LLVM  8.0.1
Value.cpp
Go to the documentation of this file.
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DerivedUser.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/Statepoint.h"
31 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Support/Debug.h"
37 #include <algorithm>
38 
39 using namespace llvm;
40 
42  "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
43  cl::desc("Maximum size for the name of non-global values."));
44 
45 //===----------------------------------------------------------------------===//
46 // Value Class
47 //===----------------------------------------------------------------------===//
48 static inline Type *checkType(Type *Ty) {
49  assert(Ty && "Value defined with a null type: Error!");
50  return Ty;
51 }
52 
53 Value::Value(Type *ty, unsigned scid)
54  : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
55  HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
56  NumUserOperands(0), IsUsedByMD(false), HasName(false) {
57  static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58  // FIXME: Why isn't this in the subclass gunk??
59  // Note, we cannot call isa<CallInst> before the CallInst has been
60  // constructed.
61  if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
62  assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
63  "invalid CallInst type!");
64  else if (SubclassID != BasicBlockVal &&
65  (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
66  assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
67  "Cannot create non-first-class values except for constants!");
68  static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
69  "Value too big");
70 }
71 
73  // Notify all ValueHandles (if present) that this value is going away.
74  if (HasValueHandle)
76  if (isUsedByMetadata())
78 
79 #ifndef NDEBUG // Only in -g mode...
80  // Check to make sure that there are no uses of this value that are still
81  // around when the value is destroyed. If there are, then we have a dangling
82  // reference and something is wrong. This code is here to print out where
83  // the value is still being referenced.
84  //
85  if (!use_empty()) {
86  dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
87  for (auto *U : users())
88  dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
89  }
90 #endif
91  assert(use_empty() && "Uses remain when a value is destroyed!");
92 
93  // If this value is named, destroy the name. This should not be in a symtab
94  // at this point.
95  destroyValueName();
96 }
97 
99  switch (getValueID()) {
100 #define HANDLE_VALUE(Name) \
101  case Value::Name##Val: \
102  delete static_cast<Name *>(this); \
103  break;
104 #define HANDLE_MEMORY_VALUE(Name) \
105  case Value::Name##Val: \
106  static_cast<DerivedUser *>(this)->DeleteValue( \
107  static_cast<DerivedUser *>(this)); \
108  break;
109 #define HANDLE_INSTRUCTION(Name) /* nothing */
110 #include "llvm/IR/Value.def"
111 
112 #define HANDLE_INST(N, OPC, CLASS) \
113  case Value::InstructionVal + Instruction::OPC: \
114  delete static_cast<CLASS *>(this); \
115  break;
116 #define HANDLE_USER_INST(N, OPC, CLASS)
117 #include "llvm/IR/Instruction.def"
118 
119  default:
120  llvm_unreachable("attempting to delete unknown value kind");
121  }
122 }
123 
124 void Value::destroyValueName() {
126  if (Name)
127  Name->Destroy();
128  setValueName(nullptr);
129 }
130 
131 bool Value::hasNUses(unsigned N) const {
132  return hasNItems(use_begin(), use_end(), N);
133 }
134 
135 bool Value::hasNUsesOrMore(unsigned N) const {
136  return hasNItemsOrMore(use_begin(), use_end(), N);
137 }
138 
139 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
140  // This can be computed either by scanning the instructions in BB, or by
141  // scanning the use list of this Value. Both lists can be very long, but
142  // usually one is quite short.
143  //
144  // Scan both lists simultaneously until one is exhausted. This limits the
145  // search to the shorter list.
146  BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
147  const_user_iterator UI = user_begin(), UE = user_end();
148  for (; BI != BE && UI != UE; ++BI, ++UI) {
149  // Scan basic block: Check if this Value is used by the instruction at BI.
150  if (is_contained(BI->operands(), this))
151  return true;
152  // Scan use list: Check if the use at UI is in BB.
153  const auto *User = dyn_cast<Instruction>(*UI);
154  if (User && User->getParent() == BB)
155  return true;
156  }
157  return false;
158 }
159 
160 unsigned Value::getNumUses() const {
161  return (unsigned)std::distance(use_begin(), use_end());
162 }
163 
164 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
165  ST = nullptr;
166  if (Instruction *I = dyn_cast<Instruction>(V)) {
167  if (BasicBlock *P = I->getParent())
168  if (Function *PP = P->getParent())
169  ST = PP->getValueSymbolTable();
170  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
171  if (Function *P = BB->getParent())
172  ST = P->getValueSymbolTable();
173  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
174  if (Module *P = GV->getParent())
175  ST = &P->getValueSymbolTable();
176  } else if (Argument *A = dyn_cast<Argument>(V)) {
177  if (Function *P = A->getParent())
178  ST = P->getValueSymbolTable();
179  } else {
180  assert(isa<Constant>(V) && "Unknown value type!");
181  return true; // no name is setable for this.
182  }
183  return false;
184 }
185 
187  if (!HasName) return nullptr;
188 
189  LLVMContext &Ctx = getContext();
190  auto I = Ctx.pImpl->ValueNames.find(this);
191  assert(I != Ctx.pImpl->ValueNames.end() &&
192  "No name entry found!");
193 
194  return I->second;
195 }
196 
198  LLVMContext &Ctx = getContext();
199 
200  assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
201  "HasName bit out of sync!");
202 
203  if (!VN) {
204  if (HasName)
205  Ctx.pImpl->ValueNames.erase(this);
206  HasName = false;
207  return;
208  }
209 
210  HasName = true;
211  Ctx.pImpl->ValueNames[this] = VN;
212 }
213 
215  // Make sure the empty string is still a C string. For historical reasons,
216  // some clients want to call .data() on the result and expect it to be null
217  // terminated.
218  if (!hasName())
219  return StringRef("", 0);
220  return getValueName()->getKey();
221 }
222 
223 void Value::setNameImpl(const Twine &NewName) {
224  // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
225  if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
226  return;
227 
228  // Fast path for common IRBuilder case of setName("") when there is no name.
229  if (NewName.isTriviallyEmpty() && !hasName())
230  return;
231 
232  SmallString<256> NameData;
233  StringRef NameRef = NewName.toStringRef(NameData);
234  assert(NameRef.find_first_of(0) == StringRef::npos &&
235  "Null bytes are not allowed in names");
236 
237  // Name isn't changing?
238  if (getName() == NameRef)
239  return;
240 
241  // Cap the size of non-GlobalValue names.
242  if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
243  NameRef =
244  NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
245 
246  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
247 
248  // Get the symbol table to update for this object.
250  if (getSymTab(this, ST))
251  return; // Cannot set a name on this value (e.g. constant).
252 
253  if (!ST) { // No symbol table to update? Just do the change.
254  if (NameRef.empty()) {
255  // Free the name for this value.
256  destroyValueName();
257  return;
258  }
259 
260  // NOTE: Could optimize for the case the name is shrinking to not deallocate
261  // then reallocated.
262  destroyValueName();
263 
264  // Create the new name.
266  getValueName()->setValue(this);
267  return;
268  }
269 
270  // NOTE: Could optimize for the case the name is shrinking to not deallocate
271  // then reallocated.
272  if (hasName()) {
273  // Remove old name.
274  ST->removeValueName(getValueName());
275  destroyValueName();
276 
277  if (NameRef.empty())
278  return;
279  }
280 
281  // Name is changing to something new.
282  setValueName(ST->createValueName(NameRef, this));
283 }
284 
285 void Value::setName(const Twine &NewName) {
286  setNameImpl(NewName);
287  if (Function *F = dyn_cast<Function>(this))
288  F->recalculateIntrinsicID();
289 }
290 
292  ValueSymbolTable *ST = nullptr;
293  // If this value has a name, drop it.
294  if (hasName()) {
295  // Get the symtab this is in.
296  if (getSymTab(this, ST)) {
297  // We can't set a name on this value, but we need to clear V's name if
298  // it has one.
299  if (V->hasName()) V->setName("");
300  return; // Cannot set a name on this value (e.g. constant).
301  }
302 
303  // Remove old name.
304  if (ST)
305  ST->removeValueName(getValueName());
306  destroyValueName();
307  }
308 
309  // Now we know that this has no name.
310 
311  // If V has no name either, we're done.
312  if (!V->hasName()) return;
313 
314  // Get this's symtab if we didn't before.
315  if (!ST) {
316  if (getSymTab(this, ST)) {
317  // Clear V's name.
318  V->setName("");
319  return; // Cannot set a name on this value (e.g. constant).
320  }
321  }
322 
323  // Get V's ST, this should always succed, because V has a name.
324  ValueSymbolTable *VST;
325  bool Failure = getSymTab(V, VST);
326  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
327 
328  // If these values are both in the same symtab, we can do this very fast.
329  // This works even if both values have no symtab yet.
330  if (ST == VST) {
331  // Take the name!
333  V->setValueName(nullptr);
334  getValueName()->setValue(this);
335  return;
336  }
337 
338  // Otherwise, things are slightly more complex. Remove V's name from VST and
339  // then reinsert it into ST.
340 
341  if (VST)
342  VST->removeValueName(V->getValueName());
344  V->setValueName(nullptr);
345  getValueName()->setValue(this);
346 
347  if (ST)
348  ST->reinsertValue(this);
349 }
350 
352 #ifndef NDEBUG
353  const GlobalValue *GV = dyn_cast<GlobalValue>(this);
354  if (!GV)
355  return;
356  const Module *M = GV->getParent();
357  if (!M)
358  return;
359  assert(M->isMaterialized());
360 #endif
361 }
362 
363 #ifndef NDEBUG
365  Constant *C) {
366  if (!Cache.insert(Expr).second)
367  return false;
368 
369  for (auto &O : Expr->operands()) {
370  if (O == C)
371  return true;
372  auto *CE = dyn_cast<ConstantExpr>(O);
373  if (!CE)
374  continue;
375  if (contains(Cache, CE, C))
376  return true;
377  }
378  return false;
379 }
380 
381 static bool contains(Value *Expr, Value *V) {
382  if (Expr == V)
383  return true;
384 
385  auto *C = dyn_cast<Constant>(V);
386  if (!C)
387  return false;
388 
389  auto *CE = dyn_cast<ConstantExpr>(Expr);
390  if (!CE)
391  return false;
392 
394  return contains(Cache, CE, C);
395 }
396 #endif // NDEBUG
397 
398 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
399  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
400  assert(!contains(New, this) &&
401  "this->replaceAllUsesWith(expr(this)) is NOT valid!");
402  assert(New->getType() == getType() &&
403  "replaceAllUses of value with new value of different type!");
404 
405  // Notify all ValueHandles (if present) that this value is going away.
406  if (HasValueHandle)
408  if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
409  ValueAsMetadata::handleRAUW(this, New);
410 
411  while (!materialized_use_empty()) {
412  Use &U = *UseList;
413  // Must handle Constants specially, we cannot call replaceUsesOfWith on a
414  // constant because they are uniqued.
415  if (auto *C = dyn_cast<Constant>(U.getUser())) {
416  if (!isa<GlobalValue>(C)) {
417  C->handleOperandChange(this, New);
418  continue;
419  }
420  }
421 
422  U.set(New);
423  }
424 
425  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
426  BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
427 }
428 
430  doRAUW(New, ReplaceMetadataUses::Yes);
431 }
432 
434  doRAUW(New, ReplaceMetadataUses::No);
435 }
436 
437 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
438 // This routine leaves uses within BB.
440  assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
441  assert(!contains(New, this) &&
442  "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
443  assert(New->getType() == getType() &&
444  "replaceUses of value with new value of different type!");
445  assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
446 
447  use_iterator UI = use_begin(), E = use_end();
448  for (; UI != E;) {
449  Use &U = *UI;
450  ++UI;
451  auto *Usr = dyn_cast<Instruction>(U.getUser());
452  if (Usr && Usr->getParent() == BB)
453  continue;
454  U.set(New);
455  }
456 }
457 
458 namespace {
459 // Various metrics for how much to strip off of pointers.
461  PSK_ZeroIndices,
462  PSK_ZeroIndicesAndAliases,
463  PSK_ZeroIndicesAndAliasesAndInvariantGroups,
464  PSK_InBoundsConstantIndices,
465  PSK_InBounds
466 };
467 
468 template <PointerStripKind StripKind>
469 static const Value *stripPointerCastsAndOffsets(const Value *V) {
470  if (!V->getType()->isPointerTy())
471  return V;
472 
473  // Even though we don't look through PHI nodes, we could be called on an
474  // instruction in an unreachable block, which may be on a cycle.
476 
477  Visited.insert(V);
478  do {
479  if (auto *GEP = dyn_cast<GEPOperator>(V)) {
480  switch (StripKind) {
481  case PSK_ZeroIndicesAndAliases:
482  case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
483  case PSK_ZeroIndices:
484  if (!GEP->hasAllZeroIndices())
485  return V;
486  break;
487  case PSK_InBoundsConstantIndices:
488  if (!GEP->hasAllConstantIndices())
489  return V;
491  case PSK_InBounds:
492  if (!GEP->isInBounds())
493  return V;
494  break;
495  }
496  V = GEP->getPointerOperand();
497  } else if (Operator::getOpcode(V) == Instruction::BitCast ||
498  Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
499  V = cast<Operator>(V)->getOperand(0);
500  } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
501  if (StripKind == PSK_ZeroIndices || GA->isInterposable())
502  return V;
503  V = GA->getAliasee();
504  } else {
505  if (const auto *Call = dyn_cast<CallBase>(V)) {
506  if (const Value *RV = Call->getReturnedArgOperand()) {
507  V = RV;
508  continue;
509  }
510  // The result of launder.invariant.group must alias it's argument,
511  // but it can't be marked with returned attribute, that's why it needs
512  // special case.
513  if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
514  (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
515  Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
516  V = Call->getArgOperand(0);
517  continue;
518  }
519  }
520  return V;
521  }
522  assert(V->getType()->isPointerTy() && "Unexpected operand type!");
523  } while (Visited.insert(V).second);
524 
525  return V;
526 }
527 } // end anonymous namespace
528 
530  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
531 }
532 
534  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
535 }
536 
538  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
539 }
540 
542  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
543  this);
544 }
545 
546 const Value *
548  APInt &Offset) const {
549  if (!getType()->isPointerTy())
550  return this;
551 
552  assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>(
553  getType())->getAddressSpace()) &&
554  "The offset bit width does not match the DL specification.");
555 
556  // Even though we don't look through PHI nodes, we could be called on an
557  // instruction in an unreachable block, which may be on a cycle.
559  Visited.insert(this);
560  const Value *V = this;
561  do {
562  if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563  if (!GEP->isInBounds())
564  return V;
565  APInt GEPOffset(Offset);
566  if (!GEP->accumulateConstantOffset(DL, GEPOffset))
567  return V;
568  Offset = GEPOffset;
569  V = GEP->getPointerOperand();
570  } else if (Operator::getOpcode(V) == Instruction::BitCast) {
571  V = cast<Operator>(V)->getOperand(0);
572  } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
573  V = GA->getAliasee();
574  } else {
575  if (const auto *Call = dyn_cast<CallBase>(V))
576  if (const Value *RV = Call->getReturnedArgOperand()) {
577  V = RV;
578  continue;
579  }
580 
581  return V;
582  }
583  assert(V->getType()->isPointerTy() && "Unexpected operand type!");
584  } while (Visited.insert(V).second);
585 
586  return V;
587 }
588 
590  return stripPointerCastsAndOffsets<PSK_InBounds>(this);
591 }
592 
594  bool &CanBeNull) const {
595  assert(getType()->isPointerTy() && "must be pointer");
596 
597  uint64_t DerefBytes = 0;
598  CanBeNull = false;
599  if (const Argument *A = dyn_cast<Argument>(this)) {
600  DerefBytes = A->getDereferenceableBytes();
601  if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
602  Type *PT = cast<PointerType>(A->getType())->getElementType();
603  if (PT->isSized())
604  DerefBytes = DL.getTypeStoreSize(PT);
605  }
606  if (DerefBytes == 0) {
607  DerefBytes = A->getDereferenceableOrNullBytes();
608  CanBeNull = true;
609  }
610  } else if (const auto *Call = dyn_cast<CallBase>(this)) {
611  DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
612  if (DerefBytes == 0) {
613  DerefBytes =
614  Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
615  CanBeNull = true;
616  }
617  } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
618  if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
619  ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
620  DerefBytes = CI->getLimitedValue();
621  }
622  if (DerefBytes == 0) {
623  if (MDNode *MD =
624  LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
625  ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
626  DerefBytes = CI->getLimitedValue();
627  }
628  CanBeNull = true;
629  }
630  } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
631  if (!AI->isArrayAllocation()) {
632  DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
633  CanBeNull = false;
634  }
635  } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
636  if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
637  // TODO: Don't outright reject hasExternalWeakLinkage but set the
638  // CanBeNull flag.
639  DerefBytes = DL.getTypeStoreSize(GV->getValueType());
640  CanBeNull = false;
641  }
642  }
643  return DerefBytes;
644 }
645 
646 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
647  assert(getType()->isPointerTy() && "must be pointer");
648 
649  unsigned Align = 0;
650  if (auto *GO = dyn_cast<GlobalObject>(this)) {
651  // Don't make any assumptions about function pointer alignment. Some
652  // targets use the LSBs to store additional information.
653  if (isa<Function>(GO))
654  return 0;
655  Align = GO->getAlignment();
656  if (Align == 0) {
657  if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
658  Type *ObjectType = GVar->getValueType();
659  if (ObjectType->isSized()) {
660  // If the object is defined in the current Module, we'll be giving
661  // it the preferred alignment. Otherwise, we have to assume that it
662  // may only have the minimum ABI alignment.
663  if (GVar->isStrongDefinitionForLinker())
664  Align = DL.getPreferredAlignment(GVar);
665  else
666  Align = DL.getABITypeAlignment(ObjectType);
667  }
668  }
669  }
670  } else if (const Argument *A = dyn_cast<Argument>(this)) {
671  Align = A->getParamAlignment();
672 
673  if (!Align && A->hasStructRetAttr()) {
674  // An sret parameter has at least the ABI alignment of the return type.
675  Type *EltTy = cast<PointerType>(A->getType())->getElementType();
676  if (EltTy->isSized())
677  Align = DL.getABITypeAlignment(EltTy);
678  }
679  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
680  Align = AI->getAlignment();
681  if (Align == 0) {
682  Type *AllocatedType = AI->getAllocatedType();
683  if (AllocatedType->isSized())
684  Align = DL.getPrefTypeAlignment(AllocatedType);
685  }
686  } else if (const auto *Call = dyn_cast<CallBase>(this))
687  Align = Call->getAttributes().getRetAlignment();
688  else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
689  if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
690  ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
691  Align = CI->getLimitedValue();
692  }
693 
694  return Align;
695 }
696 
698  const BasicBlock *PredBB) const {
699  auto *PN = dyn_cast<PHINode>(this);
700  if (PN && PN->getParent() == CurBB)
701  return PN->getIncomingValueForBlock(PredBB);
702  return this;
703 }
704 
705 LLVMContext &Value::getContext() const { return VTy->getContext(); }
706 
708  if (!UseList || !UseList->Next)
709  // No need to reverse 0 or 1 uses.
710  return;
711 
712  Use *Head = UseList;
713  Use *Current = UseList->Next;
714  Head->Next = nullptr;
715  while (Current) {
716  Use *Next = Current->Next;
717  Current->Next = Head;
718  Head->setPrev(&Current->Next);
719  Head = Current;
720  Current = Next;
721  }
722  UseList = Head;
723  Head->setPrev(&UseList);
724 }
725 
726 bool Value::isSwiftError() const {
727  auto *Arg = dyn_cast<Argument>(this);
728  if (Arg)
729  return Arg->hasSwiftErrorAttr();
730  auto *Alloca = dyn_cast<AllocaInst>(this);
731  if (!Alloca)
732  return false;
733  return Alloca->isSwiftError();
734 }
735 
736 //===----------------------------------------------------------------------===//
737 // ValueHandleBase Class
738 //===----------------------------------------------------------------------===//
739 
740 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
741  assert(List && "Handle list is null?");
742 
743  // Splice ourselves into the list.
744  Next = *List;
745  *List = this;
746  setPrevPtr(List);
747  if (Next) {
748  Next->setPrevPtr(&Next);
749  assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
750  }
751 }
752 
753 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
754  assert(List && "Must insert after existing node");
755 
756  Next = List->Next;
757  setPrevPtr(&List->Next);
758  List->Next = this;
759  if (Next)
760  Next->setPrevPtr(&Next);
761 }
762 
763 void ValueHandleBase::AddToUseList() {
764  assert(getValPtr() && "Null pointer doesn't have a use list!");
765 
766  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
767 
768  if (getValPtr()->HasValueHandle) {
769  // If this value already has a ValueHandle, then it must be in the
770  // ValueHandles map already.
771  ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
772  assert(Entry && "Value doesn't have any handles?");
773  AddToExistingUseList(&Entry);
774  return;
775  }
776 
777  // Ok, it doesn't have any handles yet, so we must insert it into the
778  // DenseMap. However, doing this insertion could cause the DenseMap to
779  // reallocate itself, which would invalidate all of the PrevP pointers that
780  // point into the old table. Handle this by checking for reallocation and
781  // updating the stale pointers only if needed.
783  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
784 
785  ValueHandleBase *&Entry = Handles[getValPtr()];
786  assert(!Entry && "Value really did already have handles?");
787  AddToExistingUseList(&Entry);
788  getValPtr()->HasValueHandle = true;
789 
790  // If reallocation didn't happen or if this was the first insertion, don't
791  // walk the table.
792  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
793  Handles.size() == 1) {
794  return;
795  }
796 
797  // Okay, reallocation did happen. Fix the Prev Pointers.
799  E = Handles.end(); I != E; ++I) {
800  assert(I->second && I->first == I->second->getValPtr() &&
801  "List invariant broken!");
802  I->second->setPrevPtr(&I->second);
803  }
804 }
805 
807  assert(getValPtr() && getValPtr()->HasValueHandle &&
808  "Pointer doesn't have a use list!");
809 
810  // Unlink this from its use list.
811  ValueHandleBase **PrevPtr = getPrevPtr();
812  assert(*PrevPtr == this && "List invariant broken");
813 
814  *PrevPtr = Next;
815  if (Next) {
816  assert(Next->getPrevPtr() == &Next && "List invariant broken");
817  Next->setPrevPtr(PrevPtr);
818  return;
819  }
820 
821  // If the Next pointer was null, then it is possible that this was the last
822  // ValueHandle watching VP. If so, delete its entry from the ValueHandles
823  // map.
824  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
826  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
827  Handles.erase(getValPtr());
828  getValPtr()->HasValueHandle = false;
829  }
830 }
831 
833  assert(V->HasValueHandle && "Should only be called if ValueHandles present");
834 
835  // Get the linked list base, which is guaranteed to exist since the
836  // HasValueHandle flag is set.
837  LLVMContextImpl *pImpl = V->getContext().pImpl;
838  ValueHandleBase *Entry = pImpl->ValueHandles[V];
839  assert(Entry && "Value bit set but no entries exist");
840 
841  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
842  // and remove themselves from the list without breaking our iteration. This
843  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
844  // Note that we deliberately do not the support the case when dropping a value
845  // handle results in a new value handle being permanently added to the list
846  // (as might occur in theory for CallbackVH's): the new value handle will not
847  // be processed and the checking code will mete out righteous punishment if
848  // the handle is still present once we have finished processing all the other
849  // value handles (it is fine to momentarily add then remove a value handle).
850  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
851  Iterator.RemoveFromUseList();
852  Iterator.AddToExistingUseListAfter(Entry);
853  assert(Entry->Next == &Iterator && "Loop invariant broken.");
854 
855  switch (Entry->getKind()) {
856  case Assert:
857  break;
858  case Weak:
859  case WeakTracking:
860  // WeakTracking and Weak just go to null, which unlinks them
861  // from the list.
862  Entry->operator=(nullptr);
863  break;
864  case Callback:
865  // Forward to the subclass's implementation.
866  static_cast<CallbackVH*>(Entry)->deleted();
867  break;
868  }
869  }
870 
871  // All callbacks, weak references, and assertingVHs should be dropped by now.
872  if (V->HasValueHandle) {
873 #ifndef NDEBUG // Only in +Asserts mode...
874  dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
875  << "\n";
876  if (pImpl->ValueHandles[V]->getKind() == Assert)
877  llvm_unreachable("An asserting value handle still pointed to this"
878  " value!");
879 
880 #endif
881  llvm_unreachable("All references to V were not removed?");
882  }
883 }
884 
886  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
887  assert(Old != New && "Changing value into itself!");
888  assert(Old->getType() == New->getType() &&
889  "replaceAllUses of value with new value of different type!");
890 
891  // Get the linked list base, which is guaranteed to exist since the
892  // HasValueHandle flag is set.
893  LLVMContextImpl *pImpl = Old->getContext().pImpl;
894  ValueHandleBase *Entry = pImpl->ValueHandles[Old];
895 
896  assert(Entry && "Value bit set but no entries exist");
897 
898  // We use a local ValueHandleBase as an iterator so that
899  // ValueHandles can add and remove themselves from the list without
900  // breaking our iteration. This is not really an AssertingVH; we
901  // just have to give ValueHandleBase some kind.
902  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
903  Iterator.RemoveFromUseList();
904  Iterator.AddToExistingUseListAfter(Entry);
905  assert(Entry->Next == &Iterator && "Loop invariant broken.");
906 
907  switch (Entry->getKind()) {
908  case Assert:
909  case Weak:
910  // Asserting and Weak handles do not follow RAUW implicitly.
911  break;
912  case WeakTracking:
913  // Weak goes to the new value, which will unlink it from Old's list.
914  Entry->operator=(New);
915  break;
916  case Callback:
917  // Forward to the subclass's implementation.
918  static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
919  break;
920  }
921  }
922 
923 #ifndef NDEBUG
924  // If any new weak value handles were added while processing the
925  // list, then complain about it now.
926  if (Old->HasValueHandle)
927  for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
928  switch (Entry->getKind()) {
929  case WeakTracking:
930  dbgs() << "After RAUW from " << *Old->getType() << " %"
931  << Old->getName() << " to " << *New->getType() << " %"
932  << New->getName() << "\n";
934  "A weak tracking value handle still pointed to the old value!\n");
935  default:
936  break;
937  }
938 #endif
939 }
940 
941 // Pin the vtable to this file.
942 void CallbackVH::anchor() {}
This is the common base class of value handles.
Definition: ValueHandle.h:30
uint64_t CallInst * C
use_iterator use_end()
Definition: Value.h:347
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
This class provides a symbol table of name/value pairs.
static void ValueIsDeleted(Value *V)
Definition: Value.cpp:832
unsigned getIndexSizeInBits(unsigned AS) const
Size in bits of index used for address calculation in getelementptr.
Definition: DataLayout.h:373
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:464
const Value * stripInBoundsOffsets() const
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:589
This class represents lattice values for constants.
Definition: AllocatorList.h:24
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:126
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:265
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
void setValue(const ValueTy &V)
Definition: StringMap.h:144
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
bool isTriviallyEmpty() const
Check if this twine is trivially empty; a false return value does not necessarily mean the twine is e...
Definition: Twine.h:398
StringRef toStringRef(SmallVectorImpl< char > &Out) const
This returns the twine as a single StringRef if it can be represented as such.
Definition: Twine.h:453
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
Definition: Instructions.h:136
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:98
Metadata node.
Definition: Metadata.h:864
F(f)
const void * getPointerIntoBucketsArray() const
getPointerIntoBucketsArray() - Return an opaque pointer into the buckets array.
Definition: DenseMap.h:351
An instruction for reading from memory.
Definition: Instructions.h:168
Hexagon Common GEP
#define Assert(C,...)
Definition: Lint.cpp:197
const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
Definition: Value.cpp:697
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1509
unsigned getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
Definition: Value.cpp:646
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:130
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
static Type * checkType(Type *Ty)
Definition: Value.cpp:48
amdgpu Simplify well known AMD library false Value Value const Twine & Name
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:285
void assertModuleIsMaterializedImpl() const
Definition: Value.cpp:351
DenseMap< const Value *, ValueName * > ValueNames
static StringMapEntry * Create(StringRef Key, AllocatorTy &Allocator, InitTy &&... InitVals)
Create a StringMapEntry for the specified key construct the value using InitiVals.
Definition: StringMap.h:156
void Destroy(AllocatorTy &Allocator)
Destroy - Destroy this StringMapEntry, releasing memory back to the specified allocator.
Definition: StringMap.h:201
User * getUser() const LLVM_READONLY
Returns the User that contains this Use.
Definition: Use.cpp:41
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:889
static void handleRAUW(Value *From, Value *To)
Definition: Metadata.cpp:392
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value. ...
Definition: Type.h:244
bool isSwiftError() const
Return true if this value is a swifterror value.
Definition: Value.cpp:726
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
static void ValueIsRAUWd(Value *Old, Value *New)
Definition: Value.cpp:885
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:598
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
use_iterator_impl< Use > use_iterator
Definition: Value.h:332
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:141
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
bool erase(const KeyT &Val)
Definition: DenseMap.h:298
void RemoveFromUseList()
Remove this ValueHandle from its current use list.
Definition: Value.cpp:806
bool hasNUsesOrMore(unsigned N) const
Return true if this value has N users or more.
Definition: Value.cpp:135
bool hasNUses(unsigned N) const
Return true if this Value has exactly N users.
Definition: Value.cpp:131
void set(Value *Val)
Definition: Value.h:671
bool hasName() const
Definition: Value.h:251
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
void replaceNonMetadataUsesWith(Value *V)
Change non-metadata uses of this to point to a new Value.
Definition: Value.cpp:433
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
StringRef getKey() const
Definition: StringMap.h:137
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
unsigned getPrefTypeAlignment(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Definition: DataLayout.cpp:740
bool isUsedInBasicBlock(const BasicBlock *BB) const
Check if this value is used in the specified basic block.
Definition: Value.cpp:139
ValueHandlesTy ValueHandles
op_range operands()
Definition: User.h:238
unsigned size() const
Definition: DenseMap.h:126
bool hasNItemsOrMore(IterTy &&Begin, IterTy &&End, unsigned N, typename std::enable_if< !std::is_same< typename std::iterator_traits< typename std::remove_reference< decltype(Begin)>::type >::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr)
Return true if the sequence [Begin, End) has N or more items.
Definition: STLExtras.h:1566
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:529
Value(Type *Ty, unsigned scid)
Definition: Value.cpp:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVMContextImpl *const pImpl
Definition: LLVMContext.h:71
Iterator for intrusive lists based on ilist_node.
static cl::opt< unsigned > NonGlobalValueMaxNameSize("non-global-value-max-name-size", cl::Hidden, cl::init(1024), cl::desc("Maximum size for the name of non-global values."))
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition: Constants.h:251
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
bool materialized_use_empty() const
Definition: Value.h:328
iterator end()
Definition: BasicBlock.h:271
Module.h This file contains the declarations for the Module class.
ValueName * getValueName() const
Definition: Value.cpp:186
unsigned getABITypeAlignment(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
Definition: DataLayout.cpp:730
uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition: Value.cpp:593
PointerStripKind
Definition: Value.cpp:460
bool isPointerIntoBucketsArray(const void *Ptr) const
isPointerIntoBucketsArray - Return true if the specified pointer points somewhere into the DenseMap&#39;s...
Definition: DenseMap.h:344
const Value * stripPointerCastsAndInvariantGroups() const
Strip off pointer casts, all-zero GEPs, aliases and invariant group info.
Definition: Value.cpp:541
bool isUsedByMetadata() const
Return true if there is metadata referencing this value.
Definition: Value.h:489
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
unsigned getPreferredAlignment(const GlobalVariable *GV) const
Returns the preferred alignment of the specified global.
Definition: DataLayout.cpp:818
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
Accumulate offsets from stripInBoundsConstantOffsets().
Definition: Value.cpp:547
Class for arbitrary precision integers.
Definition: APInt.h:70
iterator_range< user_iterator > users()
Definition: Value.h:400
user_iterator_impl< const User > const_user_iterator
Definition: Value.h:370
amdgpu Simplify well known AMD library false Value Value * Arg
void reverseUseList()
Reverse the use-list.
Definition: Value.cpp:707
use_iterator use_begin()
Definition: Value.h:339
bool isMaterialized() const
Definition: Module.h:505
unsigned getNumUses() const
This method computes the number of uses of this Value.
Definition: Value.cpp:160
unsigned HasName
Definition: Value.h:119
static const size_t npos
Definition: StringRef.h:51
iterator begin()
Definition: DenseMap.h:100
const Value * stripPointerCastsNoFollowAliases() const
Strip off pointer casts and all-zero GEPs.
Definition: Value.cpp:533
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
const NodeList & List
Definition: RDFGraph.cpp:210
LLVM_NODISCARD size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition: StringRef.h:395
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
static bool getSymTab(Value *V, ValueSymbolTable *&ST)
Definition: Value.cpp:164
iterator end()
Definition: DenseMap.h:109
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
~Value()
Value&#39;s destructor should be virtual by design, but that would require that Value and all of its subc...
Definition: Value.cpp:72
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:376
static void handleDeletion(Value *V)
Definition: Metadata.cpp:373
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
uint64_t getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type...
Definition: DataLayout.h:419
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:41
bool hasNItems(IterTy &&Begin, IterTy &&End, unsigned N, typename std::enable_if< !std::is_same< typename std::iterator_traits< typename std::remove_reference< decltype(Begin)>::type >::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr)
Return true if the sequence [Begin, End) has exactly N items.
Definition: STLExtras.h:1549
void setValueName(ValueName *VN)
Definition: Value.cpp:197
Value handle with callbacks on RAUW and destruction.
Definition: ValueHandle.h:389
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
void replaceUsesOutsideBlock(Value *V, BasicBlock *BB)
replaceUsesOutsideBlock - Go through the uses list for this definition and make each use point to "V"...
Definition: Value.cpp:439
const Value * stripInBoundsConstantOffsets() const
Strip off pointer casts and all-constant inbounds GEPs.
Definition: Value.cpp:537
static bool contains(SmallPtrSetImpl< ConstantExpr *> &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:364
bool use_empty() const
Definition: Value.h:323
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:218
an instruction to allocate memory on the stack
Definition: Instructions.h:60
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:1245
user_iterator user_end()
Definition: Value.h:384