LLVM  8.0.1
MemorySSA.cpp
Go to the documentation of this file.
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSA class.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator.h"
30 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/PassManager.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <memory>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "memoryssa"
60 
61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
62  true)
66  true)
67 
69  "Memory SSA Printer", false, false)
70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72  "Memory SSA Printer", false, false)
73 
74 static cl::opt<unsigned> MaxCheckLimit(
75  "memssa-check-limit", cl::Hidden, cl::init(100),
76  cl::desc("The maximum number of stores/phis MemorySSA"
77  "will consider trying to walk past (default = 100)"));
78 
79 // Always verify MemorySSA if expensive checking is enabled.
80 #ifdef EXPENSIVE_CHECKS
81 bool llvm::VerifyMemorySSA = true;
82 #else
83 bool llvm::VerifyMemorySSA = false;
84 #endif
86  VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
87  cl::Hidden, cl::desc("Enable verification of MemorySSA."));
88 
89 namespace llvm {
90 
91 /// An assembly annotator class to print Memory SSA information in
92 /// comments.
94  friend class MemorySSA;
95 
96  const MemorySSA *MSSA;
97 
98 public:
99  MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
100 
102  formatted_raw_ostream &OS) override {
103  if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
104  OS << "; " << *MA << "\n";
105  }
106 
108  formatted_raw_ostream &OS) override {
109  if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
110  OS << "; " << *MA << "\n";
111  }
112 };
113 
114 } // end namespace llvm
115 
116 namespace {
117 
118 /// Our current alias analysis API differentiates heavily between calls and
119 /// non-calls, and functions called on one usually assert on the other.
120 /// This class encapsulates the distinction to simplify other code that wants
121 /// "Memory affecting instructions and related data" to use as a key.
122 /// For example, this class is used as a densemap key in the use optimizer.
123 class MemoryLocOrCall {
124 public:
125  bool IsCall = false;
126 
127  MemoryLocOrCall(MemoryUseOrDef *MUD)
128  : MemoryLocOrCall(MUD->getMemoryInst()) {}
129  MemoryLocOrCall(const MemoryUseOrDef *MUD)
130  : MemoryLocOrCall(MUD->getMemoryInst()) {}
131 
132  MemoryLocOrCall(Instruction *Inst) {
133  if (auto *C = dyn_cast<CallBase>(Inst)) {
134  IsCall = true;
135  Call = C;
136  } else {
137  IsCall = false;
138  // There is no such thing as a memorylocation for a fence inst, and it is
139  // unique in that regard.
140  if (!isa<FenceInst>(Inst))
141  Loc = MemoryLocation::get(Inst);
142  }
143  }
144 
145  explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
146 
147  const CallBase *getCall() const {
148  assert(IsCall);
149  return Call;
150  }
151 
152  MemoryLocation getLoc() const {
153  assert(!IsCall);
154  return Loc;
155  }
156 
157  bool operator==(const MemoryLocOrCall &Other) const {
158  if (IsCall != Other.IsCall)
159  return false;
160 
161  if (!IsCall)
162  return Loc == Other.Loc;
163 
164  if (Call->getCalledValue() != Other.Call->getCalledValue())
165  return false;
166 
167  return Call->arg_size() == Other.Call->arg_size() &&
168  std::equal(Call->arg_begin(), Call->arg_end(),
169  Other.Call->arg_begin());
170  }
171 
172 private:
173  union {
174  const CallBase *Call;
175  MemoryLocation Loc;
176  };
177 };
178 
179 } // end anonymous namespace
180 
181 namespace llvm {
182 
183 template <> struct DenseMapInfo<MemoryLocOrCall> {
184  static inline MemoryLocOrCall getEmptyKey() {
185  return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
186  }
187 
188  static inline MemoryLocOrCall getTombstoneKey() {
189  return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
190  }
191 
192  static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
193  if (!MLOC.IsCall)
194  return hash_combine(
195  MLOC.IsCall,
197 
198  hash_code hash =
200  MLOC.getCall()->getCalledValue()));
201 
202  for (const Value *Arg : MLOC.getCall()->args())
204  return hash;
205  }
206 
207  static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
208  return LHS == RHS;
209  }
210 };
211 
212 } // end namespace llvm
213 
214 /// This does one-way checks to see if Use could theoretically be hoisted above
215 /// MayClobber. This will not check the other way around.
216 ///
217 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
218 /// MayClobber, with no potentially clobbering operations in between them.
219 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
220 static bool areLoadsReorderable(const LoadInst *Use,
221  const LoadInst *MayClobber) {
222  bool VolatileUse = Use->isVolatile();
223  bool VolatileClobber = MayClobber->isVolatile();
224  // Volatile operations may never be reordered with other volatile operations.
225  if (VolatileUse && VolatileClobber)
226  return false;
227  // Otherwise, volatile doesn't matter here. From the language reference:
228  // 'optimizers may change the order of volatile operations relative to
229  // non-volatile operations.'"
230 
231  // If a load is seq_cst, it cannot be moved above other loads. If its ordering
232  // is weaker, it can be moved above other loads. We just need to be sure that
233  // MayClobber isn't an acquire load, because loads can't be moved above
234  // acquire loads.
235  //
236  // Note that this explicitly *does* allow the free reordering of monotonic (or
237  // weaker) loads of the same address.
238  bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
239  bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
241  return !(SeqCstUse || MayClobberIsAcquire);
242 }
243 
244 namespace {
245 
246 struct ClobberAlias {
247  bool IsClobber;
249 };
250 
251 } // end anonymous namespace
252 
253 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
254 // ignored if IsClobber = false.
255 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
256  const MemoryLocation &UseLoc,
257  const Instruction *UseInst,
258  AliasAnalysis &AA) {
259  Instruction *DefInst = MD->getMemoryInst();
260  assert(DefInst && "Defining instruction not actually an instruction");
261  const auto *UseCall = dyn_cast<CallBase>(UseInst);
263 
264  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
265  // These intrinsics will show up as affecting memory, but they are just
266  // markers, mostly.
267  //
268  // FIXME: We probably don't actually want MemorySSA to model these at all
269  // (including creating MemoryAccesses for them): we just end up inventing
270  // clobbers where they don't really exist at all. Please see D43269 for
271  // context.
272  switch (II->getIntrinsicID()) {
274  if (UseCall)
275  return {false, NoAlias};
276  AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
277  return {AR != NoAlias, AR};
281  case Intrinsic::assume:
282  return {false, NoAlias};
283  default:
284  break;
285  }
286  }
287 
288  if (UseCall) {
289  ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
290  AR = isMustSet(I) ? MustAlias : MayAlias;
291  return {isModOrRefSet(I), AR};
292  }
293 
294  if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
295  if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
296  return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
297 
298  ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
299  AR = isMustSet(I) ? MustAlias : MayAlias;
300  return {isModSet(I), AR};
301 }
302 
303 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
304  const MemoryUseOrDef *MU,
305  const MemoryLocOrCall &UseMLOC,
306  AliasAnalysis &AA) {
307  // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
308  // to exist while MemoryLocOrCall is pushed through places.
309  if (UseMLOC.IsCall)
311  AA);
312  return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
313  AA);
314 }
315 
316 // Return true when MD may alias MU, return false otherwise.
318  AliasAnalysis &AA) {
319  return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
320 }
321 
322 namespace {
323 
324 struct UpwardsMemoryQuery {
325  // True if our original query started off as a call
326  bool IsCall = false;
327  // The pointer location we started the query with. This will be empty if
328  // IsCall is true.
329  MemoryLocation StartingLoc;
330  // This is the instruction we were querying about.
331  const Instruction *Inst = nullptr;
332  // The MemoryAccess we actually got called with, used to test local domination
333  const MemoryAccess *OriginalAccess = nullptr;
335  bool SkipSelfAccess = false;
336 
337  UpwardsMemoryQuery() = default;
338 
339  UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340  : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
341  if (!IsCall)
342  StartingLoc = MemoryLocation::get(Inst);
343  }
344 };
345 
346 } // end anonymous namespace
347 
348 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349  AliasAnalysis &AA) {
350  Instruction *Inst = MD->getMemoryInst();
351  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352  switch (II->getIntrinsicID()) {
354  return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355  default:
356  return false;
357  }
358  }
359  return false;
360 }
361 
363  const Instruction *I) {
364  // If the memory can't be changed, then loads of the memory can't be
365  // clobbered.
366  return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
367  AA.pointsToConstantMemory(cast<LoadInst>(I)->
368  getPointerOperand()));
369 }
370 
371 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373 ///
374 /// This is meant to be as simple and self-contained as possible. Because it
375 /// uses no cache, etc., it can be relatively expensive.
376 ///
377 /// \param Start The MemoryAccess that we want to walk from.
378 /// \param ClobberAt A clobber for Start.
379 /// \param StartLoc The MemoryLocation for Start.
380 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
381 /// \param Query The UpwardsMemoryQuery we used for our search.
382 /// \param AA The AliasAnalysis we used for our search.
383 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
384 static void
386  const MemoryLocation &StartLoc, const MemorySSA &MSSA,
387  const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
388  bool AllowImpreciseClobber = false) {
389  assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
390 
391  if (MSSA.isLiveOnEntryDef(Start)) {
392  assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
393  "liveOnEntry must clobber itself");
394  return;
395  }
396 
397  bool FoundClobber = false;
400  Worklist.emplace_back(Start, StartLoc);
401  // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
402  // is found, complain.
403  while (!Worklist.empty()) {
404  auto MAP = Worklist.pop_back_val();
405  // All we care about is that nothing from Start to ClobberAt clobbers Start.
406  // We learn nothing from revisiting nodes.
407  if (!VisitedPhis.insert(MAP).second)
408  continue;
409 
410  for (const auto *MA : def_chain(MAP.first)) {
411  if (MA == ClobberAt) {
412  if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
413  // instructionClobbersQuery isn't essentially free, so don't use `|=`,
414  // since it won't let us short-circuit.
415  //
416  // Also, note that this can't be hoisted out of the `Worklist` loop,
417  // since MD may only act as a clobber for 1 of N MemoryLocations.
418  FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
419  if (!FoundClobber) {
420  ClobberAlias CA =
421  instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
422  if (CA.IsClobber) {
423  FoundClobber = true;
424  // Not used: CA.AR;
425  }
426  }
427  }
428  break;
429  }
430 
431  // We should never hit liveOnEntry, unless it's the clobber.
432  assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
433 
434  if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
435  // If Start is a Def, skip self.
436  if (MD == Start)
437  continue;
438 
439  assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
440  .IsClobber &&
441  "Found clobber before reaching ClobberAt!");
442  continue;
443  }
444 
445  if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
446  (void)MU;
447  assert (MU == Start &&
448  "Can only find use in def chain if Start is a use");
449  continue;
450  }
451 
452  assert(isa<MemoryPhi>(MA));
453  Worklist.append(
454  upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
455  upward_defs_end());
456  }
457  }
458 
459  // If the verify is done following an optimization, it's possible that
460  // ClobberAt was a conservative clobbering, that we can now infer is not a
461  // true clobbering access. Don't fail the verify if that's the case.
462  // We do have accesses that claim they're optimized, but could be optimized
463  // further. Updating all these can be expensive, so allow it for now (FIXME).
464  if (AllowImpreciseClobber)
465  return;
466 
467  // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
468  // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
469  assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
470  "ClobberAt never acted as a clobber");
471 }
472 
473 namespace {
474 
475 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
476 /// in one class.
477 class ClobberWalker {
478  /// Save a few bytes by using unsigned instead of size_t.
479  using ListIndex = unsigned;
480 
481  /// Represents a span of contiguous MemoryDefs, potentially ending in a
482  /// MemoryPhi.
483  struct DefPath {
484  MemoryLocation Loc;
485  // Note that, because we always walk in reverse, Last will always dominate
486  // First. Also note that First and Last are inclusive.
487  MemoryAccess *First;
488  MemoryAccess *Last;
489  Optional<ListIndex> Previous;
490 
491  DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
492  Optional<ListIndex> Previous)
493  : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
494 
495  DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
496  Optional<ListIndex> Previous)
497  : DefPath(Loc, Init, Init, Previous) {}
498  };
499 
500  const MemorySSA &MSSA;
501  AliasAnalysis &AA;
502  DominatorTree &DT;
503  UpwardsMemoryQuery *Query;
504 
505  // Phi optimization bookkeeping
508 
509  /// Find the nearest def or phi that `From` can legally be optimized to.
510  const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
511  assert(From->getNumOperands() && "Phi with no operands?");
512 
513  BasicBlock *BB = From->getBlock();
514  MemoryAccess *Result = MSSA.getLiveOnEntryDef();
515  DomTreeNode *Node = DT.getNode(BB);
516  while ((Node = Node->getIDom())) {
517  auto *Defs = MSSA.getBlockDefs(Node->getBlock());
518  if (Defs)
519  return &*Defs->rbegin();
520  }
521  return Result;
522  }
523 
524  /// Result of calling walkToPhiOrClobber.
525  struct UpwardsWalkResult {
526  /// The "Result" of the walk. Either a clobber, the last thing we walked, or
527  /// both. Include alias info when clobber found.
528  MemoryAccess *Result;
529  bool IsKnownClobber;
531  };
532 
533  /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
534  /// This will update Desc.Last as it walks. It will (optionally) also stop at
535  /// StopAt.
536  ///
537  /// This does not test for whether StopAt is a clobber
538  UpwardsWalkResult
539  walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
540  const MemoryAccess *SkipStopAt = nullptr) const {
541  assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
542 
543  for (MemoryAccess *Current : def_chain(Desc.Last)) {
544  Desc.Last = Current;
545  if (Current == StopAt || Current == SkipStopAt)
546  return {Current, false, MayAlias};
547 
548  if (auto *MD = dyn_cast<MemoryDef>(Current)) {
549  if (MSSA.isLiveOnEntryDef(MD))
550  return {MD, true, MustAlias};
551  ClobberAlias CA =
552  instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
553  if (CA.IsClobber)
554  return {MD, true, CA.AR};
555  }
556  }
557 
558  assert(isa<MemoryPhi>(Desc.Last) &&
559  "Ended at a non-clobber that's not a phi?");
560  return {Desc.Last, false, MayAlias};
561  }
562 
563  void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
564  ListIndex PriorNode) {
565  auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
566  upward_defs_end());
567  for (const MemoryAccessPair &P : UpwardDefs) {
568  PausedSearches.push_back(Paths.size());
569  Paths.emplace_back(P.second, P.first, PriorNode);
570  }
571  }
572 
573  /// Represents a search that terminated after finding a clobber. This clobber
574  /// may or may not be present in the path of defs from LastNode..SearchStart,
575  /// since it may have been retrieved from cache.
576  struct TerminatedPath {
577  MemoryAccess *Clobber;
578  ListIndex LastNode;
579  };
580 
581  /// Get an access that keeps us from optimizing to the given phi.
582  ///
583  /// PausedSearches is an array of indices into the Paths array. Its incoming
584  /// value is the indices of searches that stopped at the last phi optimization
585  /// target. It's left in an unspecified state.
586  ///
587  /// If this returns None, NewPaused is a vector of searches that terminated
588  /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
590  getBlockingAccess(const MemoryAccess *StopWhere,
591  SmallVectorImpl<ListIndex> &PausedSearches,
592  SmallVectorImpl<ListIndex> &NewPaused,
593  SmallVectorImpl<TerminatedPath> &Terminated) {
594  assert(!PausedSearches.empty() && "No searches to continue?");
595 
596  // BFS vs DFS really doesn't make a difference here, so just do a DFS with
597  // PausedSearches as our stack.
598  while (!PausedSearches.empty()) {
599  ListIndex PathIndex = PausedSearches.pop_back_val();
600  DefPath &Node = Paths[PathIndex];
601 
602  // If we've already visited this path with this MemoryLocation, we don't
603  // need to do so again.
604  //
605  // NOTE: That we just drop these paths on the ground makes caching
606  // behavior sporadic. e.g. given a diamond:
607  // A
608  // B C
609  // D
610  //
611  // ...If we walk D, B, A, C, we'll only cache the result of phi
612  // optimization for A, B, and D; C will be skipped because it dies here.
613  // This arguably isn't the worst thing ever, since:
614  // - We generally query things in a top-down order, so if we got below D
615  // without needing cache entries for {C, MemLoc}, then chances are
616  // that those cache entries would end up ultimately unused.
617  // - We still cache things for A, so C only needs to walk up a bit.
618  // If this behavior becomes problematic, we can fix without a ton of extra
619  // work.
620  if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
621  continue;
622 
623  const MemoryAccess *SkipStopWhere = nullptr;
624  if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
625  assert(isa<MemoryDef>(Query->OriginalAccess));
626  SkipStopWhere = Query->OriginalAccess;
627  }
628 
629  UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere,
630  /*SkipStopAt=*/SkipStopWhere);
631  if (Res.IsKnownClobber) {
632  assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
633  // If this wasn't a cache hit, we hit a clobber when walking. That's a
634  // failure.
635  TerminatedPath Term{Res.Result, PathIndex};
636  if (!MSSA.dominates(Res.Result, StopWhere))
637  return Term;
638 
639  // Otherwise, it's a valid thing to potentially optimize to.
640  Terminated.push_back(Term);
641  continue;
642  }
643 
644  if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
645  // We've hit our target. Save this path off for if we want to continue
646  // walking. If we are in the mode of skipping the OriginalAccess, and
647  // we've reached back to the OriginalAccess, do not save path, we've
648  // just looped back to self.
649  if (Res.Result != SkipStopWhere)
650  NewPaused.push_back(PathIndex);
651  continue;
652  }
653 
654  assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
655  addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
656  }
657 
658  return None;
659  }
660 
661  template <typename T, typename Walker>
662  struct generic_def_path_iterator
663  : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
664  std::forward_iterator_tag, T *> {
665  generic_def_path_iterator() = default;
666  generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
667 
668  T &operator*() const { return curNode(); }
669 
670  generic_def_path_iterator &operator++() {
671  N = curNode().Previous;
672  return *this;
673  }
674 
675  bool operator==(const generic_def_path_iterator &O) const {
676  if (N.hasValue() != O.N.hasValue())
677  return false;
678  return !N.hasValue() || *N == *O.N;
679  }
680 
681  private:
682  T &curNode() const { return W->Paths[*N]; }
683 
684  Walker *W = nullptr;
686  };
687 
688  using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
689  using const_def_path_iterator =
690  generic_def_path_iterator<const DefPath, const ClobberWalker>;
691 
692  iterator_range<def_path_iterator> def_path(ListIndex From) {
693  return make_range(def_path_iterator(this, From), def_path_iterator());
694  }
695 
696  iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
697  return make_range(const_def_path_iterator(this, From),
698  const_def_path_iterator());
699  }
700 
701  struct OptznResult {
702  /// The path that contains our result.
703  TerminatedPath PrimaryClobber;
704  /// The paths that we can legally cache back from, but that aren't
705  /// necessarily the result of the Phi optimization.
706  SmallVector<TerminatedPath, 4> OtherClobbers;
707  };
708 
709  ListIndex defPathIndex(const DefPath &N) const {
710  // The assert looks nicer if we don't need to do &N
711  const DefPath *NP = &N;
712  assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
713  "Out of bounds DefPath!");
714  return NP - &Paths.front();
715  }
716 
717  /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
718  /// that act as legal clobbers. Note that this won't return *all* clobbers.
719  ///
720  /// Phi optimization algorithm tl;dr:
721  /// - Find the earliest def/phi, A, we can optimize to
722  /// - Find if all paths from the starting memory access ultimately reach A
723  /// - If not, optimization isn't possible.
724  /// - Otherwise, walk from A to another clobber or phi, A'.
725  /// - If A' is a def, we're done.
726  /// - If A' is a phi, try to optimize it.
727  ///
728  /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
729  /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
730  OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
731  const MemoryLocation &Loc) {
732  assert(Paths.empty() && VisitedPhis.empty() &&
733  "Reset the optimization state.");
734 
735  Paths.emplace_back(Loc, Start, Phi, None);
736  // Stores how many "valid" optimization nodes we had prior to calling
737  // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
738  auto PriorPathsSize = Paths.size();
739 
740  SmallVector<ListIndex, 16> PausedSearches;
741  SmallVector<ListIndex, 8> NewPaused;
742  SmallVector<TerminatedPath, 4> TerminatedPaths;
743 
744  addSearches(Phi, PausedSearches, 0);
745 
746  // Moves the TerminatedPath with the "most dominated" Clobber to the end of
747  // Paths.
748  auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
749  assert(!Paths.empty() && "Need a path to move");
750  auto Dom = Paths.begin();
751  for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
752  if (!MSSA.dominates(I->Clobber, Dom->Clobber))
753  Dom = I;
754  auto Last = Paths.end() - 1;
755  if (Last != Dom)
756  std::iter_swap(Last, Dom);
757  };
758 
759  MemoryPhi *Current = Phi;
760  while (true) {
761  assert(!MSSA.isLiveOnEntryDef(Current) &&
762  "liveOnEntry wasn't treated as a clobber?");
763 
764  const auto *Target = getWalkTarget(Current);
765  // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
766  // optimization for the prior phi.
767  assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
768  return MSSA.dominates(P.Clobber, Target);
769  }));
770 
771  // FIXME: This is broken, because the Blocker may be reported to be
772  // liveOnEntry, and we'll happily wait for that to disappear (read: never)
773  // For the moment, this is fine, since we do nothing with blocker info.
774  if (Optional<TerminatedPath> Blocker = getBlockingAccess(
775  Target, PausedSearches, NewPaused, TerminatedPaths)) {
776 
777  // Find the node we started at. We can't search based on N->Last, since
778  // we may have gone around a loop with a different MemoryLocation.
779  auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
780  return defPathIndex(N) < PriorPathsSize;
781  });
782  assert(Iter != def_path_iterator());
783 
784  DefPath &CurNode = *Iter;
785  assert(CurNode.Last == Current);
786 
787  // Two things:
788  // A. We can't reliably cache all of NewPaused back. Consider a case
789  // where we have two paths in NewPaused; one of which can't optimize
790  // above this phi, whereas the other can. If we cache the second path
791  // back, we'll end up with suboptimal cache entries. We can handle
792  // cases like this a bit better when we either try to find all
793  // clobbers that block phi optimization, or when our cache starts
794  // supporting unfinished searches.
795  // B. We can't reliably cache TerminatedPaths back here without doing
796  // extra checks; consider a case like:
797  // T
798  // / \
799  // D C
800  // \ /
801  // S
802  // Where T is our target, C is a node with a clobber on it, D is a
803  // diamond (with a clobber *only* on the left or right node, N), and
804  // S is our start. Say we walk to D, through the node opposite N
805  // (read: ignoring the clobber), and see a cache entry in the top
806  // node of D. That cache entry gets put into TerminatedPaths. We then
807  // walk up to C (N is later in our worklist), find the clobber, and
808  // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
809  // the bottom part of D to the cached clobber, ignoring the clobber
810  // in N. Again, this problem goes away if we start tracking all
811  // blockers for a given phi optimization.
812  TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
813  return {Result, {}};
814  }
815 
816  // If there's nothing left to search, then all paths led to valid clobbers
817  // that we got from our cache; pick the nearest to the start, and allow
818  // the rest to be cached back.
819  if (NewPaused.empty()) {
820  MoveDominatedPathToEnd(TerminatedPaths);
821  TerminatedPath Result = TerminatedPaths.pop_back_val();
822  return {Result, std::move(TerminatedPaths)};
823  }
824 
825  MemoryAccess *DefChainEnd = nullptr;
827  for (ListIndex Paused : NewPaused) {
828  UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
829  if (WR.IsKnownClobber)
830  Clobbers.push_back({WR.Result, Paused});
831  else
832  // Micro-opt: If we hit the end of the chain, save it.
833  DefChainEnd = WR.Result;
834  }
835 
836  if (!TerminatedPaths.empty()) {
837  // If we couldn't find the dominating phi/liveOnEntry in the above loop,
838  // do it now.
839  if (!DefChainEnd)
840  for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
841  DefChainEnd = MA;
842 
843  // If any of the terminated paths don't dominate the phi we'll try to
844  // optimize, we need to figure out what they are and quit.
845  const BasicBlock *ChainBB = DefChainEnd->getBlock();
846  for (const TerminatedPath &TP : TerminatedPaths) {
847  // Because we know that DefChainEnd is as "high" as we can go, we
848  // don't need local dominance checks; BB dominance is sufficient.
849  if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
850  Clobbers.push_back(TP);
851  }
852  }
853 
854  // If we have clobbers in the def chain, find the one closest to Current
855  // and quit.
856  if (!Clobbers.empty()) {
857  MoveDominatedPathToEnd(Clobbers);
858  TerminatedPath Result = Clobbers.pop_back_val();
859  return {Result, std::move(Clobbers)};
860  }
861 
862  assert(all_of(NewPaused,
863  [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
864 
865  // Because liveOnEntry is a clobber, this must be a phi.
866  auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
867 
868  PriorPathsSize = Paths.size();
869  PausedSearches.clear();
870  for (ListIndex I : NewPaused)
871  addSearches(DefChainPhi, PausedSearches, I);
872  NewPaused.clear();
873 
874  Current = DefChainPhi;
875  }
876  }
877 
878  void verifyOptResult(const OptznResult &R) const {
879  assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
880  return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
881  }));
882  }
883 
884  void resetPhiOptznState() {
885  Paths.clear();
886  VisitedPhis.clear();
887  }
888 
889 public:
890  ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
891  : MSSA(MSSA), AA(AA), DT(DT) {}
892 
893  /// Finds the nearest clobber for the given query, optimizing phis if
894  /// possible.
895  MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
896  Query = &Q;
897 
898  MemoryAccess *Current = Start;
899  // This walker pretends uses don't exist. If we're handed one, silently grab
900  // its def. (This has the nice side-effect of ensuring we never cache uses)
901  if (auto *MU = dyn_cast<MemoryUse>(Start))
902  Current = MU->getDefiningAccess();
903 
904  DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
905  // Fast path for the overly-common case (no crazy phi optimization
906  // necessary)
907  UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
908  MemoryAccess *Result;
909  if (WalkResult.IsKnownClobber) {
910  Result = WalkResult.Result;
911  Q.AR = WalkResult.AR;
912  } else {
913  OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
914  Current, Q.StartingLoc);
915  verifyOptResult(OptRes);
916  resetPhiOptznState();
917  Result = OptRes.PrimaryClobber.Clobber;
918  }
919 
920 #ifdef EXPENSIVE_CHECKS
921  if (!Q.SkipSelfAccess)
922  checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
923 #endif
924  return Result;
925  }
926 
927  void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
928 };
929 
930 struct RenamePassData {
931  DomTreeNode *DTN;
933  MemoryAccess *IncomingVal;
934 
935  RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
936  MemoryAccess *M)
937  : DTN(D), ChildIt(It), IncomingVal(M) {}
938 
939  void swap(RenamePassData &RHS) {
940  std::swap(DTN, RHS.DTN);
941  std::swap(ChildIt, RHS.ChildIt);
942  std::swap(IncomingVal, RHS.IncomingVal);
943  }
944 };
945 
946 } // end anonymous namespace
947 
948 namespace llvm {
949 
951  ClobberWalker Walker;
952  MemorySSA *MSSA;
953 
954 public:
956  : Walker(*M, *A, *D), MSSA(M) {}
957 
958  MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
959  const MemoryLocation &);
960  // Second argument (bool), defines whether the clobber search should skip the
961  // original queried access. If true, there will be a follow-up query searching
962  // for a clobber access past "self". Note that the Optimized access is not
963  // updated if a new clobber is found by this SkipSelf search. If this
964  // additional query becomes heavily used we may decide to cache the result.
965  // Walker instantiations will decide how to set the SkipSelf bool.
966  MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool);
967  void verify(const MemorySSA *MSSA) { Walker.verify(MSSA); }
968 };
969 
970 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
971 /// longer does caching on its own, but the name has been retained for the
972 /// moment.
974  ClobberWalkerBase *Walker;
975 
976 public:
978  : MemorySSAWalker(M), Walker(W) {}
979  ~CachingWalker() override = default;
980 
982 
983  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
984  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
985  const MemoryLocation &Loc) override;
986 
987  void invalidateInfo(MemoryAccess *MA) override {
988  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
989  MUD->resetOptimized();
990  }
991 
992  void verify(const MemorySSA *MSSA) override {
994  Walker->verify(MSSA);
995  }
996 };
997 
999  ClobberWalkerBase *Walker;
1000 
1001 public:
1003  : MemorySSAWalker(M), Walker(W) {}
1004  ~SkipSelfWalker() override = default;
1005 
1007 
1008  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
1009  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1010  const MemoryLocation &Loc) override;
1011 
1012  void invalidateInfo(MemoryAccess *MA) override {
1013  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1014  MUD->resetOptimized();
1015  }
1016 
1017  void verify(const MemorySSA *MSSA) override {
1019  Walker->verify(MSSA);
1020  }
1021 };
1022 
1023 } // end namespace llvm
1024 
1025 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1026  bool RenameAllUses) {
1027  // Pass through values to our successors
1028  for (const BasicBlock *S : successors(BB)) {
1029  auto It = PerBlockAccesses.find(S);
1030  // Rename the phi nodes in our successor block
1031  if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1032  continue;
1033  AccessList *Accesses = It->second.get();
1034  auto *Phi = cast<MemoryPhi>(&Accesses->front());
1035  if (RenameAllUses) {
1036  int PhiIndex = Phi->getBasicBlockIndex(BB);
1037  assert(PhiIndex != -1 && "Incomplete phi during partial rename");
1038  Phi->setIncomingValue(PhiIndex, IncomingVal);
1039  } else
1040  Phi->addIncoming(IncomingVal, BB);
1041  }
1042 }
1043 
1044 /// Rename a single basic block into MemorySSA form.
1045 /// Uses the standard SSA renaming algorithm.
1046 /// \returns The new incoming value.
1047 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1048  bool RenameAllUses) {
1049  auto It = PerBlockAccesses.find(BB);
1050  // Skip most processing if the list is empty.
1051  if (It != PerBlockAccesses.end()) {
1052  AccessList *Accesses = It->second.get();
1053  for (MemoryAccess &L : *Accesses) {
1054  if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1055  if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1056  MUD->setDefiningAccess(IncomingVal);
1057  if (isa<MemoryDef>(&L))
1058  IncomingVal = &L;
1059  } else {
1060  IncomingVal = &L;
1061  }
1062  }
1063  }
1064  return IncomingVal;
1065 }
1066 
1067 /// This is the standard SSA renaming algorithm.
1068 ///
1069 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1070 /// in phi nodes in our successors.
1071 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1073  bool SkipVisited, bool RenameAllUses) {
1075  // Skip everything if we already renamed this block and we are skipping.
1076  // Note: You can't sink this into the if, because we need it to occur
1077  // regardless of whether we skip blocks or not.
1078  bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1079  if (SkipVisited && AlreadyVisited)
1080  return;
1081 
1082  IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1083  renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1084  WorkStack.push_back({Root, Root->begin(), IncomingVal});
1085 
1086  while (!WorkStack.empty()) {
1087  DomTreeNode *Node = WorkStack.back().DTN;
1088  DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1089  IncomingVal = WorkStack.back().IncomingVal;
1090 
1091  if (ChildIt == Node->end()) {
1092  WorkStack.pop_back();
1093  } else {
1094  DomTreeNode *Child = *ChildIt;
1095  ++WorkStack.back().ChildIt;
1096  BasicBlock *BB = Child->getBlock();
1097  // Note: You can't sink this into the if, because we need it to occur
1098  // regardless of whether we skip blocks or not.
1099  AlreadyVisited = !Visited.insert(BB).second;
1100  if (SkipVisited && AlreadyVisited) {
1101  // We already visited this during our renaming, which can happen when
1102  // being asked to rename multiple blocks. Figure out the incoming val,
1103  // which is the last def.
1104  // Incoming value can only change if there is a block def, and in that
1105  // case, it's the last block def in the list.
1106  if (auto *BlockDefs = getWritableBlockDefs(BB))
1107  IncomingVal = &*BlockDefs->rbegin();
1108  } else
1109  IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1110  renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1111  WorkStack.push_back({Child, Child->begin(), IncomingVal});
1112  }
1113  }
1114 }
1115 
1116 /// This handles unreachable block accesses by deleting phi nodes in
1117 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1118 /// being uses of the live on entry definition.
1119 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1120  assert(!DT->isReachableFromEntry(BB) &&
1121  "Reachable block found while handling unreachable blocks");
1122 
1123  // Make sure phi nodes in our reachable successors end up with a
1124  // LiveOnEntryDef for our incoming edge, even though our block is forward
1125  // unreachable. We could just disconnect these blocks from the CFG fully,
1126  // but we do not right now.
1127  for (const BasicBlock *S : successors(BB)) {
1128  if (!DT->isReachableFromEntry(S))
1129  continue;
1130  auto It = PerBlockAccesses.find(S);
1131  // Rename the phi nodes in our successor block
1132  if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1133  continue;
1134  AccessList *Accesses = It->second.get();
1135  auto *Phi = cast<MemoryPhi>(&Accesses->front());
1136  Phi->addIncoming(LiveOnEntryDef.get(), BB);
1137  }
1138 
1139  auto It = PerBlockAccesses.find(BB);
1140  if (It == PerBlockAccesses.end())
1141  return;
1142 
1143  auto &Accesses = It->second;
1144  for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1145  auto Next = std::next(AI);
1146  // If we have a phi, just remove it. We are going to replace all
1147  // users with live on entry.
1148  if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1149  UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1150  else
1151  Accesses->erase(AI);
1152  AI = Next;
1153  }
1154 }
1155 
1157  : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1158  SkipWalker(nullptr), NextID(0) {
1159  buildMemorySSA();
1160 }
1161 
1163  // Drop all our references
1164  for (const auto &Pair : PerBlockAccesses)
1165  for (MemoryAccess &MA : *Pair.second)
1166  MA.dropAllReferences();
1167 }
1168 
1169 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1170  auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1171 
1172  if (Res.second)
1173  Res.first->second = llvm::make_unique<AccessList>();
1174  return Res.first->second.get();
1175 }
1176 
1177 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1178  auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1179 
1180  if (Res.second)
1181  Res.first->second = llvm::make_unique<DefsList>();
1182  return Res.first->second.get();
1183 }
1184 
1185 namespace llvm {
1186 
1187 /// This class is a batch walker of all MemoryUse's in the program, and points
1188 /// their defining access at the thing that actually clobbers them. Because it
1189 /// is a batch walker that touches everything, it does not operate like the
1190 /// other walkers. This walker is basically performing a top-down SSA renaming
1191 /// pass, where the version stack is used as the cache. This enables it to be
1192 /// significantly more time and memory efficient than using the regular walker,
1193 /// which is walking bottom-up.
1195 public:
1197  DominatorTree *DT)
1198  : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1199  Walker = MSSA->getWalker();
1200  }
1201 
1202  void optimizeUses();
1203 
1204 private:
1205  /// This represents where a given memorylocation is in the stack.
1206  struct MemlocStackInfo {
1207  // This essentially is keeping track of versions of the stack. Whenever
1208  // the stack changes due to pushes or pops, these versions increase.
1209  unsigned long StackEpoch;
1210  unsigned long PopEpoch;
1211  // This is the lower bound of places on the stack to check. It is equal to
1212  // the place the last stack walk ended.
1213  // Note: Correctness depends on this being initialized to 0, which densemap
1214  // does
1215  unsigned long LowerBound;
1216  const BasicBlock *LowerBoundBlock;
1217  // This is where the last walk for this memory location ended.
1218  unsigned long LastKill;
1219  bool LastKillValid;
1221  };
1222 
1223  void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1226 
1227  MemorySSA *MSSA;
1228  MemorySSAWalker *Walker;
1229  AliasAnalysis *AA;
1230  DominatorTree *DT;
1231 };
1232 
1233 } // end namespace llvm
1234 
1235 /// Optimize the uses in a given block This is basically the SSA renaming
1236 /// algorithm, with one caveat: We are able to use a single stack for all
1237 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1238 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1239 /// going to be some position in that stack of possible ones.
1240 ///
1241 /// We track the stack positions that each MemoryLocation needs
1242 /// to check, and last ended at. This is because we only want to check the
1243 /// things that changed since last time. The same MemoryLocation should
1244 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1245 /// things like this, and if they start, we can modify MemoryLocOrCall to
1246 /// include relevant data)
1247 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1248  const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1249  SmallVectorImpl<MemoryAccess *> &VersionStack,
1251 
1252  /// If no accesses, nothing to do.
1253  MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1254  if (Accesses == nullptr)
1255  return;
1256 
1257  // Pop everything that doesn't dominate the current block off the stack,
1258  // increment the PopEpoch to account for this.
1259  while (true) {
1260  assert(
1261  !VersionStack.empty() &&
1262  "Version stack should have liveOnEntry sentinel dominating everything");
1263  BasicBlock *BackBlock = VersionStack.back()->getBlock();
1264  if (DT->dominates(BackBlock, BB))
1265  break;
1266  while (VersionStack.back()->getBlock() == BackBlock)
1267  VersionStack.pop_back();
1268  ++PopEpoch;
1269  }
1270 
1271  for (MemoryAccess &MA : *Accesses) {
1272  auto *MU = dyn_cast<MemoryUse>(&MA);
1273  if (!MU) {
1274  VersionStack.push_back(&MA);
1275  ++StackEpoch;
1276  continue;
1277  }
1278 
1279  if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1280  MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1281  continue;
1282  }
1283 
1284  MemoryLocOrCall UseMLOC(MU);
1285  auto &LocInfo = LocStackInfo[UseMLOC];
1286  // If the pop epoch changed, it means we've removed stuff from top of
1287  // stack due to changing blocks. We may have to reset the lower bound or
1288  // last kill info.
1289  if (LocInfo.PopEpoch != PopEpoch) {
1290  LocInfo.PopEpoch = PopEpoch;
1291  LocInfo.StackEpoch = StackEpoch;
1292  // If the lower bound was in something that no longer dominates us, we
1293  // have to reset it.
1294  // We can't simply track stack size, because the stack may have had
1295  // pushes/pops in the meantime.
1296  // XXX: This is non-optimal, but only is slower cases with heavily
1297  // branching dominator trees. To get the optimal number of queries would
1298  // be to make lowerbound and lastkill a per-loc stack, and pop it until
1299  // the top of that stack dominates us. This does not seem worth it ATM.
1300  // A much cheaper optimization would be to always explore the deepest
1301  // branch of the dominator tree first. This will guarantee this resets on
1302  // the smallest set of blocks.
1303  if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1304  !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1305  // Reset the lower bound of things to check.
1306  // TODO: Some day we should be able to reset to last kill, rather than
1307  // 0.
1308  LocInfo.LowerBound = 0;
1309  LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1310  LocInfo.LastKillValid = false;
1311  }
1312  } else if (LocInfo.StackEpoch != StackEpoch) {
1313  // If all that has changed is the StackEpoch, we only have to check the
1314  // new things on the stack, because we've checked everything before. In
1315  // this case, the lower bound of things to check remains the same.
1316  LocInfo.PopEpoch = PopEpoch;
1317  LocInfo.StackEpoch = StackEpoch;
1318  }
1319  if (!LocInfo.LastKillValid) {
1320  LocInfo.LastKill = VersionStack.size() - 1;
1321  LocInfo.LastKillValid = true;
1322  LocInfo.AR = MayAlias;
1323  }
1324 
1325  // At this point, we should have corrected last kill and LowerBound to be
1326  // in bounds.
1327  assert(LocInfo.LowerBound < VersionStack.size() &&
1328  "Lower bound out of range");
1329  assert(LocInfo.LastKill < VersionStack.size() &&
1330  "Last kill info out of range");
1331  // In any case, the new upper bound is the top of the stack.
1332  unsigned long UpperBound = VersionStack.size() - 1;
1333 
1334  if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1335  LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1336  << *(MU->getMemoryInst()) << ")"
1337  << " because there are "
1338  << UpperBound - LocInfo.LowerBound
1339  << " stores to disambiguate\n");
1340  // Because we did not walk, LastKill is no longer valid, as this may
1341  // have been a kill.
1342  LocInfo.LastKillValid = false;
1343  continue;
1344  }
1345  bool FoundClobberResult = false;
1346  while (UpperBound > LocInfo.LowerBound) {
1347  if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1348  // For phis, use the walker, see where we ended up, go there
1349  Instruction *UseInst = MU->getMemoryInst();
1350  MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1351  // We are guaranteed to find it or something is wrong
1352  while (VersionStack[UpperBound] != Result) {
1353  assert(UpperBound != 0);
1354  --UpperBound;
1355  }
1356  FoundClobberResult = true;
1357  break;
1358  }
1359 
1360  MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1361  // If the lifetime of the pointer ends at this instruction, it's live on
1362  // entry.
1363  if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1364  // Reset UpperBound to liveOnEntryDef's place in the stack
1365  UpperBound = 0;
1366  FoundClobberResult = true;
1367  LocInfo.AR = MustAlias;
1368  break;
1369  }
1370  ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1371  if (CA.IsClobber) {
1372  FoundClobberResult = true;
1373  LocInfo.AR = CA.AR;
1374  break;
1375  }
1376  --UpperBound;
1377  }
1378 
1379  // Note: Phis always have AliasResult AR set to MayAlias ATM.
1380 
1381  // At the end of this loop, UpperBound is either a clobber, or lower bound
1382  // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1383  if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1384  // We were last killed now by where we got to
1385  if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1386  LocInfo.AR = None;
1387  MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1388  LocInfo.LastKill = UpperBound;
1389  } else {
1390  // Otherwise, we checked all the new ones, and now we know we can get to
1391  // LastKill.
1392  MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1393  }
1394  LocInfo.LowerBound = VersionStack.size() - 1;
1395  LocInfo.LowerBoundBlock = BB;
1396  }
1397 }
1398 
1399 /// Optimize uses to point to their actual clobbering definitions.
1401  SmallVector<MemoryAccess *, 16> VersionStack;
1403  VersionStack.push_back(MSSA->getLiveOnEntryDef());
1404 
1405  unsigned long StackEpoch = 1;
1406  unsigned long PopEpoch = 1;
1407  // We perform a non-recursive top-down dominator tree walk.
1408  for (const auto *DomNode : depth_first(DT->getRootNode()))
1409  optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1410  LocStackInfo);
1411 }
1412 
1413 void MemorySSA::placePHINodes(
1414  const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1415  // Determine where our MemoryPhi's should go
1416  ForwardIDFCalculator IDFs(*DT);
1417  IDFs.setDefiningBlocks(DefiningBlocks);
1419  IDFs.calculate(IDFBlocks);
1420 
1421  // Now place MemoryPhi nodes.
1422  for (auto &BB : IDFBlocks)
1423  createMemoryPhi(BB);
1424 }
1425 
1426 void MemorySSA::buildMemorySSA() {
1427  // We create an access to represent "live on entry", for things like
1428  // arguments or users of globals, where the memory they use is defined before
1429  // the beginning of the function. We do not actually insert it into the IR.
1430  // We do not define a live on exit for the immediate uses, and thus our
1431  // semantics do *not* imply that something with no immediate uses can simply
1432  // be removed.
1433  BasicBlock &StartingPoint = F.getEntryBlock();
1434  LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1435  &StartingPoint, NextID++));
1436 
1437  // We maintain lists of memory accesses per-block, trading memory for time. We
1438  // could just look up the memory access for every possible instruction in the
1439  // stream.
1440  SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1441  // Go through each block, figure out where defs occur, and chain together all
1442  // the accesses.
1443  for (BasicBlock &B : F) {
1444  bool InsertIntoDef = false;
1445  AccessList *Accesses = nullptr;
1446  DefsList *Defs = nullptr;
1447  for (Instruction &I : B) {
1448  MemoryUseOrDef *MUD = createNewAccess(&I);
1449  if (!MUD)
1450  continue;
1451 
1452  if (!Accesses)
1453  Accesses = getOrCreateAccessList(&B);
1454  Accesses->push_back(MUD);
1455  if (isa<MemoryDef>(MUD)) {
1456  InsertIntoDef = true;
1457  if (!Defs)
1458  Defs = getOrCreateDefsList(&B);
1459  Defs->push_back(*MUD);
1460  }
1461  }
1462  if (InsertIntoDef)
1463  DefiningBlocks.insert(&B);
1464  }
1465  placePHINodes(DefiningBlocks);
1466 
1467  // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1468  // filled in with all blocks.
1470  renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1471 
1472  CachingWalker *Walker = getWalkerImpl();
1473 
1474  OptimizeUses(this, Walker, AA, DT).optimizeUses();
1475 
1476  // Mark the uses in unreachable blocks as live on entry, so that they go
1477  // somewhere.
1478  for (auto &BB : F)
1479  if (!Visited.count(&BB))
1480  markUnreachableAsLiveOnEntry(&BB);
1481 }
1482 
1483 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1484 
1485 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1486  if (Walker)
1487  return Walker.get();
1488 
1489  if (!WalkerBase)
1490  WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1491 
1492  Walker = llvm::make_unique<CachingWalker>(this, WalkerBase.get());
1493  return Walker.get();
1494 }
1495 
1497  if (SkipWalker)
1498  return SkipWalker.get();
1499 
1500  if (!WalkerBase)
1501  WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1502 
1503  SkipWalker = llvm::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1504  return SkipWalker.get();
1505  }
1506 
1507 
1508 // This is a helper function used by the creation routines. It places NewAccess
1509 // into the access and defs lists for a given basic block, at the given
1510 // insertion point.
1512  const BasicBlock *BB,
1513  InsertionPlace Point) {
1514  auto *Accesses = getOrCreateAccessList(BB);
1515  if (Point == Beginning) {
1516  // If it's a phi node, it goes first, otherwise, it goes after any phi
1517  // nodes.
1518  if (isa<MemoryPhi>(NewAccess)) {
1519  Accesses->push_front(NewAccess);
1520  auto *Defs = getOrCreateDefsList(BB);
1521  Defs->push_front(*NewAccess);
1522  } else {
1523  auto AI = find_if_not(
1524  *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1525  Accesses->insert(AI, NewAccess);
1526  if (!isa<MemoryUse>(NewAccess)) {
1527  auto *Defs = getOrCreateDefsList(BB);
1528  auto DI = find_if_not(
1529  *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1530  Defs->insert(DI, *NewAccess);
1531  }
1532  }
1533  } else {
1534  Accesses->push_back(NewAccess);
1535  if (!isa<MemoryUse>(NewAccess)) {
1536  auto *Defs = getOrCreateDefsList(BB);
1537  Defs->push_back(*NewAccess);
1538  }
1539  }
1540  BlockNumberingValid.erase(BB);
1541 }
1542 
1544  AccessList::iterator InsertPt) {
1545  auto *Accesses = getWritableBlockAccesses(BB);
1546  bool WasEnd = InsertPt == Accesses->end();
1547  Accesses->insert(AccessList::iterator(InsertPt), What);
1548  if (!isa<MemoryUse>(What)) {
1549  auto *Defs = getOrCreateDefsList(BB);
1550  // If we got asked to insert at the end, we have an easy job, just shove it
1551  // at the end. If we got asked to insert before an existing def, we also get
1552  // an iterator. If we got asked to insert before a use, we have to hunt for
1553  // the next def.
1554  if (WasEnd) {
1555  Defs->push_back(*What);
1556  } else if (isa<MemoryDef>(InsertPt)) {
1557  Defs->insert(InsertPt->getDefsIterator(), *What);
1558  } else {
1559  while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1560  ++InsertPt;
1561  // Either we found a def, or we are inserting at the end
1562  if (InsertPt == Accesses->end())
1563  Defs->push_back(*What);
1564  else
1565  Defs->insert(InsertPt->getDefsIterator(), *What);
1566  }
1567  }
1568  BlockNumberingValid.erase(BB);
1569 }
1570 
1571 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1572  // Keep it in the lookup tables, remove from the lists
1573  removeFromLists(What, false);
1574 
1575  // Note that moving should implicitly invalidate the optimized state of a
1576  // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1577  // MemoryDef.
1578  if (auto *MD = dyn_cast<MemoryDef>(What))
1579  MD->resetOptimized();
1580  What->setBlock(BB);
1581 }
1582 
1583 // Move What before Where in the IR. The end result is that What will belong to
1584 // the right lists and have the right Block set, but will not otherwise be
1585 // correct. It will not have the right defining access, and if it is a def,
1586 // things below it will not properly be updated.
1588  AccessList::iterator Where) {
1589  prepareForMoveTo(What, BB);
1590  insertIntoListsBefore(What, BB, Where);
1591 }
1592 
1594  InsertionPlace Point) {
1595  if (isa<MemoryPhi>(What)) {
1596  assert(Point == Beginning &&
1597  "Can only move a Phi at the beginning of the block");
1598  // Update lookup table entry
1599  ValueToMemoryAccess.erase(What->getBlock());
1600  bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1601  (void)Inserted;
1602  assert(Inserted && "Cannot move a Phi to a block that already has one");
1603  }
1604 
1605  prepareForMoveTo(What, BB);
1606  insertIntoListsForBlock(What, BB, Point);
1607 }
1608 
1609 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1610  assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1611  MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1612  // Phi's always are placed at the front of the block.
1614  ValueToMemoryAccess[BB] = Phi;
1615  return Phi;
1616 }
1617 
1619  MemoryAccess *Definition,
1620  const MemoryUseOrDef *Template) {
1621  assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1622  MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
1623  assert(
1624  NewAccess != nullptr &&
1625  "Tried to create a memory access for a non-memory touching instruction");
1626  NewAccess->setDefiningAccess(Definition);
1627  return NewAccess;
1628 }
1629 
1630 // Return true if the instruction has ordering constraints.
1631 // Note specifically that this only considers stores and loads
1632 // because others are still considered ModRef by getModRefInfo.
1633 static inline bool isOrdered(const Instruction *I) {
1634  if (auto *SI = dyn_cast<StoreInst>(I)) {
1635  if (!SI->isUnordered())
1636  return true;
1637  } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1638  if (!LI->isUnordered())
1639  return true;
1640  }
1641  return false;
1642 }
1643 
1644 /// Helper function to create new memory accesses
1645 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1646  const MemoryUseOrDef *Template) {
1647  // The assume intrinsic has a control dependency which we model by claiming
1648  // that it writes arbitrarily. Ignore that fake memory dependency here.
1649  // FIXME: Replace this special casing with a more accurate modelling of
1650  // assume's control dependency.
1651  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1652  if (II->getIntrinsicID() == Intrinsic::assume)
1653  return nullptr;
1654 
1655  bool Def, Use;
1656  if (Template) {
1657  Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1658  Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1659 #if !defined(NDEBUG)
1660  ModRefInfo ModRef = AA->getModRefInfo(I, None);
1661  bool DefCheck, UseCheck;
1662  DefCheck = isModSet(ModRef) || isOrdered(I);
1663  UseCheck = isRefSet(ModRef);
1664  assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1665 #endif
1666  } else {
1667  // Find out what affect this instruction has on memory.
1668  ModRefInfo ModRef = AA->getModRefInfo(I, None);
1669  // The isOrdered check is used to ensure that volatiles end up as defs
1670  // (atomics end up as ModRef right now anyway). Until we separate the
1671  // ordering chain from the memory chain, this enables people to see at least
1672  // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1673  // will still give an answer that bypasses other volatile loads. TODO:
1674  // Separate memory aliasing and ordering into two different chains so that
1675  // we can precisely represent both "what memory will this read/write/is
1676  // clobbered by" and "what instructions can I move this past".
1677  Def = isModSet(ModRef) || isOrdered(I);
1678  Use = isRefSet(ModRef);
1679  }
1680 
1681  // It's possible for an instruction to not modify memory at all. During
1682  // construction, we ignore them.
1683  if (!Def && !Use)
1684  return nullptr;
1685 
1686  MemoryUseOrDef *MUD;
1687  if (Def)
1688  MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1689  else
1690  MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1691  ValueToMemoryAccess[I] = MUD;
1692  return MUD;
1693 }
1694 
1695 /// Returns true if \p Replacer dominates \p Replacee .
1696 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1697  const MemoryAccess *Replacee) const {
1698  if (isa<MemoryUseOrDef>(Replacee))
1699  return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1700  const auto *MP = cast<MemoryPhi>(Replacee);
1701  // For a phi node, the use occurs in the predecessor block of the phi node.
1702  // Since we may occur multiple times in the phi node, we have to check each
1703  // operand to ensure Replacer dominates each operand where Replacee occurs.
1704  for (const Use &Arg : MP->operands()) {
1705  if (Arg.get() != Replacee &&
1706  !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1707  return false;
1708  }
1709  return true;
1710 }
1711 
1712 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1714  assert(MA->use_empty() &&
1715  "Trying to remove memory access that still has uses");
1716  BlockNumbering.erase(MA);
1717  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1718  MUD->setDefiningAccess(nullptr);
1719  // Invalidate our walker's cache if necessary
1720  if (!isa<MemoryUse>(MA))
1721  Walker->invalidateInfo(MA);
1722 
1723  Value *MemoryInst;
1724  if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1725  MemoryInst = MUD->getMemoryInst();
1726  else
1727  MemoryInst = MA->getBlock();
1728 
1729  auto VMA = ValueToMemoryAccess.find(MemoryInst);
1730  if (VMA->second == MA)
1731  ValueToMemoryAccess.erase(VMA);
1732 }
1733 
1734 /// Properly remove \p MA from all of MemorySSA's lists.
1735 ///
1736 /// Because of the way the intrusive list and use lists work, it is important to
1737 /// do removal in the right order.
1738 /// ShouldDelete defaults to true, and will cause the memory access to also be
1739 /// deleted, not just removed.
1740 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1741  BasicBlock *BB = MA->getBlock();
1742  // The access list owns the reference, so we erase it from the non-owning list
1743  // first.
1744  if (!isa<MemoryUse>(MA)) {
1745  auto DefsIt = PerBlockDefs.find(BB);
1746  std::unique_ptr<DefsList> &Defs = DefsIt->second;
1747  Defs->remove(*MA);
1748  if (Defs->empty())
1749  PerBlockDefs.erase(DefsIt);
1750  }
1751 
1752  // The erase call here will delete it. If we don't want it deleted, we call
1753  // remove instead.
1754  auto AccessIt = PerBlockAccesses.find(BB);
1755  std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1756  if (ShouldDelete)
1757  Accesses->erase(MA);
1758  else
1759  Accesses->remove(MA);
1760 
1761  if (Accesses->empty()) {
1762  PerBlockAccesses.erase(AccessIt);
1763  BlockNumberingValid.erase(BB);
1764  }
1765 }
1766 
1768  MemorySSAAnnotatedWriter Writer(this);
1769  F.print(OS, &Writer);
1770 }
1771 
1772 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1774 #endif
1775 
1777  verifyDefUses(F);
1779  verifyOrdering(F);
1781  Walker->verify(this);
1783 }
1784 
1785 /// Check sanity of the clobbering instruction for access MA.
1787  if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1788  if (!MUD->isOptimized())
1789  return;
1790  auto *I = MUD->getMemoryInst();
1791  auto Loc = MemoryLocation::getOrNone(I);
1792  if (Loc == None)
1793  return;
1794  auto *Clobber = MUD->getOptimized();
1795  UpwardsMemoryQuery Q(I, MUD);
1796  checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true);
1797  }
1798 }
1799 
1801 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1802  for (const BasicBlock &BB : F) {
1803  const AccessList *Accesses = getBlockAccesses(&BB);
1804  if (!Accesses)
1805  continue;
1806  for (const MemoryAccess &MA : *Accesses)
1808  }
1809 #endif
1810 }
1811 
1812 /// Verify that all of the blocks we believe to have valid domination numbers
1813 /// actually have valid domination numbers.
1815 #ifndef NDEBUG
1816  if (BlockNumberingValid.empty())
1817  return;
1818 
1819  SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1820  for (const BasicBlock &BB : F) {
1821  if (!ValidBlocks.count(&BB))
1822  continue;
1823 
1824  ValidBlocks.erase(&BB);
1825 
1826  const AccessList *Accesses = getBlockAccesses(&BB);
1827  // It's correct to say an empty block has valid numbering.
1828  if (!Accesses)
1829  continue;
1830 
1831  // Block numbering starts at 1.
1832  unsigned long LastNumber = 0;
1833  for (const MemoryAccess &MA : *Accesses) {
1834  auto ThisNumberIter = BlockNumbering.find(&MA);
1835  assert(ThisNumberIter != BlockNumbering.end() &&
1836  "MemoryAccess has no domination number in a valid block!");
1837 
1838  unsigned long ThisNumber = ThisNumberIter->second;
1839  assert(ThisNumber > LastNumber &&
1840  "Domination numbers should be strictly increasing!");
1841  LastNumber = ThisNumber;
1842  }
1843  }
1844 
1845  assert(ValidBlocks.empty() &&
1846  "All valid BasicBlocks should exist in F -- dangling pointers?");
1847 #endif
1848 }
1849 
1850 /// Verify that the order and existence of MemoryAccesses matches the
1851 /// order and existence of memory affecting instructions.
1853 #ifndef NDEBUG
1854  // Walk all the blocks, comparing what the lookups think and what the access
1855  // lists think, as well as the order in the blocks vs the order in the access
1856  // lists.
1857  SmallVector<MemoryAccess *, 32> ActualAccesses;
1859  for (BasicBlock &B : F) {
1860  const AccessList *AL = getBlockAccesses(&B);
1861  const auto *DL = getBlockDefs(&B);
1862  MemoryAccess *Phi = getMemoryAccess(&B);
1863  if (Phi) {
1864  ActualAccesses.push_back(Phi);
1865  ActualDefs.push_back(Phi);
1866  }
1867 
1868  for (Instruction &I : B) {
1869  MemoryAccess *MA = getMemoryAccess(&I);
1870  assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1871  "We have memory affecting instructions "
1872  "in this block but they are not in the "
1873  "access list or defs list");
1874  if (MA) {
1875  ActualAccesses.push_back(MA);
1876  if (isa<MemoryDef>(MA))
1877  ActualDefs.push_back(MA);
1878  }
1879  }
1880  // Either we hit the assert, really have no accesses, or we have both
1881  // accesses and an access list.
1882  // Same with defs.
1883  if (!AL && !DL)
1884  continue;
1885  assert(AL->size() == ActualAccesses.size() &&
1886  "We don't have the same number of accesses in the block as on the "
1887  "access list");
1888  assert((DL || ActualDefs.size() == 0) &&
1889  "Either we should have a defs list, or we should have no defs");
1890  assert((!DL || DL->size() == ActualDefs.size()) &&
1891  "We don't have the same number of defs in the block as on the "
1892  "def list");
1893  auto ALI = AL->begin();
1894  auto AAI = ActualAccesses.begin();
1895  while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1896  assert(&*ALI == *AAI && "Not the same accesses in the same order");
1897  ++ALI;
1898  ++AAI;
1899  }
1900  ActualAccesses.clear();
1901  if (DL) {
1902  auto DLI = DL->begin();
1903  auto ADI = ActualDefs.begin();
1904  while (DLI != DL->end() && ADI != ActualDefs.end()) {
1905  assert(&*DLI == *ADI && "Not the same defs in the same order");
1906  ++DLI;
1907  ++ADI;
1908  }
1909  }
1910  ActualDefs.clear();
1911  }
1912 #endif
1913 }
1914 
1915 /// Verify the domination properties of MemorySSA by checking that each
1916 /// definition dominates all of its uses.
1918 #ifndef NDEBUG
1919  for (BasicBlock &B : F) {
1920  // Phi nodes are attached to basic blocks
1921  if (MemoryPhi *MP = getMemoryAccess(&B))
1922  for (const Use &U : MP->uses())
1923  assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1924 
1925  for (Instruction &I : B) {
1926  MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1927  if (!MD)
1928  continue;
1929 
1930  for (const Use &U : MD->uses())
1931  assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1932  }
1933  }
1934 #endif
1935 }
1936 
1937 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1938 /// appears in the use list of \p Def.
1939 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1940 #ifndef NDEBUG
1941  // The live on entry use may cause us to get a NULL def here
1942  if (!Def)
1943  assert(isLiveOnEntryDef(Use) &&
1944  "Null def but use not point to live on entry def");
1945  else
1946  assert(is_contained(Def->users(), Use) &&
1947  "Did not find use in def's use list");
1948 #endif
1949 }
1950 
1951 /// Verify the immediate use information, by walking all the memory
1952 /// accesses and verifying that, for each use, it appears in the
1953 /// appropriate def's use list
1955 #ifndef NDEBUG
1956  for (BasicBlock &B : F) {
1957  // Phi nodes are attached to basic blocks
1958  if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1959  assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1960  pred_begin(&B), pred_end(&B))) &&
1961  "Incomplete MemoryPhi Node");
1962  for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1963  verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1964  assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1965  pred_end(&B) &&
1966  "Incoming phi block not a block predecessor");
1967  }
1968  }
1969 
1970  for (Instruction &I : B) {
1971  if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1972  verifyUseInDefs(MA->getDefiningAccess(), MA);
1973  }
1974  }
1975  }
1976 #endif
1977 }
1978 
1979 /// Perform a local numbering on blocks so that instruction ordering can be
1980 /// determined in constant time.
1981 /// TODO: We currently just number in order. If we numbered by N, we could
1982 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1983 /// log2(N) sequences of mixed before and after) without needing to invalidate
1984 /// the numbering.
1985 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1986  // The pre-increment ensures the numbers really start at 1.
1987  unsigned long CurrentNumber = 0;
1988  const AccessList *AL = getBlockAccesses(B);
1989  assert(AL != nullptr && "Asking to renumber an empty block");
1990  for (const auto &I : *AL)
1991  BlockNumbering[&I] = ++CurrentNumber;
1992  BlockNumberingValid.insert(B);
1993 }
1994 
1995 /// Determine, for two memory accesses in the same block,
1996 /// whether \p Dominator dominates \p Dominatee.
1997 /// \returns True if \p Dominator dominates \p Dominatee.
1999  const MemoryAccess *Dominatee) const {
2000  const BasicBlock *DominatorBlock = Dominator->getBlock();
2001 
2002  assert((DominatorBlock == Dominatee->getBlock()) &&
2003  "Asking for local domination when accesses are in different blocks!");
2004  // A node dominates itself.
2005  if (Dominatee == Dominator)
2006  return true;
2007 
2008  // When Dominatee is defined on function entry, it is not dominated by another
2009  // memory access.
2010  if (isLiveOnEntryDef(Dominatee))
2011  return false;
2012 
2013  // When Dominator is defined on function entry, it dominates the other memory
2014  // access.
2015  if (isLiveOnEntryDef(Dominator))
2016  return true;
2017 
2018  if (!BlockNumberingValid.count(DominatorBlock))
2019  renumberBlock(DominatorBlock);
2020 
2021  unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2022  // All numbers start with 1
2023  assert(DominatorNum != 0 && "Block was not numbered properly");
2024  unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2025  assert(DominateeNum != 0 && "Block was not numbered properly");
2026  return DominatorNum < DominateeNum;
2027 }
2028 
2029 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2030  const MemoryAccess *Dominatee) const {
2031  if (Dominator == Dominatee)
2032  return true;
2033 
2034  if (isLiveOnEntryDef(Dominatee))
2035  return false;
2036 
2037  if (Dominator->getBlock() != Dominatee->getBlock())
2038  return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2039  return locallyDominates(Dominator, Dominatee);
2040 }
2041 
2042 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2043  const Use &Dominatee) const {
2044  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2045  BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2046  // The def must dominate the incoming block of the phi.
2047  if (UseBB != Dominator->getBlock())
2048  return DT->dominates(Dominator->getBlock(), UseBB);
2049  // If the UseBB and the DefBB are the same, compare locally.
2050  return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2051  }
2052  // If it's not a PHI node use, the normal dominates can already handle it.
2053  return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2054 }
2055 
2056 const static char LiveOnEntryStr[] = "liveOnEntry";
2057 
2059  switch (getValueID()) {
2060  case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2061  case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2062  case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2063  }
2064  llvm_unreachable("invalid value id");
2065 }
2066 
2068  MemoryAccess *UO = getDefiningAccess();
2069 
2070  auto printID = [&OS](MemoryAccess *A) {
2071  if (A && A->getID())
2072  OS << A->getID();
2073  else
2074  OS << LiveOnEntryStr;
2075  };
2076 
2077  OS << getID() << " = MemoryDef(";
2078  printID(UO);
2079  OS << ")";
2080 
2081  if (isOptimized()) {
2082  OS << "->";
2083  printID(getOptimized());
2084 
2085  if (Optional<AliasResult> AR = getOptimizedAccessType())
2086  OS << " " << *AR;
2087  }
2088 }
2089 
2091  bool First = true;
2092  OS << getID() << " = MemoryPhi(";
2093  for (const auto &Op : operands()) {
2094  BasicBlock *BB = getIncomingBlock(Op);
2095  MemoryAccess *MA = cast<MemoryAccess>(Op);
2096  if (!First)
2097  OS << ',';
2098  else
2099  First = false;
2100 
2101  OS << '{';
2102  if (BB->hasName())
2103  OS << BB->getName();
2104  else
2105  BB->printAsOperand(OS, false);
2106  OS << ',';
2107  if (unsigned ID = MA->getID())
2108  OS << ID;
2109  else
2110  OS << LiveOnEntryStr;
2111  OS << '}';
2112  }
2113  OS << ')';
2114 }
2115 
2117  MemoryAccess *UO = getDefiningAccess();
2118  OS << "MemoryUse(";
2119  if (UO && UO->getID())
2120  OS << UO->getID();
2121  else
2122  OS << LiveOnEntryStr;
2123  OS << ')';
2124 
2125  if (Optional<AliasResult> AR = getOptimizedAccessType())
2126  OS << " " << *AR;
2127 }
2128 
2129 void MemoryAccess::dump() const {
2130 // Cannot completely remove virtual function even in release mode.
2131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2132  print(dbgs());
2133  dbgs() << "\n";
2134 #endif
2135 }
2136 
2138 
2141 }
2142 
2144  AU.setPreservesAll();
2145  AU.addRequired<MemorySSAWrapperPass>();
2146 }
2147 
2149  auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2150  MSSA.print(dbgs());
2151  if (VerifyMemorySSA)
2152  MSSA.verifyMemorySSA();
2153  return false;
2154 }
2155 
2156 AnalysisKey MemorySSAAnalysis::Key;
2157 
2160  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2161  auto &AA = AM.getResult<AAManager>(F);
2162  return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2163 }
2164 
2167  OS << "MemorySSA for function: " << F.getName() << "\n";
2168  AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2169 
2170  return PreservedAnalyses::all();
2171 }
2172 
2175  AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2176 
2177  return PreservedAnalyses::all();
2178 }
2179 
2180 char MemorySSAWrapperPass::ID = 0;
2181 
2184 }
2185 
2186 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2187 
2189  AU.setPreservesAll();
2192 }
2193 
2195  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2196  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2197  MSSA.reset(new MemorySSA(F, &AA, &DT));
2198  return false;
2199 }
2200 
2201 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2202 
2204  MSSA->print(OS);
2205 }
2206 
2208 
2209 /// Walk the use-def chains starting at \p StartingAccess and find
2210 /// the MemoryAccess that actually clobbers Loc.
2211 ///
2212 /// \returns our clobbering memory access
2214  MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2215  if (isa<MemoryPhi>(StartingAccess))
2216  return StartingAccess;
2217 
2218  auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2219  if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2220  return StartingUseOrDef;
2221 
2222  Instruction *I = StartingUseOrDef->getMemoryInst();
2223 
2224  // Conservatively, fences are always clobbers, so don't perform the walk if we
2225  // hit a fence.
2226  if (!isa<CallBase>(I) && I->isFenceLike())
2227  return StartingUseOrDef;
2228 
2229  UpwardsMemoryQuery Q;
2230  Q.OriginalAccess = StartingUseOrDef;
2231  Q.StartingLoc = Loc;
2232  Q.Inst = I;
2233  Q.IsCall = false;
2234 
2235  // Unlike the other function, do not walk to the def of a def, because we are
2236  // handed something we already believe is the clobbering access.
2237  // We never set SkipSelf to true in Q in this method.
2238  MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2239  ? StartingUseOrDef->getDefiningAccess()
2240  : StartingUseOrDef;
2241 
2242  MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q);
2243  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2244  LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2245  LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2246  LLVM_DEBUG(dbgs() << *Clobber << "\n");
2247  return Clobber;
2248 }
2249 
2250 MemoryAccess *
2252  bool SkipSelf) {
2253  auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2254  // If this is a MemoryPhi, we can't do anything.
2255  if (!StartingAccess)
2256  return MA;
2257 
2258  bool IsOptimized = false;
2259 
2260  // If this is an already optimized use or def, return the optimized result.
2261  // Note: Currently, we store the optimized def result in a separate field,
2262  // since we can't use the defining access.
2263  if (StartingAccess->isOptimized()) {
2264  if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2265  return StartingAccess->getOptimized();
2266  IsOptimized = true;
2267  }
2268 
2269  const Instruction *I = StartingAccess->getMemoryInst();
2270  // We can't sanely do anything with a fence, since they conservatively clobber
2271  // all memory, and have no locations to get pointers from to try to
2272  // disambiguate.
2273  if (!isa<CallBase>(I) && I->isFenceLike())
2274  return StartingAccess;
2275 
2276  UpwardsMemoryQuery Q(I, StartingAccess);
2277 
2279  MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2280  StartingAccess->setOptimized(LiveOnEntry);
2281  StartingAccess->setOptimizedAccessType(None);
2282  return LiveOnEntry;
2283  }
2284 
2285  MemoryAccess *OptimizedAccess;
2286  if (!IsOptimized) {
2287  // Start with the thing we already think clobbers this location
2288  MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2289 
2290  // At this point, DefiningAccess may be the live on entry def.
2291  // If it is, we will not get a better result.
2292  if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2293  StartingAccess->setOptimized(DefiningAccess);
2294  StartingAccess->setOptimizedAccessType(None);
2295  return DefiningAccess;
2296  }
2297 
2298  OptimizedAccess = Walker.findClobber(DefiningAccess, Q);
2299  StartingAccess->setOptimized(OptimizedAccess);
2300  if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2301  StartingAccess->setOptimizedAccessType(None);
2302  else if (Q.AR == MustAlias)
2303  StartingAccess->setOptimizedAccessType(MustAlias);
2304  } else
2305  OptimizedAccess = StartingAccess->getOptimized();
2306 
2307  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2308  LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2309  LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2310  LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2311 
2312  MemoryAccess *Result;
2313  if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2314  isa<MemoryDef>(StartingAccess)) {
2315  assert(isa<MemoryDef>(Q.OriginalAccess));
2316  Q.SkipSelfAccess = true;
2317  Result = Walker.findClobber(OptimizedAccess, Q);
2318  } else
2319  Result = OptimizedAccess;
2320 
2321  LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2322  LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2323 
2324  return Result;
2325 }
2326 
2327 MemoryAccess *
2329  return Walker->getClobberingMemoryAccessBase(MA, false);
2330 }
2331 
2332 MemoryAccess *
2334  const MemoryLocation &Loc) {
2335  return Walker->getClobberingMemoryAccessBase(MA, Loc);
2336 }
2337 
2338 MemoryAccess *
2340  return Walker->getClobberingMemoryAccessBase(MA, true);
2341 }
2342 
2343 MemoryAccess *
2345  const MemoryLocation &Loc) {
2346  return Walker->getClobberingMemoryAccessBase(MA, Loc);
2347 }
2348 
2349 MemoryAccess *
2351  if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2352  return Use->getDefiningAccess();
2353  return MA;
2354 }
2355 
2357  MemoryAccess *StartingAccess, const MemoryLocation &) {
2358  if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2359  return Use->getDefiningAccess();
2360  return StartingAccess;
2361 }
2362 
2363 void MemoryPhi::deleteMe(DerivedUser *Self) {
2364  delete static_cast<MemoryPhi *>(Self);
2365 }
2366 
2367 void MemoryDef::deleteMe(DerivedUser *Self) {
2368  delete static_cast<MemoryDef *>(Self);
2369 }
2370 
2371 void MemoryUse::deleteMe(DerivedUser *Self) {
2372  delete static_cast<MemoryUse *>(Self);
2373 }
MemorySSAWalker * getWalker()
Definition: MemorySSA.cpp:1483
bool runOnFunction(Function &) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass...
Definition: MemorySSA.cpp:2194
The access may reference and may modify the value stored in memory.
uint64_t CallInst * C
void initializeMemorySSAWrapperPassPass(PassRegistry &)
AccessList * getWritableBlockAccesses(const BasicBlock *BB) const
Definition: MemorySSA.h:799
typename std::vector< DomTreeNodeBase *>::const_iterator const_iterator
iterator_range< use_iterator > uses()
Definition: Value.h:355
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Value * getPointerOperand(Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
virtual void verify(const MemorySSA *MSSA)
Definition: MemorySSA.h:1047
void dropAllReferences()
Drop all references to operands.
Definition: User.h:295
Atomic ordering constants.
bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition: MemorySSA.cpp:83
bool isFenceLike() const
Return true if this instruction behaves like a memory fence: it can load or store to memory location ...
Definition: Instruction.h:541
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:770
void print(raw_ostream &OS) const
Definition: MemorySSA.cpp:2090
This class represents lattice values for constants.
Definition: AllocatorList.h:24
MemoryAccess * getClobberingMemoryAccess(MemoryAccess *MA) override
Does the same thing as getClobberingMemoryAccess(const Instruction *I), but takes a MemoryAccess inst...
Definition: MemorySSA.cpp:2328
SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
Definition: MemorySSA.cpp:1002
bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
Definition: MemorySSA.cpp:2029
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
void push_back(reference Node)
Insert a node at the back; never copies.
Definition: simple_ilist.h:148
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
This class provides various memory handling functions that manipulate MemoryBlock instances...
Definition: Memory.h:46
Implements a dense probed hash-table based set.
Definition: DenseSet.h:250
const AccessList * getBlockAccesses(const BasicBlock *BB) const
Return the list of MemoryAccess&#39;s for a given basic block.
Definition: MemorySSA.h:751
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: MemorySSA.cpp:2143
The two locations do not alias at all.
Definition: AliasAnalysis.h:84
Extension point for the Value hierarchy.
Definition: DerivedUser.h:28
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
Definition: MemorySSA.h:373
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Definition: Instructions.h:248
static const char LiveOnEntryStr[]
Definition: MemorySSA.cpp:2056
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
unsigned second
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: MemorySSA.cpp:2188
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1186
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1014
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:231
F(f)
OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, DominatorTree *DT)
Definition: MemorySSA.cpp:1196
block Block Frequency true
An instruction for reading from memory.
Definition: Instructions.h:168
memoryssa
Definition: MemorySSA.cpp:65
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2018 maximum semantics.
Definition: APFloat.h:1262
This defines the Use class.
void print(raw_ostream &OS) const
Definition: MemorySSA.cpp:2067
void invalidateInfo(MemoryAccess *MA) override
Given a memory access, invalidate anything this walker knows about that access.
Definition: MemorySSA.cpp:1012
static Optional< MemoryLocation > getOrNone(const Instruction *Inst)
MemorySSA(Function &, AliasAnalysis *, DominatorTree *)
Definition: MemorySSA.cpp:1156
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, true) INITIALIZE_PASS_END(MemorySSAWrapperPass
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:221
Represents read-only accesses to memory.
Definition: MemorySSA.h:317
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB)
The main low level interface to the alias analysis implementation.
This class is a batch walker of all MemoryUse&#39;s in the program, and points their defining access at t...
Definition: MemorySSA.cpp:1194
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
Legacy analysis pass which computes MemorySSA.
Definition: MemorySSA.h:956
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:232
void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal, SmallPtrSetImpl< BasicBlock *> &Visited)
Definition: MemorySSA.h:818
void verify(const MemorySSA *MSSA)
Definition: MemorySSA.cpp:967
A MemorySSAWalker that does AA walks to disambiguate accesses.
Definition: MemorySSA.cpp:973
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
void setDefiningBlocks(const SmallPtrSetImpl< BasicBlock *> &Blocks)
Give the IDF calculator the set of blocks in which the value is defined.
static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, AliasAnalysis &AA)
Definition: MemorySSA.cpp:317
MemorySSAAnnotatedWriter(const MemorySSA *M)
Definition: MemorySSA.cpp:99
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:701
const DefsList * getBlockDefs(const BasicBlock *BB) const
Return the list of MemoryDef&#39;s and MemoryPhi&#39;s for a given basic block.
Definition: MemorySSA.h:759
void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *, InsertionPlace)
Definition: MemorySSA.cpp:1511
#define LLVM_DUMP_METHOD
Definition: Compiler.h:74
static bool isOrdered(const Instruction *I)
Definition: MemorySSA.cpp:1633
ELFYAML::ELF_STO Other
Definition: ELFYAML.cpp:784
APInt operator*(APInt a, uint64_t RHS)
Definition: APInt.h:2091
void verifyDefUses(Function &F) const
Verify the immediate use information, by walking all the memory accesses and verifying that...
Definition: MemorySSA.cpp:1954
void verifyAnalysis() const override
verifyAnalysis() - This member can be implemented by a analysis pass to check state of analysis infor...
Definition: MemorySSA.cpp:2201
A simple intrusive list implementation.
Definition: simple_ilist.h:79
LLVM_NODISCARD bool isMustSet(const ModRefInfo MRI)
User * getUser() const LLVM_READONLY
Returns the User that contains this Use.
Definition: Use.cpp:41
#define F(x, y, z)
Definition: MD5.cpp:55
static int getID(struct InternalInstruction *insn, const void *miiArg)
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref&#39;ing instruction, get the MemorySSA access associated with it.
Definition: MemorySSA.h:713
upward_defs_iterator upward_defs_end()
Definition: MemorySSA.h:1241
early cse memssa
Definition: EarlyCSE.cpp:1334
Memory SSA
Definition: MemorySSA.cpp:65
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:221
void emitBasicBlockStartAnnot(const BasicBlock *BB, formatted_raw_ostream &OS) override
emitBasicBlockStartAnnot - This may be implemented to emit a string right after the basic block label...
Definition: MemorySSA.cpp:101
void dump() const
Definition: MemorySSA.cpp:1773
static cl::opt< bool, true > VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), cl::Hidden, cl::desc("Enable verification of MemorySSA."))
This is the generic walker interface for walkers of MemorySSA.
Definition: MemorySSA.h:987
static void checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, const MemoryLocation &StartLoc, const MemorySSA &MSSA, const UpwardsMemoryQuery &Query, AliasAnalysis &AA, bool AllowImpreciseClobber=false)
Verifies that Start is clobbered by ClobberAt, and that nothing inbetween Start and ClobberAt can clo...
Definition: MemorySSA.cpp:385
CRTP base class which implements the entire standard iterator facade in terms of a minimal subset of ...
Definition: iterator.h:68
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, AliasAnalysis &AA)
Definition: MemorySSA.cpp:348
bool isAtLeastOrStrongerThan(AtomicOrdering ao, AtomicOrdering other)
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
Checks whether the given location points to constant memory, or if OrLocal is true whether it points ...
An assembly annotator class to print Memory SSA information in comments.
Definition: MemorySSA.cpp:93
void removeFromLookups(MemoryAccess *)
Properly remove MA from all of MemorySSA&#39;s lookup tables.
Definition: MemorySSA.cpp:1713
NodeT * getBlock() const
#define P(N)
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
ClobberWalkerBase(MemorySSA *M, AliasAnalysis *A, DominatorTree *D)
Definition: MemorySSA.cpp:955
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:154
MemorySSAWalker * getSkipSelfWalker()
Definition: MemorySSA.cpp:1496
bool hasName() const
Definition: Value.h:251
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
DomTreeNodeBase * getIDom() const
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
LLVM_NODISCARD bool empty() const
Definition: SmallPtrSet.h:92
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
MemoryAccess * getClobberingMemoryAccess(MemoryAccess *MA) override
Does the same thing as getClobberingMemoryAccess(const Instruction *I), but takes a MemoryAccess inst...
Definition: MemorySSA.cpp:2339
A manager for alias analyses.
static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS)
Definition: MemorySSA.cpp:207
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
early cse Early CSE w MemorySSA
Definition: EarlyCSE.cpp:1334
void dump() const
Definition: MemorySSA.cpp:2129
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:113
InsertionPlace
Used in various insertion functions to specify whether we are talking about the beginning or end of a...
Definition: MemorySSA.h:784
Represent the analysis usage information of a pass.
void print(raw_ostream &OS) const
Definition: MemorySSA.cpp:2058
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:116
void verifyDomination(Function &F) const
Verify the domination properties of MemorySSA by checking that each definition dominates all of its u...
Definition: MemorySSA.cpp:1917
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
Memory true print Memory SSA Printer
Definition: MemorySSA.cpp:71
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1214
void checkClobberSanityAccess(const MemoryAccess *MA) const
Check clobber sanity for an access.
Definition: MemorySSA.cpp:1786
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Definition: MemorySSA.cpp:2173
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Definition: STLExtras.h:1219
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:160
size_t size() const
Definition: SmallVector.h:53
Compute iterated dominance frontiers using a linear time algorithm.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1207
An intrusive list with ownership and callbacks specified/controlled by ilist_traits, only with API safe for polymorphic types.
Definition: ilist.h:390
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:4225
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool verify(const TargetRegisterInfo &TRI) const
Check that information hold by this instance make sense for the given TRI.
Memory true print Memory SSA static false cl::opt< unsigned > MaxCheckLimit("memssa-check-limit", cl::Hidden, cl::init(100), cl::desc("The maximum number of stores/phis MemorySSA" "will consider trying to walk past (default = 100)"))
MemoryUseOrDef * createDefinedAccess(Instruction *, MemoryAccess *, const MemoryUseOrDef *Template=nullptr)
Definition: MemorySSA.cpp:1618
void optimizeUses()
Optimize uses to point to their actual clobbering definitions.
Definition: MemorySSA.cpp:1400
The two locations may or may not alias. This is the least precise result.
Definition: AliasAnalysis.h:86
Representation for a specific memory location.
The two locations precisely alias each other.
Definition: AliasAnalysis.h:90
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void verifyOrdering(Function &F) const
Verify that the order and existence of MemoryAccesses matches the order and existence of memory affec...
Definition: MemorySSA.cpp:1852
void setDefiningAccess(MemoryAccess *DMA, bool Optimized=false, Optional< AliasResult > AR=MayAlias)
Definition: MemorySSA.h:297
unsigned getNumOperands() const
Definition: User.h:192
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
BlockVerifier::State From
void verifyMemorySSA() const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Definition: MemorySSA.cpp:1776
bool erase(PtrType Ptr)
erase - If the set contains the specified pointer, remove it and return true, otherwise return false...
Definition: SmallPtrSet.h:378
void calculate(SmallVectorImpl< BasicBlock *> &IDFBlocks)
Calculate iterated dominance frontiers.
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in the same basic block, determine whether MemoryAccess A dominates MemoryA...
Definition: MemorySSA.cpp:1998
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
bool dominates(const Instruction *Def, const Use &U) const
Return true if Def dominates a use in User.
Definition: Dominators.cpp:249
bool runOnFunction(Function &) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass...
Definition: MemorySSA.cpp:2148
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:920
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
static ClobberAlias instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, const Instruction *UseInst, AliasAnalysis &AA)
Definition: MemorySSA.cpp:255
BasicBlock * getBlock() const
Definition: MemorySSA.h:157
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
pred_range predecessors(BasicBlock *BB)
Definition: CFG.h:125
void verify(const MemorySSA *MSSA) override
Definition: MemorySSA.cpp:992
#define MAP(n)
void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS) override
emitInstructionAnnot - This may be implemented to emit a string right before an instruction is emitte...
Definition: MemorySSA.cpp:107
MemoryAccess * getLiveOnEntryDef() const
Definition: MemorySSA.h:735
void verifyClobberSanity(const Function &F) const
Definition: MemorySSA.cpp:1800
void print(raw_ostream &OS) const
Definition: MemorySSA.cpp:2116
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
A range adaptor for a pair of iterators.
void removeFromLists(MemoryAccess *, bool ShouldDelete=true)
Properly remove MA from all of MemorySSA&#39;s lists.
Definition: MemorySSA.cpp:1740
Target - Wrapper for Target specific information.
void push_back(pointer val)
Definition: ilist.h:313
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition: Hashing.h:601
Class that has the common methods + fields of memory uses/defs.
Definition: MemorySSA.h:245
void setPreservesAll()
Set by analyses that do not transform their input at all.
iterator_range< user_iterator > users()
Definition: Value.h:400
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
A trivial helper function to check to see if the specified pointers are must-alias.
An opaque object representing a hash code.
Definition: Hashing.h:72
Instruction * getMemoryInst() const
Get the instruction that this MemoryUse represents.
Definition: MemorySSA.h:252
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:394
amdgpu Simplify well known AMD library false Value Value * Arg
void initializeMemorySSAPrinterLegacyPassPass(PassRegistry &)
LLVM_NODISCARD bool isModSet(const ModRefInfo MRI)
void verify(const MemorySSA *MSSA) override
Definition: MemorySSA.cpp:1017
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
MemorySSAWalker(MemorySSA *)
Definition: MemorySSA.cpp:2207
iterator_range< def_chain_iterator< T > > def_chain(T MA, MemoryAccess *UpTo=nullptr)
Definition: MemorySSA.h:1292
void emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:652
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
Definition: MemorySSA.cpp:2186
This file provides utility analysis objects describing memory locations.
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
Definition: MemorySSA.cpp:977
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where)
Definition: MemorySSA.cpp:1587
MemoryAccess * getClobberingMemoryAccess(MemoryAccess *) override
Does the same thing as getClobberingMemoryAccess(const Instruction *I), but takes a MemoryAccess inst...
Definition: MemorySSA.cpp:2350
static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, bool &Write, bool &Effects, bool &StackPointer)
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Definition: MemorySSA.h:731
AnalysisUsage & addRequiredTransitive()
MemoryAccess * getClobberingMemoryAccessBase(MemoryAccess *, const MemoryLocation &)
Walk the use-def chains starting at StartingAccess and find the MemoryAccess that actually clobbers L...
Definition: MemorySSA.cpp:2213
iterator_range< df_iterator< T > > depth_first(const T &G)
MemoryAccess * getClobberingMemoryAccess(const Instruction *I)
Given a memory Mod/Ref/ModRef&#39;ing instruction, calling this will give you the nearest dominating Memo...
Definition: MemorySSA.h:1016
Determine the iterated dominance frontier, given a set of defining blocks, and optionally, a set of live-in blocks.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Definition: MemorySSA.cpp:2165
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Result run(Function &F, FunctionAnalysisManager &AM)
Definition: MemorySSA.cpp:2158
static bool areLoadsReorderable(const LoadInst *Use, const LoadInst *MayClobber)
This does one-way checks to see if Use could theoretically be hoisted above MayClobber.
Definition: MemorySSA.cpp:220
LLVM Value Representation.
Definition: Value.h:73
static MemoryLocOrCall getTombstoneKey()
Definition: MemorySSA.cpp:188
succ_range successors(Instruction *I)
Definition: CFG.h:264
upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair)
Definition: MemorySSA.h:1237
unsigned getID() const
Used for debugging and tracking things about MemoryAccesses.
Definition: MemorySSA.h:662
static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, const Instruction *I)
Definition: MemorySSA.cpp:362
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
void invalidateInfo(MemoryAccess *MA) override
Given a memory access, invalidate anything this walker knows about that access.
Definition: MemorySSA.cpp:987
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
static unsigned getHashValue(const MemoryLocOrCall &MLOC)
Definition: MemorySSA.cpp:192
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
hexagon cext opt
A container for analyses that lazily runs them and caches their results.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:260
void setBlock(BasicBlock *BB)
Used by MemorySSA to change the block of a MemoryAccess when it is moved.
Definition: MemorySSA.h:210
LLVM_NODISCARD bool isModOrRefSet(const ModRefInfo MRI)
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1967
void verifyDominationNumbers(const Function &F) const
Verify that all of the blocks we believe to have valid domination numbers actually have valid dominat...
Definition: MemorySSA.cpp:1814
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
Represents phi nodes for memory accesses.
Definition: MemorySSA.h:479
void print(raw_ostream &) const
Definition: MemorySSA.cpp:1767
This header defines various interfaces for pass management in LLVM.
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc)
getModRefInfo (for call sites) - Return information about whether a particular call site modifies or ...
#define LLVM_DEBUG(X)
Definition: Debug.h:123
static MemoryLocOrCall getEmptyKey()
Definition: MemorySSA.cpp:184
void insertIntoListsBefore(MemoryAccess *, const BasicBlock *, AccessList::iterator)
Definition: MemorySSA.cpp:1543
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: PassManager.h:71
bool use_empty() const
Definition: Value.h:323
LocationClass< Ty > location(Ty &L)
Definition: CommandLine.h:439
hexagon widen stores
reverse_iterator rbegin()
Definition: simple_ilist.h:122
std::pair< MemoryAccess *, MemoryLocation > MemoryAccessPair
Definition: MemorySSA.h:1068
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
const BasicBlock * getParent() const
Definition: Instruction.h:67
void print(raw_ostream &OS, const Module *M=nullptr) const override
print - Print out the internal state of the pass.
Definition: MemorySSA.cpp:2203
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:1245
LLVM_NODISCARD bool isRefSet(const ModRefInfo MRI)