LLVM  8.0.1
PHIElimination.cpp
Go to the documentation of this file.
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "PHIEliminationUtils.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Pass.h"
40 #include "llvm/Support/Debug.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "phi-node-elimination"
49 
50 static cl::opt<bool>
51 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
52  cl::Hidden, cl::desc("Disable critical edge splitting "
53  "during PHI elimination"));
54 
55 static cl::opt<bool>
56 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
57  cl::Hidden, cl::desc("Split all critical edges during "
58  "PHI elimination"));
59 
61  "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
62  cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
63 
64 namespace {
65 
66  class PHIElimination : public MachineFunctionPass {
67  MachineRegisterInfo *MRI; // Machine register information
68  LiveVariables *LV;
69  LiveIntervals *LIS;
70 
71  public:
72  static char ID; // Pass identification, replacement for typeid
73 
74  PHIElimination() : MachineFunctionPass(ID) {
76  }
77 
78  bool runOnMachineFunction(MachineFunction &MF) override;
79  void getAnalysisUsage(AnalysisUsage &AU) const override;
80 
81  private:
82  /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
83  /// in predecessor basic blocks.
84  bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
85 
86  void LowerPHINode(MachineBasicBlock &MBB,
87  MachineBasicBlock::iterator LastPHIIt);
88 
89  /// analyzePHINodes - Gather information about the PHI nodes in
90  /// here. In particular, we want to map the number of uses of a virtual
91  /// register which is used in a PHI node. We map that to the BB the
92  /// vreg is coming from. This is used later to determine when the vreg
93  /// is killed in the BB.
94  void analyzePHINodes(const MachineFunction& MF);
95 
96  /// Split critical edges where necessary for good coalescer performance.
97  bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
98  MachineLoopInfo *MLI);
99 
100  // These functions are temporary abstractions around LiveVariables and
101  // LiveIntervals, so they can go away when LiveVariables does.
102  bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
103  bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
104 
105  using BBVRegPair = std::pair<unsigned, unsigned>;
106  using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107 
108  VRegPHIUse VRegPHIUseCount;
109 
110  // Defs of PHI sources which are implicit_def.
112 
113  // Map reusable lowered PHI node -> incoming join register.
114  using LoweredPHIMap =
116  LoweredPHIMap LoweredPHIs;
117  };
118 
119 } // end anonymous namespace
120 
121 STATISTIC(NumLowered, "Number of phis lowered");
122 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
123 STATISTIC(NumReused, "Number of reused lowered phis");
124 
125 char PHIElimination::ID = 0;
126 
128 
129 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
130  "Eliminate PHI nodes for register allocation",
131  false, false)
134  "Eliminate PHI nodes for register allocation", false, false)
135 
136 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
137  AU.addUsedIfAvailable<LiveVariables>();
138  AU.addPreserved<LiveVariables>();
139  AU.addPreserved<SlotIndexes>();
140  AU.addPreserved<LiveIntervals>();
141  AU.addPreserved<MachineDominatorTree>();
142  AU.addPreserved<MachineLoopInfo>();
144 }
145 
146 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
147  MRI = &MF.getRegInfo();
148  LV = getAnalysisIfAvailable<LiveVariables>();
149  LIS = getAnalysisIfAvailable<LiveIntervals>();
150 
151  bool Changed = false;
152 
153  // This pass takes the function out of SSA form.
154  MRI->leaveSSA();
155 
156  // Split critical edges to help the coalescer.
157  if (!DisableEdgeSplitting && (LV || LIS)) {
158  MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
159  for (auto &MBB : MF)
160  Changed |= SplitPHIEdges(MF, MBB, MLI);
161  }
162 
163  // Populate VRegPHIUseCount
164  analyzePHINodes(MF);
165 
166  // Eliminate PHI instructions by inserting copies into predecessor blocks.
167  for (auto &MBB : MF)
168  Changed |= EliminatePHINodes(MF, MBB);
169 
170  // Remove dead IMPLICIT_DEF instructions.
171  for (MachineInstr *DefMI : ImpDefs) {
172  unsigned DefReg = DefMI->getOperand(0).getReg();
173  if (MRI->use_nodbg_empty(DefReg)) {
174  if (LIS)
175  LIS->RemoveMachineInstrFromMaps(*DefMI);
177  }
178  }
179 
180  // Clean up the lowered PHI instructions.
181  for (auto &I : LoweredPHIs) {
182  if (LIS)
183  LIS->RemoveMachineInstrFromMaps(*I.first);
184  MF.DeleteMachineInstr(I.first);
185  }
186 
187  LoweredPHIs.clear();
188  ImpDefs.clear();
189  VRegPHIUseCount.clear();
190 
191  MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
192 
193  return Changed;
194 }
195 
196 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
197 /// predecessor basic blocks.
198 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
199  MachineBasicBlock &MBB) {
200  if (MBB.empty() || !MBB.front().isPHI())
201  return false; // Quick exit for basic blocks without PHIs.
202 
203  // Get an iterator to the last PHI node.
204  MachineBasicBlock::iterator LastPHIIt =
205  std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
206 
207  while (MBB.front().isPHI())
208  LowerPHINode(MBB, LastPHIIt);
209 
210  return true;
211 }
212 
213 /// Return true if all defs of VirtReg are implicit-defs.
214 /// This includes registers with no defs.
215 static bool isImplicitlyDefined(unsigned VirtReg,
216  const MachineRegisterInfo &MRI) {
217  for (MachineInstr &DI : MRI.def_instructions(VirtReg))
218  if (!DI.isImplicitDef())
219  return false;
220  return true;
221 }
222 
223 /// Return true if all sources of the phi node are implicit_def's, or undef's.
224 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
225  const MachineRegisterInfo &MRI) {
226  for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
227  const MachineOperand &MO = MPhi.getOperand(I);
228  if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
229  return false;
230  }
231  return true;
232 }
233 /// LowerPHINode - Lower the PHI node at the top of the specified block.
234 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
235  MachineBasicBlock::iterator LastPHIIt) {
236  ++NumLowered;
237 
238  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
239 
240  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
241  MachineInstr *MPhi = MBB.remove(&*MBB.begin());
242 
243  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
244  unsigned DestReg = MPhi->getOperand(0).getReg();
245  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
246  bool isDead = MPhi->getOperand(0).isDead();
247 
248  // Create a new register for the incoming PHI arguments.
249  MachineFunction &MF = *MBB.getParent();
250  unsigned IncomingReg = 0;
251  bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
252 
253  // Insert a register to register copy at the top of the current block (but
254  // after any remaining phi nodes) which copies the new incoming register
255  // into the phi node destination.
257  if (allPhiOperandsUndefined(*MPhi, *MRI))
258  // If all sources of a PHI node are implicit_def or undef uses, just emit an
259  // implicit_def instead of a copy.
260  BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
261  TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
262  else {
263  // Can we reuse an earlier PHI node? This only happens for critical edges,
264  // typically those created by tail duplication.
265  unsigned &entry = LoweredPHIs[MPhi];
266  if (entry) {
267  // An identical PHI node was already lowered. Reuse the incoming register.
268  IncomingReg = entry;
269  reusedIncoming = true;
270  ++NumReused;
271  LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
272  << *MPhi);
273  } else {
274  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
275  entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
276  }
277  BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
278  TII->get(TargetOpcode::COPY), DestReg)
279  .addReg(IncomingReg);
280  }
281 
282  // Update live variable information if there is any.
283  if (LV) {
284  MachineInstr &PHICopy = *std::prev(AfterPHIsIt);
285 
286  if (IncomingReg) {
287  LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
288 
289  // Increment use count of the newly created virtual register.
290  LV->setPHIJoin(IncomingReg);
291 
292  // When we are reusing the incoming register, it may already have been
293  // killed in this block. The old kill will also have been inserted at
294  // AfterPHIsIt, so it appears before the current PHICopy.
295  if (reusedIncoming)
296  if (MachineInstr *OldKill = VI.findKill(&MBB)) {
297  LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
298  LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
299  LLVM_DEBUG(MBB.dump());
300  }
301 
302  // Add information to LiveVariables to know that the incoming value is
303  // killed. Note that because the value is defined in several places (once
304  // each for each incoming block), the "def" block and instruction fields
305  // for the VarInfo is not filled in.
306  LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
307  }
308 
309  // Since we are going to be deleting the PHI node, if it is the last use of
310  // any registers, or if the value itself is dead, we need to move this
311  // information over to the new copy we just inserted.
312  LV->removeVirtualRegistersKilled(*MPhi);
313 
314  // If the result is dead, update LV.
315  if (isDead) {
316  LV->addVirtualRegisterDead(DestReg, PHICopy);
317  LV->removeVirtualRegisterDead(DestReg, *MPhi);
318  }
319  }
320 
321  // Update LiveIntervals for the new copy or implicit def.
322  if (LIS) {
323  SlotIndex DestCopyIndex =
324  LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt));
325 
326  SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
327  if (IncomingReg) {
328  // Add the region from the beginning of MBB to the copy instruction to
329  // IncomingReg's live interval.
330  LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
331  VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
332  if (!IncomingVNI)
333  IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
334  LIS->getVNInfoAllocator());
335  IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
336  DestCopyIndex.getRegSlot(),
337  IncomingVNI));
338  }
339 
340  LiveInterval &DestLI = LIS->getInterval(DestReg);
341  assert(DestLI.begin() != DestLI.end() &&
342  "PHIs should have nonempty LiveIntervals.");
343  if (DestLI.endIndex().isDead()) {
344  // A dead PHI's live range begins and ends at the start of the MBB, but
345  // the lowered copy, which will still be dead, needs to begin and end at
346  // the copy instruction.
347  VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
348  assert(OrigDestVNI && "PHI destination should be live at block entry.");
349  DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
350  DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
351  LIS->getVNInfoAllocator());
352  DestLI.removeValNo(OrigDestVNI);
353  } else {
354  // Otherwise, remove the region from the beginning of MBB to the copy
355  // instruction from DestReg's live interval.
356  DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
357  VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
358  assert(DestVNI && "PHI destination should be live at its definition.");
359  DestVNI->def = DestCopyIndex.getRegSlot();
360  }
361  }
362 
363  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
364  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
365  --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
366  MPhi->getOperand(i).getReg())];
367 
368  // Now loop over all of the incoming arguments, changing them to copy into the
369  // IncomingReg register in the corresponding predecessor basic block.
370  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
371  for (int i = NumSrcs - 1; i >= 0; --i) {
372  unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
373  unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
374  bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
375  isImplicitlyDefined(SrcReg, *MRI);
377  "Machine PHI Operands must all be virtual registers!");
378 
379  // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
380  // path the PHI.
381  MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
382 
383  // Check to make sure we haven't already emitted the copy for this block.
384  // This can happen because PHI nodes may have multiple entries for the same
385  // basic block.
386  if (!MBBsInsertedInto.insert(&opBlock).second)
387  continue; // If the copy has already been emitted, we're done.
388 
389  // Find a safe location to insert the copy, this may be the first terminator
390  // in the block (or end()).
391  MachineBasicBlock::iterator InsertPos =
392  findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
393 
394  // Insert the copy.
395  MachineInstr *NewSrcInstr = nullptr;
396  if (!reusedIncoming && IncomingReg) {
397  if (SrcUndef) {
398  // The source register is undefined, so there is no need for a real
399  // COPY, but we still need to ensure joint dominance by defs.
400  // Insert an IMPLICIT_DEF instruction.
401  NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
402  TII->get(TargetOpcode::IMPLICIT_DEF),
403  IncomingReg);
404 
405  // Clean up the old implicit-def, if there even was one.
406  if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
407  if (DefMI->isImplicitDef())
408  ImpDefs.insert(DefMI);
409  } else {
410  NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
411  TII->get(TargetOpcode::COPY), IncomingReg)
412  .addReg(SrcReg, 0, SrcSubReg);
413  }
414  }
415 
416  // We only need to update the LiveVariables kill of SrcReg if this was the
417  // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
418  // out of the predecessor. We can also ignore undef sources.
419  if (LV && !SrcUndef &&
420  !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
421  !LV->isLiveOut(SrcReg, opBlock)) {
422  // We want to be able to insert a kill of the register if this PHI (aka,
423  // the copy we just inserted) is the last use of the source value. Live
424  // variable analysis conservatively handles this by saying that the value
425  // is live until the end of the block the PHI entry lives in. If the value
426  // really is dead at the PHI copy, there will be no successor blocks which
427  // have the value live-in.
428 
429  // Okay, if we now know that the value is not live out of the block, we
430  // can add a kill marker in this block saying that it kills the incoming
431  // value!
432 
433  // In our final twist, we have to decide which instruction kills the
434  // register. In most cases this is the copy, however, terminator
435  // instructions at the end of the block may also use the value. In this
436  // case, we should mark the last such terminator as being the killing
437  // block, not the copy.
438  MachineBasicBlock::iterator KillInst = opBlock.end();
439  MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
440  for (MachineBasicBlock::iterator Term = FirstTerm;
441  Term != opBlock.end(); ++Term) {
442  if (Term->readsRegister(SrcReg))
443  KillInst = Term;
444  }
445 
446  if (KillInst == opBlock.end()) {
447  // No terminator uses the register.
448 
449  if (reusedIncoming || !IncomingReg) {
450  // We may have to rewind a bit if we didn't insert a copy this time.
451  KillInst = FirstTerm;
452  while (KillInst != opBlock.begin()) {
453  --KillInst;
454  if (KillInst->isDebugInstr())
455  continue;
456  if (KillInst->readsRegister(SrcReg))
457  break;
458  }
459  } else {
460  // We just inserted this copy.
461  KillInst = std::prev(InsertPos);
462  }
463  }
464  assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
465 
466  // Finally, mark it killed.
467  LV->addVirtualRegisterKilled(SrcReg, *KillInst);
468 
469  // This vreg no longer lives all of the way through opBlock.
470  unsigned opBlockNum = opBlock.getNumber();
471  LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
472  }
473 
474  if (LIS) {
475  if (NewSrcInstr) {
476  LIS->InsertMachineInstrInMaps(*NewSrcInstr);
477  LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
478  }
479 
480  if (!SrcUndef &&
481  !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
482  LiveInterval &SrcLI = LIS->getInterval(SrcReg);
483 
484  bool isLiveOut = false;
486  SE = opBlock.succ_end(); SI != SE; ++SI) {
487  SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
488  VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
489 
490  // Definitions by other PHIs are not truly live-in for our purposes.
491  if (VNI && VNI->def != startIdx) {
492  isLiveOut = true;
493  break;
494  }
495  }
496 
497  if (!isLiveOut) {
498  MachineBasicBlock::iterator KillInst = opBlock.end();
499  MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
500  for (MachineBasicBlock::iterator Term = FirstTerm;
501  Term != opBlock.end(); ++Term) {
502  if (Term->readsRegister(SrcReg))
503  KillInst = Term;
504  }
505 
506  if (KillInst == opBlock.end()) {
507  // No terminator uses the register.
508 
509  if (reusedIncoming || !IncomingReg) {
510  // We may have to rewind a bit if we didn't just insert a copy.
511  KillInst = FirstTerm;
512  while (KillInst != opBlock.begin()) {
513  --KillInst;
514  if (KillInst->isDebugInstr())
515  continue;
516  if (KillInst->readsRegister(SrcReg))
517  break;
518  }
519  } else {
520  // We just inserted this copy.
521  KillInst = std::prev(InsertPos);
522  }
523  }
524  assert(KillInst->readsRegister(SrcReg) &&
525  "Cannot find kill instruction");
526 
527  SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
528  SrcLI.removeSegment(LastUseIndex.getRegSlot(),
529  LIS->getMBBEndIdx(&opBlock));
530  }
531  }
532  }
533  }
534 
535  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
536  if (reusedIncoming || !IncomingReg) {
537  if (LIS)
538  LIS->RemoveMachineInstrFromMaps(*MPhi);
539  MF.DeleteMachineInstr(MPhi);
540  }
541 }
542 
543 /// analyzePHINodes - Gather information about the PHI nodes in here. In
544 /// particular, we want to map the number of uses of a virtual register which is
545 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
546 /// used later to determine when the vreg is killed in the BB.
547 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
548  for (const auto &MBB : MF)
549  for (const auto &BBI : MBB) {
550  if (!BBI.isPHI())
551  break;
552  for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
553  ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
554  BBI.getOperand(i).getReg())];
555  }
556 }
557 
558 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
559  MachineBasicBlock &MBB,
560  MachineLoopInfo *MLI) {
561  if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
562  return false; // Quick exit for basic blocks without PHIs.
563 
564  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
565  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
566 
567  bool Changed = false;
568  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
569  BBI != BBE && BBI->isPHI(); ++BBI) {
570  for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
571  unsigned Reg = BBI->getOperand(i).getReg();
572  MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
573  // Is there a critical edge from PreMBB to MBB?
574  if (PreMBB->succ_size() == 1)
575  continue;
576 
577  // Avoid splitting backedges of loops. It would introduce small
578  // out-of-line blocks into the loop which is very bad for code placement.
579  if (PreMBB == &MBB && !SplitAllCriticalEdges)
580  continue;
581  const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
582  if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
583  continue;
584 
585  // LV doesn't consider a phi use live-out, so isLiveOut only returns true
586  // when the source register is live-out for some other reason than a phi
587  // use. That means the copy we will insert in PreMBB won't be a kill, and
588  // there is a risk it may not be coalesced away.
589  //
590  // If the copy would be a kill, there is no need to split the edge.
591  bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
592  if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
593  continue;
594  if (ShouldSplit) {
595  LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
596  << printMBBReference(*PreMBB) << " -> "
597  << printMBBReference(MBB) << ": " << *BBI);
598  }
599 
600  // If Reg is not live-in to MBB, it means it must be live-in to some
601  // other PreMBB successor, and we can avoid the interference by splitting
602  // the edge.
603  //
604  // If Reg *is* live-in to MBB, the interference is inevitable and a copy
605  // is likely to be left after coalescing. If we are looking at a loop
606  // exiting edge, split it so we won't insert code in the loop, otherwise
607  // don't bother.
608  ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
609 
610  // Check for a loop exiting edge.
611  if (!ShouldSplit && CurLoop != PreLoop) {
612  LLVM_DEBUG({
613  dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
614  if (PreLoop)
615  dbgs() << "PreLoop: " << *PreLoop;
616  if (CurLoop)
617  dbgs() << "CurLoop: " << *CurLoop;
618  });
619  // This edge could be entering a loop, exiting a loop, or it could be
620  // both: Jumping directly form one loop to the header of a sibling
621  // loop.
622  // Split unless this edge is entering CurLoop from an outer loop.
623  ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
624  }
625  if (!ShouldSplit && !SplitAllCriticalEdges)
626  continue;
627  if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
628  LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
629  continue;
630  }
631  Changed = true;
632  ++NumCriticalEdgesSplit;
633  }
634  }
635  return Changed;
636 }
637 
638 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
639  assert((LV || LIS) &&
640  "isLiveIn() requires either LiveVariables or LiveIntervals");
641  if (LIS)
642  return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
643  else
644  return LV->isLiveIn(Reg, *MBB);
645 }
646 
647 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
648  const MachineBasicBlock *MBB) {
649  assert((LV || LIS) &&
650  "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
651  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
652  // so that a register used only in a PHI is not live out of the block. In
653  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
654  // in the predecessor basic block, so that a register used only in a PHI is live
655  // out of the block.
656  if (LIS) {
657  const LiveInterval &LI = LIS->getInterval(Reg);
658  for (const MachineBasicBlock *SI : MBB->successors())
659  if (LI.liveAt(LIS->getMBBStartIdx(SI)))
660  return true;
661  return false;
662  } else {
663  return LV->isLiveOut(Reg, *MBB);
664  }
665 }
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
MachineBasicBlock * getMBB() const
const TargetRegisterClass * getRegClass(unsigned Reg) const
Return the register class of the specified virtual register.
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:61
This class represents lattice values for constants.
Definition: AllocatorList.h:24
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:383
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:638
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
unsigned getReg() const
getReg - Returns the register number.
static bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
unsigned Reg
MachineBasicBlock::iterator findPHICopyInsertPoint(MachineBasicBlock *MBB, MachineBasicBlock *SuccMBB, unsigned SrcReg)
findPHICopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg when following the CFG...
unsigned getSubReg() const
bool isDead() const
isDead - Returns true if this is a dead def kill slot.
Definition: SlotIndexes.h:237
VarInfo - This represents the regions where a virtual register is live in the program.
Definition: LiveVariables.h:79
STATISTIC(NumFunctions, "Total number of functions")
unsigned SplitAllCriticalEdges(Function &F, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions())
Loop over all of the edges in the CFG, breaking critical edges as they are found. ...
MachineInstr * findKill(const MachineBasicBlock *MBB) const
findKill - Find a kill instruction in MBB. Return NULL if none is found.
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
bool isPHI() const
iterator_range< succ_iterator > successors()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
SlotIndex getDeadSlot() const
Returns the dead def kill slot for the current instruction.
Definition: SlotIndexes.h:260
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
static bool isImplicitlyDefined(unsigned VirtReg, const MachineRegisterInfo &MRI)
Return true if all defs of VirtReg are implicit-defs.
const HexagonInstrInfo * TII
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:412
Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
iterator end()
Definition: LiveInterval.h:212
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
BlockT * getHeader() const
Definition: LoopInfo.h:100
SlotIndexes pass.
Definition: SlotIndexes.h:331
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def...
Definition: SlotIndexes.h:255
iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they&#39;re not in a MachineFuncti...
virtual const TargetInstrInfo * getInstrInfo() const
static cl::opt< bool > NoPhiElimLiveOutEarlyExit("no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."))
VNInfo * createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc)
createDeadDef - Make sure the range has a value defined at Def.
TargetInstrInfo - Interface to description of machine instruction set.
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:409
char & PHIEliminationID
PHIElimination - This pass eliminates machine instruction PHI nodes by inserting copy instructions...
Eliminate PHI nodes for register allocation
void removeValNo(VNInfo *ValNo)
removeValNo - Remove all the segments defined by the specified value#.
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
SlotIndex endIndex() const
endNumber - return the maximum point of the range of the whole, exclusive.
Definition: LiveInterval.h:380
iterator SkipPHIsAndLabels(iterator I)
Return the first instruction in MBB after I that is not a PHI or a label.
unsigned const MachineRegisterInfo * MRI
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:389
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
Represent the analysis usage information of a pass.
INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, "Eliminate PHI nodes for register allocation", false, false) INITIALIZE_PASS_END(PHIElimination
static bool allPhiOperandsUndefined(const MachineInstr &MPhi, const MachineRegisterInfo &MRI)
Return true if all sources of the phi node are implicit_def&#39;s, or undef&#39;s.
void DeleteMachineInstr(MachineInstr *MI)
DeleteMachineInstr - Delete the given MachineInstr.
bool isImplicitDef() const
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
void initializePHIEliminationPass(PassRegistry &)
void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
Remove the specified segment from this range.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
Definition: LoopInfo.h:110
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
#define DEBUG_TYPE
MachineOperand class - Representation of each machine instruction operand.
MachineInstrBuilder MachineInstrBuilder & DefMI
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
unsigned succ_size() const
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< typename GraphTraits< GraphType >::nodes_iterator > nodes(const GraphType &G)
Definition: GraphTraits.h:109
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
static cl::opt< bool > DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), cl::Hidden, cl::desc("Disable critical edge splitting " "during PHI elimination"))
bool isEHPad() const
Returns true if the block is a landing pad.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
#define I(x, y, z)
Definition: MD5.cpp:58
iterator begin()
Definition: LiveInterval.h:211
VNInfo * getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator)
getNextValue - Create a new value number and return it.
Definition: LiveInterval.h:319
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P)
Split the critical edge from this block to the given successor block, and return the newly created bl...
MachineLoop * getLoopFor(const MachineBasicBlock *BB) const
Return the innermost loop that BB lives in.
iterator_range< def_instr_iterator > def_instructions(unsigned Reg) const
static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg)
print Instructions which execute on loop entry
#define LLVM_DEBUG(X)
Definition: Debug.h:123
for(unsigned i=Desc.getNumOperands(), e=OldMI.getNumOperands();i !=e;++i)
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:84
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
std::vector< MachineBasicBlock * >::iterator succ_iterator
unsigned createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...