LLVM  8.0.1
IRTranslator.h
Go to the documentation of this file.
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.h - IRTranslator ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file declares the IRTranslator pass.
11 /// This pass is responsible for translating LLVM IR into MachineInstr.
12 /// It uses target hooks to lower the ABI but aside from that, the pass
13 /// generated code is generic. This is the default translator used for
14 /// GlobalISel.
15 ///
16 /// \todo Replace the comments with actual doxygen comments.
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
20 #define LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
21 
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/Support/Allocator.h"
29 #include <memory>
30 #include <utility>
31 
32 namespace llvm {
33 
34 class AllocaInst;
35 class BasicBlock;
36 class CallInst;
37 class CallLowering;
38 class Constant;
39 class DataLayout;
40 class Instruction;
41 class MachineBasicBlock;
42 class MachineFunction;
43 class MachineInstr;
44 class MachineRegisterInfo;
45 class OptimizationRemarkEmitter;
46 class PHINode;
47 class TargetPassConfig;
48 class User;
49 class Value;
50 
51 // Technically the pass should run on an hypothetical MachineModule,
52 // since it should translate Global into some sort of MachineGlobal.
53 // The MachineGlobal should ultimately just be a transfer of ownership of
54 // the interesting bits that are relevant to represent a global value.
55 // That being said, we could investigate what would it cost to just duplicate
56 // the information from the LLVM IR.
57 // The idea is that ultimately we would be able to free up the memory used
58 // by the LLVM IR as soon as the translation is over.
60 public:
61  static char ID;
62 
63 private:
64  /// Interface used to lower the everything related to calls.
65  const CallLowering *CLI;
66 
67  /// This class contains the mapping between the Values to vreg related data.
68  class ValueToVRegInfo {
69  public:
70  ValueToVRegInfo() = default;
71 
72  using VRegListT = SmallVector<unsigned, 1>;
73  using OffsetListT = SmallVector<uint64_t, 1>;
74 
75  using const_vreg_iterator =
77  using const_offset_iterator =
79 
80  inline const_vreg_iterator vregs_end() const { return ValToVRegs.end(); }
81 
82  VRegListT *getVRegs(const Value &V) {
83  auto It = ValToVRegs.find(&V);
84  if (It != ValToVRegs.end())
85  return It->second;
86 
87  return insertVRegs(V);
88  }
89 
90  OffsetListT *getOffsets(const Value &V) {
91  auto It = TypeToOffsets.find(V.getType());
92  if (It != TypeToOffsets.end())
93  return It->second;
94 
95  return insertOffsets(V);
96  }
97 
98  const_vreg_iterator findVRegs(const Value &V) const {
99  return ValToVRegs.find(&V);
100  }
101 
102  bool contains(const Value &V) const {
103  return ValToVRegs.find(&V) != ValToVRegs.end();
104  }
105 
106  void reset() {
107  ValToVRegs.clear();
108  TypeToOffsets.clear();
109  VRegAlloc.DestroyAll();
110  OffsetAlloc.DestroyAll();
111  }
112 
113  private:
114  VRegListT *insertVRegs(const Value &V) {
115  assert(ValToVRegs.find(&V) == ValToVRegs.end() && "Value already exists");
116 
117  // We placement new using our fast allocator since we never try to free
118  // the vectors until translation is finished.
119  auto *VRegList = new (VRegAlloc.Allocate()) VRegListT();
120  ValToVRegs[&V] = VRegList;
121  return VRegList;
122  }
123 
124  OffsetListT *insertOffsets(const Value &V) {
125  assert(TypeToOffsets.find(V.getType()) == TypeToOffsets.end() &&
126  "Type already exists");
127 
128  auto *OffsetList = new (OffsetAlloc.Allocate()) OffsetListT();
129  TypeToOffsets[V.getType()] = OffsetList;
130  return OffsetList;
131  }
134 
135  // We store pointers to vectors here since references may be invalidated
136  // while we hold them if we stored the vectors directly.
139  };
140 
141  /// Mapping of the values of the current LLVM IR function to the related
142  /// virtual registers and offsets.
143  ValueToVRegInfo VMap;
144 
145  // N.b. it's not completely obvious that this will be sufficient for every
146  // LLVM IR construct (with "invoke" being the obvious candidate to mess up our
147  // lives.
149 
150  // One BasicBlock can be translated to multiple MachineBasicBlocks. For such
151  // BasicBlocks translated to multiple MachineBasicBlocks, MachinePreds retains
152  // a mapping between the edges arriving at the BasicBlock to the corresponding
153  // created MachineBasicBlocks. Some BasicBlocks that get translated to a
154  // single MachineBasicBlock may also end up in this Map.
155  using CFGEdge = std::pair<const BasicBlock *, const BasicBlock *>;
157 
158  // List of stubbed PHI instructions, for values and basic blocks to be filled
159  // in once all MachineBasicBlocks have been created.
161  PendingPHIs;
162 
163  /// Record of what frame index has been allocated to specified allocas for
164  /// this function.
166 
167  /// \name Methods for translating form LLVM IR to MachineInstr.
168  /// \see ::translate for general information on the translate methods.
169  /// @{
170 
171  /// Translate \p Inst into its corresponding MachineInstr instruction(s).
172  /// Insert the newly translated instruction(s) right where the CurBuilder
173  /// is set.
174  ///
175  /// The general algorithm is:
176  /// 1. Look for a virtual register for each operand or
177  /// create one.
178  /// 2 Update the VMap accordingly.
179  /// 2.alt. For constant arguments, if they are compile time constants,
180  /// produce an immediate in the right operand and do not touch
181  /// ValToReg. Actually we will go with a virtual register for each
182  /// constants because it may be expensive to actually materialize the
183  /// constant. Moreover, if the constant spans on several instructions,
184  /// CSE may not catch them.
185  /// => Update ValToVReg and remember that we saw a constant in Constants.
186  /// We will materialize all the constants in finalize.
187  /// Note: we would need to do something so that we can recognize such operand
188  /// as constants.
189  /// 3. Create the generic instruction.
190  ///
191  /// \return true if the translation succeeded.
192  bool translate(const Instruction &Inst);
193 
194  /// Materialize \p C into virtual-register \p Reg. The generic instructions
195  /// performing this materialization will be inserted into the entry block of
196  /// the function.
197  ///
198  /// \return true if the materialization succeeded.
199  bool translate(const Constant &C, unsigned Reg);
200 
201  /// Translate an LLVM bitcast into generic IR. Either a COPY or a G_BITCAST is
202  /// emitted.
203  bool translateBitCast(const User &U, MachineIRBuilder &MIRBuilder);
204 
205  /// Translate an LLVM load instruction into generic IR.
206  bool translateLoad(const User &U, MachineIRBuilder &MIRBuilder);
207 
208  /// Translate an LLVM store instruction into generic IR.
209  bool translateStore(const User &U, MachineIRBuilder &MIRBuilder);
210 
211  /// Translate an LLVM string intrinsic (memcpy, memset, ...).
212  bool translateMemfunc(const CallInst &CI, MachineIRBuilder &MIRBuilder,
213  unsigned ID);
214 
215  void getStackGuard(unsigned DstReg, MachineIRBuilder &MIRBuilder);
216 
217  bool translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
218  MachineIRBuilder &MIRBuilder);
219 
220  bool translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
221  MachineIRBuilder &MIRBuilder);
222 
223  bool translateInlineAsm(const CallInst &CI, MachineIRBuilder &MIRBuilder);
224 
225  // FIXME: temporary function to expose previous interface to call lowering
226  // until it is refactored.
227  /// Combines all component registers of \p V into a single scalar with size
228  /// "max(Offsets) + last size".
229  unsigned packRegs(const Value &V, MachineIRBuilder &MIRBuilder);
230 
231  void unpackRegs(const Value &V, unsigned Src, MachineIRBuilder &MIRBuilder);
232 
233  /// Returns true if the value should be split into multiple LLTs.
234  /// If \p Offsets is given then the split type's offsets will be stored in it.
235  /// If \p Offsets is not empty it will be cleared first.
236  bool valueIsSplit(const Value &V,
238 
239  /// Translate call instruction.
240  /// \pre \p U is a call instruction.
241  bool translateCall(const User &U, MachineIRBuilder &MIRBuilder);
242 
243  bool translateInvoke(const User &U, MachineIRBuilder &MIRBuilder);
244 
245  bool translateLandingPad(const User &U, MachineIRBuilder &MIRBuilder);
246 
247  /// Translate one of LLVM's cast instructions into MachineInstrs, with the
248  /// given generic Opcode.
249  bool translateCast(unsigned Opcode, const User &U,
250  MachineIRBuilder &MIRBuilder);
251 
252  /// Translate a phi instruction.
253  bool translatePHI(const User &U, MachineIRBuilder &MIRBuilder);
254 
255  /// Translate a comparison (icmp or fcmp) instruction or constant.
256  bool translateCompare(const User &U, MachineIRBuilder &MIRBuilder);
257 
258  /// Translate an integer compare instruction (or constant).
259  bool translateICmp(const User &U, MachineIRBuilder &MIRBuilder) {
260  return translateCompare(U, MIRBuilder);
261  }
262 
263  /// Translate a floating-point compare instruction (or constant).
264  bool translateFCmp(const User &U, MachineIRBuilder &MIRBuilder) {
265  return translateCompare(U, MIRBuilder);
266  }
267 
268  /// Add remaining operands onto phis we've translated. Executed after all
269  /// MachineBasicBlocks for the function have been created.
270  void finishPendingPhis();
271 
272  /// Translate \p Inst into a binary operation \p Opcode.
273  /// \pre \p U is a binary operation.
274  bool translateBinaryOp(unsigned Opcode, const User &U,
275  MachineIRBuilder &MIRBuilder);
276 
277  /// Translate branch (br) instruction.
278  /// \pre \p U is a branch instruction.
279  bool translateBr(const User &U, MachineIRBuilder &MIRBuilder);
280 
281  bool translateSwitch(const User &U, MachineIRBuilder &MIRBuilder);
282 
283  bool translateIndirectBr(const User &U, MachineIRBuilder &MIRBuilder);
284 
285  bool translateExtractValue(const User &U, MachineIRBuilder &MIRBuilder);
286 
287  bool translateInsertValue(const User &U, MachineIRBuilder &MIRBuilder);
288 
289  bool translateSelect(const User &U, MachineIRBuilder &MIRBuilder);
290 
291  bool translateGetElementPtr(const User &U, MachineIRBuilder &MIRBuilder);
292 
293  bool translateAlloca(const User &U, MachineIRBuilder &MIRBuilder);
294 
295  /// Translate return (ret) instruction.
296  /// The target needs to implement CallLowering::lowerReturn for
297  /// this to succeed.
298  /// \pre \p U is a return instruction.
299  bool translateRet(const User &U, MachineIRBuilder &MIRBuilder);
300 
301  bool translateFSub(const User &U, MachineIRBuilder &MIRBuilder);
302 
303  bool translateFNeg(const User &U, MachineIRBuilder &MIRBuilder);
304 
305  bool translateAdd(const User &U, MachineIRBuilder &MIRBuilder) {
306  return translateBinaryOp(TargetOpcode::G_ADD, U, MIRBuilder);
307  }
308  bool translateSub(const User &U, MachineIRBuilder &MIRBuilder) {
309  return translateBinaryOp(TargetOpcode::G_SUB, U, MIRBuilder);
310  }
311  bool translateAnd(const User &U, MachineIRBuilder &MIRBuilder) {
312  return translateBinaryOp(TargetOpcode::G_AND, U, MIRBuilder);
313  }
314  bool translateMul(const User &U, MachineIRBuilder &MIRBuilder) {
315  return translateBinaryOp(TargetOpcode::G_MUL, U, MIRBuilder);
316  }
317  bool translateOr(const User &U, MachineIRBuilder &MIRBuilder) {
318  return translateBinaryOp(TargetOpcode::G_OR, U, MIRBuilder);
319  }
320  bool translateXor(const User &U, MachineIRBuilder &MIRBuilder) {
321  return translateBinaryOp(TargetOpcode::G_XOR, U, MIRBuilder);
322  }
323 
324  bool translateUDiv(const User &U, MachineIRBuilder &MIRBuilder) {
325  return translateBinaryOp(TargetOpcode::G_UDIV, U, MIRBuilder);
326  }
327  bool translateSDiv(const User &U, MachineIRBuilder &MIRBuilder) {
328  return translateBinaryOp(TargetOpcode::G_SDIV, U, MIRBuilder);
329  }
330  bool translateURem(const User &U, MachineIRBuilder &MIRBuilder) {
331  return translateBinaryOp(TargetOpcode::G_UREM, U, MIRBuilder);
332  }
333  bool translateSRem(const User &U, MachineIRBuilder &MIRBuilder) {
334  return translateBinaryOp(TargetOpcode::G_SREM, U, MIRBuilder);
335  }
336  bool translateIntToPtr(const User &U, MachineIRBuilder &MIRBuilder) {
337  return translateCast(TargetOpcode::G_INTTOPTR, U, MIRBuilder);
338  }
339  bool translatePtrToInt(const User &U, MachineIRBuilder &MIRBuilder) {
340  return translateCast(TargetOpcode::G_PTRTOINT, U, MIRBuilder);
341  }
342  bool translateTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
343  return translateCast(TargetOpcode::G_TRUNC, U, MIRBuilder);
344  }
345  bool translateFPTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
346  return translateCast(TargetOpcode::G_FPTRUNC, U, MIRBuilder);
347  }
348  bool translateFPExt(const User &U, MachineIRBuilder &MIRBuilder) {
349  return translateCast(TargetOpcode::G_FPEXT, U, MIRBuilder);
350  }
351  bool translateFPToUI(const User &U, MachineIRBuilder &MIRBuilder) {
352  return translateCast(TargetOpcode::G_FPTOUI, U, MIRBuilder);
353  }
354  bool translateFPToSI(const User &U, MachineIRBuilder &MIRBuilder) {
355  return translateCast(TargetOpcode::G_FPTOSI, U, MIRBuilder);
356  }
357  bool translateUIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
358  return translateCast(TargetOpcode::G_UITOFP, U, MIRBuilder);
359  }
360  bool translateSIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
361  return translateCast(TargetOpcode::G_SITOFP, U, MIRBuilder);
362  }
363  bool translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
364  return true;
365  }
366  bool translateSExt(const User &U, MachineIRBuilder &MIRBuilder) {
367  return translateCast(TargetOpcode::G_SEXT, U, MIRBuilder);
368  }
369 
370  bool translateZExt(const User &U, MachineIRBuilder &MIRBuilder) {
371  return translateCast(TargetOpcode::G_ZEXT, U, MIRBuilder);
372  }
373 
374  bool translateShl(const User &U, MachineIRBuilder &MIRBuilder) {
375  return translateBinaryOp(TargetOpcode::G_SHL, U, MIRBuilder);
376  }
377  bool translateLShr(const User &U, MachineIRBuilder &MIRBuilder) {
378  return translateBinaryOp(TargetOpcode::G_LSHR, U, MIRBuilder);
379  }
380  bool translateAShr(const User &U, MachineIRBuilder &MIRBuilder) {
381  return translateBinaryOp(TargetOpcode::G_ASHR, U, MIRBuilder);
382  }
383 
384  bool translateFAdd(const User &U, MachineIRBuilder &MIRBuilder) {
385  return translateBinaryOp(TargetOpcode::G_FADD, U, MIRBuilder);
386  }
387  bool translateFMul(const User &U, MachineIRBuilder &MIRBuilder) {
388  return translateBinaryOp(TargetOpcode::G_FMUL, U, MIRBuilder);
389  }
390  bool translateFDiv(const User &U, MachineIRBuilder &MIRBuilder) {
391  return translateBinaryOp(TargetOpcode::G_FDIV, U, MIRBuilder);
392  }
393  bool translateFRem(const User &U, MachineIRBuilder &MIRBuilder) {
394  return translateBinaryOp(TargetOpcode::G_FREM, U, MIRBuilder);
395  }
396 
397  bool translateVAArg(const User &U, MachineIRBuilder &MIRBuilder);
398 
399  bool translateInsertElement(const User &U, MachineIRBuilder &MIRBuilder);
400 
401  bool translateExtractElement(const User &U, MachineIRBuilder &MIRBuilder);
402 
403  bool translateShuffleVector(const User &U, MachineIRBuilder &MIRBuilder);
404 
405  bool translateAtomicCmpXchg(const User &U, MachineIRBuilder &MIRBuilder);
406  bool translateAtomicRMW(const User &U, MachineIRBuilder &MIRBuilder);
407 
408  // Stubs to keep the compiler happy while we implement the rest of the
409  // translation.
410  bool translateResume(const User &U, MachineIRBuilder &MIRBuilder) {
411  return false;
412  }
413  bool translateCleanupRet(const User &U, MachineIRBuilder &MIRBuilder) {
414  return false;
415  }
416  bool translateCatchRet(const User &U, MachineIRBuilder &MIRBuilder) {
417  return false;
418  }
419  bool translateCatchSwitch(const User &U, MachineIRBuilder &MIRBuilder) {
420  return false;
421  }
422  bool translateFence(const User &U, MachineIRBuilder &MIRBuilder) {
423  return false;
424  }
425  bool translateAddrSpaceCast(const User &U, MachineIRBuilder &MIRBuilder) {
426  return translateCast(TargetOpcode::G_ADDRSPACE_CAST, U, MIRBuilder);
427  }
428  bool translateCleanupPad(const User &U, MachineIRBuilder &MIRBuilder) {
429  return false;
430  }
431  bool translateCatchPad(const User &U, MachineIRBuilder &MIRBuilder) {
432  return false;
433  }
434  bool translateUserOp1(const User &U, MachineIRBuilder &MIRBuilder) {
435  return false;
436  }
437  bool translateUserOp2(const User &U, MachineIRBuilder &MIRBuilder) {
438  return false;
439  }
440 
441  /// @}
442 
443  // Builder for machine instruction a la IRBuilder.
444  // I.e., compared to regular MIBuilder, this one also inserts the instruction
445  // in the current block, it can creates block, etc., basically a kind of
446  // IRBuilder, but for Machine IR.
447  // CSEMIRBuilder CurBuilder;
448  std::unique_ptr<MachineIRBuilder> CurBuilder;
449 
450  // Builder set to the entry block (just after ABI lowering instructions). Used
451  // as a convenient location for Constants.
452  // CSEMIRBuilder EntryBuilder;
453  std::unique_ptr<MachineIRBuilder> EntryBuilder;
454 
455  // The MachineFunction currently being translated.
456  MachineFunction *MF;
457 
458  /// MachineRegisterInfo used to create virtual registers.
459  MachineRegisterInfo *MRI = nullptr;
460 
461  const DataLayout *DL;
462 
463  /// Current target configuration. Controls how the pass handles errors.
464  const TargetPassConfig *TPC;
465 
466  /// Current optimization remark emitter. Used to report failures.
467  std::unique_ptr<OptimizationRemarkEmitter> ORE;
468 
469  // * Insert all the code needed to materialize the constants
470  // at the proper place. E.g., Entry block or dominator block
471  // of each constant depending on how fancy we want to be.
472  // * Clear the different maps.
473  void finalizeFunction();
474 
475  /// Get the VRegs that represent \p Val.
476  /// Non-aggregate types have just one corresponding VReg and the list can be
477  /// used as a single "unsigned". Aggregates get flattened. If such VRegs do
478  /// not exist, they are created.
479  ArrayRef<unsigned> getOrCreateVRegs(const Value &Val);
480 
481  unsigned getOrCreateVReg(const Value &Val) {
482  auto Regs = getOrCreateVRegs(Val);
483  if (Regs.empty())
484  return 0;
485  assert(Regs.size() == 1 &&
486  "attempt to get single VReg for aggregate or void");
487  return Regs[0];
488  }
489 
490  /// Allocate some vregs and offsets in the VMap. Then populate just the
491  /// offsets while leaving the vregs empty.
492  ValueToVRegInfo::VRegListT &allocateVRegs(const Value &Val);
493 
494  /// Get the frame index that represents \p Val.
495  /// If such VReg does not exist, it is created.
496  int getOrCreateFrameIndex(const AllocaInst &AI);
497 
498  /// Get the alignment of the given memory operation instruction. This will
499  /// either be the explicitly specified value or the ABI-required alignment for
500  /// the type being accessed (according to the Module's DataLayout).
501  unsigned getMemOpAlignment(const Instruction &I);
502 
503  /// Get the MachineBasicBlock that represents \p BB. Specifically, the block
504  /// returned will be the head of the translated block (suitable for branch
505  /// destinations).
506  MachineBasicBlock &getMBB(const BasicBlock &BB);
507 
508  /// Record \p NewPred as a Machine predecessor to `Edge.second`, corresponding
509  /// to `Edge.first` at the IR level. This is used when IRTranslation creates
510  /// multiple MachineBasicBlocks for a given IR block and the CFG is no longer
511  /// represented simply by the IR-level CFG.
512  void addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred);
513 
514  /// Returns the Machine IR predecessors for the given IR CFG edge. Usually
515  /// this is just the single MachineBasicBlock corresponding to the predecessor
516  /// in the IR. More complex lowering can result in multiple MachineBasicBlocks
517  /// preceding the original though (e.g. switch instructions).
518  SmallVector<MachineBasicBlock *, 1> getMachinePredBBs(CFGEdge Edge) {
519  auto RemappedEdge = MachinePreds.find(Edge);
520  if (RemappedEdge != MachinePreds.end())
521  return RemappedEdge->second;
522  return SmallVector<MachineBasicBlock *, 4>(1, &getMBB(*Edge.first));
523  }
524 
525 public:
526  // Ctor, nothing fancy.
527  IRTranslator();
528 
529  StringRef getPassName() const override { return "IRTranslator"; }
530 
531  void getAnalysisUsage(AnalysisUsage &AU) const override;
532 
533  // Algo:
534  // CallLowering = MF.subtarget.getCallLowering()
535  // F = MF.getParent()
536  // MIRBuilder.reset(MF)
537  // getMBB(F.getEntryBB())
538  // CallLowering->translateArguments(MIRBuilder, F, ValToVReg)
539  // for each bb in F
540  // getMBB(bb)
541  // for each inst in bb
542  // if (!translate(MIRBuilder, inst, ValToVReg, ConstantToSequence))
543  // report_fatal_error("Don't know how to translate input");
544  // finalize()
545  bool runOnMachineFunction(MachineFunction &MF) override;
546 };
547 
548 } // end namespace llvm
549 
550 #endif // LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
uint64_t CallInst * C
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Various leaf nodes.
Definition: ISDOpcodes.h:60
This class represents a function call, abstracting a target machine&#39;s calling convention.
unsigned Reg
Offsets
Offsets in bytes from the start of the input buffer.
Definition: SIInstrInfo.h:1025
StringRef getPassName() const override
getPassName - Return a nice clean name for a pass.
Definition: IRTranslator.h:529
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
This file defines the MallocAllocator and BumpPtrAllocator interfaces.
return AArch64::GPR64RegClass contains(Reg)
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Target-Independent Code Generator Pass Configuration Options.
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
unsigned const MachineRegisterInfo * MRI
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
This is an important base class in LLVM.
Definition: Constant.h:42
This file implements a version of MachineIRBuilder which CSEs insts within a MachineBasicBlock.
Helper class to build MachineInstr.
Represent the analysis usage information of a pass.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
A BumpPtrAllocator that allows only elements of a specific type to be allocated.
Definition: Allocator.h:442
This file describes high level types that are used by several passes or APIs involved in the GlobalIS...
static char ID
Definition: IRTranslator.h:61
could "use" a pointer
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
#define I(x, y, z)
Definition: MD5.cpp:58
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
an instruction to allocate memory on the stack
Definition: Instructions.h:60