LLVM  8.0.1
HexagonStoreWidening.cpp
Go to the documentation of this file.
1 //===- HexagonStoreWidening.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // Replace sequences of "narrow" stores to adjacent memory locations with
10 // a fewer "wide" stores that have the same effect.
11 // For example, replace:
12 // S4_storeirb_io %100, 0, 0 ; store-immediate-byte
13 // S4_storeirb_io %100, 1, 0 ; store-immediate-byte
14 // with
15 // S4_storeirh_io %100, 0, 0 ; store-immediate-halfword
16 // The above is the general idea. The actual cases handled by the code
17 // may be a bit more complex.
18 // The purpose of this pass is to reduce the number of outstanding stores,
19 // or as one could say, "reduce store queue pressure". Also, wide stores
20 // mean fewer stores, and since there are only two memory instructions allowed
21 // per packet, it also means fewer packets, and ultimately fewer cycles.
22 //===---------------------------------------------------------------------===//
23 
24 #define DEBUG_TYPE "hexagon-widen-stores"
25 
26 #include "HexagonInstrInfo.h"
27 #include "HexagonRegisterInfo.h"
28 #include "HexagonSubtarget.h"
29 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Debug.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 namespace llvm {
56 
59 
60 } // end namespace llvm
61 
62 namespace {
63 
64  struct HexagonStoreWidening : public MachineFunctionPass {
65  const HexagonInstrInfo *TII;
66  const HexagonRegisterInfo *TRI;
67  const MachineRegisterInfo *MRI;
68  AliasAnalysis *AA;
69  MachineFunction *MF;
70 
71  public:
72  static char ID;
73 
74  HexagonStoreWidening() : MachineFunctionPass(ID) {
76  }
77 
78  bool runOnMachineFunction(MachineFunction &MF) override;
79 
80  StringRef getPassName() const override { return "Hexagon Store Widening"; }
81 
82  void getAnalysisUsage(AnalysisUsage &AU) const override {
86  }
87 
88  static bool handledStoreType(const MachineInstr *MI);
89 
90  private:
91  static const int MaxWideSize = 4;
92 
93  using InstrGroup = std::vector<MachineInstr *>;
94  using InstrGroupList = std::vector<InstrGroup>;
95 
96  bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
97  bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
98  void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
99  InstrGroup::iterator End, InstrGroup &Group);
100  void createStoreGroups(MachineBasicBlock &MBB,
101  InstrGroupList &StoreGroups);
102  bool processBasicBlock(MachineBasicBlock &MBB);
103  bool processStoreGroup(InstrGroup &Group);
104  bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
105  InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
106  bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
107  bool replaceStores(InstrGroup &OG, InstrGroup &NG);
108  bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
109  };
110 
111 } // end anonymous namespace
112 
113 char HexagonStoreWidening::ID = 0;
114 
115 INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
116  "Hexason Store Widening", false, false)
118 INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
119  "Hexagon Store Widening", false, false)
120 
121 // Some local helper functions...
123  const MachineOperand &MO = MI->getOperand(0);
124  assert(MO.isReg() && "Expecting register operand");
125  return MO.getReg();
126 }
127 
128 static int64_t getStoreOffset(const MachineInstr *MI) {
129  unsigned OpC = MI->getOpcode();
130  assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
131 
132  switch (OpC) {
133  case Hexagon::S4_storeirb_io:
134  case Hexagon::S4_storeirh_io:
135  case Hexagon::S4_storeiri_io: {
136  const MachineOperand &MO = MI->getOperand(1);
137  assert(MO.isImm() && "Expecting immediate offset");
138  return MO.getImm();
139  }
140  }
141  dbgs() << *MI;
142  llvm_unreachable("Store offset calculation missing for a handled opcode");
143  return 0;
144 }
145 
147  assert(!MI->memoperands_empty() && "Expecting memory operands");
148  return **MI->memoperands_begin();
149 }
150 
151 // Filtering function: any stores whose opcodes are not "approved" of by
152 // this function will not be subjected to widening.
153 inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
154  // For now, only handle stores of immediate values.
155  // Also, reject stores to stack slots.
156  unsigned Opc = MI->getOpcode();
157  switch (Opc) {
158  case Hexagon::S4_storeirb_io:
159  case Hexagon::S4_storeirh_io:
160  case Hexagon::S4_storeiri_io:
161  // Base address must be a register. (Implement FI later.)
162  return MI->getOperand(0).isReg();
163  default:
164  return false;
165  }
166 }
167 
168 // Check if the machine memory operand MMO is aliased with any of the
169 // stores in the store group Stores.
170 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
171  const MachineMemOperand &MMO) {
172  if (!MMO.getValue())
173  return true;
174 
175  MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
176 
177  for (auto SI : Stores) {
178  const MachineMemOperand &SMO = getStoreTarget(SI);
179  if (!SMO.getValue())
180  return true;
181 
182  MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
183  if (AA->alias(L, SL))
184  return true;
185  }
186 
187  return false;
188 }
189 
190 // Check if the machine instruction MI accesses any storage aliased with
191 // any store in the group Stores.
192 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
193  const MachineInstr *MI) {
194  for (auto &I : MI->memoperands())
195  if (instrAliased(Stores, *I))
196  return true;
197  return false;
198 }
199 
200 // Inspect a machine basic block, and generate store groups out of stores
201 // encountered in the block.
202 //
203 // A store group is a group of stores that use the same base register,
204 // and which can be reordered within that group without altering the
205 // semantics of the program. A single store group could be widened as
206 // a whole, if there existed a single store instruction with the same
207 // semantics as the entire group. In many cases, a single store group
208 // may need more than one wide store.
209 void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
210  InstrGroupList &StoreGroups) {
211  InstrGroup AllInsns;
212 
213  // Copy all instruction pointers from the basic block to a temporary
214  // list. This will allow operating on the list, and modifying its
215  // elements without affecting the basic block.
216  for (auto &I : MBB)
217  AllInsns.push_back(&I);
218 
219  // Traverse all instructions in the AllInsns list, and if we encounter
220  // a store, then try to create a store group starting at that instruction
221  // i.e. a sequence of independent stores that can be widened.
222  for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
223  MachineInstr *MI = *I;
224  // Skip null pointers (processed instructions).
225  if (!MI || !handledStoreType(MI))
226  continue;
227 
228  // Found a store. Try to create a store group.
229  InstrGroup G;
230  createStoreGroup(MI, I+1, E, G);
231  if (G.size() > 1)
232  StoreGroups.push_back(G);
233  }
234 }
235 
236 // Create a single store group. The stores need to be independent between
237 // themselves, and also there cannot be other instructions between them
238 // that could read or modify storage being stored into.
239 void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
240  InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
241  assert(handledStoreType(BaseStore) && "Unexpected instruction");
242  unsigned BaseReg = getBaseAddressRegister(BaseStore);
243  InstrGroup Other;
244 
245  Group.push_back(BaseStore);
246 
247  for (auto I = Begin; I != End; ++I) {
248  MachineInstr *MI = *I;
249  if (!MI)
250  continue;
251 
252  if (handledStoreType(MI)) {
253  // If this store instruction is aliased with anything already in the
254  // group, terminate the group now.
255  if (instrAliased(Group, getStoreTarget(MI)))
256  return;
257  // If this store is aliased to any of the memory instructions we have
258  // seen so far (that are not a part of this group), terminate the group.
259  if (instrAliased(Other, getStoreTarget(MI)))
260  return;
261 
262  unsigned BR = getBaseAddressRegister(MI);
263  if (BR == BaseReg) {
264  Group.push_back(MI);
265  *I = nullptr;
266  continue;
267  }
268  }
269 
270  // Assume calls are aliased to everything.
271  if (MI->isCall() || MI->hasUnmodeledSideEffects())
272  return;
273 
274  if (MI->mayLoad() || MI->mayStore()) {
275  if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
276  return;
277  Other.push_back(MI);
278  }
279  } // for
280 }
281 
282 // Check if store instructions S1 and S2 are adjacent. More precisely,
283 // S2 has to access memory immediately following that accessed by S1.
284 bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
285  const MachineInstr *S2) {
286  if (!handledStoreType(S1) || !handledStoreType(S2))
287  return false;
288 
289  const MachineMemOperand &S1MO = getStoreTarget(S1);
290 
291  // Currently only handling immediate stores.
292  int Off1 = S1->getOperand(1).getImm();
293  int Off2 = S2->getOperand(1).getImm();
294 
295  return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
296  : int(Off1+S1MO.getSize()) == Off2;
297 }
298 
299 /// Given a sequence of adjacent stores, and a maximum size of a single wide
300 /// store, pick a group of stores that can be replaced by a single store
301 /// of size not exceeding MaxSize. The selected sequence will be recorded
302 /// in OG ("old group" of instructions).
303 /// OG should be empty on entry, and should be left empty if the function
304 /// fails.
305 bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
306  InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
307  unsigned MaxSize) {
308  assert(Begin != End && "No instructions to analyze");
309  assert(OG.empty() && "Old group not empty on entry");
310 
311  if (std::distance(Begin, End) <= 1)
312  return false;
313 
314  MachineInstr *FirstMI = *Begin;
315  assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
316  const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
317  unsigned Alignment = FirstMMO.getAlignment();
318  unsigned SizeAccum = FirstMMO.getSize();
319  unsigned FirstOffset = getStoreOffset(FirstMI);
320 
321  // The initial value of SizeAccum should always be a power of 2.
322  assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
323 
324  // If the size of the first store equals to or exceeds the limit, do nothing.
325  if (SizeAccum >= MaxSize)
326  return false;
327 
328  // If the size of the first store is greater than or equal to the address
329  // stored to, then the store cannot be made any wider.
330  if (SizeAccum >= Alignment)
331  return false;
332 
333  // The offset of a store will put restrictions on how wide the store can be.
334  // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
335  // If the first store already exhausts the offset limits, quit. Test this
336  // by checking if the next wider size would exceed the limit.
337  if ((2*SizeAccum-1) & FirstOffset)
338  return false;
339 
340  OG.push_back(FirstMI);
341  MachineInstr *S1 = FirstMI, *S2 = *(Begin+1);
342  InstrGroup::iterator I = Begin+1;
343 
344  // Pow2Num will be the largest number of elements in OG such that the sum
345  // of sizes of stores 0...Pow2Num-1 will be a power of 2.
346  unsigned Pow2Num = 1;
347  unsigned Pow2Size = SizeAccum;
348 
349  // Be greedy: keep accumulating stores as long as they are to adjacent
350  // memory locations, and as long as the total number of bytes stored
351  // does not exceed the limit (MaxSize).
352  // Keep track of when the total size covered is a power of 2, since
353  // this is a size a single store can cover.
354  while (I != End) {
355  S2 = *I;
356  // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
357  // any other store to fill the "hole".
358  if (!storesAreAdjacent(S1, S2))
359  break;
360 
361  unsigned S2Size = getStoreTarget(S2).getSize();
362  if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
363  break;
364 
365  OG.push_back(S2);
366  SizeAccum += S2Size;
367  if (isPowerOf2_32(SizeAccum)) {
368  Pow2Num = OG.size();
369  Pow2Size = SizeAccum;
370  }
371  if ((2*Pow2Size-1) & FirstOffset)
372  break;
373 
374  S1 = S2;
375  ++I;
376  }
377 
378  // The stores don't add up to anything that can be widened. Clean up.
379  if (Pow2Num <= 1) {
380  OG.clear();
381  return false;
382  }
383 
384  // Only leave the stored being widened.
385  OG.resize(Pow2Num);
386  TotalSize = Pow2Size;
387  return true;
388 }
389 
390 /// Given an "old group" OG of stores, create a "new group" NG of instructions
391 /// to replace them. Ideally, NG would only have a single instruction in it,
392 /// but that may only be possible for store-immediate.
393 bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
394  unsigned TotalSize) {
395  // XXX Current limitations:
396  // - only expect stores of immediate values in OG,
397  // - only handle a TotalSize of up to 4.
398 
399  if (TotalSize > 4)
400  return false;
401 
402  unsigned Acc = 0; // Value accumulator.
403  unsigned Shift = 0;
404 
405  for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
406  MachineInstr *MI = *I;
407  const MachineMemOperand &MMO = getStoreTarget(MI);
408  MachineOperand &SO = MI->getOperand(2); // Source.
409  assert(SO.isImm() && "Expecting an immediate operand");
410 
411  unsigned NBits = MMO.getSize()*8;
412  unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
413  unsigned Val = (SO.getImm() & Mask) << Shift;
414  Acc |= Val;
415  Shift += NBits;
416  }
417 
418  MachineInstr *FirstSt = OG.front();
419  DebugLoc DL = OG.back()->getDebugLoc();
420  const MachineMemOperand &OldM = getStoreTarget(FirstSt);
421  MachineMemOperand *NewM =
422  MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
423  TotalSize, OldM.getAlignment(),
424  OldM.getAAInfo());
425 
426  if (Acc < 0x10000) {
427  // Create mem[hw] = #Acc
428  unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
429  (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
430  assert(WOpc && "Unexpected size");
431 
432  int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
433  const MCInstrDesc &StD = TII->get(WOpc);
434  MachineOperand &MR = FirstSt->getOperand(0);
435  int64_t Off = FirstSt->getOperand(1).getImm();
436  MachineInstr *StI =
437  BuildMI(*MF, DL, StD)
438  .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
439  .addImm(Off)
440  .addImm(Val);
441  StI->addMemOperand(*MF, NewM);
442  NG.push_back(StI);
443  } else {
444  // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
445  const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
446  const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
447  unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
448  MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
449  .addImm(int(Acc));
450  NG.push_back(TfrI);
451 
452  unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
453  (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
454  assert(WOpc && "Unexpected size");
455 
456  const MCInstrDesc &StD = TII->get(WOpc);
457  MachineOperand &MR = FirstSt->getOperand(0);
458  int64_t Off = FirstSt->getOperand(1).getImm();
459  MachineInstr *StI =
460  BuildMI(*MF, DL, StD)
461  .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
462  .addImm(Off)
463  .addReg(VReg, RegState::Kill);
464  StI->addMemOperand(*MF, NewM);
465  NG.push_back(StI);
466  }
467 
468  return true;
469 }
470 
471 // Replace instructions from the old group OG with instructions from the
472 // new group NG. Conceptually, remove all instructions in OG, and then
473 // insert all instructions in NG, starting at where the first instruction
474 // from OG was (in the order in which they appeared in the basic block).
475 // (The ordering in OG does not have to match the order in the basic block.)
476 bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
477  LLVM_DEBUG({
478  dbgs() << "Replacing:\n";
479  for (auto I : OG)
480  dbgs() << " " << *I;
481  dbgs() << "with\n";
482  for (auto I : NG)
483  dbgs() << " " << *I;
484  });
485 
486  MachineBasicBlock *MBB = OG.back()->getParent();
487  MachineBasicBlock::iterator InsertAt = MBB->end();
488 
489  // Need to establish the insertion point. The best one is right before
490  // the first store in the OG, but in the order in which the stores occur
491  // in the program list. Since the ordering in OG does not correspond
492  // to the order in the program list, we need to do some work to find
493  // the insertion point.
494 
495  // Create a set of all instructions in OG (for quick lookup).
497  for (auto I : OG)
498  InstrSet.insert(I);
499 
500  // Traverse the block, until we hit an instruction from OG.
501  for (auto &I : *MBB) {
502  if (InstrSet.count(&I)) {
503  InsertAt = I;
504  break;
505  }
506  }
507 
508  assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
509 
510  bool AtBBStart = false;
511 
512  // InsertAt points at the first instruction that will be removed. We need
513  // to move it out of the way, so it remains valid after removing all the
514  // old stores, and so we are able to recover it back to the proper insertion
515  // position.
516  if (InsertAt != MBB->begin())
517  --InsertAt;
518  else
519  AtBBStart = true;
520 
521  for (auto I : OG)
522  I->eraseFromParent();
523 
524  if (!AtBBStart)
525  ++InsertAt;
526  else
527  InsertAt = MBB->begin();
528 
529  for (auto I : NG)
530  MBB->insert(InsertAt, I);
531 
532  return true;
533 }
534 
535 // Break up the group into smaller groups, each of which can be replaced by
536 // a single wide store. Widen each such smaller group and replace the old
537 // instructions with the widened ones.
538 bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
539  bool Changed = false;
540  InstrGroup::iterator I = Group.begin(), E = Group.end();
541  InstrGroup OG, NG; // Old and new groups.
542  unsigned CollectedSize;
543 
544  while (I != E) {
545  OG.clear();
546  NG.clear();
547 
548  bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
549  createWideStores(OG, NG, CollectedSize) &&
550  replaceStores(OG, NG);
551  if (!Succ)
552  continue;
553 
554  assert(OG.size() > 1 && "Created invalid group");
555  assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
556  I += OG.size()-1;
557 
558  Changed = true;
559  }
560 
561  return Changed;
562 }
563 
564 // Process a single basic block: create the store groups, and replace them
565 // with the widened stores, if possible. Processing of each basic block
566 // is independent from processing of any other basic block. This transfor-
567 // mation could be stopped after having processed any basic block without
568 // any ill effects (other than not having performed widening in the unpro-
569 // cessed blocks). Also, the basic blocks can be processed in any order.
570 bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
571  InstrGroupList SGs;
572  bool Changed = false;
573 
574  createStoreGroups(MBB, SGs);
575 
576  auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
577  return getStoreOffset(A) < getStoreOffset(B);
578  };
579  for (auto &G : SGs) {
580  assert(G.size() > 1 && "Store group with fewer than 2 elements");
581  llvm::sort(G, Less);
582 
583  Changed |= processStoreGroup(G);
584  }
585 
586  return Changed;
587 }
588 
589 bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
590  if (skipFunction(MFn.getFunction()))
591  return false;
592 
593  MF = &MFn;
594  auto &ST = MFn.getSubtarget<HexagonSubtarget>();
595  TII = ST.getInstrInfo();
596  TRI = ST.getRegisterInfo();
597  MRI = &MFn.getRegInfo();
598  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
599 
600  bool Changed = false;
601 
602  for (auto &B : MFn)
603  Changed |= processBasicBlock(B);
604 
605  return Changed;
606 }
607 
609  return new HexagonStoreWidening();
610 }
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:633
This class represents lattice values for constants.
Definition: AllocatorList.h:24
static const MachineMemOperand & getStoreTarget(const MachineInstr *MI)
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
unsigned getReg() const
getReg - Returns the register number.
unsigned getSubReg() const
uint64_t getSize() const
Return the size in bytes of the memory reference.
unsigned const TargetRegisterInfo * TRI
A debug info location.
Definition: DebugLoc.h:34
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
A description of a memory reference used in the backend.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
ELFYAML::ELF_STO Other
Definition: ELFYAML.cpp:784
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
hexagon widen Hexagon Store Widening
unsigned getKillRegState(bool B)
const Value * getValue() const
Return the base address of the memory access.
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
Definition: MachineInstr.h:820
Control flow instructions. These all have token chains.
Definition: ISDOpcodes.h:629
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
hexagon widen Hexagon Store static false unsigned getBaseAddressRegister(const MachineInstr *MI)
unsigned const MachineRegisterInfo * MRI
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:429
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:516
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static int64_t getStoreOffset(const MachineInstr *MI)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
Represent the analysis usage information of a pass.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
FunctionPass * createHexagonStoreWidening()
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
uint64_t getAlignment() const
Return the minimum known alignment in bytes of the actual memory reference.
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1116
Representation for a specific memory location.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:534
MachineOperand class - Representation of each machine instruction operand.
void initializeHexagonStoreWideningPass(PassRegistry &)
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
int64_t getImm() const
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachinePointerInfo & getPointerInfo() const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
This file provides utility analysis objects describing memory locations.
#define I(x, y, z)
Definition: MD5.cpp:58
Flags getFlags() const
Return the raw flags of the source value,.
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
Definition: MachineInstr.h:807
bool memoperands_empty() const
Return true if we don&#39;t have any memory operands which described the memory access done by this instr...
Definition: MachineInstr.h:546
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
aarch64 promote const
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore...
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:39
INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores", "Hexason Store Widening", false, false) INITIALIZE_PASS_END(HexagonStoreWidening
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
hexagon widen stores