LLVM  8.0.1
LiveVariables.h
Go to the documentation of this file.
1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariables analysis pass. For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form. This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function. It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block). If a physical
24 // register is not register allocatable, it is not tracked. This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30 #define LLVM_CODEGEN_LIVEVARIABLES_H
31 
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/IndexedMap.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallVector.h"
40 
41 namespace llvm {
42 
43 class MachineBasicBlock;
44 class MachineRegisterInfo;
45 
47 public:
48  static char ID; // Pass identification, replacement for typeid
51  }
52 
53  /// VarInfo - This represents the regions where a virtual register is live in
54  /// the program. We represent this with three different pieces of
55  /// information: the set of blocks in which the instruction is live
56  /// throughout, the set of blocks in which the instruction is actually used,
57  /// and the set of non-phi instructions that are the last users of the value.
58  ///
59  /// In the common case where a value is defined and killed in the same block,
60  /// There is one killing instruction, and AliveBlocks is empty.
61  ///
62  /// Otherwise, the value is live out of the block. If the value is live
63  /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks
64  /// where the liveness range ends are not included in AliveBlocks, instead
65  /// being captured by the Kills set. In these blocks, the value is live into
66  /// the block (unless the value is defined and killed in the same block) and
67  /// lives until the specified instruction. Note that there cannot ever be a
68  /// value whose Kills set contains two instructions from the same basic block.
69  ///
70  /// PHI nodes complicate things a bit. If a PHI node is the last user of a
71  /// value in one of its predecessor blocks, it is not listed in the kills set,
72  /// but does include the predecessor block in the AliveBlocks set (unless that
73  /// block also defines the value). This leads to the (perfectly sensical)
74  /// situation where a value is defined in a block, and the last use is a phi
75  /// node in the successor. In this case, AliveBlocks is empty (the value is
76  /// not live across any blocks) and Kills is empty (phi nodes are not
77  /// included). This is sensical because the value must be live to the end of
78  /// the block, but is not live in any successor blocks.
79  struct VarInfo {
80  /// AliveBlocks - Set of blocks in which this value is alive completely
81  /// through. This is a bit set which uses the basic block number as an
82  /// index.
83  ///
85 
86  /// Kills - List of MachineInstruction's which are the last use of this
87  /// virtual register (kill it) in their basic block.
88  ///
89  std::vector<MachineInstr*> Kills;
90 
91  /// removeKill - Delete a kill corresponding to the specified
92  /// machine instruction. Returns true if there was a kill
93  /// corresponding to this instruction, false otherwise.
95  std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
96  if (I == Kills.end())
97  return false;
98  Kills.erase(I);
99  return true;
100  }
101 
102  /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
103  MachineInstr *findKill(const MachineBasicBlock *MBB) const;
104 
105  /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
106  /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
107  /// MBB, it is not considered live in.
108  bool isLiveIn(const MachineBasicBlock &MBB,
109  unsigned Reg,
111 
112  void dump() const;
113  };
114 
115 private:
116  /// VirtRegInfo - This list is a mapping from virtual register number to
117  /// variable information.
118  ///
120 
121  /// PHIJoins - list of virtual registers that are PHI joins. These registers
122  /// may have multiple definitions, and they require special handling when
123  /// building live intervals.
124  SparseBitVector<> PHIJoins;
125 
126 private: // Intermediate data structures
127  MachineFunction *MF;
128 
130 
131  const TargetRegisterInfo *TRI;
132 
133  // PhysRegInfo - Keep track of which instruction was the last def of a
134  // physical register. This is a purely local property, because all physical
135  // register references are presumed dead across basic blocks.
136  std::vector<MachineInstr *> PhysRegDef;
137 
138  // PhysRegInfo - Keep track of which instruction was the last use of a
139  // physical register. This is a purely local property, because all physical
140  // register references are presumed dead across basic blocks.
141  std::vector<MachineInstr *> PhysRegUse;
142 
143  std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144 
145  // DistanceMap - Keep track the distance of a MI from the start of the
146  // current basic block.
148 
149  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150  /// uses. Pay special attention to the sub-register uses which may come below
151  /// the last use of the whole register.
152  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
153 
154  /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155  void HandleRegMask(const MachineOperand&);
156 
157  void HandlePhysRegUse(unsigned Reg, MachineInstr &MI);
158  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
160  void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161 
162  /// FindLastRefOrPartRef - Return the last reference or partial reference of
163  /// the specified register.
164  MachineInstr *FindLastRefOrPartRef(unsigned Reg);
165 
166  /// FindLastPartialDef - Return the last partial def of the specified
167  /// register. Also returns the sub-registers that're defined by the
168  /// instruction.
169  MachineInstr *FindLastPartialDef(unsigned Reg,
170  SmallSet<unsigned,4> &PartDefRegs);
171 
172  /// analyzePHINodes - Gather information about the PHI nodes in here. In
173  /// particular, we want to map the variable information of a virtual
174  /// register which is used in a PHI node. We map that to the BB the vreg
175  /// is coming from.
176  void analyzePHINodes(const MachineFunction& Fn);
177 
178  void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179 
180  void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181 public:
182 
183  bool runOnMachineFunction(MachineFunction &MF) override;
184 
185  /// RegisterDefIsDead - Return true if the specified instruction defines the
186  /// specified register, but that definition is dead.
187  bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const;
188 
189  //===--------------------------------------------------------------------===//
190  // API to update live variable information
191 
192  /// replaceKillInstruction - Update register kill info by replacing a kill
193  /// instruction with a new one.
194  void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
195  MachineInstr &NewMI);
196 
197  /// addVirtualRegisterKilled - Add information about the fact that the
198  /// specified register is killed after being used by the specified
199  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
200  /// not found.
201  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI,
202  bool AddIfNotFound = false) {
203  if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
204  getVarInfo(IncomingReg).Kills.push_back(&MI);
205  }
206 
207  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
208  /// register from the live variable information. Returns true if the
209  /// variable was marked as killed by the specified instruction,
210  /// false otherwise.
211  bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) {
212  if (!getVarInfo(reg).removeKill(MI))
213  return false;
214 
215  bool Removed = false;
216  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
217  MachineOperand &MO = MI.getOperand(i);
218  if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
219  MO.setIsKill(false);
220  Removed = true;
221  break;
222  }
223  }
224 
225  assert(Removed && "Register is not used by this instruction!");
226  (void)Removed;
227  return true;
228  }
229 
230  /// removeVirtualRegistersKilled - Remove all killed info for the specified
231  /// instruction.
233 
234  /// addVirtualRegisterDead - Add information about the fact that the specified
235  /// register is dead after being used by the specified instruction. If
236  /// AddIfNotFound is true, add a implicit operand if it's not found.
237  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI,
238  bool AddIfNotFound = false) {
239  if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
240  getVarInfo(IncomingReg).Kills.push_back(&MI);
241  }
242 
243  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
244  /// register from the live variable information. Returns true if the
245  /// variable was marked dead at the specified instruction, false
246  /// otherwise.
247  bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) {
248  if (!getVarInfo(reg).removeKill(MI))
249  return false;
250 
251  bool Removed = false;
252  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
253  MachineOperand &MO = MI.getOperand(i);
254  if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
255  MO.setIsDead(false);
256  Removed = true;
257  break;
258  }
259  }
260  assert(Removed && "Register is not defined by this instruction!");
261  (void)Removed;
262  return true;
263  }
264 
265  void getAnalysisUsage(AnalysisUsage &AU) const override;
266 
267  void releaseMemory() override {
268  VirtRegInfo.clear();
269  }
270 
271  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
272  /// register.
273  VarInfo &getVarInfo(unsigned RegIdx);
274 
275  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
276  MachineBasicBlock *BB);
277  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
278  MachineBasicBlock *BB,
279  std::vector<MachineBasicBlock*> &WorkList);
280  void HandleVirtRegDef(unsigned reg, MachineInstr &MI);
281  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI);
282 
283  bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
284  return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
285  }
286 
287  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
288  /// PHI nodes. This means that Reg is either killed by a successor block or
289  /// passed through one.
290  bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
291 
292  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
293  /// variables that are live out of DomBB and live into SuccBB will be marked
294  /// as passing live through BB. This method assumes that the machine code is
295  /// still in SSA form.
297  MachineBasicBlock *DomBB,
298  MachineBasicBlock *SuccBB);
299 
300  /// isPHIJoin - Return true if Reg is a phi join register.
301  bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
302 
303  /// setPHIJoin - Mark Reg as a phi join register.
304  void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
305 };
306 
307 } // End llvm namespace
308 
309 #endif
bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI)
removeVirtualRegisterKilled - Remove the specified kill of the virtual register from the live variabl...
bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const
RegisterDefIsDead - Return true if the specified instruction defines the specified register...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
This class represents lattice values for constants.
Definition: AllocatorList.h:24
bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI defined a register without a use.
void set(unsigned Idx)
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
unsigned getReg() const
getReg - Returns the register number.
bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB)
isLiveOut - Determine if Reg is live out from MBB, when not considering PHI nodes.
unsigned Reg
void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI)
VarInfo - This represents the regions where a virtual register is live in the program.
Definition: LiveVariables.h:79
unsigned const TargetRegisterInfo * TRI
void setIsDead(bool Val=true)
bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI)
removeVirtualRegisterDead - Remove the specified kill of the virtual register from the live variable ...
MachineInstr * findKill(const MachineBasicBlock *MBB) const
findKill - Find a kill instruction in MBB. Return NULL if none is found.
void initializeLiveVariablesPass(PassRegistry &)
bool removeKill(MachineInstr &MI)
removeKill - Delete a kill corresponding to the specified machine instruction.
Definition: LiveVariables.h:94
bool test(unsigned Idx) const
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:412
SparseBitVector AliveBlocks
AliveBlocks - Set of blocks in which this value is alive completely through.
Definition: LiveVariables.h:84
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
void setPHIJoin(unsigned Reg)
setPHIJoin - Mark Reg as a phi join register.
unsigned const MachineRegisterInfo * MRI
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
Represent the analysis usage information of a pass.
bool isPHIJoin(unsigned Reg)
isPHIJoin - Return true if Reg is a phi join register.
VarInfo & getVarInfo(unsigned RegIdx)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1207
void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *BB)
void setIsKill(bool Val=true)
void addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB, MachineBasicBlock *SuccBB)
addNewBlock - Add a new basic block BB between DomBB and SuccBB.
std::vector< MachineInstr * > Kills
Kills - List of MachineInstruction&#39;s which are the last use of this virtual register (kill it) in the...
Definition: LiveVariables.h:89
void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one...
void HandleVirtRegDef(unsigned reg, MachineInstr &MI)
bool isLiveIn(const MachineBasicBlock &MBB, unsigned Reg, MachineRegisterInfo &MRI)
isLiveIn - Is Reg live in to MBB? This means that Reg is live through MBB, or it is killed in MBB...
MachineOperand class - Representation of each machine instruction operand.
void removeVirtualRegistersKilled(MachineInstr &MI)
removeVirtualRegistersKilled - Remove all killed info for the specified instruction.
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Representation of each machine instruction.
Definition: MachineInstr.h:64
void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterDead - Add information about the fact that the specified register is dead after bei...
#define I(x, y, z)
Definition: MD5.cpp:58
bool isReg() const
isReg - Tests if this is a MO_Register operand.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool addRegisterKilled(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI kills a register.
IRTranslator LLVM IR MI
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB)
void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterKilled - Add information about the fact that the specified register is killed after...