LLVM  8.0.1
MipsFastISel.cpp
Go to the documentation of this file.
1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file defines the MIPS-specific support for the FastISel class.
12 /// Some of the target-specific code is generated by tablegen in the file
13 /// MipsGenFastISel.inc, which is #included here.
14 ///
15 //===----------------------------------------------------------------------===//
16 
19 #include "MipsCCState.h"
20 #include "MipsISelLowering.h"
21 #include "MipsInstrInfo.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCInstrDesc.h"
61 #include "llvm/MC/MCRegisterInfo.h"
62 #include "llvm/MC/MCSymbol.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 
75 #define DEBUG_TYPE "mips-fastisel"
76 
77 using namespace llvm;
78 
80 
81 namespace {
82 
83 class MipsFastISel final : public FastISel {
84 
85  // All possible address modes.
86  class Address {
87  public:
88  using BaseKind = enum { RegBase, FrameIndexBase };
89 
90  private:
91  BaseKind Kind = RegBase;
92  union {
93  unsigned Reg;
94  int FI;
95  } Base;
96 
97  int64_t Offset = 0;
98 
99  const GlobalValue *GV = nullptr;
100 
101  public:
102  // Innocuous defaults for our address.
103  Address() { Base.Reg = 0; }
104 
105  void setKind(BaseKind K) { Kind = K; }
106  BaseKind getKind() const { return Kind; }
107  bool isRegBase() const { return Kind == RegBase; }
108  bool isFIBase() const { return Kind == FrameIndexBase; }
109 
110  void setReg(unsigned Reg) {
111  assert(isRegBase() && "Invalid base register access!");
112  Base.Reg = Reg;
113  }
114 
115  unsigned getReg() const {
116  assert(isRegBase() && "Invalid base register access!");
117  return Base.Reg;
118  }
119 
120  void setFI(unsigned FI) {
121  assert(isFIBase() && "Invalid base frame index access!");
122  Base.FI = FI;
123  }
124 
125  unsigned getFI() const {
126  assert(isFIBase() && "Invalid base frame index access!");
127  return Base.FI;
128  }
129 
130  void setOffset(int64_t Offset_) { Offset = Offset_; }
131  int64_t getOffset() const { return Offset; }
132  void setGlobalValue(const GlobalValue *G) { GV = G; }
133  const GlobalValue *getGlobalValue() { return GV; }
134  };
135 
136  /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
137  /// make the right decision when generating code for different targets.
138  const TargetMachine &TM;
139  const MipsSubtarget *Subtarget;
140  const TargetInstrInfo &TII;
141  const TargetLowering &TLI;
142  MipsFunctionInfo *MFI;
143 
144  // Convenience variables to avoid some queries.
146 
147  bool fastLowerArguments() override;
148  bool fastLowerCall(CallLoweringInfo &CLI) override;
149  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
150 
151  bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
152  // floating point but not reject doing fast-isel in other
153  // situations
154 
155 private:
156  // Selection routines.
157  bool selectLogicalOp(const Instruction *I);
158  bool selectLoad(const Instruction *I);
159  bool selectStore(const Instruction *I);
160  bool selectBranch(const Instruction *I);
161  bool selectSelect(const Instruction *I);
162  bool selectCmp(const Instruction *I);
163  bool selectFPExt(const Instruction *I);
164  bool selectFPTrunc(const Instruction *I);
165  bool selectFPToInt(const Instruction *I, bool IsSigned);
166  bool selectRet(const Instruction *I);
167  bool selectTrunc(const Instruction *I);
168  bool selectIntExt(const Instruction *I);
169  bool selectShift(const Instruction *I);
170  bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
171 
172  // Utility helper routines.
173  bool isTypeLegal(Type *Ty, MVT &VT);
174  bool isTypeSupported(Type *Ty, MVT &VT);
175  bool isLoadTypeLegal(Type *Ty, MVT &VT);
176  bool computeAddress(const Value *Obj, Address &Addr);
177  bool computeCallAddress(const Value *V, Address &Addr);
178  void simplifyAddress(Address &Addr);
179 
180  // Emit helper routines.
181  bool emitCmp(unsigned DestReg, const CmpInst *CI);
182  bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
183  unsigned Alignment = 0);
184  bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
185  MachineMemOperand *MMO = nullptr);
186  bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
187  unsigned Alignment = 0);
188  unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
189  bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
190 
191  bool IsZExt);
192  bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
193 
194  bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
195  bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
196  unsigned DestReg);
197  bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
198  unsigned DestReg);
199 
200  unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
201 
202  unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
203  const Value *RHS);
204 
205  unsigned materializeFP(const ConstantFP *CFP, MVT VT);
206  unsigned materializeGV(const GlobalValue *GV, MVT VT);
207  unsigned materializeInt(const Constant *C, MVT VT);
208  unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
209  unsigned materializeExternalCallSym(MCSymbol *Syn);
210 
211  MachineInstrBuilder emitInst(unsigned Opc) {
212  return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
213  }
214 
215  MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
216  return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
217  DstReg);
218  }
219 
220  MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
221  unsigned MemReg, int64_t MemOffset) {
222  return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
223  }
224 
225  MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
226  unsigned MemReg, int64_t MemOffset) {
227  return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
228  }
229 
230  unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
231  const TargetRegisterClass *RC,
232  unsigned Op0, bool Op0IsKill,
233  unsigned Op1, bool Op1IsKill);
234 
235  // for some reason, this default is not generated by tablegen
236  // so we explicitly generate it here.
237  unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
238  unsigned Op0, bool Op0IsKill, uint64_t imm1,
239  uint64_t imm2, unsigned Op3, bool Op3IsKill) {
240  return 0;
241  }
242 
243  // Call handling routines.
244 private:
245  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
246  bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
247  unsigned &NumBytes);
248  bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
249 
250  const MipsABIInfo &getABI() const {
251  return static_cast<const MipsTargetMachine &>(TM).getABI();
252  }
253 
254 public:
255  // Backend specific FastISel code.
256  explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
257  const TargetLibraryInfo *libInfo)
258  : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
259  Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
260  TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
261  MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
262  Context = &funcInfo.Fn->getContext();
263  UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
264  }
265 
266  unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
267  unsigned fastMaterializeConstant(const Constant *C) override;
268  bool fastSelectInstruction(const Instruction *I) override;
269 
270 #include "MipsGenFastISel.inc"
271 };
272 
273 } // end anonymous namespace
274 
275 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
276  CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
278 
279 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
280  CCValAssign::LocInfo LocInfo,
281  ISD::ArgFlagsTy ArgFlags, CCState &State) {
282  llvm_unreachable("should not be called");
283 }
284 
285 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
286  CCValAssign::LocInfo LocInfo,
287  ISD::ArgFlagsTy ArgFlags, CCState &State) {
288  llvm_unreachable("should not be called");
289 }
290 
291 #include "MipsGenCallingConv.inc"
292 
293 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
294  return CC_MipsO32;
295 }
296 
297 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
298  const Value *LHS, const Value *RHS) {
299  // Canonicalize immediates to the RHS first.
300  if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
301  std::swap(LHS, RHS);
302 
303  unsigned Opc;
304  switch (ISDOpc) {
305  case ISD::AND:
306  Opc = Mips::AND;
307  break;
308  case ISD::OR:
309  Opc = Mips::OR;
310  break;
311  case ISD::XOR:
312  Opc = Mips::XOR;
313  break;
314  default:
315  llvm_unreachable("unexpected opcode");
316  }
317 
318  unsigned LHSReg = getRegForValue(LHS);
319  if (!LHSReg)
320  return 0;
321 
322  unsigned RHSReg;
323  if (const auto *C = dyn_cast<ConstantInt>(RHS))
324  RHSReg = materializeInt(C, MVT::i32);
325  else
326  RHSReg = getRegForValue(RHS);
327  if (!RHSReg)
328  return 0;
329 
330  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
331  if (!ResultReg)
332  return 0;
333 
334  emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
335  return ResultReg;
336 }
337 
338 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
339  assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
340  "Alloca should always return a pointer.");
341 
343  FuncInfo.StaticAllocaMap.find(AI);
344 
345  if (SI != FuncInfo.StaticAllocaMap.end()) {
346  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
347  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
348  ResultReg)
349  .addFrameIndex(SI->second)
350  .addImm(0);
351  return ResultReg;
352  }
353 
354  return 0;
355 }
356 
357 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
358  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
359  return 0;
360  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
361  const ConstantInt *CI = cast<ConstantInt>(C);
362  return materialize32BitInt(CI->getZExtValue(), RC);
363 }
364 
365 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
366  const TargetRegisterClass *RC) {
367  unsigned ResultReg = createResultReg(RC);
368 
369  if (isInt<16>(Imm)) {
370  unsigned Opc = Mips::ADDiu;
371  emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
372  return ResultReg;
373  } else if (isUInt<16>(Imm)) {
374  emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
375  return ResultReg;
376  }
377  unsigned Lo = Imm & 0xFFFF;
378  unsigned Hi = (Imm >> 16) & 0xFFFF;
379  if (Lo) {
380  // Both Lo and Hi have nonzero bits.
381  unsigned TmpReg = createResultReg(RC);
382  emitInst(Mips::LUi, TmpReg).addImm(Hi);
383  emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
384  } else {
385  emitInst(Mips::LUi, ResultReg).addImm(Hi);
386  }
387  return ResultReg;
388 }
389 
390 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
391  if (UnsupportedFPMode)
392  return 0;
393  int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
394  if (VT == MVT::f32) {
395  const TargetRegisterClass *RC = &Mips::FGR32RegClass;
396  unsigned DestReg = createResultReg(RC);
397  unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
398  emitInst(Mips::MTC1, DestReg).addReg(TempReg);
399  return DestReg;
400  } else if (VT == MVT::f64) {
401  const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
402  unsigned DestReg = createResultReg(RC);
403  unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
404  unsigned TempReg2 =
405  materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
406  emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
407  return DestReg;
408  }
409  return 0;
410 }
411 
412 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
413  // For now 32-bit only.
414  if (VT != MVT::i32)
415  return 0;
416  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
417  unsigned DestReg = createResultReg(RC);
418  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
419  bool IsThreadLocal = GVar && GVar->isThreadLocal();
420  // TLS not supported at this time.
421  if (IsThreadLocal)
422  return 0;
423  emitInst(Mips::LW, DestReg)
424  .addReg(MFI->getGlobalBaseReg())
425  .addGlobalAddress(GV, 0, MipsII::MO_GOT);
426  if ((GV->hasInternalLinkage() ||
427  (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
428  unsigned TempReg = createResultReg(RC);
429  emitInst(Mips::ADDiu, TempReg)
430  .addReg(DestReg)
431  .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
432  DestReg = TempReg;
433  }
434  return DestReg;
435 }
436 
437 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
438  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
439  unsigned DestReg = createResultReg(RC);
440  emitInst(Mips::LW, DestReg)
441  .addReg(MFI->getGlobalBaseReg())
442  .addSym(Sym, MipsII::MO_GOT);
443  return DestReg;
444 }
445 
446 // Materialize a constant into a register, and return the register
447 // number (or zero if we failed to handle it).
448 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
449  EVT CEVT = TLI.getValueType(DL, C->getType(), true);
450 
451  // Only handle simple types.
452  if (!CEVT.isSimple())
453  return 0;
454  MVT VT = CEVT.getSimpleVT();
455 
456  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
457  return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
458  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
459  return materializeGV(GV, VT);
460  else if (isa<ConstantInt>(C))
461  return materializeInt(C, VT);
462 
463  return 0;
464 }
465 
466 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
467  const User *U = nullptr;
468  unsigned Opcode = Instruction::UserOp1;
469  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
470  // Don't walk into other basic blocks unless the object is an alloca from
471  // another block, otherwise it may not have a virtual register assigned.
472  if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
473  FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
474  Opcode = I->getOpcode();
475  U = I;
476  }
477  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
478  Opcode = C->getOpcode();
479  U = C;
480  }
481  switch (Opcode) {
482  default:
483  break;
484  case Instruction::BitCast:
485  // Look through bitcasts.
486  return computeAddress(U->getOperand(0), Addr);
487  case Instruction::GetElementPtr: {
488  Address SavedAddr = Addr;
489  int64_t TmpOffset = Addr.getOffset();
490  // Iterate through the GEP folding the constants into offsets where
491  // we can.
493  for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
494  ++i, ++GTI) {
495  const Value *Op = *i;
496  if (StructType *STy = GTI.getStructTypeOrNull()) {
497  const StructLayout *SL = DL.getStructLayout(STy);
498  unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
499  TmpOffset += SL->getElementOffset(Idx);
500  } else {
501  uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
502  while (true) {
503  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
504  // Constant-offset addressing.
505  TmpOffset += CI->getSExtValue() * S;
506  break;
507  }
508  if (canFoldAddIntoGEP(U, Op)) {
509  // A compatible add with a constant operand. Fold the constant.
510  ConstantInt *CI =
511  cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
512  TmpOffset += CI->getSExtValue() * S;
513  // Iterate on the other operand.
514  Op = cast<AddOperator>(Op)->getOperand(0);
515  continue;
516  }
517  // Unsupported
518  goto unsupported_gep;
519  }
520  }
521  }
522  // Try to grab the base operand now.
523  Addr.setOffset(TmpOffset);
524  if (computeAddress(U->getOperand(0), Addr))
525  return true;
526  // We failed, restore everything and try the other options.
527  Addr = SavedAddr;
528  unsupported_gep:
529  break;
530  }
531  case Instruction::Alloca: {
532  const AllocaInst *AI = cast<AllocaInst>(Obj);
534  FuncInfo.StaticAllocaMap.find(AI);
535  if (SI != FuncInfo.StaticAllocaMap.end()) {
536  Addr.setKind(Address::FrameIndexBase);
537  Addr.setFI(SI->second);
538  return true;
539  }
540  break;
541  }
542  }
543  Addr.setReg(getRegForValue(Obj));
544  return Addr.getReg() != 0;
545 }
546 
547 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
548  const User *U = nullptr;
549  unsigned Opcode = Instruction::UserOp1;
550 
551  if (const auto *I = dyn_cast<Instruction>(V)) {
552  // Check if the value is defined in the same basic block. This information
553  // is crucial to know whether or not folding an operand is valid.
554  if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
555  Opcode = I->getOpcode();
556  U = I;
557  }
558  } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
559  Opcode = C->getOpcode();
560  U = C;
561  }
562 
563  switch (Opcode) {
564  default:
565  break;
566  case Instruction::BitCast:
567  // Look past bitcasts if its operand is in the same BB.
568  return computeCallAddress(U->getOperand(0), Addr);
569  break;
570  case Instruction::IntToPtr:
571  // Look past no-op inttoptrs if its operand is in the same BB.
572  if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
573  TLI.getPointerTy(DL))
574  return computeCallAddress(U->getOperand(0), Addr);
575  break;
576  case Instruction::PtrToInt:
577  // Look past no-op ptrtoints if its operand is in the same BB.
578  if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
579  return computeCallAddress(U->getOperand(0), Addr);
580  break;
581  }
582 
583  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
584  Addr.setGlobalValue(GV);
585  return true;
586  }
587 
588  // If all else fails, try to materialize the value in a register.
589  if (!Addr.getGlobalValue()) {
590  Addr.setReg(getRegForValue(V));
591  return Addr.getReg() != 0;
592  }
593 
594  return false;
595 }
596 
597 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
598  EVT evt = TLI.getValueType(DL, Ty, true);
599  // Only handle simple types.
600  if (evt == MVT::Other || !evt.isSimple())
601  return false;
602  VT = evt.getSimpleVT();
603 
604  // Handle all legal types, i.e. a register that will directly hold this
605  // value.
606  return TLI.isTypeLegal(VT);
607 }
608 
609 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
610  if (Ty->isVectorTy())
611  return false;
612 
613  if (isTypeLegal(Ty, VT))
614  return true;
615 
616  // If this is a type than can be sign or zero-extended to a basic operation
617  // go ahead and accept it now.
618  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
619  return true;
620 
621  return false;
622 }
623 
624 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
625  if (isTypeLegal(Ty, VT))
626  return true;
627  // We will extend this in a later patch:
628  // If this is a type than can be sign or zero-extended to a basic operation
629  // go ahead and accept it now.
630  if (VT == MVT::i8 || VT == MVT::i16)
631  return true;
632  return false;
633 }
634 
635 // Because of how EmitCmp is called with fast-isel, you can
636 // end up with redundant "andi" instructions after the sequences emitted below.
637 // We should try and solve this issue in the future.
638 //
639 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
640  const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
641  bool IsUnsigned = CI->isUnsigned();
642  unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
643  if (LeftReg == 0)
644  return false;
645  unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
646  if (RightReg == 0)
647  return false;
649 
650  switch (P) {
651  default:
652  return false;
653  case CmpInst::ICMP_EQ: {
654  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
655  emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
656  emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
657  break;
658  }
659  case CmpInst::ICMP_NE: {
660  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
661  emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
662  emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
663  break;
664  }
665  case CmpInst::ICMP_UGT:
666  emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
667  break;
668  case CmpInst::ICMP_ULT:
669  emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
670  break;
671  case CmpInst::ICMP_UGE: {
672  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
673  emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
674  emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
675  break;
676  }
677  case CmpInst::ICMP_ULE: {
678  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
679  emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
680  emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
681  break;
682  }
683  case CmpInst::ICMP_SGT:
684  emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
685  break;
686  case CmpInst::ICMP_SLT:
687  emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
688  break;
689  case CmpInst::ICMP_SGE: {
690  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
691  emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
692  emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
693  break;
694  }
695  case CmpInst::ICMP_SLE: {
696  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
697  emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
698  emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
699  break;
700  }
701  case CmpInst::FCMP_OEQ:
702  case CmpInst::FCMP_UNE:
703  case CmpInst::FCMP_OLT:
704  case CmpInst::FCMP_OLE:
705  case CmpInst::FCMP_OGT:
706  case CmpInst::FCMP_OGE: {
707  if (UnsupportedFPMode)
708  return false;
709  bool IsFloat = Left->getType()->isFloatTy();
710  bool IsDouble = Left->getType()->isDoubleTy();
711  if (!IsFloat && !IsDouble)
712  return false;
713  unsigned Opc, CondMovOpc;
714  switch (P) {
715  case CmpInst::FCMP_OEQ:
716  Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
717  CondMovOpc = Mips::MOVT_I;
718  break;
719  case CmpInst::FCMP_UNE:
720  Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
721  CondMovOpc = Mips::MOVF_I;
722  break;
723  case CmpInst::FCMP_OLT:
724  Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
725  CondMovOpc = Mips::MOVT_I;
726  break;
727  case CmpInst::FCMP_OLE:
728  Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
729  CondMovOpc = Mips::MOVT_I;
730  break;
731  case CmpInst::FCMP_OGT:
732  Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
733  CondMovOpc = Mips::MOVF_I;
734  break;
735  case CmpInst::FCMP_OGE:
736  Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
737  CondMovOpc = Mips::MOVF_I;
738  break;
739  default:
740  llvm_unreachable("Only switching of a subset of CCs.");
741  }
742  unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
743  unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
744  emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
745  emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
746  emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
747  .addReg(RightReg);
748  emitInst(CondMovOpc, ResultReg)
749  .addReg(RegWithOne)
750  .addReg(Mips::FCC0)
751  .addReg(RegWithZero);
752  break;
753  }
754  }
755  return true;
756 }
757 
758 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
759  unsigned Alignment) {
760  //
761  // more cases will be handled here in following patches.
762  //
763  unsigned Opc;
764  switch (VT.SimpleTy) {
765  case MVT::i32:
766  ResultReg = createResultReg(&Mips::GPR32RegClass);
767  Opc = Mips::LW;
768  break;
769  case MVT::i16:
770  ResultReg = createResultReg(&Mips::GPR32RegClass);
771  Opc = Mips::LHu;
772  break;
773  case MVT::i8:
774  ResultReg = createResultReg(&Mips::GPR32RegClass);
775  Opc = Mips::LBu;
776  break;
777  case MVT::f32:
778  if (UnsupportedFPMode)
779  return false;
780  ResultReg = createResultReg(&Mips::FGR32RegClass);
781  Opc = Mips::LWC1;
782  break;
783  case MVT::f64:
784  if (UnsupportedFPMode)
785  return false;
786  ResultReg = createResultReg(&Mips::AFGR64RegClass);
787  Opc = Mips::LDC1;
788  break;
789  default:
790  return false;
791  }
792  if (Addr.isRegBase()) {
793  simplifyAddress(Addr);
794  emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
795  return true;
796  }
797  if (Addr.isFIBase()) {
798  unsigned FI = Addr.getFI();
799  unsigned Align = 4;
800  int64_t Offset = Addr.getOffset();
801  MachineFrameInfo &MFI = MF->getFrameInfo();
802  MachineMemOperand *MMO = MF->getMachineMemOperand(
804  MFI.getObjectSize(FI), Align);
805  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
806  .addFrameIndex(FI)
807  .addImm(Offset)
808  .addMemOperand(MMO);
809  return true;
810  }
811  return false;
812 }
813 
814 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
815  unsigned Alignment) {
816  //
817  // more cases will be handled here in following patches.
818  //
819  unsigned Opc;
820  switch (VT.SimpleTy) {
821  case MVT::i8:
822  Opc = Mips::SB;
823  break;
824  case MVT::i16:
825  Opc = Mips::SH;
826  break;
827  case MVT::i32:
828  Opc = Mips::SW;
829  break;
830  case MVT::f32:
831  if (UnsupportedFPMode)
832  return false;
833  Opc = Mips::SWC1;
834  break;
835  case MVT::f64:
836  if (UnsupportedFPMode)
837  return false;
838  Opc = Mips::SDC1;
839  break;
840  default:
841  return false;
842  }
843  if (Addr.isRegBase()) {
844  simplifyAddress(Addr);
845  emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
846  return true;
847  }
848  if (Addr.isFIBase()) {
849  unsigned FI = Addr.getFI();
850  unsigned Align = 4;
851  int64_t Offset = Addr.getOffset();
852  MachineFrameInfo &MFI = MF->getFrameInfo();
853  MachineMemOperand *MMO = MF->getMachineMemOperand(
855  MFI.getObjectSize(FI), Align);
856  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
857  .addReg(SrcReg)
858  .addFrameIndex(FI)
859  .addImm(Offset)
860  .addMemOperand(MMO);
861  return true;
862  }
863  return false;
864 }
865 
866 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
867  MVT VT;
868  if (!isTypeSupported(I->getType(), VT))
869  return false;
870 
871  unsigned ResultReg;
872  switch (I->getOpcode()) {
873  default:
874  llvm_unreachable("Unexpected instruction.");
875  case Instruction::And:
876  ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
877  break;
878  case Instruction::Or:
879  ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
880  break;
881  case Instruction::Xor:
882  ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
883  break;
884  }
885 
886  if (!ResultReg)
887  return false;
888 
889  updateValueMap(I, ResultReg);
890  return true;
891 }
892 
893 bool MipsFastISel::selectLoad(const Instruction *I) {
894  // Atomic loads need special handling.
895  if (cast<LoadInst>(I)->isAtomic())
896  return false;
897 
898  // Verify we have a legal type before going any further.
899  MVT VT;
900  if (!isLoadTypeLegal(I->getType(), VT))
901  return false;
902 
903  // See if we can handle this address.
904  Address Addr;
905  if (!computeAddress(I->getOperand(0), Addr))
906  return false;
907 
908  unsigned ResultReg;
909  if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
910  return false;
911  updateValueMap(I, ResultReg);
912  return true;
913 }
914 
915 bool MipsFastISel::selectStore(const Instruction *I) {
916  Value *Op0 = I->getOperand(0);
917  unsigned SrcReg = 0;
918 
919  // Atomic stores need special handling.
920  if (cast<StoreInst>(I)->isAtomic())
921  return false;
922 
923  // Verify we have a legal type before going any further.
924  MVT VT;
925  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
926  return false;
927 
928  // Get the value to be stored into a register.
929  SrcReg = getRegForValue(Op0);
930  if (SrcReg == 0)
931  return false;
932 
933  // See if we can handle this address.
934  Address Addr;
935  if (!computeAddress(I->getOperand(1), Addr))
936  return false;
937 
938  if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
939  return false;
940  return true;
941 }
942 
943 // This can cause a redundant sltiu to be generated.
944 // FIXME: try and eliminate this in a future patch.
945 bool MipsFastISel::selectBranch(const Instruction *I) {
946  const BranchInst *BI = cast<BranchInst>(I);
947  MachineBasicBlock *BrBB = FuncInfo.MBB;
948  //
949  // TBB is the basic block for the case where the comparison is true.
950  // FBB is the basic block for the case where the comparison is false.
951  // if (cond) goto TBB
952  // goto FBB
953  // TBB:
954  //
955  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
956  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
957 
958  // Fold the common case of a conditional branch with a comparison
959  // in the same block.
960  unsigned ZExtCondReg = 0;
961  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
962  if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
963  ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
964  if (!emitCmp(ZExtCondReg, CI))
965  return false;
966  }
967  }
968 
969  // For the general case, we need to mask with 1.
970  if (ZExtCondReg == 0) {
971  unsigned CondReg = getRegForValue(BI->getCondition());
972  if (CondReg == 0)
973  return false;
974 
975  ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
976  if (ZExtCondReg == 0)
977  return false;
978  }
979 
980  BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
981  .addReg(ZExtCondReg)
982  .addMBB(TBB);
983  finishCondBranch(BI->getParent(), TBB, FBB);
984  return true;
985 }
986 
987 bool MipsFastISel::selectCmp(const Instruction *I) {
988  const CmpInst *CI = cast<CmpInst>(I);
989  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
990  if (!emitCmp(ResultReg, CI))
991  return false;
992  updateValueMap(I, ResultReg);
993  return true;
994 }
995 
996 // Attempt to fast-select a floating-point extend instruction.
997 bool MipsFastISel::selectFPExt(const Instruction *I) {
998  if (UnsupportedFPMode)
999  return false;
1000  Value *Src = I->getOperand(0);
1001  EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1002  EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1003 
1004  if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1005  return false;
1006 
1007  unsigned SrcReg =
1008  getRegForValue(Src); // this must be a 32bit floating point register class
1009  // maybe we should handle this differently
1010  if (!SrcReg)
1011  return false;
1012 
1013  unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
1014  emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1015  updateValueMap(I, DestReg);
1016  return true;
1017 }
1018 
1019 bool MipsFastISel::selectSelect(const Instruction *I) {
1020  assert(isa<SelectInst>(I) && "Expected a select instruction.");
1021 
1022  LLVM_DEBUG(dbgs() << "selectSelect\n");
1023 
1024  MVT VT;
1025  if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1026  LLVM_DEBUG(
1027  dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1028  return false;
1029  }
1030 
1031  unsigned CondMovOpc;
1032  const TargetRegisterClass *RC;
1033 
1034  if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1035  CondMovOpc = Mips::MOVN_I_I;
1036  RC = &Mips::GPR32RegClass;
1037  } else if (VT == MVT::f32) {
1038  CondMovOpc = Mips::MOVN_I_S;
1039  RC = &Mips::FGR32RegClass;
1040  } else if (VT == MVT::f64) {
1041  CondMovOpc = Mips::MOVN_I_D32;
1042  RC = &Mips::AFGR64RegClass;
1043  } else
1044  return false;
1045 
1046  const SelectInst *SI = cast<SelectInst>(I);
1047  const Value *Cond = SI->getCondition();
1048  unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1049  unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1050  unsigned CondReg = getRegForValue(Cond);
1051 
1052  if (!Src1Reg || !Src2Reg || !CondReg)
1053  return false;
1054 
1055  unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1056  if (!ZExtCondReg)
1057  return false;
1058 
1059  if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1060  return false;
1061 
1062  unsigned ResultReg = createResultReg(RC);
1063  unsigned TempReg = createResultReg(RC);
1064 
1065  if (!ResultReg || !TempReg)
1066  return false;
1067 
1068  emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1069  emitInst(CondMovOpc, ResultReg)
1070  .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1071  updateValueMap(I, ResultReg);
1072  return true;
1073 }
1074 
1075 // Attempt to fast-select a floating-point truncate instruction.
1076 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1077  if (UnsupportedFPMode)
1078  return false;
1079  Value *Src = I->getOperand(0);
1080  EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1081  EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1082 
1083  if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1084  return false;
1085 
1086  unsigned SrcReg = getRegForValue(Src);
1087  if (!SrcReg)
1088  return false;
1089 
1090  unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1091  if (!DestReg)
1092  return false;
1093 
1094  emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1095  updateValueMap(I, DestReg);
1096  return true;
1097 }
1098 
1099 // Attempt to fast-select a floating-point-to-integer conversion.
1100 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1101  if (UnsupportedFPMode)
1102  return false;
1103  MVT DstVT, SrcVT;
1104  if (!IsSigned)
1105  return false; // We don't handle this case yet. There is no native
1106  // instruction for this but it can be synthesized.
1107  Type *DstTy = I->getType();
1108  if (!isTypeLegal(DstTy, DstVT))
1109  return false;
1110 
1111  if (DstVT != MVT::i32)
1112  return false;
1113 
1114  Value *Src = I->getOperand(0);
1115  Type *SrcTy = Src->getType();
1116  if (!isTypeLegal(SrcTy, SrcVT))
1117  return false;
1118 
1119  if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1120  return false;
1121 
1122  unsigned SrcReg = getRegForValue(Src);
1123  if (SrcReg == 0)
1124  return false;
1125 
1126  // Determine the opcode for the conversion, which takes place
1127  // entirely within FPRs.
1128  unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1129  unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1130  unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1131 
1132  // Generate the convert.
1133  emitInst(Opc, TempReg).addReg(SrcReg);
1134  emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1135 
1136  updateValueMap(I, DestReg);
1137  return true;
1138 }
1139 
1140 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1141  SmallVectorImpl<MVT> &OutVTs,
1142  unsigned &NumBytes) {
1143  CallingConv::ID CC = CLI.CallConv;
1145  CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1146  CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1147  // Get a count of how many bytes are to be pushed on the stack.
1148  NumBytes = CCInfo.getNextStackOffset();
1149  // This is the minimum argument area used for A0-A3.
1150  if (NumBytes < 16)
1151  NumBytes = 16;
1152 
1153  emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1154  // Process the args.
1155  MVT firstMVT;
1156  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1157  CCValAssign &VA = ArgLocs[i];
1158  const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1159  MVT ArgVT = OutVTs[VA.getValNo()];
1160 
1161  if (i == 0) {
1162  firstMVT = ArgVT;
1163  if (ArgVT == MVT::f32) {
1164  VA.convertToReg(Mips::F12);
1165  } else if (ArgVT == MVT::f64) {
1166  VA.convertToReg(Mips::D6);
1167  }
1168  } else if (i == 1) {
1169  if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1170  if (ArgVT == MVT::f32) {
1171  VA.convertToReg(Mips::F14);
1172  } else if (ArgVT == MVT::f64) {
1173  VA.convertToReg(Mips::D7);
1174  }
1175  }
1176  }
1177  if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1178  (ArgVT == MVT::i8)) &&
1179  VA.isMemLoc()) {
1180  switch (VA.getLocMemOffset()) {
1181  case 0:
1182  VA.convertToReg(Mips::A0);
1183  break;
1184  case 4:
1185  VA.convertToReg(Mips::A1);
1186  break;
1187  case 8:
1188  VA.convertToReg(Mips::A2);
1189  break;
1190  case 12:
1191  VA.convertToReg(Mips::A3);
1192  break;
1193  default:
1194  break;
1195  }
1196  }
1197  unsigned ArgReg = getRegForValue(ArgVal);
1198  if (!ArgReg)
1199  return false;
1200 
1201  // Handle arg promotion: SExt, ZExt, AExt.
1202  switch (VA.getLocInfo()) {
1203  case CCValAssign::Full:
1204  break;
1205  case CCValAssign::AExt:
1206  case CCValAssign::SExt: {
1207  MVT DestVT = VA.getLocVT();
1208  MVT SrcVT = ArgVT;
1209  ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1210  if (!ArgReg)
1211  return false;
1212  break;
1213  }
1214  case CCValAssign::ZExt: {
1215  MVT DestVT = VA.getLocVT();
1216  MVT SrcVT = ArgVT;
1217  ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1218  if (!ArgReg)
1219  return false;
1220  break;
1221  }
1222  default:
1223  llvm_unreachable("Unknown arg promotion!");
1224  }
1225 
1226  // Now copy/store arg to correct locations.
1227  if (VA.isRegLoc() && !VA.needsCustom()) {
1228  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1229  TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1230  CLI.OutRegs.push_back(VA.getLocReg());
1231  } else if (VA.needsCustom()) {
1232  llvm_unreachable("Mips does not use custom args.");
1233  return false;
1234  } else {
1235  //
1236  // FIXME: This path will currently return false. It was copied
1237  // from the AArch64 port and should be essentially fine for Mips too.
1238  // The work to finish up this path will be done in a follow-on patch.
1239  //
1240  assert(VA.isMemLoc() && "Assuming store on stack.");
1241  // Don't emit stores for undef values.
1242  if (isa<UndefValue>(ArgVal))
1243  continue;
1244 
1245  // Need to store on the stack.
1246  // FIXME: This alignment is incorrect but this path is disabled
1247  // for now (will return false). We need to determine the right alignment
1248  // based on the normal alignment for the underlying machine type.
1249  //
1250  unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1251 
1252  unsigned BEAlign = 0;
1253  if (ArgSize < 8 && !Subtarget->isLittle())
1254  BEAlign = 8 - ArgSize;
1255 
1256  Address Addr;
1257  Addr.setKind(Address::RegBase);
1258  Addr.setReg(Mips::SP);
1259  Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1260 
1261  unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1262  MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1263  MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1264  MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1265  (void)(MMO);
1266  // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1267  return false; // can't store on the stack yet.
1268  }
1269  }
1270 
1271  return true;
1272 }
1273 
1274 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1275  unsigned NumBytes) {
1276  CallingConv::ID CC = CLI.CallConv;
1277  emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1278  if (RetVT != MVT::isVoid) {
1280  MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1281 
1282  CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1283  CLI.Symbol ? CLI.Symbol->getName().data()
1284  : nullptr);
1285 
1286  // Only handle a single return value.
1287  if (RVLocs.size() != 1)
1288  return false;
1289  // Copy all of the result registers out of their specified physreg.
1290  MVT CopyVT = RVLocs[0].getValVT();
1291  // Special handling for extended integers.
1292  if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1293  CopyVT = MVT::i32;
1294 
1295  unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1296  if (!ResultReg)
1297  return false;
1298  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1299  TII.get(TargetOpcode::COPY),
1300  ResultReg).addReg(RVLocs[0].getLocReg());
1301  CLI.InRegs.push_back(RVLocs[0].getLocReg());
1302 
1303  CLI.ResultReg = ResultReg;
1304  CLI.NumResultRegs = 1;
1305  }
1306  return true;
1307 }
1308 
1309 bool MipsFastISel::fastLowerArguments() {
1310  LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1311 
1312  if (!FuncInfo.CanLowerReturn) {
1313  LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1314  return false;
1315  }
1316 
1317  const Function *F = FuncInfo.Fn;
1318  if (F->isVarArg()) {
1319  LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1320  return false;
1321  }
1322 
1323  CallingConv::ID CC = F->getCallingConv();
1324  if (CC != CallingConv::C) {
1325  LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1326  return false;
1327  }
1328 
1329  std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1330  Mips::A3}};
1331  std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1332  std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1333  auto NextGPR32 = GPR32ArgRegs.begin();
1334  auto NextFGR32 = FGR32ArgRegs.begin();
1335  auto NextAFGR64 = AFGR64ArgRegs.begin();
1336 
1337  struct AllocatedReg {
1338  const TargetRegisterClass *RC;
1339  unsigned Reg;
1340  AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1341  : RC(RC), Reg(Reg) {}
1342  };
1343 
1344  // Only handle simple cases. i.e. All arguments are directly mapped to
1345  // registers of the appropriate type.
1346  SmallVector<AllocatedReg, 4> Allocation;
1347  for (const auto &FormalArg : F->args()) {
1348  if (FormalArg.hasAttribute(Attribute::InReg) ||
1349  FormalArg.hasAttribute(Attribute::StructRet) ||
1350  FormalArg.hasAttribute(Attribute::ByVal)) {
1351  LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1352  return false;
1353  }
1354 
1355  Type *ArgTy = FormalArg.getType();
1356  if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1357  LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1358  return false;
1359  }
1360 
1361  EVT ArgVT = TLI.getValueType(DL, ArgTy);
1362  LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1363  << ArgVT.getEVTString() << "\n");
1364  if (!ArgVT.isSimple()) {
1365  LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1366  return false;
1367  }
1368 
1369  switch (ArgVT.getSimpleVT().SimpleTy) {
1370  case MVT::i1:
1371  case MVT::i8:
1372  case MVT::i16:
1373  if (!FormalArg.hasAttribute(Attribute::SExt) &&
1374  !FormalArg.hasAttribute(Attribute::ZExt)) {
1375  // It must be any extend, this shouldn't happen for clang-generated IR
1376  // so just fall back on SelectionDAG.
1377  LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1378  return false;
1379  }
1380 
1381  if (NextGPR32 == GPR32ArgRegs.end()) {
1382  LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1383  return false;
1384  }
1385 
1386  LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1387  Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1388 
1389  // Allocating any GPR32 prohibits further use of floating point arguments.
1390  NextFGR32 = FGR32ArgRegs.end();
1391  NextAFGR64 = AFGR64ArgRegs.end();
1392  break;
1393 
1394  case MVT::i32:
1395  if (FormalArg.hasAttribute(Attribute::ZExt)) {
1396  // The O32 ABI does not permit a zero-extended i32.
1397  LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1398  return false;
1399  }
1400 
1401  if (NextGPR32 == GPR32ArgRegs.end()) {
1402  LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1403  return false;
1404  }
1405 
1406  LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1407  Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1408 
1409  // Allocating any GPR32 prohibits further use of floating point arguments.
1410  NextFGR32 = FGR32ArgRegs.end();
1411  NextAFGR64 = AFGR64ArgRegs.end();
1412  break;
1413 
1414  case MVT::f32:
1415  if (UnsupportedFPMode) {
1416  LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1417  return false;
1418  }
1419  if (NextFGR32 == FGR32ArgRegs.end()) {
1420  LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1421  return false;
1422  }
1423  LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1424  Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1425  // Allocating an FGR32 also allocates the super-register AFGR64, and
1426  // ABI rules require us to skip the corresponding GPR32.
1427  if (NextGPR32 != GPR32ArgRegs.end())
1428  NextGPR32++;
1429  if (NextAFGR64 != AFGR64ArgRegs.end())
1430  NextAFGR64++;
1431  break;
1432 
1433  case MVT::f64:
1434  if (UnsupportedFPMode) {
1435  LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1436  return false;
1437  }
1438  if (NextAFGR64 == AFGR64ArgRegs.end()) {
1439  LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1440  return false;
1441  }
1442  LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1443  Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1444  // Allocating an FGR32 also allocates the super-register AFGR64, and
1445  // ABI rules require us to skip the corresponding GPR32 pair.
1446  if (NextGPR32 != GPR32ArgRegs.end())
1447  NextGPR32++;
1448  if (NextGPR32 != GPR32ArgRegs.end())
1449  NextGPR32++;
1450  if (NextFGR32 != FGR32ArgRegs.end())
1451  NextFGR32++;
1452  break;
1453 
1454  default:
1455  LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1456  return false;
1457  }
1458  }
1459 
1460  for (const auto &FormalArg : F->args()) {
1461  unsigned ArgNo = FormalArg.getArgNo();
1462  unsigned SrcReg = Allocation[ArgNo].Reg;
1463  unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1464  // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1465  // Without this, EmitLiveInCopies may eliminate the livein if its only
1466  // use is a bitcast (which isn't turned into an instruction).
1467  unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1468  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1469  TII.get(TargetOpcode::COPY), ResultReg)
1470  .addReg(DstReg, getKillRegState(true));
1471  updateValueMap(&FormalArg, ResultReg);
1472  }
1473 
1474  // Calculate the size of the incoming arguments area.
1475  // We currently reject all the cases where this would be non-zero.
1476  unsigned IncomingArgSizeInBytes = 0;
1477 
1478  // Account for the reserved argument area on ABI's that have one (O32).
1479  // It seems strange to do this on the caller side but it's necessary in
1480  // SelectionDAG's implementation.
1481  IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1482  IncomingArgSizeInBytes);
1483 
1484  MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1485  false);
1486 
1487  return true;
1488 }
1489 
1490 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1491  CallingConv::ID CC = CLI.CallConv;
1492  bool IsTailCall = CLI.IsTailCall;
1493  bool IsVarArg = CLI.IsVarArg;
1494  const Value *Callee = CLI.Callee;
1495  MCSymbol *Symbol = CLI.Symbol;
1496 
1497  // Do not handle FastCC.
1498  if (CC == CallingConv::Fast)
1499  return false;
1500 
1501  // Allow SelectionDAG isel to handle tail calls.
1502  if (IsTailCall)
1503  return false;
1504 
1505  // Let SDISel handle vararg functions.
1506  if (IsVarArg)
1507  return false;
1508 
1509  // FIXME: Only handle *simple* calls for now.
1510  MVT RetVT;
1511  if (CLI.RetTy->isVoidTy())
1512  RetVT = MVT::isVoid;
1513  else if (!isTypeSupported(CLI.RetTy, RetVT))
1514  return false;
1515 
1516  for (auto Flag : CLI.OutFlags)
1517  if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1518  return false;
1519 
1520  // Set up the argument vectors.
1521  SmallVector<MVT, 16> OutVTs;
1522  OutVTs.reserve(CLI.OutVals.size());
1523 
1524  for (auto *Val : CLI.OutVals) {
1525  MVT VT;
1526  if (!isTypeLegal(Val->getType(), VT) &&
1527  !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1528  return false;
1529 
1530  // We don't handle vector parameters yet.
1531  if (VT.isVector() || VT.getSizeInBits() > 64)
1532  return false;
1533 
1534  OutVTs.push_back(VT);
1535  }
1536 
1537  Address Addr;
1538  if (!computeCallAddress(Callee, Addr))
1539  return false;
1540 
1541  // Handle the arguments now that we've gotten them.
1542  unsigned NumBytes;
1543  if (!processCallArgs(CLI, OutVTs, NumBytes))
1544  return false;
1545 
1546  if (!Addr.getGlobalValue())
1547  return false;
1548 
1549  // Issue the call.
1550  unsigned DestAddress;
1551  if (Symbol)
1552  DestAddress = materializeExternalCallSym(Symbol);
1553  else
1554  DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1555  emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1556  MachineInstrBuilder MIB =
1557  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1558  Mips::RA).addReg(Mips::T9);
1559 
1560  // Add implicit physical register uses to the call.
1561  for (auto Reg : CLI.OutRegs)
1563 
1564  // Add a register mask with the call-preserved registers.
1565  // Proper defs for return values will be added by setPhysRegsDeadExcept().
1566  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1567 
1568  CLI.Call = MIB;
1569 
1570  if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1571  // Attach callee address to the instruction, let asm printer emit
1572  // .reloc R_MIPS_JALR.
1573  if (Symbol)
1574  MIB.addSym(Symbol, MipsII::MO_JALR);
1575  else
1576  MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1577  Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1578  }
1579 
1580  // Finish off the call including any return values.
1581  return finishCall(CLI, RetVT, NumBytes);
1582 }
1583 
1584 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1585  switch (II->getIntrinsicID()) {
1586  default:
1587  return false;
1588  case Intrinsic::bswap: {
1589  Type *RetTy = II->getCalledFunction()->getReturnType();
1590 
1591  MVT VT;
1592  if (!isTypeSupported(RetTy, VT))
1593  return false;
1594 
1595  unsigned SrcReg = getRegForValue(II->getOperand(0));
1596  if (SrcReg == 0)
1597  return false;
1598  unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1599  if (DestReg == 0)
1600  return false;
1601  if (VT == MVT::i16) {
1602  if (Subtarget->hasMips32r2()) {
1603  emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1604  updateValueMap(II, DestReg);
1605  return true;
1606  } else {
1607  unsigned TempReg[3];
1608  for (int i = 0; i < 3; i++) {
1609  TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1610  if (TempReg[i] == 0)
1611  return false;
1612  }
1613  emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1614  emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1615  emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1616  emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1617  updateValueMap(II, DestReg);
1618  return true;
1619  }
1620  } else if (VT == MVT::i32) {
1621  if (Subtarget->hasMips32r2()) {
1622  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1623  emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1624  emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1625  updateValueMap(II, DestReg);
1626  return true;
1627  } else {
1628  unsigned TempReg[8];
1629  for (int i = 0; i < 8; i++) {
1630  TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1631  if (TempReg[i] == 0)
1632  return false;
1633  }
1634 
1635  emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1636  emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1637  emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1638  emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1639 
1640  emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1641  emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1642 
1643  emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1644  emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1645  emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1646  updateValueMap(II, DestReg);
1647  return true;
1648  }
1649  }
1650  return false;
1651  }
1652  case Intrinsic::memcpy:
1653  case Intrinsic::memmove: {
1654  const auto *MTI = cast<MemTransferInst>(II);
1655  // Don't handle volatile.
1656  if (MTI->isVolatile())
1657  return false;
1658  if (!MTI->getLength()->getType()->isIntegerTy(32))
1659  return false;
1660  const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1661  return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1662  }
1663  case Intrinsic::memset: {
1664  const MemSetInst *MSI = cast<MemSetInst>(II);
1665  // Don't handle volatile.
1666  if (MSI->isVolatile())
1667  return false;
1668  if (!MSI->getLength()->getType()->isIntegerTy(32))
1669  return false;
1670  return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1671  }
1672  }
1673  return false;
1674 }
1675 
1676 bool MipsFastISel::selectRet(const Instruction *I) {
1677  const Function &F = *I->getParent()->getParent();
1678  const ReturnInst *Ret = cast<ReturnInst>(I);
1679 
1680  LLVM_DEBUG(dbgs() << "selectRet\n");
1681 
1682  if (!FuncInfo.CanLowerReturn)
1683  return false;
1684 
1685  // Build a list of return value registers.
1686  SmallVector<unsigned, 4> RetRegs;
1687 
1688  if (Ret->getNumOperands() > 0) {
1690 
1691  // Do not handle FastCC.
1692  if (CC == CallingConv::Fast)
1693  return false;
1694 
1696  GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1697 
1698  // Analyze operands of the call, assigning locations to each operand.
1700  MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1701  I->getContext());
1702  CCAssignFn *RetCC = RetCC_Mips;
1703  CCInfo.AnalyzeReturn(Outs, RetCC);
1704 
1705  // Only handle a single return value for now.
1706  if (ValLocs.size() != 1)
1707  return false;
1708 
1709  CCValAssign &VA = ValLocs[0];
1710  const Value *RV = Ret->getOperand(0);
1711 
1712  // Don't bother handling odd stuff for now.
1713  if ((VA.getLocInfo() != CCValAssign::Full) &&
1714  (VA.getLocInfo() != CCValAssign::BCvt))
1715  return false;
1716 
1717  // Only handle register returns for now.
1718  if (!VA.isRegLoc())
1719  return false;
1720 
1721  unsigned Reg = getRegForValue(RV);
1722  if (Reg == 0)
1723  return false;
1724 
1725  unsigned SrcReg = Reg + VA.getValNo();
1726  unsigned DestReg = VA.getLocReg();
1727  // Avoid a cross-class copy. This is very unlikely.
1728  if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1729  return false;
1730 
1731  EVT RVEVT = TLI.getValueType(DL, RV->getType());
1732  if (!RVEVT.isSimple())
1733  return false;
1734 
1735  if (RVEVT.isVector())
1736  return false;
1737 
1738  MVT RVVT = RVEVT.getSimpleVT();
1739  if (RVVT == MVT::f128)
1740  return false;
1741 
1742  // Do not handle FGR64 returns for now.
1743  if (RVVT == MVT::f64 && UnsupportedFPMode) {
1744  LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1745  return false;
1746  }
1747 
1748  MVT DestVT = VA.getValVT();
1749  // Special handling for extended integers.
1750  if (RVVT != DestVT) {
1751  if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1752  return false;
1753 
1754  if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1755  bool IsZExt = Outs[0].Flags.isZExt();
1756  SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1757  if (SrcReg == 0)
1758  return false;
1759  }
1760  }
1761 
1762  // Make the copy.
1763  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1764  TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1765 
1766  // Add register to return instruction.
1767  RetRegs.push_back(VA.getLocReg());
1768  }
1769  MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1770  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1771  MIB.addReg(RetRegs[i], RegState::Implicit);
1772  return true;
1773 }
1774 
1775 bool MipsFastISel::selectTrunc(const Instruction *I) {
1776  // The high bits for a type smaller than the register size are assumed to be
1777  // undefined.
1778  Value *Op = I->getOperand(0);
1779 
1780  EVT SrcVT, DestVT;
1781  SrcVT = TLI.getValueType(DL, Op->getType(), true);
1782  DestVT = TLI.getValueType(DL, I->getType(), true);
1783 
1784  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1785  return false;
1786  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1787  return false;
1788 
1789  unsigned SrcReg = getRegForValue(Op);
1790  if (!SrcReg)
1791  return false;
1792 
1793  // Because the high bits are undefined, a truncate doesn't generate
1794  // any code.
1795  updateValueMap(I, SrcReg);
1796  return true;
1797 }
1798 
1799 bool MipsFastISel::selectIntExt(const Instruction *I) {
1800  Type *DestTy = I->getType();
1801  Value *Src = I->getOperand(0);
1802  Type *SrcTy = Src->getType();
1803 
1804  bool isZExt = isa<ZExtInst>(I);
1805  unsigned SrcReg = getRegForValue(Src);
1806  if (!SrcReg)
1807  return false;
1808 
1809  EVT SrcEVT, DestEVT;
1810  SrcEVT = TLI.getValueType(DL, SrcTy, true);
1811  DestEVT = TLI.getValueType(DL, DestTy, true);
1812  if (!SrcEVT.isSimple())
1813  return false;
1814  if (!DestEVT.isSimple())
1815  return false;
1816 
1817  MVT SrcVT = SrcEVT.getSimpleVT();
1818  MVT DestVT = DestEVT.getSimpleVT();
1819  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1820 
1821  if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1822  return false;
1823  updateValueMap(I, ResultReg);
1824  return true;
1825 }
1826 
1827 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1828  unsigned DestReg) {
1829  unsigned ShiftAmt;
1830  switch (SrcVT.SimpleTy) {
1831  default:
1832  return false;
1833  case MVT::i8:
1834  ShiftAmt = 24;
1835  break;
1836  case MVT::i16:
1837  ShiftAmt = 16;
1838  break;
1839  }
1840  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1841  emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1842  emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1843  return true;
1844 }
1845 
1846 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1847  unsigned DestReg) {
1848  switch (SrcVT.SimpleTy) {
1849  default:
1850  return false;
1851  case MVT::i8:
1852  emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1853  break;
1854  case MVT::i16:
1855  emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1856  break;
1857  }
1858  return true;
1859 }
1860 
1861 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1862  unsigned DestReg) {
1863  if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1864  return false;
1865  if (Subtarget->hasMips32r2())
1866  return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1867  return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1868 }
1869 
1870 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1871  unsigned DestReg) {
1872  int64_t Imm;
1873 
1874  switch (SrcVT.SimpleTy) {
1875  default:
1876  return false;
1877  case MVT::i1:
1878  Imm = 1;
1879  break;
1880  case MVT::i8:
1881  Imm = 0xff;
1882  break;
1883  case MVT::i16:
1884  Imm = 0xffff;
1885  break;
1886  }
1887 
1888  emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1889  return true;
1890 }
1891 
1892 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1893  unsigned DestReg, bool IsZExt) {
1894  // FastISel does not have plumbing to deal with extensions where the SrcVT or
1895  // DestVT are odd things, so test to make sure that they are both types we can
1896  // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1897  // bail out to SelectionDAG.
1898  if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1899  ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1900  return false;
1901  if (IsZExt)
1902  return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1903  return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1904 }
1905 
1906 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1907  bool isZExt) {
1908  unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1909  bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1910  return Success ? DestReg : 0;
1911 }
1912 
1913 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1914  EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1915  if (!DestEVT.isSimple())
1916  return false;
1917 
1918  MVT DestVT = DestEVT.getSimpleVT();
1919  if (DestVT != MVT::i32)
1920  return false;
1921 
1922  unsigned DivOpc;
1923  switch (ISDOpcode) {
1924  default:
1925  return false;
1926  case ISD::SDIV:
1927  case ISD::SREM:
1928  DivOpc = Mips::SDIV;
1929  break;
1930  case ISD::UDIV:
1931  case ISD::UREM:
1932  DivOpc = Mips::UDIV;
1933  break;
1934  }
1935 
1936  unsigned Src0Reg = getRegForValue(I->getOperand(0));
1937  unsigned Src1Reg = getRegForValue(I->getOperand(1));
1938  if (!Src0Reg || !Src1Reg)
1939  return false;
1940 
1941  emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1942  emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1943 
1944  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1945  if (!ResultReg)
1946  return false;
1947 
1948  unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1949  ? Mips::MFHI
1950  : Mips::MFLO;
1951  emitInst(MFOpc, ResultReg);
1952 
1953  updateValueMap(I, ResultReg);
1954  return true;
1955 }
1956 
1957 bool MipsFastISel::selectShift(const Instruction *I) {
1958  MVT RetVT;
1959 
1960  if (!isTypeSupported(I->getType(), RetVT))
1961  return false;
1962 
1963  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1964  if (!ResultReg)
1965  return false;
1966 
1967  unsigned Opcode = I->getOpcode();
1968  const Value *Op0 = I->getOperand(0);
1969  unsigned Op0Reg = getRegForValue(Op0);
1970  if (!Op0Reg)
1971  return false;
1972 
1973  // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1974  if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1975  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1976  if (!TempReg)
1977  return false;
1978 
1979  MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1980  bool IsZExt = Opcode == Instruction::LShr;
1981  if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1982  return false;
1983 
1984  Op0Reg = TempReg;
1985  }
1986 
1987  if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1988  uint64_t ShiftVal = C->getZExtValue();
1989 
1990  switch (Opcode) {
1991  default:
1992  llvm_unreachable("Unexpected instruction.");
1993  case Instruction::Shl:
1994  Opcode = Mips::SLL;
1995  break;
1996  case Instruction::AShr:
1997  Opcode = Mips::SRA;
1998  break;
1999  case Instruction::LShr:
2000  Opcode = Mips::SRL;
2001  break;
2002  }
2003 
2004  emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2005  updateValueMap(I, ResultReg);
2006  return true;
2007  }
2008 
2009  unsigned Op1Reg = getRegForValue(I->getOperand(1));
2010  if (!Op1Reg)
2011  return false;
2012 
2013  switch (Opcode) {
2014  default:
2015  llvm_unreachable("Unexpected instruction.");
2016  case Instruction::Shl:
2017  Opcode = Mips::SLLV;
2018  break;
2019  case Instruction::AShr:
2020  Opcode = Mips::SRAV;
2021  break;
2022  case Instruction::LShr:
2023  Opcode = Mips::SRLV;
2024  break;
2025  }
2026 
2027  emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2028  updateValueMap(I, ResultReg);
2029  return true;
2030 }
2031 
2032 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2033  switch (I->getOpcode()) {
2034  default:
2035  break;
2036  case Instruction::Load:
2037  return selectLoad(I);
2038  case Instruction::Store:
2039  return selectStore(I);
2040  case Instruction::SDiv:
2041  if (!selectBinaryOp(I, ISD::SDIV))
2042  return selectDivRem(I, ISD::SDIV);
2043  return true;
2044  case Instruction::UDiv:
2045  if (!selectBinaryOp(I, ISD::UDIV))
2046  return selectDivRem(I, ISD::UDIV);
2047  return true;
2048  case Instruction::SRem:
2049  if (!selectBinaryOp(I, ISD::SREM))
2050  return selectDivRem(I, ISD::SREM);
2051  return true;
2052  case Instruction::URem:
2053  if (!selectBinaryOp(I, ISD::UREM))
2054  return selectDivRem(I, ISD::UREM);
2055  return true;
2056  case Instruction::Shl:
2057  case Instruction::LShr:
2058  case Instruction::AShr:
2059  return selectShift(I);
2060  case Instruction::And:
2061  case Instruction::Or:
2062  case Instruction::Xor:
2063  return selectLogicalOp(I);
2064  case Instruction::Br:
2065  return selectBranch(I);
2066  case Instruction::Ret:
2067  return selectRet(I);
2068  case Instruction::Trunc:
2069  return selectTrunc(I);
2070  case Instruction::ZExt:
2071  case Instruction::SExt:
2072  return selectIntExt(I);
2073  case Instruction::FPTrunc:
2074  return selectFPTrunc(I);
2075  case Instruction::FPExt:
2076  return selectFPExt(I);
2077  case Instruction::FPToSI:
2078  return selectFPToInt(I, /*isSigned*/ true);
2079  case Instruction::FPToUI:
2080  return selectFPToInt(I, /*isSigned*/ false);
2081  case Instruction::ICmp:
2082  case Instruction::FCmp:
2083  return selectCmp(I);
2084  case Instruction::Select:
2085  return selectSelect(I);
2086  }
2087  return false;
2088 }
2089 
2090 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2091  bool IsUnsigned) {
2092  unsigned VReg = getRegForValue(V);
2093  if (VReg == 0)
2094  return 0;
2095  MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2096 
2097  if (VMVT == MVT::i1)
2098  return 0;
2099 
2100  if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2101  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2102  if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2103  return 0;
2104  VReg = TempReg;
2105  }
2106  return VReg;
2107 }
2108 
2109 void MipsFastISel::simplifyAddress(Address &Addr) {
2110  if (!isInt<16>(Addr.getOffset())) {
2111  unsigned TempReg =
2112  materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2113  unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2114  emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2115  Addr.setReg(DestReg);
2116  Addr.setOffset(0);
2117  }
2118 }
2119 
2120 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2121  const TargetRegisterClass *RC,
2122  unsigned Op0, bool Op0IsKill,
2123  unsigned Op1, bool Op1IsKill) {
2124  // We treat the MUL instruction in a special way because it clobbers
2125  // the HI0 & LO0 registers. The TableGen definition of this instruction can
2126  // mark these registers only as implicitly defined. As a result, the
2127  // register allocator runs out of registers when this instruction is
2128  // followed by another instruction that defines the same registers too.
2129  // We can fix this by explicitly marking those registers as dead.
2130  if (MachineInstOpcode == Mips::MUL) {
2131  unsigned ResultReg = createResultReg(RC);
2132  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2133  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2134  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2135  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2136  .addReg(Op0, getKillRegState(Op0IsKill))
2137  .addReg(Op1, getKillRegState(Op1IsKill))
2140  return ResultReg;
2141  }
2142 
2143  return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2144  Op1IsKill);
2145 }
2146 
2147 namespace llvm {
2148 
2150  const TargetLibraryInfo *libInfo) {
2151  return new MipsFastISel(funcInfo, libInfo);
2152 }
2153 
2154 } // end namespace llvm
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:177
uint64_t CallInst * C
Return a value (possibly void), from a function.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
bool isInteger() const
Return true if this is an integer or a vector integer type.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
bool hasLocalLinkage() const
Definition: GlobalValue.h:436
C - The default llvm calling convention, compatible with C.
Definition: CallingConv.h:35
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1563
LLVMContext & Context
This class represents lattice values for constants.
Definition: AllocatorList.h:24
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
bool isVector() const
Return true if this is a vector value type.
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
unsigned Reg
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:253
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change...
const MipsInstrInfo * getInstrInfo() const override
const Value * getTrueValue() const
unsigned less or equal
Definition: InstrTypes.h:672
unsigned less than
Definition: InstrTypes.h:671
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:652
unsigned getValNo() const
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:662
This class wraps the llvm.memset intrinsic.
BasicBlock * getSuccessor(unsigned i) const
constexpr bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:306
unsigned const TargetRegisterInfo * TRI
F(f)
uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew=0)
Returns the next integer (mod 2**64) that is greater than or equal to Value and is a multiple of Alig...
Definition: MathExtras.h:685
Value * getCondition() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
void reserve(size_type N)
Definition: SmallVector.h:376
Value * getLength() const
op_iterator op_begin()
Definition: User.h:230
bool isMemLoc() const
bool needsCustom() const
SI optimize exec mask operations pre RA
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:529
A description of a memory reference used in the backend.
This class represents the LLVM &#39;select&#39; instruction.
const HexagonInstrInfo * TII
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:97
Class to represent struct types.
Definition: DerivedTypes.h:201
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
bool isUnsigned() const
Definition: InstrTypes.h:822
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:653
This file contains the simple types necessary to represent the attributes associated with functions a...
SimpleValueType SimpleTy
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted...
static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
unsigned getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
LocInfo getLocInfo() const
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This file implements a class to represent arbitrary precision integral constant values and operations...
unsigned getSizeInBits() const
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
This is a fast-path instruction selection class that generates poor code and doesn&#39;t support illegal ...
Definition: FastISel.h:67
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:889
unsigned getNextStackOffset() const
getNextStackOffset - Return the next stack offset such that all stack slots satisfy their alignment r...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
void AnalyzeCallResult(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn, const Type *RetTy, const char *Func)
Definition: MipsCCState.h:120
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:224
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
amdgpu Simplify well known AMD library false Value * Callee
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
Value * getOperand(unsigned i) const
Definition: User.h:170
unsigned getKillRegState(bool B)
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:118
TargetInstrInfo - Interface to description of machine instruction set.
bool isFloatTy() const
Return true if this is &#39;float&#39;, a 32-bit IEEE fp type.
Definition: Type.h:147
static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID, unsigned OpSize)
Select the AArch64 opcode for the basic binary operation GenericOpc (such as G_OR or G_SDIV)...
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
#define P(N)
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.h:169
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
unsigned const MachineRegisterInfo * MRI
Machine Value Type.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
Conditional or Unconditional Branch instruction.
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static ManagedStatic< OptionRegistry > OR
Definition: Options.cpp:31
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:264
op_iterator op_end()
Definition: User.h:232
bool hasInternalLinkage() const
Definition: GlobalValue.h:434
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:646
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
std::string getEVTString() const
This function returns value type as a string, e.g. "i32".
Definition: ValueTypes.cpp:115
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const Value * getCondition() const
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:193
Extended Value Type.
Definition: ValueTypes.h:34
size_t size() const
Definition: SmallVector.h:53
static bool isAtomic(Instruction *I)
bool isVolatile() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
signed greater than
Definition: InstrTypes.h:673
The memory access writes data.
const APFloat & getValueAPF() const
Definition: Constants.h:303
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:51
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags...
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:650
MO_GOT - Represents the offset into the global offset table at which the address the relocation entry...
Definition: MipsBaseInfo.h:38
unsigned getNumOperands() const
Definition: User.h:192
CCState - This class holds information needed while lowering arguments and return values...
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:213
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Provides information about what library functions are available for the current target.
static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, ArrayRef< MCPhysReg > F64Regs)
CCValAssign - Represent assignment of one arg/retval to a location.
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
signed less than
Definition: InstrTypes.h:675
unsigned fastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill)
Emit a MachineInstr with two register operands and a result register in the given register class...
Definition: FastISel.cpp:2061
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:226
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) LLVM_ATTRIBUTE_UNUSED
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
signed less or equal
Definition: InstrTypes.h:676
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo)
This file defines the FastISel class.
const MipsTargetLowering * getTargetLowering() const override
void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
const Value * getFalseValue() const
The memory access reads data.
#define Success
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:721
unsigned getNumArgOperands() const
Definition: InstrTypes.h:1133
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:151
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:387
cl::opt< bool > EmitJalrReloc
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:551
void emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:652
unsigned getLocMemOffset() const
unsigned greater or equal
Definition: InstrTypes.h:670
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation.
Definition: InstrTypes.h:1181
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
#define I(x, y, z)
Definition: MD5.cpp:58
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
MipsFunctionInfo - This class is derived from MachineFunction private Mips target-specific informatio...
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
constexpr bool isUInt< 16 >(uint64_t x)
Definition: MathExtras.h:346
bool isRegLoc() const
const unsigned Kind
static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:649
LLVM Value Representation.
Definition: Value.h:73
bool useSoftFloat() const
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
bool isThreadLocal() const
If the value is "Thread Local", its value isn&#39;t shared by the threads.
Definition: GlobalValue.h:247
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
static MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
unsigned greater than
Definition: InstrTypes.h:669
unsigned constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, const MachineOperand &RegMO, unsigned OpIdx)
Try to constrain Reg so that it is usable by argument OpIdx of the provided MCInstrDesc II...
Definition: Utils.cpp:47
APInt bitcastToAPInt() const
Definition: APFloat.h:1094
#define LLVM_ATTRIBUTE_UNUSED
Definition: Compiler.h:160
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:157
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
unsigned getLocReg() const
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:126
#define LLVM_DEBUG(X)
Definition: Debug.h:123
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:651
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:150
bool isFP64bit() const
static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
void convertToReg(unsigned RegNo)
iterator_range< arg_iterator > args()
Definition: Function.h:689
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:218
signed greater or equal
Definition: InstrTypes.h:674
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:221
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
This file describes how to lower LLVM code to machine code.
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
Helper operand used to generate R_MIPS_JALR.
Definition: MipsBaseInfo.h:95
gep_type_iterator gep_type_begin(const User *GEP)