (!isNew)
797  assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
798  VirtRegPairs.push_back(NewReg);
799  Reg = NewReg;
800  }
801 
802  if (!VirtRegPairs.empty()) {
803  unsigned ToReg = VirtRegPairs.back();
804  VirtRegPairs.pop_back();
805  while (!VirtRegPairs.empty()) {
806  unsigned FromReg = VirtRegPairs.back();
807  VirtRegPairs.pop_back();
808  bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
809  if (!isNew)
810  assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
811  ToReg = FromReg;
812  }
813  bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
814  if (!isNew)
815  assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
816  }
817 }
818 
819 /// If the specified instruction is not yet processed, process it if it's a
820 /// copy. For a copy instruction, we find the physical registers the
821 /// source and destination registers might be mapped to. These are kept in
822 /// point-to maps used to determine future optimizations. e.g.
823 /// v1024 = mov r0
824 /// v1025 = mov r1
825 /// v1026 = add v1024, v1025
826 /// r1 = mov r1026
827 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
828 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
829 /// potentially joined with r1 on the output side. It's worthwhile to commute
830 /// 'add' to eliminate a copy.
831 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
832  if (Processed.count(MI))
833  return;
834 
835  bool IsSrcPhys, IsDstPhys;
836  unsigned SrcReg, DstReg;
837  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
838  return;
839 
840  if (IsDstPhys && !IsSrcPhys)
841  DstRegMap.insert(std::make_pair(SrcReg, DstReg));
842  else if (!IsDstPhys && IsSrcPhys) {
843  bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
844  if (!isNew)
845  assert(SrcRegMap[DstReg] == SrcReg &&
846  "Can't map to two src physical registers!");
847 
848  scanUses(DstReg);
849  }
850 
851  Processed.insert(MI);
852 }
853 
854 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
855 /// consider moving the instruction below the kill instruction in order to
856 /// eliminate the need for the copy.
857 bool TwoAddressInstructionPass::
858 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
860  unsigned Reg) {
861  // Bail immediately if we don't have LV or LIS available. We use them to find
862  // kills efficiently.
863  if (!LV && !LIS)
864  return false;
865 
866  MachineInstr *MI = &*mi;
868  if (DI == DistanceMap.end())
869  // Must be created from unfolded load. Don't waste time trying this.
870  return false;
871 
872  MachineInstr *KillMI = nullptr;
873  if (LIS) {
874  LiveInterval &LI = LIS->getInterval(Reg);
875  assert(LI.end() != LI.begin() &&
876  "Reg should not have empty live interval.");
877 
878  SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
879  LiveInterval::const_iterator I = LI.find(MBBEndIdx);
880  if (I != LI.end() && I->start < MBBEndIdx)
881  return false;
882 
883  --I;
884  KillMI = LIS->getInstructionFromIndex(I->end);
885  } else {
886  KillMI = LV->getVarInfo(Reg).findKill(MBB);
887  }
888  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
889  // Don't mess with copies, they may be coalesced later.
890  return false;
891 
892  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
893  KillMI->isBranch() || KillMI->isTerminator())
894  // Don't move pass calls, etc.
895  return false;
896 
897  unsigned DstReg;
898  if (isTwoAddrUse(*KillMI, Reg, DstReg))
899  return false;
900 
901  bool SeenStore = true;
902  if (!MI->isSafeToMove(AA, SeenStore))
903  return false;
904 
905  if (TII->getInstrLatency(InstrItins, *MI) > 1)
906  // FIXME: Needs more sophisticated heuristics.
907  return false;
908 
912  for (const MachineOperand &MO : MI->operands()) {
913  if (!MO.isReg())
914  continue;
915  unsigned MOReg = MO.getReg();
916  if (!MOReg)
917  continue;
918  if (MO.isDef())
919  Defs.push_back(MOReg);
920  else {
921  Uses.push_back(MOReg);
922  if (MOReg != Reg && (MO.isKill() ||
923  (LIS && isPlainlyKilled(MI, MOReg, LIS))))
924  Kills.push_back(MOReg);
925  }
926  }
927 
928  // Move the copies connected to MI down as well.
930  MachineBasicBlock::iterator AfterMI = std::next(Begin);
931  MachineBasicBlock::iterator End = AfterMI;
932  while (End != MBB->end()) {
933  End = skipDebugInstructionsForward(End, MBB->end());
934  if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
935  Defs.push_back(End->getOperand(0).getReg());
936  else
937  break;
938  ++End;
939  }
940 
941  // Check if the reschedule will not break dependencies.
942  unsigned NumVisited = 0;
943  MachineBasicBlock::iterator KillPos = KillMI;
944  ++KillPos;
945  for (MachineInstr &OtherMI : make_range(End, KillPos)) {
946  // Debug instructions cannot be counted against the limit.
947  if (OtherMI.isDebugInstr())
948  continue;
949  if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
950  return false;
951  ++NumVisited;
952  if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
953  OtherMI.isBranch() || OtherMI.isTerminator())
954  // Don't move pass calls, etc.
955  return false;
956  for (const MachineOperand &MO : OtherMI.operands()) {
957  if (!MO.isReg())
958  continue;
959  unsigned MOReg = MO.getReg();
960  if (!MOReg)
961  continue;
962  if (MO.isDef()) {
963  if (regOverlapsSet(Uses, MOReg, TRI))
964  // Physical register use would be clobbered.
965  return false;
966  if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
967  // May clobber a physical register def.
968  // FIXME: This may be too conservative. It's ok if the instruction
969  // is sunken completely below the use.
970  return false;
971  } else {
972  if (regOverlapsSet(Defs, MOReg, TRI))
973  return false;
974  bool isKill =
975  MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
976  if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
977  regOverlapsSet(Kills, MOReg, TRI)))
978  // Don't want to extend other live ranges and update kills.
979  return false;
980  if (MOReg == Reg && !isKill)
981  // We can't schedule across a use of the register in question.
982  return false;
983  // Ensure that if this is register in question, its the kill we expect.
984  assert((MOReg != Reg || &OtherMI == KillMI) &&
985  "Found multiple kills of a register in a basic block");
986  }
987  }
988  }
989 
990  // Move debug info as well.
991  while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
992  --Begin;
993 
994  nmi = End;
995  MachineBasicBlock::iterator InsertPos = KillPos;
996  if (LIS) {
997  // We have to move the copies first so that the MBB is still well-formed
998  // when calling handleMove().
999  for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
1000  auto CopyMI = MBBI++;
1001  MBB->splice(InsertPos, MBB, CopyMI);
1002  LIS->handleMove(*CopyMI);
1003  InsertPos = CopyMI;
1004  }
1005  End = std::next(MachineBasicBlock::iterator(MI));
1006  }
1007 
1008  // Copies following MI may have been moved as well.
1009  MBB->splice(InsertPos, MBB, Begin, End);
1010  DistanceMap.erase(DI);
1011 
1012  // Update live variables
1013  if (LIS) {
1014  LIS->handleMove(*MI);
1015  } else {
1016  LV->removeVirtualRegisterKilled(Reg, *KillMI);
1017  LV->addVirtualRegisterKilled(Reg, *MI);
1018  }
1019 
1020  LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
1021  return true;
1022 }
1023 
1024 /// Return true if the re-scheduling will put the given instruction too close
1025 /// to the defs of its register dependencies.
1026 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1027  MachineInstr *MI) {
1028  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
1029  if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
1030  continue;
1031  if (&DefMI == MI)
1032  return true; // MI is defining something KillMI uses
1034  if (DDI == DistanceMap.end())
1035  return true; // Below MI
1036  unsigned DefDist = DDI->second;
1037  assert(Dist > DefDist && "Visited def already?");
1038  if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
1039  return true;
1040  }
1041  return false;
1042 }
1043 
1044 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1045 /// consider moving the kill instruction above the current two-address
1046 /// instruction in order to eliminate the need for the copy.
1047 bool TwoAddressInstructionPass::
1048 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1050  unsigned Reg) {
1051  // Bail immediately if we don't have LV or LIS available. We use them to find
1052  // kills efficiently.
1053  if (!LV && !LIS)
1054  return false;
1055 
1056  MachineInstr *MI = &*mi;
1058  if (DI == DistanceMap.end())
1059  // Must be created from unfolded load. Don't waste time trying this.
1060  return false;
1061 
1062  MachineInstr *KillMI = nullptr;
1063  if (LIS) {
1064  LiveInterval &LI = LIS->getInterval(Reg);
1065  assert(LI.end() != LI.begin() &&
1066  "Reg should not have empty live interval.");
1067 
1068  SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1069  LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1070  if (I != LI.end() && I->start < MBBEndIdx)
1071  return false;
1072 
1073  --I;
1074  KillMI = LIS->getInstructionFromIndex(I->end);
1075  } else {
1076  KillMI = LV->getVarInfo(Reg).findKill(MBB);
1077  }
1078  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1079  // Don't mess with copies, they may be coalesced later.
1080  return false;
1081 
1082  unsigned DstReg;
1083  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1084  return false;
1085 
1086  bool SeenStore = true;
1087  if (!KillMI->isSafeToMove(AA, SeenStore))
1088  return false;
1089 
1090  SmallSet<unsigned, 2> Uses;
1091  SmallSet<unsigned, 2> Kills;
1092  SmallSet<unsigned, 2> Defs;
1093  SmallSet<unsigned, 2> LiveDefs;
1094  for (const MachineOperand &MO : KillMI->operands()) {
1095  if (!MO.isReg())
1096  continue;
1097  unsigned MOReg = MO.getReg();
1098  if (MO.isUse()) {
1099  if (!MOReg)
1100  continue;
1101  if (isDefTooClose(MOReg, DI->second, MI))
1102  return false;
1103  bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1104  if (MOReg == Reg && !isKill)
1105  return false;
1106  Uses.insert(MOReg);
1107  if (isKill && MOReg != Reg)
1108  Kills.insert(MOReg);
1109  } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1110  Defs.insert(MOReg);
1111  if (!MO.isDead())
1112  LiveDefs.insert(MOReg);
1113  }
1114  }
1115 
1116  // Check if the reschedule will not break depedencies.
1117  unsigned NumVisited = 0;
1118  for (MachineInstr &OtherMI :
1119  make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1120  // Debug instructions cannot be counted against the limit.
1121  if (OtherMI.isDebugInstr())
1122  continue;
1123  if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1124  return false;
1125  ++NumVisited;
1126  if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1127  OtherMI.isBranch() || OtherMI.isTerminator())
1128  // Don't move pass calls, etc.
1129  return false;
1130  SmallVector<unsigned, 2> OtherDefs;
1131  for (const MachineOperand &MO : OtherMI.operands()) {
1132  if (!MO.isReg())
1133  continue;
1134  unsigned MOReg = MO.getReg();
1135  if (!MOReg)
1136  continue;
1137  if (MO.isUse()) {
1138  if (Defs.count(MOReg))
1139  // Moving KillMI can clobber the physical register if the def has
1140  // not been seen.
1141  return false;
1142  if (Kills.count(MOReg))
1143  // Don't want to extend other live ranges and update kills.
1144  return false;
1145  if (&OtherMI != MI && MOReg == Reg &&
1146  !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1147  // We can't schedule across a use of the register in question.
1148  return false;
1149  } else {
1150  OtherDefs.push_back(MOReg);
1151  }
1152  }
1153 
1154  for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1155  unsigned MOReg = OtherDefs[i];
1156  if (Uses.count(MOReg))
1157  return false;
1159  LiveDefs.count(MOReg))
1160  return false;
1161  // Physical register def is seen.
1162  Defs.erase(MOReg);
1163  }
1164  }
1165 
1166  // Move the old kill above MI, don't forget to move debug info as well.
1167  MachineBasicBlock::iterator InsertPos = mi;
1168  while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1169  --InsertPos;
1171  MachineBasicBlock::iterator To = std::next(From);
1172  while (std::prev(From)->isDebugInstr())
1173  --From;
1174  MBB->splice(InsertPos, MBB, From, To);
1175 
1176  nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1177  DistanceMap.erase(DI);
1178 
1179  // Update live variables
1180  if (LIS) {
1181  LIS->handleMove(*KillMI);
1182  } else {
1183  LV->removeVirtualRegisterKilled(Reg, *KillMI);
1184  LV->addVirtualRegisterKilled(Reg, *MI);
1185  }
1186 
1187  LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1188  return true;
1189 }
1190 
1191 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1192 /// given machine instruction to improve opportunities for coalescing and
1193 /// elimination of a register to register copy.
1194 ///
1195 /// 'DstOpIdx' specifies the index of MI def operand.
1196 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1197 /// operand is killed by the given instruction.
1198 /// The 'Dist' arguments provides the distance of MI from the start of the
1199 /// current basic block and it is used to determine if it is profitable
1200 /// to commute operands in the instruction.
1201 ///
1202 /// Returns true if the transformation happened. Otherwise, returns false.
1203 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1204  unsigned DstOpIdx,
1205  unsigned BaseOpIdx,
1206  bool BaseOpKilled,
1207  unsigned Dist) {
1208  if (!MI->isCommutable())
1209  return false;
1210 
1211  bool MadeChange = false;
1212  unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg();
1213  unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1214  unsigned OpsNum = MI->getDesc().getNumOperands();
1215  unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1216  for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1217  // The call of findCommutedOpIndices below only checks if BaseOpIdx
1218  // and OtherOpIdx are commutable, it does not really search for
1219  // other commutable operands and does not change the values of passed
1220  // variables.
1221  if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1222  !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1223  continue;
1224 
1225  unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1226  bool AggressiveCommute = false;
1227 
1228  // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1229  // operands. This makes the live ranges of DstOp and OtherOp joinable.
1230  bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1231  bool DoCommute = !BaseOpKilled && OtherOpKilled;
1232 
1233  if (!DoCommute &&
1234  isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1235  DoCommute = true;
1236  AggressiveCommute = true;
1237  }
1238 
1239  // If it's profitable to commute, try to do so.
1240  if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1241  Dist)) {
1242  MadeChange = true;
1243  ++NumCommuted;
1244  if (AggressiveCommute) {
1245  ++NumAggrCommuted;
1246  // There might be more than two commutable operands, update BaseOp and
1247  // continue scanning.
1248  BaseOpReg = OtherOpReg;
1249  BaseOpKilled = OtherOpKilled;
1250  continue;
1251  }
1252  // If this was a commute based on kill, we won't do better continuing.
1253  return MadeChange;
1254  }
1255  }
1256  return MadeChange;
1257 }
1258 
1259 /// For the case where an instruction has a single pair of tied register
1260 /// operands, attempt some transformations that may either eliminate the tied
1261 /// operands or improve the opportunities for coalescing away the register copy.
1262 /// Returns true if no copy needs to be inserted to untie mi's operands
1263 /// (either because they were untied, or because mi was rescheduled, and will
1264 /// be visited again later). If the shouldOnlyCommute flag is true, only
1265 /// instruction commutation is attempted.
1266 bool TwoAddressInstructionPass::
1267 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1269  unsigned SrcIdx, unsigned DstIdx,
1270  unsigned Dist, bool shouldOnlyCommute) {
1271  if (OptLevel == CodeGenOpt::None)
1272  return false;
1273 
1274  MachineInstr &MI = *mi;
1275  unsigned regA = MI.getOperand(DstIdx).getReg();
1276  unsigned regB = MI.getOperand(SrcIdx).getReg();
1277 
1279  "cannot make instruction into two-address form");
1280  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1281 
1283  scanUses(regA);
1284 
1285  bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1286 
1287  // If the instruction is convertible to 3 Addr, instead
1288  // of returning try 3 Addr transformation aggresively and
1289  // use this variable to check later. Because it might be better.
1290  // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1291  // instead of the following code.
1292  // addl %esi, %edi
1293  // movl %edi, %eax
1294  // ret
1295  if (Commuted && !MI.isConvertibleTo3Addr())
1296  return false;
1297 
1298  if (shouldOnlyCommute)
1299  return false;
1300 
1301  // If there is one more use of regB later in the same MBB, consider
1302  // re-schedule this MI below it.
1303  if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1304  ++NumReSchedDowns;
1305  return true;
1306  }
1307 
1308  // If we commuted, regB may have changed so we should re-sample it to avoid
1309  // confusing the three address conversion below.
1310  if (Commuted) {
1311  regB = MI.getOperand(SrcIdx).getReg();
1312  regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1313  }
1314 
1315  if (MI.isConvertibleTo3Addr()) {
1316  // This instruction is potentially convertible to a true
1317  // three-address instruction. Check if it is profitable.
1318  if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1319  // Try to convert it.
1320  if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1321  ++NumConvertedTo3Addr;
1322  return true; // Done with this instruction.
1323  }
1324  }
1325  }
1326 
1327  // Return if it is commuted but 3 addr conversion is failed.
1328  if (Commuted)
1329  return false;
1330 
1331  // If there is one more use of regB later in the same MBB, consider
1332  // re-schedule it before this MI if it's legal.
1333  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1334  ++NumReSchedUps;
1335  return true;
1336  }
1337 
1338  // If this is an instruction with a load folded into it, try unfolding
1339  // the load, e.g. avoid this:
1340  // movq %rdx, %rcx
1341  // addq (%rax), %rcx
1342  // in favor of this:
1343  // movq (%rax), %rcx
1344  // addq %rdx, %rcx
1345  // because it's preferable to schedule a load than a register copy.
1346  if (MI.mayLoad() && !regBKilled) {
1347  // Determine if a load can be unfolded.
1348  unsigned LoadRegIndex;
1349  unsigned NewOpc =
1351  /*UnfoldLoad=*/true,
1352  /*UnfoldStore=*/false,
1353  &LoadRegIndex);
1354  if (NewOpc != 0) {
1355  const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1356  if (UnfoldMCID.getNumDefs() == 1) {
1357  // Unfold the load.
1358  LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1359  const TargetRegisterClass *RC =
1360  TRI->getAllocatableClass(
1361  TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1362  unsigned Reg = MRI->createVirtualRegister(RC);
1364  if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1365  /*UnfoldLoad=*/true,
1366  /*UnfoldStore=*/false, NewMIs)) {
1367  LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1368  return false;
1369  }
1370  assert(NewMIs.size() == 2 &&
1371  "Unfolded a load into multiple instructions!");
1372  // The load was previously folded, so this is the only use.
1373  NewMIs[1]->addRegisterKilled(Reg, TRI);
1374 
1375  // Tentatively insert the instructions into the block so that they
1376  // look "normal" to the transformation logic.
1377  MBB->insert(mi, NewMIs[0]);
1378  MBB->insert(mi, NewMIs[1]);
1379 
1380  LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1381  << "2addr: NEW INST: " << *NewMIs[1]);
1382 
1383  // Transform the instruction, now that it no longer has a load.
1384  unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1385  unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1386  MachineBasicBlock::iterator NewMI = NewMIs[1];
1387  bool TransformResult =
1388  tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1389  (void)TransformResult;
1390  assert(!TransformResult &&
1391  "tryInstructionTransform() should return false.");
1392  if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1393  // Success, or at least we made an improvement. Keep the unfolded
1394  // instructions and discard the original.
1395  if (LV) {
1396  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1397  MachineOperand &MO = MI.getOperand(i);
1398  if (MO.isReg() &&
1400  if (MO.isUse()) {
1401  if (MO.isKill()) {
1402  if (NewMIs[0]->killsRegister(MO.getReg()))
1403  LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1404  else {
1405  assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1406  "Kill missing after load unfold!");
1407  LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1408  }
1409  }
1410  } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1411  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1412  LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1413  else {
1414  assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1415  "Dead flag missing after load unfold!");
1416  LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1417  }
1418  }
1419  }
1420  }
1421  LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1422  }
1423 
1424  SmallVector<unsigned, 4> OrigRegs;
1425  if (LIS) {
1426  for (const MachineOperand &MO : MI.operands()) {
1427  if (MO.isReg())
1428  OrigRegs.push_back(MO.getReg());
1429  }
1430  }
1431 
1432  MI.eraseFromParent();
1433 
1434  // Update LiveIntervals.
1435  if (LIS) {
1436  MachineBasicBlock::iterator Begin(NewMIs[0]);
1437  MachineBasicBlock::iterator End(NewMIs[1]);
1438  LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1439  }
1440 
1441  mi = NewMIs[1];
1442  } else {
1443  // Transforming didn't eliminate the tie and didn't lead to an
1444  // improvement. Clean up the unfolded instructions and keep the
1445  // original.
1446  LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1447  NewMIs[0]->eraseFromParent();
1448  NewMIs[1]->eraseFromParent();
1449  }
1450  }
1451  }
1452  }
1453 
1454  return false;
1455 }
1456 
1457 // Collect tied operands of MI that need to be handled.
1458 // Rewrite trivial cases immediately.
1459 // Return true if any tied operands where found, including the trivial ones.
1460 bool TwoAddressInstructionPass::
1461 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1462  const MCInstrDesc &MCID = MI->getDesc();
1463  bool AnyOps = false;
1464  unsigned NumOps = MI->getNumOperands();
1465 
1466  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1467  unsigned DstIdx = 0;
1468  if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1469  continue;
1470  AnyOps = true;
1471  MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1472  MachineOperand &DstMO = MI->getOperand(DstIdx);
1473  unsigned SrcReg = SrcMO.getReg();
1474  unsigned DstReg = DstMO.getReg();
1475  // Tied constraint already satisfied?
1476  if (SrcReg == DstReg)
1477  continue;
1478 
1479  assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1480 
1481  // Deal with undef uses immediately - simply rewrite the src operand.
1482  if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1483  // Constrain the DstReg register class if required.
1485  if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1486  TRI, *MF))
1487  MRI->constrainRegClass(DstReg, RC);
1488  SrcMO.setReg(DstReg);
1489  SrcMO.setSubReg(0);
1490  LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1491  continue;
1492  }
1493  TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1494  }
1495  return AnyOps;
1496 }
1497 
1498 // Process a list of tied MI operands that all use the same source register.
1499 // The tied pairs are of the form (SrcIdx, DstIdx).
1500 void
1501 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1502  TiedPairList &TiedPairs,
1503  unsigned &Dist) {
1504  bool IsEarlyClobber = false;
1505  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1506  const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1507  IsEarlyClobber |= DstMO.isEarlyClobber();
1508  }
1509 
1510  bool RemovedKillFlag = false;
1511  bool AllUsesCopied = true;
1512  unsigned LastCopiedReg = 0;
1513  SlotIndex LastCopyIdx;
1514  unsigned RegB = 0;
1515  unsigned SubRegB = 0;
1516  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1517  unsigned SrcIdx = TiedPairs[tpi].first;
1518  unsigned DstIdx = TiedPairs[tpi].second;
1519 
1520  const MachineOperand &DstMO = MI->getOperand(DstIdx);
1521  unsigned RegA = DstMO.getReg();
1522 
1523  // Grab RegB from the instruction because it may have changed if the
1524  // instruction was commuted.
1525  RegB = MI->getOperand(SrcIdx).getReg();
1526  SubRegB = MI->getOperand(SrcIdx).getSubReg();
1527 
1528  if (RegA == RegB) {
1529  // The register is tied to multiple destinations (or else we would
1530  // not have continued this far), but this use of the register
1531  // already matches the tied destination. Leave it.
1532  AllUsesCopied = false;
1533  continue;
1534  }
1535  LastCopiedReg = RegA;
1536 
1538  "cannot make instruction into two-address form");
1539 
1540 #ifndef NDEBUG
1541  // First, verify that we don't have a use of "a" in the instruction
1542  // (a = b + a for example) because our transformation will not
1543  // work. This should never occur because we are in SSA form.
1544  for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1545  assert(i == DstIdx ||
1546  !MI->getOperand(i).isReg() ||
1547  MI->getOperand(i).getReg() != RegA);
1548 #endif
1549 
1550  // Emit a copy.
1551  MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1552  TII->get(TargetOpcode::COPY), RegA);
1553  // If this operand is folding a truncation, the truncation now moves to the
1554  // copy so that the register classes remain valid for the operands.
1555  MIB.addReg(RegB, 0, SubRegB);
1556  const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1557  if (SubRegB) {
1559  assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1560  SubRegB) &&
1561  "tied subregister must be a truncation");
1562  // The superreg class will not be used to constrain the subreg class.
1563  RC = nullptr;
1564  }
1565  else {
1566  assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1567  && "tied subregister must be a truncation");
1568  }
1569  }
1570 
1571  // Update DistanceMap.
1573  --PrevMI;
1574  DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1575  DistanceMap[MI] = ++Dist;
1576 
1577  if (LIS) {
1578  LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1579 
1581  LiveInterval &LI = LIS->getInterval(RegA);
1582  VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1583  SlotIndex endIdx =
1584  LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1585  LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1586  }
1587  }
1588 
1589  LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1590 
1591  MachineOperand &MO = MI->getOperand(SrcIdx);
1592  assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1593  "inconsistent operand info for 2-reg pass");
1594  if (MO.isKill()) {
1595  MO.setIsKill(false);
1596  RemovedKillFlag = true;
1597  }
1598 
1599  // Make sure regA is a legal regclass for the SrcIdx operand.
1602  MRI->constrainRegClass(RegA, RC);
1603  MO.setReg(RegA);
1604  // The getMatchingSuper asserts guarantee that the register class projected
1605  // by SubRegB is compatible with RegA with no subregister. So regardless of
1606  // whether the dest oper writes a subreg, the source oper should not.
1607  MO.setSubReg(0);
1608 
1609  // Propagate SrcRegMap.
1610  SrcRegMap[RegA] = RegB;
1611  }
1612 
1613  if (AllUsesCopied) {
1614  bool ReplacedAllUntiedUses = true;
1615  if (!IsEarlyClobber) {
1616  // Replace other (un-tied) uses of regB with LastCopiedReg.
1617  for (MachineOperand &MO : MI->operands()) {
1618  if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1619  if (MO.getSubReg() == SubRegB) {
1620  if (MO.isKill()) {
1621  MO.setIsKill(false);
1622  RemovedKillFlag = true;
1623  }
1624  MO.setReg(LastCopiedReg);
1625  MO.setSubReg(0);
1626  } else {
1627  ReplacedAllUntiedUses = false;
1628  }
1629  }
1630  }
1631  }
1632 
1633  // Update live variables for regB.
1634  if (RemovedKillFlag && ReplacedAllUntiedUses &&
1635  LV && LV->getVarInfo(RegB).removeKill(*MI)) {
1637  --PrevMI;
1638  LV->addVirtualRegisterKilled(RegB, *PrevMI);
1639  }
1640 
1641  // Update LiveIntervals.
1642  if (LIS) {
1643  LiveInterval &LI = LIS->getInterval(RegB);
1644  SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
1645  LiveInterval::const_iterator I = LI.find(MIIdx);
1646  assert(I != LI.end() && "RegB must be live-in to use.");
1647 
1648  SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1649  if (I->end == UseIdx)
1650  LI.removeSegment(LastCopyIdx, UseIdx);
1651  }
1652  } else if (RemovedKillFlag) {
1653  // Some tied uses of regB matched their destination registers, so
1654  // regB is still used in this instruction, but a kill flag was
1655  // removed from a different tied use of regB, so now we need to add
1656  // a kill flag to one of the remaining uses of regB.
1657  for (MachineOperand &MO : MI->operands()) {
1658  if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1659  MO.setIsKill(true);
1660  break;
1661  }
1662  }
1663  }
1664 }
1665 
1666 /// Reduce two-address instructions to two operands.
1667 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1668  MF = &Func;
1669  const TargetMachine &TM = MF->getTarget();
1670  MRI = &MF->getRegInfo();
1671  TII = MF->getSubtarget().getInstrInfo();
1672  TRI = MF->getSubtarget().getRegisterInfo();
1673  InstrItins = MF->getSubtarget().getInstrItineraryData();
1674  LV = getAnalysisIfAvailable<LiveVariables>();
1675  LIS = getAnalysisIfAvailable<LiveIntervals>();
1676  if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1677  AA = &AAPass->getAAResults();
1678  else
1679  AA = nullptr;
1680  OptLevel = TM.getOptLevel();
1681  // Disable optimizations if requested. We cannot skip the whole pass as some
1682  // fixups are necessary for correctness.
1683  if (skipFunction(Func.getFunction()))
1684  OptLevel = CodeGenOpt::None;
1685 
1686  bool MadeChange = false;
1687 
1688  LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1689  LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1690 
1691  // This pass takes the function out of SSA form.
1692  MRI->leaveSSA();
1693 
1694  TiedOperandMap TiedOperands;
1695  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1696  MBBI != MBBE; ++MBBI) {
1697  MBB = &*MBBI;
1698  unsigned Dist = 0;
1699  DistanceMap.clear();
1700  SrcRegMap.clear();
1701  DstRegMap.clear();
1702  Processed.clear();
1703  SunkInstrs.clear();
1704  for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1705  mi != me; ) {
1706  MachineBasicBlock::iterator nmi = std::next(mi);
1707  // Don't revisit an instruction previously converted by target. It may
1708  // contain undef register operands (%noreg), which are not handled.
1709  if (mi->isDebugInstr() || SunkInstrs.count(&*mi)) {
1710  mi = nmi;
1711  continue;
1712  }
1713 
1714  // Expand REG_SEQUENCE instructions. This will position mi at the first
1715  // expanded instruction.
1716  if (mi->isRegSequence())
1717  eliminateRegSequence(mi);
1718 
1719  DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1720 
1721  processCopy(&*mi);
1722 
1723  // First scan through all the tied register uses in this instruction
1724  // and record a list of pairs of tied operands for each register.
1725  if (!collectTiedOperands(&*mi, TiedOperands)) {
1726  mi = nmi;
1727  continue;
1728  }
1729 
1730  ++NumTwoAddressInstrs;
1731  MadeChange = true;
1732  LLVM_DEBUG(dbgs() << '\t' << *mi);
1733 
1734  // If the instruction has a single pair of tied operands, try some
1735  // transformations that may either eliminate the tied operands or
1736  // improve the opportunities for coalescing away the register copy.
1737  if (TiedOperands.size() == 1) {
1739  = TiedOperands.begin()->second;
1740  if (TiedPairs.size() == 1) {
1741  unsigned SrcIdx = TiedPairs[0].first;
1742  unsigned DstIdx = TiedPairs[0].second;
1743  unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1744  unsigned DstReg = mi->getOperand(DstIdx).getReg();
1745  if (SrcReg != DstReg &&
1746  tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1747  // The tied operands have been eliminated or shifted further down
1748  // the block to ease elimination. Continue processing with 'nmi'.
1749  TiedOperands.clear();
1750  mi = nmi;
1751  continue;
1752  }
1753  }
1754  }
1755 
1756  // Now iterate over the information collected above.
1757  for (auto &TO : TiedOperands) {
1758  processTiedPairs(&*mi, TO.second, Dist);
1759  LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1760  }
1761 
1762  // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1763  if (mi->isInsertSubreg()) {
1764  // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1765  // To %reg:subidx = COPY %subreg
1766  unsigned SubIdx = mi->getOperand(3).getImm();
1767  mi->RemoveOperand(3);
1768  assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1769  mi->getOperand(0).setSubReg(SubIdx);
1770  mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1771  mi->RemoveOperand(1);
1772  mi->setDesc(TII->get(TargetOpcode::COPY));
1773  LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1774  }
1775 
1776  // Clear TiedOperands here instead of at the top of the loop
1777  // since most instructions do not have tied operands.
1778  TiedOperands.clear();
1779  mi = nmi;
1780  }
1781  }
1782 
1783  if (LIS)
1784  MF->verify(this, "After two-address instruction pass");
1785 
1786  return MadeChange;
1787 }
1788 
1789 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1790 ///
1791 /// The instruction is turned into a sequence of sub-register copies:
1792 ///
1793 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1794 ///
1795 /// Becomes:
1796 ///
1797 /// undef %dst:ssub0 = COPY %v1
1798 /// %dst:ssub1 = COPY %v2
1799 void TwoAddressInstructionPass::
1800 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1801  MachineInstr &MI = *MBBI;
1802  unsigned DstReg = MI.getOperand(0).getReg();
1803  if (MI.getOperand(0).getSubReg() ||
1805  !(MI.getNumOperands() & 1)) {
1806  LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1807  llvm_unreachable(nullptr);
1808  }
1809 
1810  SmallVector<unsigned, 4> OrigRegs;
1811  if (LIS) {
1812  OrigRegs.push_back(MI.getOperand(0).getReg());
1813  for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1814  OrigRegs.push_back(MI.getOperand(i).getReg());
1815  }
1816 
1817  bool DefEmitted = false;
1818  for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1819  MachineOperand &UseMO = MI.getOperand(i);
1820  unsigned SrcReg = UseMO.getReg();
1821  unsigned SubIdx = MI.getOperand(i+1).getImm();
1822  // Nothing needs to be inserted for undef operands.
1823  if (UseMO.isUndef())
1824  continue;
1825 
1826  // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1827  // might insert a COPY that uses SrcReg after is was killed.
1828  bool isKill = UseMO.isKill();
1829  if (isKill)
1830  for (unsigned j = i + 2; j < e; j += 2)
1831  if (MI.getOperand(j).getReg() == SrcReg) {
1832  MI.getOperand(j).setIsKill();
1833  UseMO.setIsKill(false);
1834  isKill = false;
1835  break;
1836  }
1837 
1838  // Insert the sub-register copy.
1839  MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1840  TII->get(TargetOpcode::COPY))
1841  .addReg(DstReg, RegState::Define, SubIdx)
1842  .add(UseMO);
1843 
1844  // The first def needs an undef flag because there is no live register
1845  // before it.
1846  if (!DefEmitted) {
1847  CopyMI->getOperand(0).setIsUndef(true);
1848  // Return an iterator pointing to the first inserted instr.
1849  MBBI = CopyMI;
1850  }
1851  DefEmitted = true;
1852 
1853  // Update LiveVariables' kill info.
1854  if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1855  LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1856 
1857  LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1858  }
1859 
1860  MachineBasicBlock::iterator EndMBBI =
1861  std::next(MachineBasicBlock::iterator(MI));
1862 
1863  if (!DefEmitted) {
1864  LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1865  MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1866  for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1867  MI.RemoveOperand(j);
1868  } else {
1869  LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1870  MI.eraseFromParent();
1871  }
1872 
1873  // Udpate LiveIntervals.
1874  if (LIS)
1875  LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1876 }
bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI)
removeVirtualRegisterKilled - Remove the specified kill of the virtual register from the live variabl...
const MachineInstrBuilder & add(const MachineOperand &MO) const
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:633
const TargetRegisterClass * getRegClass(unsigned Reg) const
Return the register class of the specified virtual register.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
static MachineInstr * getSingleDef(unsigned Reg, MachineBasicBlock *BB, const MachineRegisterInfo *MRI)
Return the MachineInstr* if it is the single def of the Reg in current BB.
static unsigned getMappedReg(unsigned Reg, DenseMap< unsigned, unsigned > &RegMap)
Return the physical register the specified virtual register might be mapped to.
static bool isKilled(MachineInstr &MI, unsigned Reg, const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, LiveIntervals *LIS, bool allowFalsePositives)
Test if the given register value, which is used by the given instruction, is killed by the given inst...
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
void push_back(const T &Elt)
Definition: SmallVector.h:218
bool isSubregToReg() const
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:638
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
iterator_range< use_nodbg_iterator > use_nodbg_operands(unsigned Reg) const
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
unsigned getReg() const
getReg - Returns the register number.
void setIsUndef(bool Val=true)
static bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
MachineOperand * findRegisterUseOperand(unsigned Reg, bool isKill=false, const TargetRegisterInfo *TRI=nullptr)
Wrapper for findRegisterUseOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
unsigned Reg
MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI=false, unsigned OpIdx1=CommuteAnyOperandIndex, unsigned OpIdx2=CommuteAnyOperandIndex) const
This method commutes the operands of the given machine instruction MI.
unsigned getSubReg() const
static cl::opt< bool > EnableRescheduling("twoaddr-reschedule", cl::desc("Coalesce copies by rescheduling (default=true)"), cl::init(true), cl::Hidden)
iterator_range< reg_iterator > reg_operands(unsigned Reg) const
unsigned second
STATISTIC(NumFunctions, "Total number of functions")
unsigned const TargetRegisterInfo * TRI
bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI)
removeVirtualRegisterDead - Remove the specified kill of the virtual register from the live variable ...
MachineInstr * findKill(const MachineBasicBlock *MBB) const
findKill - Find a kill instruction in MBB. Return NULL if none is found.
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:459
bool isCopyLike() const
Return true if the instruction behaves like a copy.
bool erase(const T &V)
Definition: SmallSet.h:208
bool removeKill(MachineInstr &MI)
removeKill - Delete a kill corresponding to the specified machine instruction.
Definition: LiveVariables.h:94
bool isEarlyClobber() const
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:221
bool isNotInMIMap(const MachineInstr &Instr) const
Returns true if the specified machine instr has been removed or was never entered in the map...
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
char & MachineLoopInfoID
MachineLoopInfo - This pass is a loop analysis pass.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:211
const HexagonInstrInfo * TII
static bool regOverlapsSet(const SmallVectorImpl< unsigned > &Set, unsigned Reg, const TargetRegisterInfo *TRI)
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:412
const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
Given a machine instruction descriptor, returns the register class constraint for OpNum...
iterator end()
Definition: LiveInterval.h:212
VNInfo::Allocator & getVNInfoAllocator()
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr *> &NewMIs) const
unfoldMemoryOperand - Separate a single instruction which folded a load or a store or a load and a st...
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
bool isTerminator(QueryType Type=AnyInBundle) const
Returns true if this instruction part of the terminator for a basic block.
Definition: MachineInstr.h:649
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
void initializeTwoAddressInstructionPassPass(PassRegistry &)
virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const
This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_ADDR flag.
def_iterator def_begin(unsigned RegNo) const
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
MCInst const & instruction(MCInst const &MCB, size_t Index)
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
static bool regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI)
Return true if the two registers are equal or aliased.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:406
SlotIndexes pass.
Definition: SlotIndexes.h:331
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def...
Definition: SlotIndexes.h:255
iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const
Compute the instruction latency of a given instruction.
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
#define DEBUG_TYPE
AnalysisUsage & addPreservedID(const void *ID)
Itinerary data supplied by a subtarget to be used by a target.
virtual const TargetInstrInfo * getInstrInfo() const
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const TargetRegisterClass * constrainRegClass(unsigned Reg, const TargetRegisterClass *RC, unsigned MinNumRegs=0)
constrainRegClass - Constrain the register class of the specified virtual register to be a common sub...
bool isBranch(QueryType Type=AnyInBundle) const
Returns true if this is a conditional, unconditional, or indirect branch.
Definition: MachineInstr.h:657
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
virtual const InstrItineraryData * getInstrItineraryData() const
getInstrItineraryData - Returns instruction itinerary data for the target or specific subtarget...
TargetInstrInfo - Interface to description of machine instruction set.
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
bool erase(const KeyT &Val)
Definition: DenseMap.h:298
MachineInstrBundleIterator< MachineInstr > iterator
bool isConvertibleTo3Addr(QueryType Type=IgnoreBundle) const
Return true if this is a 2-address instruction which can be changed into a 3-address instruction if n...
Definition: MachineInstr.h:866
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ParseOptionalThreadLocal := /*empty.
CodeGenOpt::Level getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned const MachineRegisterInfo * MRI
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
MachineInstrBuilder & UseMI
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
Two Address instruction pass
Represent the analysis usage information of a pass.
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx=nullptr) const
Return true if the use operand of the specified index is tied to a def operand.
virtual const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const
Return a subclass of the specified register class A so that each register in it has a sub-register of...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
self_iterator getIterator()
Definition: ilist_node.h:82
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:181
static MachineInstr * findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, MachineRegisterInfo *MRI, const TargetInstrInfo *TII, bool &IsCopy, unsigned &DstReg, bool &IsDstPhys)
Given a register, if has a single in-basic block use, return the use instruction if it&#39;s a copy or a ...
void repairIntervalsInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, ArrayRef< unsigned > OrigRegs)
Update live intervals for instructions in a range of iterators.
bool isCopy() const
char & TwoAddressInstructionPassID
TwoAddressInstruction - This pass reduces two-address instructions to use two operands.
VarInfo & getVarInfo(unsigned RegIdx)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
size_t size() const
Definition: SmallVector.h:53
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void setIsKill(bool Val=true)
iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
Remove the specified segment from this range.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Iterator for intrusive lists based on ilist_node.
void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one...
static cl::opt< unsigned > MaxDataFlowEdge("dataflow-edge-limit", cl::Hidden, cl::init(3), cl::desc("Maximum number of dataflow edges to traverse when evaluating " "the benefit of commuting operands"))
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
void setDesc(const MCInstrDesc &tid)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one...
BlockVerifier::State From
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:198
bool regsOverlap(unsigned regA, unsigned regB) const
Returns true if the two registers are equal or alias each other.
static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, unsigned &SrcReg, unsigned &DstReg, bool &IsSrcPhys, bool &IsDstPhys)
Return true if the specified MI is a copy instruction or an extract_subreg instruction.
Segments::const_iterator const_iterator
Definition: LiveInterval.h:209
bool isDebugValue() const
Definition: MachineInstr.h:997
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
bool isInsertSubreg() const
MachineInstrBuilder MachineInstrBuilder & DefMI
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:226
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
LiveInterval & getInterval(unsigned Reg)
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
int64_t getImm() const
const Function & getFunction() const
Return the LLVM function that this machine code represents.
virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
bool hasAtLeastOneValue() const
Definition: LiveInterval.h:297
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const
Return the last index in the given basic block.
IterT skipDebugInstructionsForward(IterT It, IterT End)
Increment It until it points to a non-debug instruction or to End and return the resulting iterator...
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, "Two-Address instruction pass", false, false) INITIALIZE_PASS_END(TwoAddressInstructionPass
Representation of each machine instruction.
Definition: MachineInstr.h:64
static bool isPhysicalRegister(unsigned Reg)
Return true if the specified register number is in the physical register namespace.
bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI=nullptr) const
Return true if the MachineInstr kills the specified register.
void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterDead - Add information about the fact that the specified register is dead after bei...
bool hasOneUse(unsigned RegNo) const
hasOneUse - Return true if there is exactly one instruction using the specified register.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB &#39;Other&#39; at the position From, and insert it into this MBB right before &#39;...
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
SlotIndex getPrevSlot() const
Returns the previous slot in the index list.
Definition: SlotIndexes.h:290
bool verify(Pass *p=nullptr, const char *Banner=nullptr, bool AbortOnError=true) const
Run the current MachineFunction through the machine code verifier, useful for debugger use...
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, const TargetRegisterClass *RC) const
Return a super-register of the specified register Reg so its sub-register of index SubIdx is Reg...
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
void setReg(unsigned Reg)
Change the register this operand corresponds to.
#define I(x, y, z)
Definition: MD5.cpp:58
void setSubReg(unsigned subReg)
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
bool hasOneNonDBGUse(unsigned RegNo) const
hasOneNonDBGUse - Return true if there is exactly one non-Debug instruction using the specified regis...
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Two Address instruction static false bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS)
Test if the given register value, which is used by the given instruction, is killed by the given inst...
iterator begin()
Definition: LiveInterval.h:211
VNInfo * getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator)
getNextValue - Create a new value number and return it.
Definition: LiveInterval.h:319
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
Definition: MachineInstr.h:807
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static def_iterator def_end()
AnalysisUsage & addUsedIfAvailable()
Add the specified Pass class to the set of analyses used by this pass.
use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const
const TargetRegisterClass * getAllocatableClass(const TargetRegisterClass *RC) const
Return the maximal subclass of the given register class that is allocatable or NULL.
iterator_range< def_instr_iterator > def_instructions(unsigned Reg) const
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore...
IRTranslator LLVM IR MI
void RemoveOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with...
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:84
reg_begin/reg_end - Provide iteration support to walk over all definitions and uses of a register wit...
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const
Returns the opcode of the would be new instruction after load / store are unfolded from an instructio...
bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const
Return true if it is safe to move this instruction.
bool isCommutable(QueryType Type=IgnoreBundle) const
Return true if this may be a 2- or 3-address instruction (of the form "X = op Y, Z, ..."), which produces the same result if Y and Z are exchanged.
Definition: MachineInstr.h:848
void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterKilled - Add information about the fact that the specified register is killed after...
unsigned createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void handleMove(MachineInstr &MI, bool UpdateFlags=false)
Call this method to notify LiveIntervals that instruction MI has been moved within a basic block...
static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg)
Return true if the specified MI uses the specified register as a two-address use. ...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:165