LLVM  8.0.1
LiveInterval.cpp
Go to the documentation of this file.
1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes. Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20 
22 #include "LiveRangeUtils.h"
23 #include "RegisterCoalescer.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/MC/LaneBitmask.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstddef>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 namespace {
50 
51 //===----------------------------------------------------------------------===//
52 // Implementation of various methods necessary for calculation of live ranges.
53 // The implementation of the methods abstracts from the concrete type of the
54 // segment collection.
55 //
56 // Implementation of the class follows the Template design pattern. The base
57 // class contains generic algorithms that call collection-specific methods,
58 // which are provided in concrete subclasses. In order to avoid virtual calls
59 // these methods are provided by means of C++ template instantiation.
60 // The base class calls the methods of the subclass through method impl(),
61 // which casts 'this' pointer to the type of the subclass.
62 //
63 //===----------------------------------------------------------------------===//
64 
65 template <typename ImplT, typename IteratorT, typename CollectionT>
66 class CalcLiveRangeUtilBase {
67 protected:
68  LiveRange *LR;
69 
70 protected:
71  CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
72 
73 public:
74  using Segment = LiveRange::Segment;
75  using iterator = IteratorT;
76 
77  /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
78  /// value defined at @p Def.
79  /// If @p ForVNI is null, and there is no value defined at @p Def, a new
80  /// value will be allocated using @p VNInfoAllocator.
81  /// If @p ForVNI is null, the return value is the value defined at @p Def,
82  /// either a pre-existing one, or the one newly created.
83  /// If @p ForVNI is not null, then @p Def should be the location where
84  /// @p ForVNI is defined. If the range does not have a value defined at
85  /// @p Def, the value @p ForVNI will be used instead of allocating a new
86  /// one. If the range already has a value defined at @p Def, it must be
87  /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
89  VNInfo *ForVNI) {
90  assert(!Def.isDead() && "Cannot define a value at the dead slot");
91  assert((!ForVNI || ForVNI->def == Def) &&
92  "If ForVNI is specified, it must match Def");
93  iterator I = impl().find(Def);
94  if (I == segments().end()) {
95  VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
96  impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
97  return VNI;
98  }
99 
100  Segment *S = segmentAt(I);
101  if (SlotIndex::isSameInstr(Def, S->start)) {
102  assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
103  assert(S->valno->def == S->start && "Inconsistent existing value def");
104 
105  // It is possible to have both normal and early-clobber defs of the same
106  // register on an instruction. It doesn't make a lot of sense, but it is
107  // possible to specify in inline assembly.
108  //
109  // Just convert everything to early-clobber.
110  Def = std::min(Def, S->start);
111  if (Def != S->start)
112  S->start = S->valno->def = Def;
113  return S->valno;
114  }
115  assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
116  VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
117  segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
118  return VNI;
119  }
120 
121  VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
122  if (segments().empty())
123  return nullptr;
124  iterator I =
125  impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
126  if (I == segments().begin())
127  return nullptr;
128  --I;
129  if (I->end <= StartIdx)
130  return nullptr;
131  if (I->end < Use)
132  extendSegmentEndTo(I, Use);
133  return I->valno;
134  }
135 
136  std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
137  SlotIndex StartIdx, SlotIndex Use) {
138  if (segments().empty())
139  return std::make_pair(nullptr, false);
140  SlotIndex BeforeUse = Use.getPrevSlot();
141  iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
142  if (I == segments().begin())
143  return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
144  --I;
145  if (I->end <= StartIdx)
146  return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
147  if (I->end < Use) {
148  if (LR->isUndefIn(Undefs, I->end, BeforeUse))
149  return std::make_pair(nullptr, true);
150  extendSegmentEndTo(I, Use);
151  }
152  return std::make_pair(I->valno, false);
153  }
154 
155  /// This method is used when we want to extend the segment specified
156  /// by I to end at the specified endpoint. To do this, we should
157  /// merge and eliminate all segments that this will overlap
158  /// with. The iterator is not invalidated.
159  void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
160  assert(I != segments().end() && "Not a valid segment!");
161  Segment *S = segmentAt(I);
162  VNInfo *ValNo = I->valno;
163 
164  // Search for the first segment that we can't merge with.
165  iterator MergeTo = std::next(I);
166  for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
167  assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
168 
169  // If NewEnd was in the middle of a segment, make sure to get its endpoint.
170  S->end = std::max(NewEnd, std::prev(MergeTo)->end);
171 
172  // If the newly formed segment now touches the segment after it and if they
173  // have the same value number, merge the two segments into one segment.
174  if (MergeTo != segments().end() && MergeTo->start <= I->end &&
175  MergeTo->valno == ValNo) {
176  S->end = MergeTo->end;
177  ++MergeTo;
178  }
179 
180  // Erase any dead segments.
181  segments().erase(std::next(I), MergeTo);
182  }
183 
184  /// This method is used when we want to extend the segment specified
185  /// by I to start at the specified endpoint. To do this, we should
186  /// merge and eliminate all segments that this will overlap with.
187  iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
188  assert(I != segments().end() && "Not a valid segment!");
189  Segment *S = segmentAt(I);
190  VNInfo *ValNo = I->valno;
191 
192  // Search for the first segment that we can't merge with.
193  iterator MergeTo = I;
194  do {
195  if (MergeTo == segments().begin()) {
196  S->start = NewStart;
197  segments().erase(MergeTo, I);
198  return I;
199  }
200  assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
201  --MergeTo;
202  } while (NewStart <= MergeTo->start);
203 
204  // If we start in the middle of another segment, just delete a range and
205  // extend that segment.
206  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
207  segmentAt(MergeTo)->end = S->end;
208  } else {
209  // Otherwise, extend the segment right after.
210  ++MergeTo;
211  Segment *MergeToSeg = segmentAt(MergeTo);
212  MergeToSeg->start = NewStart;
213  MergeToSeg->end = S->end;
214  }
215 
216  segments().erase(std::next(MergeTo), std::next(I));
217  return MergeTo;
218  }
219 
220  iterator addSegment(Segment S) {
221  SlotIndex Start = S.start, End = S.end;
222  iterator I = impl().findInsertPos(S);
223 
224  // If the inserted segment starts in the middle or right at the end of
225  // another segment, just extend that segment to contain the segment of S.
226  if (I != segments().begin()) {
227  iterator B = std::prev(I);
228  if (S.valno == B->valno) {
229  if (B->start <= Start && B->end >= Start) {
230  extendSegmentEndTo(B, End);
231  return B;
232  }
233  } else {
234  // Check to make sure that we are not overlapping two live segments with
235  // different valno's.
236  assert(B->end <= Start &&
237  "Cannot overlap two segments with differing ValID's"
238  " (did you def the same reg twice in a MachineInstr?)");
239  }
240  }
241 
242  // Otherwise, if this segment ends in the middle of, or right next
243  // to, another segment, merge it into that segment.
244  if (I != segments().end()) {
245  if (S.valno == I->valno) {
246  if (I->start <= End) {
247  I = extendSegmentStartTo(I, Start);
248 
249  // If S is a complete superset of a segment, we may need to grow its
250  // endpoint as well.
251  if (End > I->end)
252  extendSegmentEndTo(I, End);
253  return I;
254  }
255  } else {
256  // Check to make sure that we are not overlapping two live segments with
257  // different valno's.
258  assert(I->start >= End &&
259  "Cannot overlap two segments with differing ValID's");
260  }
261  }
262 
263  // Otherwise, this is just a new segment that doesn't interact with
264  // anything.
265  // Insert it.
266  return segments().insert(I, S);
267  }
268 
269 private:
270  ImplT &impl() { return *static_cast<ImplT *>(this); }
271 
272  CollectionT &segments() { return impl().segmentsColl(); }
273 
274  Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
275 };
276 
277 //===----------------------------------------------------------------------===//
278 // Instantiation of the methods for calculation of live ranges
279 // based on a segment vector.
280 //===----------------------------------------------------------------------===//
281 
282 class CalcLiveRangeUtilVector;
283 using CalcLiveRangeUtilVectorBase =
284  CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
286 
287 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
288 public:
289  CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
290 
291 private:
292  friend CalcLiveRangeUtilVectorBase;
293 
294  LiveRange::Segments &segmentsColl() { return LR->segments; }
295 
296  void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
297 
298  iterator find(SlotIndex Pos) { return LR->find(Pos); }
299 
300  iterator findInsertPos(Segment S) {
301  return std::upper_bound(LR->begin(), LR->end(), S.start);
302  }
303 };
304 
305 //===----------------------------------------------------------------------===//
306 // Instantiation of the methods for calculation of live ranges
307 // based on a segment set.
308 //===----------------------------------------------------------------------===//
309 
310 class CalcLiveRangeUtilSet;
311 using CalcLiveRangeUtilSetBase =
312  CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
314 
315 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
316 public:
317  CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
318 
319 private:
320  friend CalcLiveRangeUtilSetBase;
321 
322  LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
323 
324  void insertAtEnd(const Segment &S) {
325  LR->segmentSet->insert(LR->segmentSet->end(), S);
326  }
327 
328  iterator find(SlotIndex Pos) {
329  iterator I =
330  LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
331  if (I == LR->segmentSet->begin())
332  return I;
333  iterator PrevI = std::prev(I);
334  if (Pos < (*PrevI).end)
335  return PrevI;
336  return I;
337  }
338 
339  iterator findInsertPos(Segment S) {
340  iterator I = LR->segmentSet->upper_bound(S);
341  if (I != LR->segmentSet->end() && !(S.start < *I))
342  ++I;
343  return I;
344  }
345 };
346 
347 } // end anonymous namespace
348 
349 //===----------------------------------------------------------------------===//
350 // LiveRange methods
351 //===----------------------------------------------------------------------===//
352 
353 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
354  // This algorithm is basically std::upper_bound.
355  // Unfortunately, std::upper_bound cannot be used with mixed types until we
356  // adopt C++0x. Many libraries can do it, but not all.
357  if (empty() || Pos >= endIndex())
358  return end();
359  iterator I = begin();
360  size_t Len = size();
361  do {
362  size_t Mid = Len >> 1;
363  if (Pos < I[Mid].end) {
364  Len = Mid;
365  } else {
366  I += Mid + 1;
367  Len -= Mid + 1;
368  }
369  } while (Len);
370  return I;
371 }
372 
374  // Use the segment set, if it is available.
375  if (segmentSet != nullptr)
376  return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
377  // Otherwise use the segment vector.
378  return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
379 }
380 
382  // Use the segment set, if it is available.
383  if (segmentSet != nullptr)
384  return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
385  // Otherwise use the segment vector.
386  return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
387 }
388 
389 // overlaps - Return true if the intersection of the two live ranges is
390 // not empty.
391 //
392 // An example for overlaps():
393 //
394 // 0: A = ...
395 // 4: B = ...
396 // 8: C = A + B ;; last use of A
397 //
398 // The live ranges should look like:
399 //
400 // A = [3, 11)
401 // B = [7, x)
402 // C = [11, y)
403 //
404 // A->overlaps(C) should return false since we want to be able to join
405 // A and C.
406 //
408  const_iterator StartPos) const {
409  assert(!empty() && "empty range");
410  const_iterator i = begin();
411  const_iterator ie = end();
412  const_iterator j = StartPos;
413  const_iterator je = other.end();
414 
415  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
416  StartPos != other.end() && "Bogus start position hint!");
417 
418  if (i->start < j->start) {
419  i = std::upper_bound(i, ie, j->start);
420  if (i != begin()) --i;
421  } else if (j->start < i->start) {
422  ++StartPos;
423  if (StartPos != other.end() && StartPos->start <= i->start) {
424  assert(StartPos < other.end() && i < end());
425  j = std::upper_bound(j, je, i->start);
426  if (j != other.begin()) --j;
427  }
428  } else {
429  return true;
430  }
431 
432  if (j == je) return false;
433 
434  while (i != ie) {
435  if (i->start > j->start) {
436  std::swap(i, j);
437  std::swap(ie, je);
438  }
439 
440  if (i->end > j->start)
441  return true;
442  ++i;
443  }
444 
445  return false;
446 }
447 
448 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
449  const SlotIndexes &Indexes) const {
450  assert(!empty() && "empty range");
451  if (Other.empty())
452  return false;
453 
454  // Use binary searches to find initial positions.
455  const_iterator I = find(Other.beginIndex());
456  const_iterator IE = end();
457  if (I == IE)
458  return false;
459  const_iterator J = Other.find(I->start);
460  const_iterator JE = Other.end();
461  if (J == JE)
462  return false;
463 
464  while (true) {
465  // J has just been advanced to satisfy:
466  assert(J->end >= I->start);
467  // Check for an overlap.
468  if (J->start < I->end) {
469  // I and J are overlapping. Find the later start.
470  SlotIndex Def = std::max(I->start, J->start);
471  // Allow the overlap if Def is a coalescable copy.
472  if (Def.isBlock() ||
473  !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
474  return true;
475  }
476  // Advance the iterator that ends first to check for more overlaps.
477  if (J->end > I->end) {
478  std::swap(I, J);
479  std::swap(IE, JE);
480  }
481  // Advance J until J->end >= I->start.
482  do
483  if (++J == JE)
484  return false;
485  while (J->end < I->start);
486  }
487 }
488 
489 /// overlaps - Return true if the live range overlaps an interval specified
490 /// by [Start, End).
491 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
492  assert(Start < End && "Invalid range");
493  const_iterator I = std::lower_bound(begin(), end(), End);
494  return I != begin() && (--I)->end > Start;
495 }
496 
497 bool LiveRange::covers(const LiveRange &Other) const {
498  if (empty())
499  return Other.empty();
500 
501  const_iterator I = begin();
502  for (const Segment &O : Other.segments) {
503  I = advanceTo(I, O.start);
504  if (I == end() || I->start > O.start)
505  return false;
506 
507  // Check adjacent live segments and see if we can get behind O.end.
508  while (I->end < O.end) {
509  const_iterator Last = I;
510  // Get next segment and abort if it was not adjacent.
511  ++I;
512  if (I == end() || Last->end != I->start)
513  return false;
514  }
515  }
516  return true;
517 }
518 
519 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
520 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
521 /// it can be nuked later.
522 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
523  if (ValNo->id == getNumValNums()-1) {
524  do {
525  valnos.pop_back();
526  } while (!valnos.empty() && valnos.back()->isUnused());
527  } else {
528  ValNo->markUnused();
529  }
530 }
531 
532 /// RenumberValues - Renumber all values in order of appearance and delete the
533 /// remaining unused values.
536  valnos.clear();
537  for (const Segment &S : segments) {
538  VNInfo *VNI = S.valno;
539  if (!Seen.insert(VNI).second)
540  continue;
541  assert(!VNI->isUnused() && "Unused valno used by live segment");
542  VNI->id = (unsigned)valnos.size();
543  valnos.push_back(VNI);
544  }
545 }
546 
547 void LiveRange::addSegmentToSet(Segment S) {
548  CalcLiveRangeUtilSet(this).addSegment(S);
549 }
550 
551 LiveRange::iterator LiveRange::addSegment(Segment S) {
552  // Use the segment set, if it is available.
553  if (segmentSet != nullptr) {
554  addSegmentToSet(S);
555  return end();
556  }
557  // Otherwise use the segment vector.
558  return CalcLiveRangeUtilVector(this).addSegment(S);
559 }
560 
561 void LiveRange::append(const Segment S) {
562  // Check that the segment belongs to the back of the list.
563  assert(segments.empty() || segments.back().end <= S.start);
564  segments.push_back(S);
565 }
566 
567 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
568  SlotIndex StartIdx, SlotIndex Kill) {
569  // Use the segment set, if it is available.
570  if (segmentSet != nullptr)
571  return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
572  // Otherwise use the segment vector.
573  return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
574 }
575 
577  // Use the segment set, if it is available.
578  if (segmentSet != nullptr)
579  return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
580  // Otherwise use the segment vector.
581  return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
582 }
583 
584 /// Remove the specified segment from this range. Note that the segment must
585 /// be in a single Segment in its entirety.
587  bool RemoveDeadValNo) {
588  // Find the Segment containing this span.
589  iterator I = find(Start);
590  assert(I != end() && "Segment is not in range!");
591  assert(I->containsInterval(Start, End)
592  && "Segment is not entirely in range!");
593 
594  // If the span we are removing is at the start of the Segment, adjust it.
595  VNInfo *ValNo = I->valno;
596  if (I->start == Start) {
597  if (I->end == End) {
598  if (RemoveDeadValNo) {
599  // Check if val# is dead.
600  bool isDead = true;
601  for (const_iterator II = begin(), EE = end(); II != EE; ++II)
602  if (II != I && II->valno == ValNo) {
603  isDead = false;
604  break;
605  }
606  if (isDead) {
607  // Now that ValNo is dead, remove it.
608  markValNoForDeletion(ValNo);
609  }
610  }
611 
612  segments.erase(I); // Removed the whole Segment.
613  } else
614  I->start = End;
615  return;
616  }
617 
618  // Otherwise if the span we are removing is at the end of the Segment,
619  // adjust the other way.
620  if (I->end == End) {
621  I->end = Start;
622  return;
623  }
624 
625  // Otherwise, we are splitting the Segment into two pieces.
626  SlotIndex OldEnd = I->end;
627  I->end = Start; // Trim the old segment.
628 
629  // Insert the new one.
630  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
631 }
632 
633 /// removeValNo - Remove all the segments defined by the specified value#.
634 /// Also remove the value# from value# list.
636  if (empty()) return;
637  segments.erase(remove_if(*this, [ValNo](const Segment &S) {
638  return S.valno == ValNo;
639  }), end());
640  // Now that ValNo is dead, remove it.
641  markValNoForDeletion(ValNo);
642 }
643 
645  const int *LHSValNoAssignments,
646  const int *RHSValNoAssignments,
647  SmallVectorImpl<VNInfo *> &NewVNInfo) {
648  verify();
649 
650  // Determine if any of our values are mapped. This is uncommon, so we want
651  // to avoid the range scan if not.
652  bool MustMapCurValNos = false;
653  unsigned NumVals = getNumValNums();
654  unsigned NumNewVals = NewVNInfo.size();
655  for (unsigned i = 0; i != NumVals; ++i) {
656  unsigned LHSValID = LHSValNoAssignments[i];
657  if (i != LHSValID ||
658  (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
659  MustMapCurValNos = true;
660  break;
661  }
662  }
663 
664  // If we have to apply a mapping to our base range assignment, rewrite it now.
665  if (MustMapCurValNos && !empty()) {
666  // Map the first live range.
667 
668  iterator OutIt = begin();
669  OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
670  for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
671  VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
672  assert(nextValNo && "Huh?");
673 
674  // If this live range has the same value # as its immediate predecessor,
675  // and if they are neighbors, remove one Segment. This happens when we
676  // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
677  if (OutIt->valno == nextValNo && OutIt->end == I->start) {
678  OutIt->end = I->end;
679  } else {
680  // Didn't merge. Move OutIt to the next segment,
681  ++OutIt;
682  OutIt->valno = nextValNo;
683  if (OutIt != I) {
684  OutIt->start = I->start;
685  OutIt->end = I->end;
686  }
687  }
688  }
689  // If we merge some segments, chop off the end.
690  ++OutIt;
691  segments.erase(OutIt, end());
692  }
693 
694  // Rewrite Other values before changing the VNInfo ids.
695  // This can leave Other in an invalid state because we're not coalescing
696  // touching segments that now have identical values. That's OK since Other is
697  // not supposed to be valid after calling join();
698  for (Segment &S : Other.segments)
699  S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
700 
701  // Update val# info. Renumber them and make sure they all belong to this
702  // LiveRange now. Also remove dead val#'s.
703  unsigned NumValNos = 0;
704  for (unsigned i = 0; i < NumNewVals; ++i) {
705  VNInfo *VNI = NewVNInfo[i];
706  if (VNI) {
707  if (NumValNos >= NumVals)
708  valnos.push_back(VNI);
709  else
710  valnos[NumValNos] = VNI;
711  VNI->id = NumValNos++; // Renumber val#.
712  }
713  }
714  if (NumNewVals < NumVals)
715  valnos.resize(NumNewVals); // shrinkify
716 
717  // Okay, now insert the RHS live segments into the LHS.
718  LiveRangeUpdater Updater(this);
719  for (Segment &S : Other.segments)
720  Updater.add(S);
721 }
722 
723 /// Merge all of the segments in RHS into this live range as the specified
724 /// value number. The segments in RHS are allowed to overlap with segments in
725 /// the current range, but only if the overlapping segments have the
726 /// specified value number.
728  VNInfo *LHSValNo) {
729  LiveRangeUpdater Updater(this);
730  for (const Segment &S : RHS.segments)
731  Updater.add(S.start, S.end, LHSValNo);
732 }
733 
734 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
735 /// in RHS into this live range as the specified value number.
736 /// The segments in RHS are allowed to overlap with segments in the
737 /// current range, it will replace the value numbers of the overlaped
738 /// segments with the specified value number.
740  const VNInfo *RHSValNo,
741  VNInfo *LHSValNo) {
742  LiveRangeUpdater Updater(this);
743  for (const Segment &S : RHS.segments)
744  if (S.valno == RHSValNo)
745  Updater.add(S.start, S.end, LHSValNo);
746 }
747 
748 /// MergeValueNumberInto - This method is called when two value nubmers
749 /// are found to be equivalent. This eliminates V1, replacing all
750 /// segments with the V1 value number with the V2 value number. This can
751 /// cause merging of V1/V2 values numbers and compaction of the value space.
753  assert(V1 != V2 && "Identical value#'s are always equivalent!");
754 
755  // This code actually merges the (numerically) larger value number into the
756  // smaller value number, which is likely to allow us to compactify the value
757  // space. The only thing we have to be careful of is to preserve the
758  // instruction that defines the result value.
759 
760  // Make sure V2 is smaller than V1.
761  if (V1->id < V2->id) {
762  V1->copyFrom(*V2);
763  std::swap(V1, V2);
764  }
765 
766  // Merge V1 segments into V2.
767  for (iterator I = begin(); I != end(); ) {
768  iterator S = I++;
769  if (S->valno != V1) continue; // Not a V1 Segment.
770 
771  // Okay, we found a V1 live range. If it had a previous, touching, V2 live
772  // range, extend it.
773  if (S != begin()) {
774  iterator Prev = S-1;
775  if (Prev->valno == V2 && Prev->end == S->start) {
776  Prev->end = S->end;
777 
778  // Erase this live-range.
779  segments.erase(S);
780  I = Prev+1;
781  S = Prev;
782  }
783  }
784 
785  // Okay, now we have a V1 or V2 live range that is maximally merged forward.
786  // Ensure that it is a V2 live-range.
787  S->valno = V2;
788 
789  // If we can merge it into later V2 segments, do so now. We ignore any
790  // following V1 segments, as they will be merged in subsequent iterations
791  // of the loop.
792  if (I != end()) {
793  if (I->start == S->end && I->valno == V2) {
794  S->end = I->end;
795  segments.erase(I);
796  I = S+1;
797  }
798  }
799  }
800 
801  // Now that V1 is dead, remove it.
802  markValNoForDeletion(V1);
803 
804  return V2;
805 }
806 
808  assert(segmentSet != nullptr && "segment set must have been created");
809  assert(
810  segments.empty() &&
811  "segment set can be used only initially before switching to the array");
812  segments.append(segmentSet->begin(), segmentSet->end());
813  segmentSet = nullptr;
814  verify();
815 }
816 
818  ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
819  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
820 
821  // If there are no regmask slots, we have nothing to search.
822  if (SlotI == SlotE)
823  return false;
824 
825  // Start our search at the first segment that ends after the first slot.
826  const_iterator SegmentI = find(*SlotI);
827  const_iterator SegmentE = end();
828 
829  // If there are no segments that end after the first slot, we're done.
830  if (SegmentI == SegmentE)
831  return false;
832 
833  // Look for each slot in the live range.
834  for ( ; SlotI != SlotE; ++SlotI) {
835  // Go to the next segment that ends after the current slot.
836  // The slot may be within a hole in the range.
837  SegmentI = advanceTo(SegmentI, *SlotI);
838  if (SegmentI == SegmentE)
839  return false;
840 
841  // If this segment contains the slot, we're done.
842  if (SegmentI->contains(*SlotI))
843  return true;
844  // Otherwise, look for the next slot.
845  }
846 
847  // We didn't find a segment containing any of the slots.
848  return false;
849 }
850 
851 void LiveInterval::freeSubRange(SubRange *S) {
852  S->~SubRange();
853  // Memory was allocated with BumpPtr allocator and is not freed here.
854 }
855 
857  SubRange **NextPtr = &SubRanges;
858  SubRange *I = *NextPtr;
859  while (I != nullptr) {
860  if (!I->empty()) {
861  NextPtr = &I->Next;
862  I = *NextPtr;
863  continue;
864  }
865  // Skip empty subranges until we find the first nonempty one.
866  do {
867  SubRange *Next = I->Next;
868  freeSubRange(I);
869  I = Next;
870  } while (I != nullptr && I->empty());
871  *NextPtr = I;
872  }
873 }
874 
876  for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
877  Next = I->Next;
878  freeSubRange(I);
879  }
880  SubRanges = nullptr;
881 }
882 
884  LaneBitmask LaneMask, std::function<void(LiveInterval::SubRange&)> Apply) {
885  LaneBitmask ToApply = LaneMask;
886  for (SubRange &SR : subranges()) {
887  LaneBitmask SRMask = SR.LaneMask;
888  LaneBitmask Matching = SRMask & LaneMask;
889  if (Matching.none())
890  continue;
891 
892  SubRange *MatchingRange;
893  if (SRMask == Matching) {
894  // The subrange fits (it does not cover bits outside \p LaneMask).
895  MatchingRange = &SR;
896  } else {
897  // We have to split the subrange into a matching and non-matching part.
898  // Reduce lanemask of existing lane to non-matching part.
899  SR.LaneMask = SRMask & ~Matching;
900  // Create a new subrange for the matching part
901  MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
902  }
903  Apply(*MatchingRange);
904  ToApply &= ~Matching;
905  }
906  // Create a new subrange if there are uncovered bits left.
907  if (ToApply.any()) {
908  SubRange *NewRange = createSubRange(Allocator, ToApply);
909  Apply(*NewRange);
910  }
911 }
912 
913 unsigned LiveInterval::getSize() const {
914  unsigned Sum = 0;
915  for (const Segment &S : segments)
916  Sum += S.start.distance(S.end);
917  return Sum;
918 }
919 
921  LaneBitmask LaneMask,
922  const MachineRegisterInfo &MRI,
923  const SlotIndexes &Indexes) const {
925  LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
926  assert((VRegMask & LaneMask).any());
928  for (const MachineOperand &MO : MRI.def_operands(reg)) {
929  if (!MO.isUndef())
930  continue;
931  unsigned SubReg = MO.getSubReg();
932  assert(SubReg != 0 && "Undef should only be set on subreg defs");
933  LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
934  LaneBitmask UndefMask = VRegMask & ~DefMask;
935  if ((UndefMask & LaneMask).any()) {
936  const MachineInstr &MI = *MO.getParent();
937  bool EarlyClobber = MO.isEarlyClobber();
938  SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
939  Undefs.push_back(Pos);
940  }
941  }
942 }
943 
945  return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
946 }
947 
948 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
950  dbgs() << *this << '\n';
951 }
952 #endif
953 
954 void LiveRange::print(raw_ostream &OS) const {
955  if (empty())
956  OS << "EMPTY";
957  else {
958  for (const Segment &S : segments) {
959  OS << S;
960  assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
961  }
962  }
963 
964  // Print value number info.
965  if (getNumValNums()) {
966  OS << " ";
967  unsigned vnum = 0;
968  for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
969  ++i, ++vnum) {
970  const VNInfo *vni = *i;
971  if (vnum) OS << ' ';
972  OS << vnum << '@';
973  if (vni->isUnused()) {
974  OS << 'x';
975  } else {
976  OS << vni->def;
977  if (vni->isPHIDef())
978  OS << "-phi";
979  }
980  }
981  }
982 }
983 
985  OS << " L" << PrintLaneMask(LaneMask) << ' '
986  << static_cast<const LiveRange&>(*this);
987 }
988 
990  OS << printReg(reg) << ' ';
991  super::print(OS);
992  // Print subranges
993  for (const SubRange &SR : subranges())
994  OS << SR;
995  OS << " weight:" << weight;
996 }
997 
998 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1000  dbgs() << *this << '\n';
1001 }
1002 
1004  dbgs() << *this << '\n';
1005 }
1006 
1008  dbgs() << *this << '\n';
1009 }
1010 #endif
1011 
1012 #ifndef NDEBUG
1013 void LiveRange::verify() const {
1014  for (const_iterator I = begin(), E = end(); I != E; ++I) {
1015  assert(I->start.isValid());
1016  assert(I->end.isValid());
1017  assert(I->start < I->end);
1018  assert(I->valno != nullptr);
1019  assert(I->valno->id < valnos.size());
1020  assert(I->valno == valnos[I->valno->id]);
1021  if (std::next(I) != E) {
1022  assert(I->end <= std::next(I)->start);
1023  if (I->end == std::next(I)->start)
1024  assert(I->valno != std::next(I)->valno);
1025  }
1026  }
1027 }
1028 
1030  super::verify();
1031 
1032  // Make sure SubRanges are fine and LaneMasks are disjunct.
1033  LaneBitmask Mask;
1034  LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
1035  : LaneBitmask::getAll();
1036  for (const SubRange &SR : subranges()) {
1037  // Subrange lanemask should be disjunct to any previous subrange masks.
1038  assert((Mask & SR.LaneMask).none());
1039  Mask |= SR.LaneMask;
1040 
1041  // subrange mask should not contained in maximum lane mask for the vreg.
1042  assert((Mask & ~MaxMask).none());
1043  // empty subranges must be removed.
1044  assert(!SR.empty());
1045 
1046  SR.verify();
1047  // Main liverange should cover subrange.
1048  assert(covers(SR));
1049  }
1050 }
1051 #endif
1052 
1053 //===----------------------------------------------------------------------===//
1054 // LiveRangeUpdater class
1055 //===----------------------------------------------------------------------===//
1056 //
1057 // The LiveRangeUpdater class always maintains these invariants:
1058 //
1059 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1060 // This is the initial state, and the state created by flush().
1061 // In this state, isDirty() returns false.
1062 //
1063 // Otherwise, segments are kept in three separate areas:
1064 //
1065 // 1. [begin; WriteI) at the front of LR.
1066 // 2. [ReadI; end) at the back of LR.
1067 // 3. Spills.
1068 //
1069 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1070 // - Segments in all three areas are fully ordered and coalesced.
1071 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1072 // - Segments in Spills precede and can't coalesce with segments in area 2.
1073 // - No coalescing is possible between segments in Spills and segments in area
1074 // 1, and there are no overlapping segments.
1075 //
1076 // The segments in Spills are not ordered with respect to the segments in area
1077 // 1. They need to be merged.
1078 //
1079 // When they exist, Spills.back().start <= LastStart,
1080 // and WriteI[-1].start <= LastStart.
1081 
1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1084  if (!isDirty()) {
1085  if (LR)
1086  OS << "Clean updater: " << *LR << '\n';
1087  else
1088  OS << "Null updater.\n";
1089  return;
1090  }
1091  assert(LR && "Can't have null LR in dirty updater.");
1092  OS << " updater with gap = " << (ReadI - WriteI)
1093  << ", last start = " << LastStart
1094  << ":\n Area 1:";
1095  for (const auto &S : make_range(LR->begin(), WriteI))
1096  OS << ' ' << S;
1097  OS << "\n Spills:";
1098  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1099  OS << ' ' << Spills[I];
1100  OS << "\n Area 2:";
1101  for (const auto &S : make_range(ReadI, LR->end()))
1102  OS << ' ' << S;
1103  OS << '\n';
1104 }
1105 
1107  print(errs());
1108 }
1109 #endif
1110 
1111 // Determine if A and B should be coalesced.
1112 static inline bool coalescable(const LiveRange::Segment &A,
1113  const LiveRange::Segment &B) {
1114  assert(A.start <= B.start && "Unordered live segments.");
1115  if (A.end == B.start)
1116  return A.valno == B.valno;
1117  if (A.end < B.start)
1118  return false;
1119  assert(A.valno == B.valno && "Cannot overlap different values");
1120  return true;
1121 }
1122 
1124  assert(LR && "Cannot add to a null destination");
1125 
1126  // Fall back to the regular add method if the live range
1127  // is using the segment set instead of the segment vector.
1128  if (LR->segmentSet != nullptr) {
1129  LR->addSegmentToSet(Seg);
1130  return;
1131  }
1132 
1133  // Flush the state if Start moves backwards.
1134  if (!LastStart.isValid() || LastStart > Seg.start) {
1135  if (isDirty())
1136  flush();
1137  // This brings us to an uninitialized state. Reinitialize.
1138  assert(Spills.empty() && "Leftover spilled segments");
1139  WriteI = ReadI = LR->begin();
1140  }
1141 
1142  // Remember start for next time.
1143  LastStart = Seg.start;
1144 
1145  // Advance ReadI until it ends after Seg.start.
1146  LiveRange::iterator E = LR->end();
1147  if (ReadI != E && ReadI->end <= Seg.start) {
1148  // First try to close the gap between WriteI and ReadI with spills.
1149  if (ReadI != WriteI)
1150  mergeSpills();
1151  // Then advance ReadI.
1152  if (ReadI == WriteI)
1153  ReadI = WriteI = LR->find(Seg.start);
1154  else
1155  while (ReadI != E && ReadI->end <= Seg.start)
1156  *WriteI++ = *ReadI++;
1157  }
1158 
1159  assert(ReadI == E || ReadI->end > Seg.start);
1160 
1161  // Check if the ReadI segment begins early.
1162  if (ReadI != E && ReadI->start <= Seg.start) {
1163  assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1164  // Bail if Seg is completely contained in ReadI.
1165  if (ReadI->end >= Seg.end)
1166  return;
1167  // Coalesce into Seg.
1168  Seg.start = ReadI->start;
1169  ++ReadI;
1170  }
1171 
1172  // Coalesce as much as possible from ReadI into Seg.
1173  while (ReadI != E && coalescable(Seg, *ReadI)) {
1174  Seg.end = std::max(Seg.end, ReadI->end);
1175  ++ReadI;
1176  }
1177 
1178  // Try coalescing Spills.back() into Seg.
1179  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1180  Seg.start = Spills.back().start;
1181  Seg.end = std::max(Spills.back().end, Seg.end);
1182  Spills.pop_back();
1183  }
1184 
1185  // Try coalescing Seg into WriteI[-1].
1186  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1187  WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1188  return;
1189  }
1190 
1191  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1192  if (WriteI != ReadI) {
1193  *WriteI++ = Seg;
1194  return;
1195  }
1196 
1197  // Finally, append to LR or Spills.
1198  if (WriteI == E) {
1199  LR->segments.push_back(Seg);
1200  WriteI = ReadI = LR->end();
1201  } else
1202  Spills.push_back(Seg);
1203 }
1204 
1205 // Merge as many spilled segments as possible into the gap between WriteI
1206 // and ReadI. Advance WriteI to reflect the inserted instructions.
1207 void LiveRangeUpdater::mergeSpills() {
1208  // Perform a backwards merge of Spills and [SpillI;WriteI).
1209  size_t GapSize = ReadI - WriteI;
1210  size_t NumMoved = std::min(Spills.size(), GapSize);
1211  LiveRange::iterator Src = WriteI;
1212  LiveRange::iterator Dst = Src + NumMoved;
1213  LiveRange::iterator SpillSrc = Spills.end();
1214  LiveRange::iterator B = LR->begin();
1215 
1216  // This is the new WriteI position after merging spills.
1217  WriteI = Dst;
1218 
1219  // Now merge Src and Spills backwards.
1220  while (Src != Dst) {
1221  if (Src != B && Src[-1].start > SpillSrc[-1].start)
1222  *--Dst = *--Src;
1223  else
1224  *--Dst = *--SpillSrc;
1225  }
1226  assert(NumMoved == size_t(Spills.end() - SpillSrc));
1227  Spills.erase(SpillSrc, Spills.end());
1228 }
1229 
1231  if (!isDirty())
1232  return;
1233  // Clear the dirty state.
1234  LastStart = SlotIndex();
1235 
1236  assert(LR && "Cannot add to a null destination");
1237 
1238  // Nothing to merge?
1239  if (Spills.empty()) {
1240  LR->segments.erase(WriteI, ReadI);
1241  LR->verify();
1242  return;
1243  }
1244 
1245  // Resize the WriteI - ReadI gap to match Spills.
1246  size_t GapSize = ReadI - WriteI;
1247  if (GapSize < Spills.size()) {
1248  // The gap is too small. Make some room.
1249  size_t WritePos = WriteI - LR->begin();
1250  LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1251  // This also invalidated ReadI, but it is recomputed below.
1252  WriteI = LR->begin() + WritePos;
1253  } else {
1254  // Shrink the gap if necessary.
1255  LR->segments.erase(WriteI + Spills.size(), ReadI);
1256  }
1257  ReadI = WriteI + Spills.size();
1258  mergeSpills();
1259  LR->verify();
1260 }
1261 
1263  // Create initial equivalence classes.
1264  EqClass.clear();
1265  EqClass.grow(LR.getNumValNums());
1266 
1267  const VNInfo *used = nullptr, *unused = nullptr;
1268 
1269  // Determine connections.
1270  for (const VNInfo *VNI : LR.valnos) {
1271  // Group all unused values into one class.
1272  if (VNI->isUnused()) {
1273  if (unused)
1274  EqClass.join(unused->id, VNI->id);
1275  unused = VNI;
1276  continue;
1277  }
1278  used = VNI;
1279  if (VNI->isPHIDef()) {
1280  const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1281  assert(MBB && "Phi-def has no defining MBB");
1282  // Connect to values live out of predecessors.
1284  PE = MBB->pred_end(); PI != PE; ++PI)
1285  if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1286  EqClass.join(VNI->id, PVNI->id);
1287  } else {
1288  // Normal value defined by an instruction. Check for two-addr redef.
1289  // FIXME: This could be coincidental. Should we really check for a tied
1290  // operand constraint?
1291  // Note that VNI->def may be a use slot for an early clobber def.
1292  if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1293  EqClass.join(VNI->id, UVNI->id);
1294  }
1295  }
1296 
1297  // Lump all the unused values in with the last used value.
1298  if (used && unused)
1299  EqClass.join(used->id, unused->id);
1300 
1301  EqClass.compress();
1302  return EqClass.getNumClasses();
1303 }
1304 
1307  // Rewrite instructions.
1309  RE = MRI.reg_end(); RI != RE;) {
1310  MachineOperand &MO = *RI;
1311  MachineInstr *MI = RI->getParent();
1312  ++RI;
1313  const VNInfo *VNI;
1314  if (MI->isDebugValue()) {
1315  // DBG_VALUE instructions don't have slot indexes, so get the index of
1316  // the instruction before them. The value is defined there too.
1317  SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1318  VNI = LI.Query(Idx).valueOut();
1319  } else {
1320  SlotIndex Idx = LIS.getInstructionIndex(*MI);
1321  LiveQueryResult LRQ = LI.Query(Idx);
1322  VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1323  }
1324  // In the case of an <undef> use that isn't tied to any def, VNI will be
1325  // NULL. If the use is tied to a def, VNI will be the defined value.
1326  if (!VNI)
1327  continue;
1328  if (unsigned EqClass = getEqClass(VNI))
1329  MO.setReg(LIV[EqClass-1]->reg);
1330  }
1331 
1332  // Distribute subregister liveranges.
1333  if (LI.hasSubRanges()) {
1334  unsigned NumComponents = EqClass.getNumClasses();
1335  SmallVector<unsigned, 8> VNIMapping;
1337  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1338  for (LiveInterval::SubRange &SR : LI.subranges()) {
1339  // Create new subranges in the split intervals and construct a mapping
1340  // for the VNInfos in the subrange.
1341  unsigned NumValNos = SR.valnos.size();
1342  VNIMapping.clear();
1343  VNIMapping.reserve(NumValNos);
1344  SubRanges.clear();
1345  SubRanges.resize(NumComponents-1, nullptr);
1346  for (unsigned I = 0; I < NumValNos; ++I) {
1347  const VNInfo &VNI = *SR.valnos[I];
1348  unsigned ComponentNum;
1349  if (VNI.isUnused()) {
1350  ComponentNum = 0;
1351  } else {
1352  const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1353  assert(MainRangeVNI != nullptr
1354  && "SubRange def must have corresponding main range def");
1355  ComponentNum = getEqClass(MainRangeVNI);
1356  if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1357  SubRanges[ComponentNum-1]
1358  = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1359  }
1360  }
1361  VNIMapping.push_back(ComponentNum);
1362  }
1363  DistributeRange(SR, SubRanges.data(), VNIMapping);
1364  }
1365  LI.removeEmptySubRanges();
1366  }
1367 
1368  // Distribute main liverange.
1369  DistributeRange(LI, LIV, EqClass);
1370 }
void add(LiveRange::Segment)
Add a segment to LR and coalesce when possible, just like LR.addSegment().
std::set< Segment > SegmentSet
Definition: LiveInterval.h:205
void RenumberValues()
RenumberValues - Renumber all values in order of appearance and remove unused values.
bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const
overlapsFrom - Return true if the intersection of the two live ranges is not empty.
bool empty() const
Definition: LiveInterval.h:370
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
Definition: LiveInterval.h:78
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
A common definition of LaneBitmask for use in TableGen and CodeGen.
void flush()
Flush the updater state to LR so it is valid and contains all added segments.
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
const unsigned reg
Definition: LiveInterval.h:667
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:250
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:61
LaneBitmask getMaxLaneMaskForVReg(unsigned Reg) const
Returns a mask covering all bits that can appear in lane masks of subregisters of the virtual registe...
This class represents lattice values for constants.
Definition: AllocatorList.h:24
static bool coalescable(const LiveRange::Segment &A, const LiveRange::Segment &B)
iterator begin() const
Definition: ArrayRef.h:137
bool isCoalescable(const MachineInstr *) const
Return true if MI is a copy instruction that will become an identity copy after coalescing.
void MergeValueInAsValue(const LiveRange &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo)
MergeValueInAsValue - Merge all of the segments of a specific val# in RHS into this live range as the...
Segments::iterator iterator
Definition: LiveInterval.h:208
void push_back(const T &Elt)
Definition: SmallVector.h:218
bool isUndefIn(ArrayRef< SlotIndex > Undefs, SlotIndex Begin, SlotIndex End) const
Returns true if there is an explicit "undef" between Begin End.
Definition: LiveInterval.h:595
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:638
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
static bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
bool isDead() const
isDead - Returns true if this is a dead def kill slot.
Definition: SlotIndexes.h:237
bool isLiveAtIndexes(ArrayRef< SlotIndex > Slots) const
A live range for subregisters.
Definition: LiveInterval.h:645
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:162
unsigned const TargetRegisterInfo * TRI
Printable PrintLaneMask(LaneBitmask LaneMask)
Create Printable object to print LaneBitmasks on a raw_ostream.
Definition: LaneBitmask.h:94
void markUnused()
Mark this value as unused.
Definition: LiveInterval.h:84
std::vector< MachineBasicBlock * >::const_iterator const_pred_iterator
void reserve(size_type N)
Definition: SmallVector.h:376
VNInfo * valueOut() const
Return the value leaving the instruction, if any.
Definition: LiveInterval.h:123
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
void flushSegmentSet()
Flush segment set into the regular segment vector.
void Distribute(LiveInterval &LI, LiveInterval *LIV[], MachineRegisterInfo &MRI)
Distribute values in LI into a separate LiveIntervals for each connected component.
This class represents the liveness of a register, stack slot, etc.
Definition: LiveInterval.h:157
bool isUnused() const
Returns true if this value is unused.
Definition: LiveInterval.h:81
static bool isEarlierInstr(SlotIndex A, SlotIndex B)
isEarlierInstr - Return true if A refers to an instruction earlier than B.
Definition: SlotIndexes.h:204
void removeEmptySubRanges()
Removes all subranges without any segments (subranges without segments are not considered valid and s...
bool isBlock() const
isBlock - Returns true if this is a block boundary slot.
Definition: SlotIndexes.h:227
void verify() const
Walk the range and assert if any invariants fail to hold.
SlotIndex getDeadSlot() const
Returns the dead def kill slot for the current instruction.
Definition: SlotIndexes.h:260
Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
iterator end()
Definition: LiveInterval.h:212
A helper class for register coalescers.
iterator_range< subrange_iterator > subranges()
Definition: LiveInterval.h:723
unsigned SubReg
Result of a LiveRange query.
Definition: LiveInterval.h:90
static constexpr LaneBitmask getAll()
Definition: LaneBitmask.h:84
SlotIndex getInstructionIndex(const MachineInstr &MI) const
Returns the base index for the given instruction.
Definition: SlotIndexes.h:414
bool hasSubRanges() const
Returns true if subregister liveness information is available.
Definition: LiveInterval.h:751
#define LLVM_DUMP_METHOD
Definition: Compiler.h:74
void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo)
Merge all of the live segments of a specific val# in RHS into this live range as the specified value ...
place backedge safepoints impl
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register. ...
SlotIndexes pass.
Definition: SlotIndexes.h:331
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def...
Definition: SlotIndexes.h:255
iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
Segments segments
Definition: LiveInterval.h:199
iterator_range< def_iterator > def_operands(unsigned Reg) const
VNInfo * MergeValueNumberInto(VNInfo *V1, VNInfo *V2)
MergeValueNumberInto - This method is called when two value numbers are found to be equivalent...
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
SlotIndex getNextSlot() const
Returns the next slot in the index list.
Definition: SlotIndexes.h:270
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1282
VNInfo * createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc)
createDeadDef - Make sure the range has a value defined at Def.
void print(raw_ostream &OS) const
static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[], EqClassesT VNIClasses)
Helper function that distributes live range value numbers and the corresponding segments of a master ...
void copyFrom(VNInfo &src)
Copy from the parameter into this VNInfo.
Definition: LiveInterval.h:70
VNInfo * valueIn() const
Return the value that is live-in to the instruction.
Definition: LiveInterval.h:105
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
Definition: LiveInterval.h:529
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:409
void removeValNo(VNInfo *ValNo)
removeValNo - Remove all the segments defined by the specified value#.
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction for the given index, or null if the given index has no instruction associated...
Definition: SlotIndexes.h:430
friend const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
const TargetRegisterInfo * getTargetRegisterInfo() const
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
SubRange * createSubRange(BumpPtrAllocator &Allocator, LaneBitmask LaneMask)
Creates a new empty subregister live range.
Definition: LiveInterval.h:733
unsigned const MachineRegisterInfo * MRI
VNInfoList::const_iterator const_vni_iterator
Definition: LiveInterval.h:218
void print(raw_ostream &OS) const
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:141
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
unsigned Classify(const LiveRange &LR)
Classify the values in LR into connected components.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
constexpr bool none() const
Definition: LaneBitmask.h:52
void append(const LiveRange::Segment S)
Append a segment to the list of segments.
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
void join(LiveRange &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl< VNInfo *> &NewVNInfo)
join - Join two live ranges (this, and other) together.
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1226
void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, std::function< void(LiveInterval::SubRange &)> Apply)
Refines the subranges to support LaneMask.
iterator erase(const_iterator CI)
Definition: SmallVector.h:445
void print(raw_ostream &) const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
size_t size() const
Definition: SmallVector.h:53
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1207
bool verify(const TargetRegisterInfo &TRI) const
Check that information hold by this instance make sense for the given TRI.
iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
constexpr bool empty(const T &RangeOrContainer)
Test whether RangeOrContainer is empty. Similar to C++17 std::empty.
Definition: STLExtras.h:210
unsigned id
The ID number of this value.
Definition: LiveInterval.h:58
void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
Remove the specified segment from this range.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Basic Register Allocator
bool covers(const LiveRange &Other) const
Returns true if all segments of the Other live range are completely covered by this live range...
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
auto size(R &&Range, typename std::enable_if< std::is_same< typename std::iterator_traits< decltype(Range.begin())>::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr) -> decltype(std::distance(Range.begin(), Range.end()))
Get the size of a range.
Definition: STLExtras.h:1167
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:198
Segments::const_iterator const_iterator
Definition: LiveInterval.h:209
bool isDebugValue() const
Definition: MachineInstr.h:997
MachineOperand class - Representation of each machine instruction operand.
iterator end() const
Definition: ArrayRef.h:138
reg_iterator reg_begin(unsigned RegNo) const
std::unique_ptr< SegmentSet > segmentSet
Definition: LiveInterval.h:206
LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const
Return a bitmask representing the parts of a register that are covered by SubIdx. ...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
void clearSubRanges()
Removes all subregister liveness information.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
unsigned getSize() const
getSize - Returns the sum of sizes of all the LiveRange&#39;s.
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarilly including Idx...
Definition: LiveInterval.h:417
void computeSubRangeUndefs(SmallVectorImpl< SlotIndex > &Undefs, LaneBitmask LaneMask, const MachineRegisterInfo &MRI, const SlotIndexes &Indexes) const
For a given lane mask LaneMask, compute indexes at which the lane is marked undefined by subregister ...
VNInfoList valnos
Definition: LiveInterval.h:200
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:478
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
unsigned getNumValNums() const
Definition: LiveInterval.h:301
Representation of each machine instruction.
Definition: MachineInstr.h:64
pointer data()
Return a pointer to the vector&#39;s buffer, even if empty().
Definition: SmallVector.h:149
bool overlaps(const LiveRange &other) const
overlaps - Return true if the intersection of the two live ranges is not empty.
Definition: LiveInterval.h:436
SlotIndex getPrevSlot() const
Returns the previous slot in the index list.
Definition: SlotIndexes.h:290
void setReg(unsigned Reg)
Change the register this operand corresponds to.
#define I(x, y, z)
Definition: MD5.cpp:58
constexpr bool any() const
Definition: LaneBitmask.h:53
static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, LiveRange &LR, const MachineOperand &MO)
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:2039
auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::upper_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1295
iterator begin()
Definition: LiveInterval.h:211
Helper class for performant LiveRange bulk updates.
Definition: LiveInterval.h:854
VNInfo * getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator)
getNextValue - Create a new value number and return it.
Definition: LiveInterval.h:319
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SlotIndex beginIndex() const
beginIndex - Return the lowest numbered slot covered.
Definition: LiveInterval.h:373
std::pair< VNInfo *, bool > extendInBlock(ArrayRef< SlotIndex > Undefs, SlotIndex StartIdx, SlotIndex Kill)
Attempt to extend a value defined after StartIdx to include Use.
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
void dump() const
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
print Print MemDeps of function
IRTranslator LLVM IR MI
ppc ctr loops verify
VNInfo * valueDefined() const
Return the value defined by this instruction, if any.
Definition: LiveInterval.h:135
static reg_iterator reg_end()
void print(raw_ostream &OS) const
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:84
reg_begin/reg_end - Provide iteration support to walk over all definitions and uses of a register wit...
void resize(size_type N)
Definition: SmallVector.h:351