LLVM  8.0.1
JumpThreading.cpp
Go to the documentation of this file.
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/CFG.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DomTreeUpdater.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Debug.h"
66 #include "llvm/Transforms/Scalar.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <memory>
78 #include <utility>
79 
80 using namespace llvm;
81 using namespace jumpthreading;
82 
83 #define DEBUG_TYPE "jump-threading"
84 
85 STATISTIC(NumThreads, "Number of jumps threaded");
86 STATISTIC(NumFolds, "Number of terminators folded");
87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
88 
89 static cl::opt<unsigned>
90 BBDuplicateThreshold("jump-threading-threshold",
91  cl::desc("Max block size to duplicate for jump threading"),
92  cl::init(6), cl::Hidden);
93 
94 static cl::opt<unsigned>
96  "jump-threading-implication-search-threshold",
97  cl::desc("The number of predecessors to search for a stronger "
98  "condition to use to thread over a weaker condition"),
99  cl::init(3), cl::Hidden);
100 
102  "print-lvi-after-jump-threading",
103  cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
104  cl::Hidden);
105 
106 namespace {
107 
108  /// This pass performs 'jump threading', which looks at blocks that have
109  /// multiple predecessors and multiple successors. If one or more of the
110  /// predecessors of the block can be proven to always jump to one of the
111  /// successors, we forward the edge from the predecessor to the successor by
112  /// duplicating the contents of this block.
113  ///
114  /// An example of when this can occur is code like this:
115  ///
116  /// if () { ...
117  /// X = 4;
118  /// }
119  /// if (X < 3) {
120  ///
121  /// In this case, the unconditional branch at the end of the first if can be
122  /// revectored to the false side of the second if.
123  class JumpThreading : public FunctionPass {
124  JumpThreadingPass Impl;
125 
126  public:
127  static char ID; // Pass identification
128 
129  JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
131  }
132 
133  bool runOnFunction(Function &F) override;
134 
135  void getAnalysisUsage(AnalysisUsage &AU) const override {
143  }
144 
145  void releaseMemory() override { Impl.releaseMemory(); }
146  };
147 
148 } // end anonymous namespace
149 
150 char JumpThreading::ID = 0;
151 
152 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
153  "Jump Threading", false, false)
158 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
159  "Jump Threading", false, false)
160 
161 // Public interface to the Jump Threading pass
163  return new JumpThreading(Threshold);
164 }
165 
167  BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
168 }
169 
170 // Update branch probability information according to conditional
171 // branch probability. This is usually made possible for cloned branches
172 // in inline instances by the context specific profile in the caller.
173 // For instance,
174 //
175 // [Block PredBB]
176 // [Branch PredBr]
177 // if (t) {
178 // Block A;
179 // } else {
180 // Block B;
181 // }
182 //
183 // [Block BB]
184 // cond = PN([true, %A], [..., %B]); // PHI node
185 // [Branch CondBr]
186 // if (cond) {
187 // ... // P(cond == true) = 1%
188 // }
189 //
190 // Here we know that when block A is taken, cond must be true, which means
191 // P(cond == true | A) = 1
192 //
193 // Given that P(cond == true) = P(cond == true | A) * P(A) +
194 // P(cond == true | B) * P(B)
195 // we get:
196 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
197 //
198 // which gives us:
199 // P(A) is less than P(cond == true), i.e.
200 // P(t == true) <= P(cond == true)
201 //
202 // In other words, if we know P(cond == true) is unlikely, we know
203 // that P(t == true) is also unlikely.
204 //
206  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
207  if (!CondBr)
208  return;
209 
211  uint64_t TrueWeight, FalseWeight;
212  if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
213  return;
214 
215  // Returns the outgoing edge of the dominating predecessor block
216  // that leads to the PhiNode's incoming block:
217  auto GetPredOutEdge =
218  [](BasicBlock *IncomingBB,
219  BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
220  auto *PredBB = IncomingBB;
221  auto *SuccBB = PhiBB;
222  while (true) {
223  BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
224  if (PredBr && PredBr->isConditional())
225  return {PredBB, SuccBB};
226  auto *SinglePredBB = PredBB->getSinglePredecessor();
227  if (!SinglePredBB)
228  return {nullptr, nullptr};
229  SuccBB = PredBB;
230  PredBB = SinglePredBB;
231  }
232  };
233 
234  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
235  Value *PhiOpnd = PN->getIncomingValue(i);
236  ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
237 
238  if (!CI || !CI->getType()->isIntegerTy(1))
239  continue;
240 
242  TrueWeight, TrueWeight + FalseWeight)
244  FalseWeight, TrueWeight + FalseWeight));
245 
246  auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
247  if (!PredOutEdge.first)
248  return;
249 
250  BasicBlock *PredBB = PredOutEdge.first;
251  BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
252 
253  uint64_t PredTrueWeight, PredFalseWeight;
254  // FIXME: We currently only set the profile data when it is missing.
255  // With PGO, this can be used to refine even existing profile data with
256  // context information. This needs to be done after more performance
257  // testing.
258  if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
259  continue;
260 
261  // We can not infer anything useful when BP >= 50%, because BP is the
262  // upper bound probability value.
263  if (BP >= BranchProbability(50, 100))
264  continue;
265 
266  SmallVector<uint32_t, 2> Weights;
267  if (PredBr->getSuccessor(0) == PredOutEdge.second) {
268  Weights.push_back(BP.getNumerator());
269  Weights.push_back(BP.getCompl().getNumerator());
270  } else {
271  Weights.push_back(BP.getCompl().getNumerator());
272  Weights.push_back(BP.getNumerator());
273  }
275  MDBuilder(PredBr->getParent()->getContext())
276  .createBranchWeights(Weights));
277  }
278 }
279 
280 /// runOnFunction - Toplevel algorithm.
282  if (skipFunction(F))
283  return false;
284  auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
285  // Get DT analysis before LVI. When LVI is initialized it conditionally adds
286  // DT if it's available.
287  auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
288  auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
289  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
291  std::unique_ptr<BlockFrequencyInfo> BFI;
292  std::unique_ptr<BranchProbabilityInfo> BPI;
293  bool HasProfileData = F.hasProfileData();
294  if (HasProfileData) {
295  LoopInfo LI{DominatorTree(F)};
296  BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
297  BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
298  }
299 
300  bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
301  std::move(BFI), std::move(BPI));
303  dbgs() << "LVI for function '" << F.getName() << "':\n";
304  LVI->printLVI(F, *DT, dbgs());
305  }
306  return Changed;
307 }
308 
311  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
312  // Get DT analysis before LVI. When LVI is initialized it conditionally adds
313  // DT if it's available.
314  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
315  auto &LVI = AM.getResult<LazyValueAnalysis>(F);
316  auto &AA = AM.getResult<AAManager>(F);
318 
319  std::unique_ptr<BlockFrequencyInfo> BFI;
320  std::unique_ptr<BranchProbabilityInfo> BPI;
321  if (F.hasProfileData()) {
322  LoopInfo LI{DominatorTree(F)};
323  BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
324  BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
325  }
326 
327  bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
328  std::move(BFI), std::move(BPI));
329 
330  if (!Changed)
331  return PreservedAnalyses::all();
333  PA.preserve<GlobalsAA>();
336  return PA;
337 }
338 
340  LazyValueInfo *LVI_, AliasAnalysis *AA_,
341  DomTreeUpdater *DTU_, bool HasProfileData_,
342  std::unique_ptr<BlockFrequencyInfo> BFI_,
343  std::unique_ptr<BranchProbabilityInfo> BPI_) {
344  LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
345  TLI = TLI_;
346  LVI = LVI_;
347  AA = AA_;
348  DTU = DTU_;
349  BFI.reset();
350  BPI.reset();
351  // When profile data is available, we need to update edge weights after
352  // successful jump threading, which requires both BPI and BFI being available.
353  HasProfileData = HasProfileData_;
354  auto *GuardDecl = F.getParent()->getFunction(
356  HasGuards = GuardDecl && !GuardDecl->use_empty();
357  if (HasProfileData) {
358  BPI = std::move(BPI_);
359  BFI = std::move(BFI_);
360  }
361 
362  // JumpThreading must not processes blocks unreachable from entry. It's a
363  // waste of compute time and can potentially lead to hangs.
364  SmallPtrSet<BasicBlock *, 16> Unreachable;
365  assert(DTU && "DTU isn't passed into JumpThreading before using it.");
366  assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
367  DominatorTree &DT = DTU->getDomTree();
368  for (auto &BB : F)
369  if (!DT.isReachableFromEntry(&BB))
370  Unreachable.insert(&BB);
371 
372  FindLoopHeaders(F);
373 
374  bool EverChanged = false;
375  bool Changed;
376  do {
377  Changed = false;
378  for (auto &BB : F) {
379  if (Unreachable.count(&BB))
380  continue;
381  while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
382  Changed = true;
383  // Stop processing BB if it's the entry or is now deleted. The following
384  // routines attempt to eliminate BB and locating a suitable replacement
385  // for the entry is non-trivial.
386  if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
387  continue;
388 
389  if (pred_empty(&BB)) {
390  // When ProcessBlock makes BB unreachable it doesn't bother to fix up
391  // the instructions in it. We must remove BB to prevent invalid IR.
392  LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
393  << "' with terminator: " << *BB.getTerminator()
394  << '\n');
395  LoopHeaders.erase(&BB);
396  LVI->eraseBlock(&BB);
397  DeleteDeadBlock(&BB, DTU);
398  Changed = true;
399  continue;
400  }
401 
402  // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
403  // is "almost empty", we attempt to merge BB with its sole successor.
404  auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
405  if (BI && BI->isUnconditional() &&
406  // The terminator must be the only non-phi instruction in BB.
407  BB.getFirstNonPHIOrDbg()->isTerminator() &&
408  // Don't alter Loop headers and latches to ensure another pass can
409  // detect and transform nested loops later.
410  !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
412  // BB is valid for cleanup here because we passed in DTU. F remains
413  // BB's parent until a DTU->getDomTree() event.
414  LVI->eraseBlock(&BB);
415  Changed = true;
416  }
417  }
418  EverChanged |= Changed;
419  } while (Changed);
420 
421  LoopHeaders.clear();
422  // Flush only the Dominator Tree.
423  DTU->getDomTree();
424  LVI->enableDT();
425  return EverChanged;
426 }
427 
428 // Replace uses of Cond with ToVal when safe to do so. If all uses are
429 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
430 // because we may incorrectly replace uses when guards/assumes are uses of
431 // of `Cond` and we used the guards/assume to reason about the `Cond` value
432 // at the end of block. RAUW unconditionally replaces all uses
433 // including the guards/assumes themselves and the uses before the
434 // guard/assume.
435 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
436  assert(Cond->getType() == ToVal->getType());
437  auto *BB = Cond->getParent();
438  // We can unconditionally replace all uses in non-local blocks (i.e. uses
439  // strictly dominated by BB), since LVI information is true from the
440  // terminator of BB.
441  replaceNonLocalUsesWith(Cond, ToVal);
442  for (Instruction &I : reverse(*BB)) {
443  // Reached the Cond whose uses we are trying to replace, so there are no
444  // more uses.
445  if (&I == Cond)
446  break;
447  // We only replace uses in instructions that are guaranteed to reach the end
448  // of BB, where we know Cond is ToVal.
450  break;
451  I.replaceUsesOfWith(Cond, ToVal);
452  }
453  if (Cond->use_empty() && !Cond->mayHaveSideEffects())
454  Cond->eraseFromParent();
455 }
456 
457 /// Return the cost of duplicating a piece of this block from first non-phi
458 /// and before StopAt instruction to thread across it. Stop scanning the block
459 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
461  Instruction *StopAt,
462  unsigned Threshold) {
463  assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
464  /// Ignore PHI nodes, these will be flattened when duplication happens.
466 
467  // FIXME: THREADING will delete values that are just used to compute the
468  // branch, so they shouldn't count against the duplication cost.
469 
470  unsigned Bonus = 0;
471  if (BB->getTerminator() == StopAt) {
472  // Threading through a switch statement is particularly profitable. If this
473  // block ends in a switch, decrease its cost to make it more likely to
474  // happen.
475  if (isa<SwitchInst>(StopAt))
476  Bonus = 6;
477 
478  // The same holds for indirect branches, but slightly more so.
479  if (isa<IndirectBrInst>(StopAt))
480  Bonus = 8;
481  }
482 
483  // Bump the threshold up so the early exit from the loop doesn't skip the
484  // terminator-based Size adjustment at the end.
485  Threshold += Bonus;
486 
487  // Sum up the cost of each instruction until we get to the terminator. Don't
488  // include the terminator because the copy won't include it.
489  unsigned Size = 0;
490  for (; &*I != StopAt; ++I) {
491 
492  // Stop scanning the block if we've reached the threshold.
493  if (Size > Threshold)
494  return Size;
495 
496  // Debugger intrinsics don't incur code size.
497  if (isa<DbgInfoIntrinsic>(I)) continue;
498 
499  // If this is a pointer->pointer bitcast, it is free.
500  if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
501  continue;
502 
503  // Bail out if this instruction gives back a token type, it is not possible
504  // to duplicate it if it is used outside this BB.
505  if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
506  return ~0U;
507 
508  // All other instructions count for at least one unit.
509  ++Size;
510 
511  // Calls are more expensive. If they are non-intrinsic calls, we model them
512  // as having cost of 4. If they are a non-vector intrinsic, we model them
513  // as having cost of 2 total, and if they are a vector intrinsic, we model
514  // them as having cost 1.
515  if (const CallInst *CI = dyn_cast<CallInst>(I)) {
516  if (CI->cannotDuplicate() || CI->isConvergent())
517  // Blocks with NoDuplicate are modelled as having infinite cost, so they
518  // are never duplicated.
519  return ~0U;
520  else if (!isa<IntrinsicInst>(CI))
521  Size += 3;
522  else if (!CI->getType()->isVectorTy())
523  Size += 1;
524  }
525  }
526 
527  return Size > Bonus ? Size - Bonus : 0;
528 }
529 
530 /// FindLoopHeaders - We do not want jump threading to turn proper loop
531 /// structures into irreducible loops. Doing this breaks up the loop nesting
532 /// hierarchy and pessimizes later transformations. To prevent this from
533 /// happening, we first have to find the loop headers. Here we approximate this
534 /// by finding targets of backedges in the CFG.
535 ///
536 /// Note that there definitely are cases when we want to allow threading of
537 /// edges across a loop header. For example, threading a jump from outside the
538 /// loop (the preheader) to an exit block of the loop is definitely profitable.
539 /// It is also almost always profitable to thread backedges from within the loop
540 /// to exit blocks, and is often profitable to thread backedges to other blocks
541 /// within the loop (forming a nested loop). This simple analysis is not rich
542 /// enough to track all of these properties and keep it up-to-date as the CFG
543 /// mutates, so we don't allow any of these transformations.
546  FindFunctionBackedges(F, Edges);
547 
548  for (const auto &Edge : Edges)
549  LoopHeaders.insert(Edge.second);
550 }
551 
552 /// getKnownConstant - Helper method to determine if we can thread over a
553 /// terminator with the given value as its condition, and if so what value to
554 /// use for that. What kind of value this is depends on whether we want an
555 /// integer or a block address, but an undef is always accepted.
556 /// Returns null if Val is null or not an appropriate constant.
558  if (!Val)
559  return nullptr;
560 
561  // Undef is "known" enough.
562  if (UndefValue *U = dyn_cast<UndefValue>(Val))
563  return U;
564 
565  if (Preference == WantBlockAddress)
566  return dyn_cast<BlockAddress>(Val->stripPointerCasts());
567 
568  return dyn_cast<ConstantInt>(Val);
569 }
570 
571 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
572 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
573 /// in any of our predecessors. If so, return the known list of value and pred
574 /// BB in the result vector.
575 ///
576 /// This returns true if there were any known values.
578  Value *V, BasicBlock *BB, PredValueInfo &Result,
580  DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
581  Instruction *CxtI) {
582  // This method walks up use-def chains recursively. Because of this, we could
583  // get into an infinite loop going around loops in the use-def chain. To
584  // prevent this, keep track of what (value, block) pairs we've already visited
585  // and terminate the search if we loop back to them
586  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
587  return false;
588 
589  // If V is a constant, then it is known in all predecessors.
590  if (Constant *KC = getKnownConstant(V, Preference)) {
591  for (BasicBlock *Pred : predecessors(BB))
592  Result.push_back(std::make_pair(KC, Pred));
593 
594  return !Result.empty();
595  }
596 
597  // If V is a non-instruction value, or an instruction in a different block,
598  // then it can't be derived from a PHI.
600  if (!I || I->getParent() != BB) {
601 
602  // Okay, if this is a live-in value, see if it has a known value at the end
603  // of any of our predecessors.
604  //
605  // FIXME: This should be an edge property, not a block end property.
606  /// TODO: Per PR2563, we could infer value range information about a
607  /// predecessor based on its terminator.
608  //
609  // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
610  // "I" is a non-local compare-with-a-constant instruction. This would be
611  // able to handle value inequalities better, for example if the compare is
612  // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
613  // Perhaps getConstantOnEdge should be smart enough to do this?
614 
615  if (DTU->hasPendingDomTreeUpdates())
616  LVI->disableDT();
617  else
618  LVI->enableDT();
619  for (BasicBlock *P : predecessors(BB)) {
620  // If the value is known by LazyValueInfo to be a constant in a
621  // predecessor, use that information to try to thread this block.
622  Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
623  if (Constant *KC = getKnownConstant(PredCst, Preference))
624  Result.push_back(std::make_pair(KC, P));
625  }
626 
627  return !Result.empty();
628  }
629 
630  /// If I is a PHI node, then we know the incoming values for any constants.
631  if (PHINode *PN = dyn_cast<PHINode>(I)) {
632  if (DTU->hasPendingDomTreeUpdates())
633  LVI->disableDT();
634  else
635  LVI->enableDT();
636  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
637  Value *InVal = PN->getIncomingValue(i);
638  if (Constant *KC = getKnownConstant(InVal, Preference)) {
639  Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
640  } else {
641  Constant *CI = LVI->getConstantOnEdge(InVal,
642  PN->getIncomingBlock(i),
643  BB, CxtI);
644  if (Constant *KC = getKnownConstant(CI, Preference))
645  Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
646  }
647  }
648 
649  return !Result.empty();
650  }
651 
652  // Handle Cast instructions. Only see through Cast when the source operand is
653  // PHI or Cmp to save the compilation time.
654  if (CastInst *CI = dyn_cast<CastInst>(I)) {
655  Value *Source = CI->getOperand(0);
656  if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
657  return false;
658  ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
659  RecursionSet, CxtI);
660  if (Result.empty())
661  return false;
662 
663  // Convert the known values.
664  for (auto &R : Result)
665  R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
666 
667  return true;
668  }
669 
670  // Handle some boolean conditions.
671  if (I->getType()->getPrimitiveSizeInBits() == 1) {
672  assert(Preference == WantInteger && "One-bit non-integer type?");
673  // X | true -> true
674  // X & false -> false
675  if (I->getOpcode() == Instruction::Or ||
676  I->getOpcode() == Instruction::And) {
677  PredValueInfoTy LHSVals, RHSVals;
678 
679  ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
680  WantInteger, RecursionSet, CxtI);
681  ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
682  WantInteger, RecursionSet, CxtI);
683 
684  if (LHSVals.empty() && RHSVals.empty())
685  return false;
686 
687  ConstantInt *InterestingVal;
688  if (I->getOpcode() == Instruction::Or)
689  InterestingVal = ConstantInt::getTrue(I->getContext());
690  else
691  InterestingVal = ConstantInt::getFalse(I->getContext());
692 
693  SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
694 
695  // Scan for the sentinel. If we find an undef, force it to the
696  // interesting value: x|undef -> true and x&undef -> false.
697  for (const auto &LHSVal : LHSVals)
698  if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
699  Result.emplace_back(InterestingVal, LHSVal.second);
700  LHSKnownBBs.insert(LHSVal.second);
701  }
702  for (const auto &RHSVal : RHSVals)
703  if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
704  // If we already inferred a value for this block on the LHS, don't
705  // re-add it.
706  if (!LHSKnownBBs.count(RHSVal.second))
707  Result.emplace_back(InterestingVal, RHSVal.second);
708  }
709 
710  return !Result.empty();
711  }
712 
713  // Handle the NOT form of XOR.
714  if (I->getOpcode() == Instruction::Xor &&
715  isa<ConstantInt>(I->getOperand(1)) &&
716  cast<ConstantInt>(I->getOperand(1))->isOne()) {
717  ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
718  WantInteger, RecursionSet, CxtI);
719  if (Result.empty())
720  return false;
721 
722  // Invert the known values.
723  for (auto &R : Result)
724  R.first = ConstantExpr::getNot(R.first);
725 
726  return true;
727  }
728 
729  // Try to simplify some other binary operator values.
730  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
731  assert(Preference != WantBlockAddress
732  && "A binary operator creating a block address?");
733  if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
734  PredValueInfoTy LHSVals;
735  ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
736  WantInteger, RecursionSet, CxtI);
737 
738  // Try to use constant folding to simplify the binary operator.
739  for (const auto &LHSVal : LHSVals) {
740  Constant *V = LHSVal.first;
741  Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
742 
743  if (Constant *KC = getKnownConstant(Folded, WantInteger))
744  Result.push_back(std::make_pair(KC, LHSVal.second));
745  }
746  }
747 
748  return !Result.empty();
749  }
750 
751  // Handle compare with phi operand, where the PHI is defined in this block.
752  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
753  assert(Preference == WantInteger && "Compares only produce integers");
754  Type *CmpType = Cmp->getType();
755  Value *CmpLHS = Cmp->getOperand(0);
756  Value *CmpRHS = Cmp->getOperand(1);
757  CmpInst::Predicate Pred = Cmp->getPredicate();
758 
759  PHINode *PN = dyn_cast<PHINode>(CmpLHS);
760  if (!PN)
761  PN = dyn_cast<PHINode>(CmpRHS);
762  if (PN && PN->getParent() == BB) {
763  const DataLayout &DL = PN->getModule()->getDataLayout();
764  // We can do this simplification if any comparisons fold to true or false.
765  // See if any do.
766  if (DTU->hasPendingDomTreeUpdates())
767  LVI->disableDT();
768  else
769  LVI->enableDT();
770  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
771  BasicBlock *PredBB = PN->getIncomingBlock(i);
772  Value *LHS, *RHS;
773  if (PN == CmpLHS) {
774  LHS = PN->getIncomingValue(i);
775  RHS = CmpRHS->DoPHITranslation(BB, PredBB);
776  } else {
777  LHS = CmpLHS->DoPHITranslation(BB, PredBB);
778  RHS = PN->getIncomingValue(i);
779  }
780  Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
781  if (!Res) {
782  if (!isa<Constant>(RHS))
783  continue;
784 
785  // getPredicateOnEdge call will make no sense if LHS is defined in BB.
786  auto LHSInst = dyn_cast<Instruction>(LHS);
787  if (LHSInst && LHSInst->getParent() == BB)
788  continue;
789 
791  ResT = LVI->getPredicateOnEdge(Pred, LHS,
792  cast<Constant>(RHS), PredBB, BB,
793  CxtI ? CxtI : Cmp);
794  if (ResT == LazyValueInfo::Unknown)
795  continue;
796  Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
797  }
798 
799  if (Constant *KC = getKnownConstant(Res, WantInteger))
800  Result.push_back(std::make_pair(KC, PredBB));
801  }
802 
803  return !Result.empty();
804  }
805 
806  // If comparing a live-in value against a constant, see if we know the
807  // live-in value on any predecessors.
808  if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
809  Constant *CmpConst = cast<Constant>(CmpRHS);
810 
811  if (!isa<Instruction>(CmpLHS) ||
812  cast<Instruction>(CmpLHS)->getParent() != BB) {
813  if (DTU->hasPendingDomTreeUpdates())
814  LVI->disableDT();
815  else
816  LVI->enableDT();
817  for (BasicBlock *P : predecessors(BB)) {
818  // If the value is known by LazyValueInfo to be a constant in a
819  // predecessor, use that information to try to thread this block.
821  LVI->getPredicateOnEdge(Pred, CmpLHS,
822  CmpConst, P, BB, CxtI ? CxtI : Cmp);
823  if (Res == LazyValueInfo::Unknown)
824  continue;
825 
826  Constant *ResC = ConstantInt::get(CmpType, Res);
827  Result.push_back(std::make_pair(ResC, P));
828  }
829 
830  return !Result.empty();
831  }
832 
833  // InstCombine can fold some forms of constant range checks into
834  // (icmp (add (x, C1)), C2). See if we have we have such a thing with
835  // x as a live-in.
836  {
837  using namespace PatternMatch;
838 
839  Value *AddLHS;
840  ConstantInt *AddConst;
841  if (isa<ConstantInt>(CmpConst) &&
842  match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
843  if (!isa<Instruction>(AddLHS) ||
844  cast<Instruction>(AddLHS)->getParent() != BB) {
845  if (DTU->hasPendingDomTreeUpdates())
846  LVI->disableDT();
847  else
848  LVI->enableDT();
849  for (BasicBlock *P : predecessors(BB)) {
850  // If the value is known by LazyValueInfo to be a ConstantRange in
851  // a predecessor, use that information to try to thread this
852  // block.
853  ConstantRange CR = LVI->getConstantRangeOnEdge(
854  AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
855  // Propagate the range through the addition.
856  CR = CR.add(AddConst->getValue());
857 
858  // Get the range where the compare returns true.
860  Pred, cast<ConstantInt>(CmpConst)->getValue());
861 
862  Constant *ResC;
863  if (CmpRange.contains(CR))
864  ResC = ConstantInt::getTrue(CmpType);
865  else if (CmpRange.inverse().contains(CR))
866  ResC = ConstantInt::getFalse(CmpType);
867  else
868  continue;
869 
870  Result.push_back(std::make_pair(ResC, P));
871  }
872 
873  return !Result.empty();
874  }
875  }
876  }
877 
878  // Try to find a constant value for the LHS of a comparison,
879  // and evaluate it statically if we can.
880  PredValueInfoTy LHSVals;
881  ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
882  WantInteger, RecursionSet, CxtI);
883 
884  for (const auto &LHSVal : LHSVals) {
885  Constant *V = LHSVal.first;
886  Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
887  if (Constant *KC = getKnownConstant(Folded, WantInteger))
888  Result.push_back(std::make_pair(KC, LHSVal.second));
889  }
890 
891  return !Result.empty();
892  }
893  }
894 
895  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
896  // Handle select instructions where at least one operand is a known constant
897  // and we can figure out the condition value for any predecessor block.
898  Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
899  Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
900  PredValueInfoTy Conds;
901  if ((TrueVal || FalseVal) &&
902  ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
903  WantInteger, RecursionSet, CxtI)) {
904  for (auto &C : Conds) {
905  Constant *Cond = C.first;
906 
907  // Figure out what value to use for the condition.
908  bool KnownCond;
909  if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
910  // A known boolean.
911  KnownCond = CI->isOne();
912  } else {
913  assert(isa<UndefValue>(Cond) && "Unexpected condition value");
914  // Either operand will do, so be sure to pick the one that's a known
915  // constant.
916  // FIXME: Do this more cleverly if both values are known constants?
917  KnownCond = (TrueVal != nullptr);
918  }
919 
920  // See if the select has a known constant value for this predecessor.
921  if (Constant *Val = KnownCond ? TrueVal : FalseVal)
922  Result.push_back(std::make_pair(Val, C.second));
923  }
924 
925  return !Result.empty();
926  }
927  }
928 
929  // If all else fails, see if LVI can figure out a constant value for us.
930  if (DTU->hasPendingDomTreeUpdates())
931  LVI->disableDT();
932  else
933  LVI->enableDT();
934  Constant *CI = LVI->getConstant(V, BB, CxtI);
935  if (Constant *KC = getKnownConstant(CI, Preference)) {
936  for (BasicBlock *Pred : predecessors(BB))
937  Result.push_back(std::make_pair(KC, Pred));
938  }
939 
940  return !Result.empty();
941 }
942 
943 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
944 /// in an undefined jump, decide which block is best to revector to.
945 ///
946 /// Since we can pick an arbitrary destination, we pick the successor with the
947 /// fewest predecessors. This should reduce the in-degree of the others.
948 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
949  Instruction *BBTerm = BB->getTerminator();
950  unsigned MinSucc = 0;
951  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
952  // Compute the successor with the minimum number of predecessors.
953  unsigned MinNumPreds = pred_size(TestBB);
954  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
955  TestBB = BBTerm->getSuccessor(i);
956  unsigned NumPreds = pred_size(TestBB);
957  if (NumPreds < MinNumPreds) {
958  MinSucc = i;
959  MinNumPreds = NumPreds;
960  }
961  }
962 
963  return MinSucc;
964 }
965 
967  if (!BB->hasAddressTaken()) return false;
968 
969  // If the block has its address taken, it may be a tree of dead constants
970  // hanging off of it. These shouldn't keep the block alive.
973  return !BA->use_empty();
974 }
975 
976 /// ProcessBlock - If there are any predecessors whose control can be threaded
977 /// through to a successor, transform them now.
979  // If the block is trivially dead, just return and let the caller nuke it.
980  // This simplifies other transformations.
981  if (DTU->isBBPendingDeletion(BB) ||
982  (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
983  return false;
984 
985  // If this block has a single predecessor, and if that pred has a single
986  // successor, merge the blocks. This encourages recursive jump threading
987  // because now the condition in this block can be threaded through
988  // predecessors of our predecessor block.
989  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
990  const Instruction *TI = SinglePred->getTerminator();
991  if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 &&
992  SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
993  // If SinglePred was a loop header, BB becomes one.
994  if (LoopHeaders.erase(SinglePred))
995  LoopHeaders.insert(BB);
996 
997  LVI->eraseBlock(SinglePred);
999 
1000  // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1001  // BB code within one basic block `BB`), we need to invalidate the LVI
1002  // information associated with BB, because the LVI information need not be
1003  // true for all of BB after the merge. For example,
1004  // Before the merge, LVI info and code is as follows:
1005  // SinglePred: <LVI info1 for %p val>
1006  // %y = use of %p
1007  // call @exit() // need not transfer execution to successor.
1008  // assume(%p) // from this point on %p is true
1009  // br label %BB
1010  // BB: <LVI info2 for %p val, i.e. %p is true>
1011  // %x = use of %p
1012  // br label exit
1013  //
1014  // Note that this LVI info for blocks BB and SinglPred is correct for %p
1015  // (info2 and info1 respectively). After the merge and the deletion of the
1016  // LVI info1 for SinglePred. We have the following code:
1017  // BB: <LVI info2 for %p val>
1018  // %y = use of %p
1019  // call @exit()
1020  // assume(%p)
1021  // %x = use of %p <-- LVI info2 is correct from here onwards.
1022  // br label exit
1023  // LVI info2 for BB is incorrect at the beginning of BB.
1024 
1025  // Invalidate LVI information for BB if the LVI is not provably true for
1026  // all of BB.
1028  LVI->eraseBlock(BB);
1029  return true;
1030  }
1031  }
1032 
1033  if (TryToUnfoldSelectInCurrBB(BB))
1034  return true;
1035 
1036  // Look if we can propagate guards to predecessors.
1037  if (HasGuards && ProcessGuards(BB))
1038  return true;
1039 
1040  // What kind of constant we're looking for.
1042 
1043  // Look to see if the terminator is a conditional branch, switch or indirect
1044  // branch, if not we can't thread it.
1045  Value *Condition;
1047  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1048  // Can't thread an unconditional jump.
1049  if (BI->isUnconditional()) return false;
1050  Condition = BI->getCondition();
1051  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1052  Condition = SI->getCondition();
1053  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1054  // Can't thread indirect branch with no successors.
1055  if (IB->getNumSuccessors() == 0) return false;
1056  Condition = IB->getAddress()->stripPointerCasts();
1057  Preference = WantBlockAddress;
1058  } else {
1059  return false; // Must be an invoke.
1060  }
1061 
1062  // Run constant folding to see if we can reduce the condition to a simple
1063  // constant.
1064  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1065  Value *SimpleVal =
1067  if (SimpleVal) {
1068  I->replaceAllUsesWith(SimpleVal);
1069  if (isInstructionTriviallyDead(I, TLI))
1070  I->eraseFromParent();
1071  Condition = SimpleVal;
1072  }
1073  }
1074 
1075  // If the terminator is branching on an undef, we can pick any of the
1076  // successors to branch to. Let GetBestDestForJumpOnUndef decide.
1077  if (isa<UndefValue>(Condition)) {
1078  unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1079  std::vector<DominatorTree::UpdateType> Updates;
1080 
1081  // Fold the branch/switch.
1082  Instruction *BBTerm = BB->getTerminator();
1083  Updates.reserve(BBTerm->getNumSuccessors());
1084  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1085  if (i == BestSucc) continue;
1086  BasicBlock *Succ = BBTerm->getSuccessor(i);
1087  Succ->removePredecessor(BB, true);
1088  Updates.push_back({DominatorTree::Delete, BB, Succ});
1089  }
1090 
1091  LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1092  << "' folding undef terminator: " << *BBTerm << '\n');
1093  BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1094  BBTerm->eraseFromParent();
1095  DTU->applyUpdates(Updates);
1096  return true;
1097  }
1098 
1099  // If the terminator of this block is branching on a constant, simplify the
1100  // terminator to an unconditional branch. This can occur due to threading in
1101  // other blocks.
1102  if (getKnownConstant(Condition, Preference)) {
1103  LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1104  << "' folding terminator: " << *BB->getTerminator()
1105  << '\n');
1106  ++NumFolds;
1107  ConstantFoldTerminator(BB, true, nullptr, DTU);
1108  return true;
1109  }
1110 
1111  Instruction *CondInst = dyn_cast<Instruction>(Condition);
1112 
1113  // All the rest of our checks depend on the condition being an instruction.
1114  if (!CondInst) {
1115  // FIXME: Unify this with code below.
1116  if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1117  return true;
1118  return false;
1119  }
1120 
1121  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1122  // If we're branching on a conditional, LVI might be able to determine
1123  // it's value at the branch instruction. We only handle comparisons
1124  // against a constant at this time.
1125  // TODO: This should be extended to handle switches as well.
1126  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1127  Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1128  if (CondBr && CondConst) {
1129  // We should have returned as soon as we turn a conditional branch to
1130  // unconditional. Because its no longer interesting as far as jump
1131  // threading is concerned.
1132  assert(CondBr->isConditional() && "Threading on unconditional terminator");
1133 
1134  if (DTU->hasPendingDomTreeUpdates())
1135  LVI->disableDT();
1136  else
1137  LVI->enableDT();
1139  LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1140  CondConst, CondBr);
1141  if (Ret != LazyValueInfo::Unknown) {
1142  unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1143  unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1144  BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1145  ToRemoveSucc->removePredecessor(BB, true);
1146  BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1147  CondBr->eraseFromParent();
1148  if (CondCmp->use_empty())
1149  CondCmp->eraseFromParent();
1150  // We can safely replace *some* uses of the CondInst if it has
1151  // exactly one value as returned by LVI. RAUW is incorrect in the
1152  // presence of guards and assumes, that have the `Cond` as the use. This
1153  // is because we use the guards/assume to reason about the `Cond` value
1154  // at the end of block, but RAUW unconditionally replaces all uses
1155  // including the guards/assumes themselves and the uses before the
1156  // guard/assume.
1157  else if (CondCmp->getParent() == BB) {
1158  auto *CI = Ret == LazyValueInfo::True ?
1159  ConstantInt::getTrue(CondCmp->getType()) :
1160  ConstantInt::getFalse(CondCmp->getType());
1161  ReplaceFoldableUses(CondCmp, CI);
1162  }
1163  DTU->deleteEdgeRelaxed(BB, ToRemoveSucc);
1164  return true;
1165  }
1166 
1167  // We did not manage to simplify this branch, try to see whether
1168  // CondCmp depends on a known phi-select pattern.
1169  if (TryToUnfoldSelect(CondCmp, BB))
1170  return true;
1171  }
1172  }
1173 
1174  if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1175  TryToUnfoldSelect(SI, BB);
1176 
1177  // Check for some cases that are worth simplifying. Right now we want to look
1178  // for loads that are used by a switch or by the condition for the branch. If
1179  // we see one, check to see if it's partially redundant. If so, insert a PHI
1180  // which can then be used to thread the values.
1181  Value *SimplifyValue = CondInst;
1182  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1183  if (isa<Constant>(CondCmp->getOperand(1)))
1184  SimplifyValue = CondCmp->getOperand(0);
1185 
1186  // TODO: There are other places where load PRE would be profitable, such as
1187  // more complex comparisons.
1188  if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1189  if (SimplifyPartiallyRedundantLoad(LoadI))
1190  return true;
1191 
1192  // Before threading, try to propagate profile data backwards:
1193  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1194  if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1196 
1197  // Handle a variety of cases where we are branching on something derived from
1198  // a PHI node in the current block. If we can prove that any predecessors
1199  // compute a predictable value based on a PHI node, thread those predecessors.
1200  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1201  return true;
1202 
1203  // If this is an otherwise-unfoldable branch on a phi node in the current
1204  // block, see if we can simplify.
1205  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1206  if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1207  return ProcessBranchOnPHI(PN);
1208 
1209  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1210  if (CondInst->getOpcode() == Instruction::Xor &&
1211  CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1212  return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1213 
1214  // Search for a stronger dominating condition that can be used to simplify a
1215  // conditional branch leaving BB.
1216  if (ProcessImpliedCondition(BB))
1217  return true;
1218 
1219  return false;
1220 }
1221 
1223  auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1224  if (!BI || !BI->isConditional())
1225  return false;
1226 
1227  Value *Cond = BI->getCondition();
1228  BasicBlock *CurrentBB = BB;
1229  BasicBlock *CurrentPred = BB->getSinglePredecessor();
1230  unsigned Iter = 0;
1231 
1232  auto &DL = BB->getModule()->getDataLayout();
1233 
1234  while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1235  auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1236  if (!PBI || !PBI->isConditional())
1237  return false;
1238  if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1239  return false;
1240 
1241  bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1242  Optional<bool> Implication =
1243  isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1244  if (Implication) {
1245  BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1246  BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1247  RemoveSucc->removePredecessor(BB);
1248  BranchInst::Create(KeepSucc, BI);
1249  BI->eraseFromParent();
1250  DTU->deleteEdgeRelaxed(BB, RemoveSucc);
1251  return true;
1252  }
1253  CurrentBB = CurrentPred;
1254  CurrentPred = CurrentBB->getSinglePredecessor();
1255  }
1256 
1257  return false;
1258 }
1259 
1260 /// Return true if Op is an instruction defined in the given block.
1262  if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1263  if (OpInst->getParent() == BB)
1264  return true;
1265  return false;
1266 }
1267 
1268 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1269 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1270 /// This is an important optimization that encourages jump threading, and needs
1271 /// to be run interlaced with other jump threading tasks.
1273  // Don't hack volatile and ordered loads.
1274  if (!LoadI->isUnordered()) return false;
1275 
1276  // If the load is defined in a block with exactly one predecessor, it can't be
1277  // partially redundant.
1278  BasicBlock *LoadBB = LoadI->getParent();
1279  if (LoadBB->getSinglePredecessor())
1280  return false;
1281 
1282  // If the load is defined in an EH pad, it can't be partially redundant,
1283  // because the edges between the invoke and the EH pad cannot have other
1284  // instructions between them.
1285  if (LoadBB->isEHPad())
1286  return false;
1287 
1288  Value *LoadedPtr = LoadI->getOperand(0);
1289 
1290  // If the loaded operand is defined in the LoadBB and its not a phi,
1291  // it can't be available in predecessors.
1292  if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1293  return false;
1294 
1295  // Scan a few instructions up from the load, to see if it is obviously live at
1296  // the entry to its block.
1297  BasicBlock::iterator BBIt(LoadI);
1298  bool IsLoadCSE;
1299  if (Value *AvailableVal = FindAvailableLoadedValue(
1300  LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1301  // If the value of the load is locally available within the block, just use
1302  // it. This frequently occurs for reg2mem'd allocas.
1303 
1304  if (IsLoadCSE) {
1305  LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1306  combineMetadataForCSE(NLoadI, LoadI, false);
1307  };
1308 
1309  // If the returned value is the load itself, replace with an undef. This can
1310  // only happen in dead loops.
1311  if (AvailableVal == LoadI)
1312  AvailableVal = UndefValue::get(LoadI->getType());
1313  if (AvailableVal->getType() != LoadI->getType())
1314  AvailableVal = CastInst::CreateBitOrPointerCast(
1315  AvailableVal, LoadI->getType(), "", LoadI);
1316  LoadI->replaceAllUsesWith(AvailableVal);
1317  LoadI->eraseFromParent();
1318  return true;
1319  }
1320 
1321  // Otherwise, if we scanned the whole block and got to the top of the block,
1322  // we know the block is locally transparent to the load. If not, something
1323  // might clobber its value.
1324  if (BBIt != LoadBB->begin())
1325  return false;
1326 
1327  // If all of the loads and stores that feed the value have the same AA tags,
1328  // then we can propagate them onto any newly inserted loads.
1329  AAMDNodes AATags;
1330  LoadI->getAAMetadata(AATags);
1331 
1332  SmallPtrSet<BasicBlock*, 8> PredsScanned;
1333 
1334  using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1335 
1336  AvailablePredsTy AvailablePreds;
1337  BasicBlock *OneUnavailablePred = nullptr;
1338  SmallVector<LoadInst*, 8> CSELoads;
1339 
1340  // If we got here, the loaded value is transparent through to the start of the
1341  // block. Check to see if it is available in any of the predecessor blocks.
1342  for (BasicBlock *PredBB : predecessors(LoadBB)) {
1343  // If we already scanned this predecessor, skip it.
1344  if (!PredsScanned.insert(PredBB).second)
1345  continue;
1346 
1347  BBIt = PredBB->end();
1348  unsigned NumScanedInst = 0;
1349  Value *PredAvailable = nullptr;
1350  // NOTE: We don't CSE load that is volatile or anything stronger than
1351  // unordered, that should have been checked when we entered the function.
1352  assert(LoadI->isUnordered() &&
1353  "Attempting to CSE volatile or atomic loads");
1354  // If this is a load on a phi pointer, phi-translate it and search
1355  // for available load/store to the pointer in predecessors.
1356  Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1357  PredAvailable = FindAvailablePtrLoadStore(
1358  Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1359  DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1360 
1361  // If PredBB has a single predecessor, continue scanning through the
1362  // single predecessor.
1363  BasicBlock *SinglePredBB = PredBB;
1364  while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1365  NumScanedInst < DefMaxInstsToScan) {
1366  SinglePredBB = SinglePredBB->getSinglePredecessor();
1367  if (SinglePredBB) {
1368  BBIt = SinglePredBB->end();
1369  PredAvailable = FindAvailablePtrLoadStore(
1370  Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1371  (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1372  &NumScanedInst);
1373  }
1374  }
1375 
1376  if (!PredAvailable) {
1377  OneUnavailablePred = PredBB;
1378  continue;
1379  }
1380 
1381  if (IsLoadCSE)
1382  CSELoads.push_back(cast<LoadInst>(PredAvailable));
1383 
1384  // If so, this load is partially redundant. Remember this info so that we
1385  // can create a PHI node.
1386  AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1387  }
1388 
1389  // If the loaded value isn't available in any predecessor, it isn't partially
1390  // redundant.
1391  if (AvailablePreds.empty()) return false;
1392 
1393  // Okay, the loaded value is available in at least one (and maybe all!)
1394  // predecessors. If the value is unavailable in more than one unique
1395  // predecessor, we want to insert a merge block for those common predecessors.
1396  // This ensures that we only have to insert one reload, thus not increasing
1397  // code size.
1398  BasicBlock *UnavailablePred = nullptr;
1399 
1400  // If the value is unavailable in one of predecessors, we will end up
1401  // inserting a new instruction into them. It is only valid if all the
1402  // instructions before LoadI are guaranteed to pass execution to its
1403  // successor, or if LoadI is safe to speculate.
1404  // TODO: If this logic becomes more complex, and we will perform PRE insertion
1405  // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1406  // It requires domination tree analysis, so for this simple case it is an
1407  // overkill.
1408  if (PredsScanned.size() != AvailablePreds.size() &&
1410  for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1412  return false;
1413 
1414  // If there is exactly one predecessor where the value is unavailable, the
1415  // already computed 'OneUnavailablePred' block is it. If it ends in an
1416  // unconditional branch, we know that it isn't a critical edge.
1417  if (PredsScanned.size() == AvailablePreds.size()+1 &&
1418  OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1419  UnavailablePred = OneUnavailablePred;
1420  } else if (PredsScanned.size() != AvailablePreds.size()) {
1421  // Otherwise, we had multiple unavailable predecessors or we had a critical
1422  // edge from the one.
1423  SmallVector<BasicBlock*, 8> PredsToSplit;
1424  SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1425 
1426  for (const auto &AvailablePred : AvailablePreds)
1427  AvailablePredSet.insert(AvailablePred.first);
1428 
1429  // Add all the unavailable predecessors to the PredsToSplit list.
1430  for (BasicBlock *P : predecessors(LoadBB)) {
1431  // If the predecessor is an indirect goto, we can't split the edge.
1432  if (isa<IndirectBrInst>(P->getTerminator()))
1433  return false;
1434 
1435  if (!AvailablePredSet.count(P))
1436  PredsToSplit.push_back(P);
1437  }
1438 
1439  // Split them out to their own block.
1440  UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1441  }
1442 
1443  // If the value isn't available in all predecessors, then there will be
1444  // exactly one where it isn't available. Insert a load on that edge and add
1445  // it to the AvailablePreds list.
1446  if (UnavailablePred) {
1447  assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1448  "Can't handle critical edge here!");
1449  LoadInst *NewVal =
1450  new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1451  LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1452  LoadI->getOrdering(), LoadI->getSyncScopeID(),
1453  UnavailablePred->getTerminator());
1454  NewVal->setDebugLoc(LoadI->getDebugLoc());
1455  if (AATags)
1456  NewVal->setAAMetadata(AATags);
1457 
1458  AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1459  }
1460 
1461  // Now we know that each predecessor of this block has a value in
1462  // AvailablePreds, sort them for efficient access as we're walking the preds.
1463  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1464 
1465  // Create a PHI node at the start of the block for the PRE'd load value.
1466  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1467  PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1468  &LoadBB->front());
1469  PN->takeName(LoadI);
1470  PN->setDebugLoc(LoadI->getDebugLoc());
1471 
1472  // Insert new entries into the PHI for each predecessor. A single block may
1473  // have multiple entries here.
1474  for (pred_iterator PI = PB; PI != PE; ++PI) {
1475  BasicBlock *P = *PI;
1476  AvailablePredsTy::iterator I =
1477  std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1478  std::make_pair(P, (Value*)nullptr));
1479 
1480  assert(I != AvailablePreds.end() && I->first == P &&
1481  "Didn't find entry for predecessor!");
1482 
1483  // If we have an available predecessor but it requires casting, insert the
1484  // cast in the predecessor and use the cast. Note that we have to update the
1485  // AvailablePreds vector as we go so that all of the PHI entries for this
1486  // predecessor use the same bitcast.
1487  Value *&PredV = I->second;
1488  if (PredV->getType() != LoadI->getType())
1489  PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1490  P->getTerminator());
1491 
1492  PN->addIncoming(PredV, I->first);
1493  }
1494 
1495  for (LoadInst *PredLoadI : CSELoads) {
1496  combineMetadataForCSE(PredLoadI, LoadI, true);
1497  }
1498 
1499  LoadI->replaceAllUsesWith(PN);
1500  LoadI->eraseFromParent();
1501 
1502  return true;
1503 }
1504 
1505 /// FindMostPopularDest - The specified list contains multiple possible
1506 /// threadable destinations. Pick the one that occurs the most frequently in
1507 /// the list.
1508 static BasicBlock *
1510  const SmallVectorImpl<std::pair<BasicBlock *,
1511  BasicBlock *>> &PredToDestList) {
1512  assert(!PredToDestList.empty());
1513 
1514  // Determine popularity. If there are multiple possible destinations, we
1515  // explicitly choose to ignore 'undef' destinations. We prefer to thread
1516  // blocks with known and real destinations to threading undef. We'll handle
1517  // them later if interesting.
1518  DenseMap<BasicBlock*, unsigned> DestPopularity;
1519  for (const auto &PredToDest : PredToDestList)
1520  if (PredToDest.second)
1521  DestPopularity[PredToDest.second]++;
1522 
1523  if (DestPopularity.empty())
1524  return nullptr;
1525 
1526  // Find the most popular dest.
1527  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1528  BasicBlock *MostPopularDest = DPI->first;
1529  unsigned Popularity = DPI->second;
1530  SmallVector<BasicBlock*, 4> SamePopularity;
1531 
1532  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1533  // If the popularity of this entry isn't higher than the popularity we've
1534  // seen so far, ignore it.
1535  if (DPI->second < Popularity)
1536  ; // ignore.
1537  else if (DPI->second == Popularity) {
1538  // If it is the same as what we've seen so far, keep track of it.
1539  SamePopularity.push_back(DPI->first);
1540  } else {
1541  // If it is more popular, remember it.
1542  SamePopularity.clear();
1543  MostPopularDest = DPI->first;
1544  Popularity = DPI->second;
1545  }
1546  }
1547 
1548  // Okay, now we know the most popular destination. If there is more than one
1549  // destination, we need to determine one. This is arbitrary, but we need
1550  // to make a deterministic decision. Pick the first one that appears in the
1551  // successor list.
1552  if (!SamePopularity.empty()) {
1553  SamePopularity.push_back(MostPopularDest);
1554  Instruction *TI = BB->getTerminator();
1555  for (unsigned i = 0; ; ++i) {
1556  assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1557 
1558  if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1559  continue;
1560 
1561  MostPopularDest = TI->getSuccessor(i);
1562  break;
1563  }
1564  }
1565 
1566  // Okay, we have finally picked the most popular destination.
1567  return MostPopularDest;
1568 }
1569 
1572  Instruction *CxtI) {
1573  // If threading this would thread across a loop header, don't even try to
1574  // thread the edge.
1575  if (LoopHeaders.count(BB))
1576  return false;
1577 
1578  PredValueInfoTy PredValues;
1579  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1580  return false;
1581 
1582  assert(!PredValues.empty() &&
1583  "ComputeValueKnownInPredecessors returned true with no values");
1584 
1585  LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1586  for (const auto &PredValue : PredValues) {
1587  dbgs() << " BB '" << BB->getName()
1588  << "': FOUND condition = " << *PredValue.first
1589  << " for pred '" << PredValue.second->getName() << "'.\n";
1590  });
1591 
1592  // Decide what we want to thread through. Convert our list of known values to
1593  // a list of known destinations for each pred. This also discards duplicate
1594  // predecessors and keeps track of the undefined inputs (which are represented
1595  // as a null dest in the PredToDestList).
1596  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1598 
1599  BasicBlock *OnlyDest = nullptr;
1600  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1601  Constant *OnlyVal = nullptr;
1602  Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1603 
1604  unsigned PredWithKnownDest = 0;
1605  for (const auto &PredValue : PredValues) {
1606  BasicBlock *Pred = PredValue.second;
1607  if (!SeenPreds.insert(Pred).second)
1608  continue; // Duplicate predecessor entry.
1609 
1610  Constant *Val = PredValue.first;
1611 
1612  BasicBlock *DestBB;
1613  if (isa<UndefValue>(Val))
1614  DestBB = nullptr;
1615  else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1616  assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1617  DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1618  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1619  assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1620  DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1621  } else {
1622  assert(isa<IndirectBrInst>(BB->getTerminator())
1623  && "Unexpected terminator");
1624  assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1625  DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1626  }
1627 
1628  // If we have exactly one destination, remember it for efficiency below.
1629  if (PredToDestList.empty()) {
1630  OnlyDest = DestBB;
1631  OnlyVal = Val;
1632  } else {
1633  if (OnlyDest != DestBB)
1634  OnlyDest = MultipleDestSentinel;
1635  // It possible we have same destination, but different value, e.g. default
1636  // case in switchinst.
1637  if (Val != OnlyVal)
1638  OnlyVal = MultipleVal;
1639  }
1640 
1641  // We know where this predecessor is going.
1642  ++PredWithKnownDest;
1643 
1644  // If the predecessor ends with an indirect goto, we can't change its
1645  // destination.
1646  if (isa<IndirectBrInst>(Pred->getTerminator()))
1647  continue;
1648 
1649  PredToDestList.push_back(std::make_pair(Pred, DestBB));
1650  }
1651 
1652  // If all edges were unthreadable, we fail.
1653  if (PredToDestList.empty())
1654  return false;
1655 
1656  // If all the predecessors go to a single known successor, we want to fold,
1657  // not thread. By doing so, we do not need to duplicate the current block and
1658  // also miss potential opportunities in case we dont/cant duplicate.
1659  if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1660  if (PredWithKnownDest == (size_t)pred_size(BB)) {
1661  bool SeenFirstBranchToOnlyDest = false;
1662  std::vector <DominatorTree::UpdateType> Updates;
1663  Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1664  for (BasicBlock *SuccBB : successors(BB)) {
1665  if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1666  SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1667  } else {
1668  SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1669  Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1670  }
1671  }
1672 
1673  // Finally update the terminator.
1674  Instruction *Term = BB->getTerminator();
1675  BranchInst::Create(OnlyDest, Term);
1676  Term->eraseFromParent();
1677  DTU->applyUpdates(Updates);
1678 
1679  // If the condition is now dead due to the removal of the old terminator,
1680  // erase it.
1681  if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1682  if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1683  CondInst->eraseFromParent();
1684  // We can safely replace *some* uses of the CondInst if it has
1685  // exactly one value as returned by LVI. RAUW is incorrect in the
1686  // presence of guards and assumes, that have the `Cond` as the use. This
1687  // is because we use the guards/assume to reason about the `Cond` value
1688  // at the end of block, but RAUW unconditionally replaces all uses
1689  // including the guards/assumes themselves and the uses before the
1690  // guard/assume.
1691  else if (OnlyVal && OnlyVal != MultipleVal &&
1692  CondInst->getParent() == BB)
1693  ReplaceFoldableUses(CondInst, OnlyVal);
1694  }
1695  return true;
1696  }
1697  }
1698 
1699  // Determine which is the most common successor. If we have many inputs and
1700  // this block is a switch, we want to start by threading the batch that goes
1701  // to the most popular destination first. If we only know about one
1702  // threadable destination (the common case) we can avoid this.
1703  BasicBlock *MostPopularDest = OnlyDest;
1704 
1705  if (MostPopularDest == MultipleDestSentinel) {
1706  // Remove any loop headers from the Dest list, ThreadEdge conservatively
1707  // won't process them, but we might have other destination that are eligible
1708  // and we still want to process.
1709  erase_if(PredToDestList,
1710  [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1711  return LoopHeaders.count(PredToDest.second) != 0;
1712  });
1713 
1714  if (PredToDestList.empty())
1715  return false;
1716 
1717  MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1718  }
1719 
1720  // Now that we know what the most popular destination is, factor all
1721  // predecessors that will jump to it into a single predecessor.
1722  SmallVector<BasicBlock*, 16> PredsToFactor;
1723  for (const auto &PredToDest : PredToDestList)
1724  if (PredToDest.second == MostPopularDest) {
1725  BasicBlock *Pred = PredToDest.first;
1726 
1727  // This predecessor may be a switch or something else that has multiple
1728  // edges to the block. Factor each of these edges by listing them
1729  // according to # occurrences in PredsToFactor.
1730  for (BasicBlock *Succ : successors(Pred))
1731  if (Succ == BB)
1732  PredsToFactor.push_back(Pred);
1733  }
1734 
1735  // If the threadable edges are branching on an undefined value, we get to pick
1736  // the destination that these predecessors should get to.
1737  if (!MostPopularDest)
1738  MostPopularDest = BB->getTerminator()->
1739  getSuccessor(GetBestDestForJumpOnUndef(BB));
1740 
1741  // Ok, try to thread it!
1742  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1743 }
1744 
1745 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1746 /// a PHI node in the current block. See if there are any simplifications we
1747 /// can do based on inputs to the phi node.
1749  BasicBlock *BB = PN->getParent();
1750 
1751  // TODO: We could make use of this to do it once for blocks with common PHI
1752  // values.
1754  PredBBs.resize(1);
1755 
1756  // If any of the predecessor blocks end in an unconditional branch, we can
1757  // *duplicate* the conditional branch into that block in order to further
1758  // encourage jump threading and to eliminate cases where we have branch on a
1759  // phi of an icmp (branch on icmp is much better).
1760  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1761  BasicBlock *PredBB = PN->getIncomingBlock(i);
1762  if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1763  if (PredBr->isUnconditional()) {
1764  PredBBs[0] = PredBB;
1765  // Try to duplicate BB into PredBB.
1766  if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1767  return true;
1768  }
1769  }
1770 
1771  return false;
1772 }
1773 
1774 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1775 /// a xor instruction in the current block. See if there are any
1776 /// simplifications we can do based on inputs to the xor.
1778  BasicBlock *BB = BO->getParent();
1779 
1780  // If either the LHS or RHS of the xor is a constant, don't do this
1781  // optimization.
1782  if (isa<ConstantInt>(BO->getOperand(0)) ||
1783  isa<ConstantInt>(BO->getOperand(1)))
1784  return false;
1785 
1786  // If the first instruction in BB isn't a phi, we won't be able to infer
1787  // anything special about any particular predecessor.
1788  if (!isa<PHINode>(BB->front()))
1789  return false;
1790 
1791  // If this BB is a landing pad, we won't be able to split the edge into it.
1792  if (BB->isEHPad())
1793  return false;
1794 
1795  // If we have a xor as the branch input to this block, and we know that the
1796  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1797  // the condition into the predecessor and fix that value to true, saving some
1798  // logical ops on that path and encouraging other paths to simplify.
1799  //
1800  // This copies something like this:
1801  //
1802  // BB:
1803  // %X = phi i1 [1], [%X']
1804  // %Y = icmp eq i32 %A, %B
1805  // %Z = xor i1 %X, %Y
1806  // br i1 %Z, ...
1807  //
1808  // Into:
1809  // BB':
1810  // %Y = icmp ne i32 %A, %B
1811  // br i1 %Y, ...
1812 
1813  PredValueInfoTy XorOpValues;
1814  bool isLHS = true;
1815  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1816  WantInteger, BO)) {
1817  assert(XorOpValues.empty());
1818  if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1819  WantInteger, BO))
1820  return false;
1821  isLHS = false;
1822  }
1823 
1824  assert(!XorOpValues.empty() &&
1825  "ComputeValueKnownInPredecessors returned true with no values");
1826 
1827  // Scan the information to see which is most popular: true or false. The
1828  // predecessors can be of the set true, false, or undef.
1829  unsigned NumTrue = 0, NumFalse = 0;
1830  for (const auto &XorOpValue : XorOpValues) {
1831  if (isa<UndefValue>(XorOpValue.first))
1832  // Ignore undefs for the count.
1833  continue;
1834  if (cast<ConstantInt>(XorOpValue.first)->isZero())
1835  ++NumFalse;
1836  else
1837  ++NumTrue;
1838  }
1839 
1840  // Determine which value to split on, true, false, or undef if neither.
1841  ConstantInt *SplitVal = nullptr;
1842  if (NumTrue > NumFalse)
1843  SplitVal = ConstantInt::getTrue(BB->getContext());
1844  else if (NumTrue != 0 || NumFalse != 0)
1845  SplitVal = ConstantInt::getFalse(BB->getContext());
1846 
1847  // Collect all of the blocks that this can be folded into so that we can
1848  // factor this once and clone it once.
1849  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1850  for (const auto &XorOpValue : XorOpValues) {
1851  if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1852  continue;
1853 
1854  BlocksToFoldInto.push_back(XorOpValue.second);
1855  }
1856 
1857  // If we inferred a value for all of the predecessors, then duplication won't
1858  // help us. However, we can just replace the LHS or RHS with the constant.
1859  if (BlocksToFoldInto.size() ==
1860  cast<PHINode>(BB->front()).getNumIncomingValues()) {
1861  if (!SplitVal) {
1862  // If all preds provide undef, just nuke the xor, because it is undef too.
1864  BO->eraseFromParent();
1865  } else if (SplitVal->isZero()) {
1866  // If all preds provide 0, replace the xor with the other input.
1867  BO->replaceAllUsesWith(BO->getOperand(isLHS));
1868  BO->eraseFromParent();
1869  } else {
1870  // If all preds provide 1, set the computed value to 1.
1871  BO->setOperand(!isLHS, SplitVal);
1872  }
1873 
1874  return true;
1875  }
1876 
1877  // Try to duplicate BB into PredBB.
1878  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1879 }
1880 
1881 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1882 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1883 /// NewPred using the entries from OldPred (suitably mapped).
1885  BasicBlock *OldPred,
1886  BasicBlock *NewPred,
1888  for (PHINode &PN : PHIBB->phis()) {
1889  // Ok, we have a PHI node. Figure out what the incoming value was for the
1890  // DestBlock.
1891  Value *IV = PN.getIncomingValueForBlock(OldPred);
1892 
1893  // Remap the value if necessary.
1894  if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1896  if (I != ValueMap.end())
1897  IV = I->second;
1898  }
1899 
1900  PN.addIncoming(IV, NewPred);
1901  }
1902 }
1903 
1904 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1905 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1906 /// across BB. Transform the IR to reflect this change.
1908  const SmallVectorImpl<BasicBlock *> &PredBBs,
1909  BasicBlock *SuccBB) {
1910  // If threading to the same block as we come from, we would infinite loop.
1911  if (SuccBB == BB) {
1912  LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1913  << "' - would thread to self!\n");
1914  return false;
1915  }
1916 
1917  // If threading this would thread across a loop header, don't thread the edge.
1918  // See the comments above FindLoopHeaders for justifications and caveats.
1919  if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1920  LLVM_DEBUG({
1921  bool BBIsHeader = LoopHeaders.count(BB);
1922  bool SuccIsHeader = LoopHeaders.count(SuccBB);
1923  dbgs() << " Not threading across "
1924  << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1925  << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1926  << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1927  });
1928  return false;
1929  }
1930 
1931  unsigned JumpThreadCost =
1932  getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1933  if (JumpThreadCost > BBDupThreshold) {
1934  LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1935  << "' - Cost is too high: " << JumpThreadCost << "\n");
1936  return false;
1937  }
1938 
1939  // And finally, do it! Start by factoring the predecessors if needed.
1940  BasicBlock *PredBB;
1941  if (PredBBs.size() == 1)
1942  PredBB = PredBBs[0];
1943  else {
1944  LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1945  << " common predecessors.\n");
1946  PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1947  }
1948 
1949  // And finally, do it!
1950  LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
1951  << "' to '" << SuccBB->getName()
1952  << "' with cost: " << JumpThreadCost
1953  << ", across block:\n " << *BB << "\n");
1954 
1955  if (DTU->hasPendingDomTreeUpdates())
1956  LVI->disableDT();
1957  else
1958  LVI->enableDT();
1959  LVI->threadEdge(PredBB, BB, SuccBB);
1960 
1961  // We are going to have to map operands from the original BB block to the new
1962  // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1963  // account for entry from PredBB.
1965 
1966  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1967  BB->getName()+".thread",
1968  BB->getParent(), BB);
1969  NewBB->moveAfter(PredBB);
1970 
1971  // Set the block frequency of NewBB.
1972  if (HasProfileData) {
1973  auto NewBBFreq =
1974  BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1975  BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1976  }
1977 
1978  BasicBlock::iterator BI = BB->begin();
1979  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1980  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1981 
1982  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1983  // mapping and using it to remap operands in the cloned instructions.
1984  for (; !BI->isTerminator(); ++BI) {
1985  Instruction *New = BI->clone();
1986  New->setName(BI->getName());
1987  NewBB->getInstList().push_back(New);
1988  ValueMapping[&*BI] = New;
1989 
1990  // Remap operands to patch up intra-block references.
1991  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1992  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1993  DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1994  if (I != ValueMapping.end())
1995  New->setOperand(i, I->second);
1996  }
1997  }
1998 
1999  // We didn't copy the terminator from BB over to NewBB, because there is now
2000  // an unconditional jump to SuccBB. Insert the unconditional jump.
2001  BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2002  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2003 
2004  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2005  // PHI nodes for NewBB now.
2006  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2007 
2008  // Update the terminator of PredBB to jump to NewBB instead of BB. This
2009  // eliminates predecessors from BB, which requires us to simplify any PHI
2010  // nodes in BB.
2011  Instruction *PredTerm = PredBB->getTerminator();
2012  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2013  if (PredTerm->getSuccessor(i) == BB) {
2014  BB->removePredecessor(PredBB, true);
2015  PredTerm->setSuccessor(i, NewBB);
2016  }
2017 
2018  // Enqueue required DT updates.
2019  DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2020  {DominatorTree::Insert, PredBB, NewBB},
2021  {DominatorTree::Delete, PredBB, BB}});
2022 
2023  // If there were values defined in BB that are used outside the block, then we
2024  // now have to update all uses of the value to use either the original value,
2025  // the cloned value, or some PHI derived value. This can require arbitrary
2026  // PHI insertion, of which we are prepared to do, clean these up now.
2027  SSAUpdater SSAUpdate;
2028  SmallVector<Use*, 16> UsesToRename;
2029 
2030  for (Instruction &I : *BB) {
2031  // Scan all uses of this instruction to see if their uses are no longer
2032  // dominated by the previous def and if so, record them in UsesToRename.
2033  // Also, skip phi operands from PredBB - we'll remove them anyway.
2034  for (Use &U : I.uses()) {
2035  Instruction *User = cast<Instruction>(U.getUser());
2036  if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2037  if (UserPN->getIncomingBlock(U) == BB)
2038  continue;
2039  } else if (User->getParent() == BB)
2040  continue;
2041 
2042  UsesToRename.push_back(&U);
2043  }
2044 
2045  // If there are no uses outside the block, we're done with this instruction.
2046  if (UsesToRename.empty())
2047  continue;
2048  LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2049 
2050  // We found a use of I outside of BB. Rename all uses of I that are outside
2051  // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2052  // with the two values we know.
2053  SSAUpdate.Initialize(I.getType(), I.getName());
2054  SSAUpdate.AddAvailableValue(BB, &I);
2055  SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2056 
2057  while (!UsesToRename.empty())
2058  SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2059  LLVM_DEBUG(dbgs() << "\n");
2060  }
2061 
2062  // At this point, the IR is fully up to date and consistent. Do a quick scan
2063  // over the new instructions and zap any that are constants or dead. This
2064  // frequently happens because of phi translation.
2065  SimplifyInstructionsInBlock(NewBB, TLI);
2066 
2067  // Update the edge weight from BB to SuccBB, which should be less than before.
2068  UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2069 
2070  // Threaded an edge!
2071  ++NumThreads;
2072  return true;
2073 }
2074 
2075 /// Create a new basic block that will be the predecessor of BB and successor of
2076 /// all blocks in Preds. When profile data is available, update the frequency of
2077 /// this new block.
2078 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2079  ArrayRef<BasicBlock *> Preds,
2080  const char *Suffix) {
2082 
2083  // Collect the frequencies of all predecessors of BB, which will be used to
2084  // update the edge weight of the result of splitting predecessors.
2086  if (HasProfileData)
2087  for (auto Pred : Preds)
2088  FreqMap.insert(std::make_pair(
2089  Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2090 
2091  // In the case when BB is a LandingPad block we create 2 new predecessors
2092  // instead of just one.
2093  if (BB->isLandingPad()) {
2094  std::string NewName = std::string(Suffix) + ".split-lp";
2095  SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2096  } else {
2097  NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2098  }
2099 
2100  std::vector<DominatorTree::UpdateType> Updates;
2101  Updates.reserve((2 * Preds.size()) + NewBBs.size());
2102  for (auto NewBB : NewBBs) {
2103  BlockFrequency NewBBFreq(0);
2104  Updates.push_back({DominatorTree::Insert, NewBB, BB});
2105  for (auto Pred : predecessors(NewBB)) {
2106  Updates.push_back({DominatorTree::Delete, Pred, BB});
2107  Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2108  if (HasProfileData) // Update frequencies between Pred -> NewBB.
2109  NewBBFreq += FreqMap.lookup(Pred);
2110  }
2111  if (HasProfileData) // Apply the summed frequency to NewBB.
2112  BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2113  }
2114 
2115  DTU->applyUpdates(Updates);
2116  return NewBBs[0];
2117 }
2118 
2119 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2120  const Instruction *TI = BB->getTerminator();
2121  assert(TI->getNumSuccessors() > 1 && "not a split");
2122 
2123  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2124  if (!WeightsNode)
2125  return false;
2126 
2127  MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2128  if (MDName->getString() != "branch_weights")
2129  return false;
2130 
2131  // Ensure there are weights for all of the successors. Note that the first
2132  // operand to the metadata node is a name, not a weight.
2133  return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2134 }
2135 
2136 /// Update the block frequency of BB and branch weight and the metadata on the
2137 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2138 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2139 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2140  BasicBlock *BB,
2141  BasicBlock *NewBB,
2142  BasicBlock *SuccBB) {
2143  if (!HasProfileData)
2144  return;
2145 
2146  assert(BFI && BPI && "BFI & BPI should have been created here");
2147 
2148  // As the edge from PredBB to BB is deleted, we have to update the block
2149  // frequency of BB.
2150  auto BBOrigFreq = BFI->getBlockFreq(BB);
2151  auto NewBBFreq = BFI->getBlockFreq(NewBB);
2152  auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2153  auto BBNewFreq = BBOrigFreq - NewBBFreq;
2154  BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2155 
2156  // Collect updated outgoing edges' frequencies from BB and use them to update
2157  // edge probabilities.
2158  SmallVector<uint64_t, 4> BBSuccFreq;
2159  for (BasicBlock *Succ : successors(BB)) {
2160  auto SuccFreq = (Succ == SuccBB)
2161  ? BB2SuccBBFreq - NewBBFreq
2162  : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2163  BBSuccFreq.push_back(SuccFreq.getFrequency());
2164  }
2165 
2166  uint64_t MaxBBSuccFreq =
2167  *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2168 
2170  if (MaxBBSuccFreq == 0)
2171  BBSuccProbs.assign(BBSuccFreq.size(),
2172  {1, static_cast<unsigned>(BBSuccFreq.size())});
2173  else {
2174  for (uint64_t Freq : BBSuccFreq)
2175  BBSuccProbs.push_back(
2176  BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2177  // Normalize edge probabilities so that they sum up to one.
2178  BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2179  BBSuccProbs.end());
2180  }
2181 
2182  // Update edge probabilities in BPI.
2183  for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2184  BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2185 
2186  // Update the profile metadata as well.
2187  //
2188  // Don't do this if the profile of the transformed blocks was statically
2189  // estimated. (This could occur despite the function having an entry
2190  // frequency in completely cold parts of the CFG.)
2191  //
2192  // In this case we don't want to suggest to subsequent passes that the
2193  // calculated weights are fully consistent. Consider this graph:
2194  //
2195  // check_1
2196  // 50% / |
2197  // eq_1 | 50%
2198  // \ |
2199  // check_2
2200  // 50% / |
2201  // eq_2 | 50%
2202  // \ |
2203  // check_3
2204  // 50% / |
2205  // eq_3 | 50%
2206  // \ |
2207  //
2208  // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2209  // the overall probabilities are inconsistent; the total probability that the
2210  // value is either 1, 2 or 3 is 150%.
2211  //
2212  // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2213  // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2214  // the loop exit edge. Then based solely on static estimation we would assume
2215  // the loop was extremely hot.
2216  //
2217  // FIXME this locally as well so that BPI and BFI are consistent as well. We
2218  // shouldn't make edges extremely likely or unlikely based solely on static
2219  // estimation.
2220  if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2221  SmallVector<uint32_t, 4> Weights;
2222  for (auto Prob : BBSuccProbs)
2223  Weights.push_back(Prob.getNumerator());
2224 
2225  auto TI = BB->getTerminator();
2226  TI->setMetadata(
2228  MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2229  }
2230 }
2231 
2232 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2233 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2234 /// If we can duplicate the contents of BB up into PredBB do so now, this
2235 /// improves the odds that the branch will be on an analyzable instruction like
2236 /// a compare.
2238  BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2239  assert(!PredBBs.empty() && "Can't handle an empty set");
2240 
2241  // If BB is a loop header, then duplicating this block outside the loop would
2242  // cause us to transform this into an irreducible loop, don't do this.
2243  // See the comments above FindLoopHeaders for justifications and caveats.
2244  if (LoopHeaders.count(BB)) {
2245  LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2246  << "' into predecessor block '" << PredBBs[0]->getName()
2247  << "' - it might create an irreducible loop!\n");
2248  return false;
2249  }
2250 
2251  unsigned DuplicationCost =
2252  getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2253  if (DuplicationCost > BBDupThreshold) {
2254  LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2255  << "' - Cost is too high: " << DuplicationCost << "\n");
2256  return false;
2257  }
2258 
2259  // And finally, do it! Start by factoring the predecessors if needed.
2260  std::vector<DominatorTree::UpdateType> Updates;
2261  BasicBlock *PredBB;
2262  if (PredBBs.size() == 1)
2263  PredBB = PredBBs[0];
2264  else {
2265  LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2266  << " common predecessors.\n");
2267  PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2268  }
2269  Updates.push_back({DominatorTree::Delete, PredBB, BB});
2270 
2271  // Okay, we decided to do this! Clone all the instructions in BB onto the end
2272  // of PredBB.
2273  LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2274  << "' into end of '" << PredBB->getName()
2275  << "' to eliminate branch on phi. Cost: "
2276  << DuplicationCost << " block is:" << *BB << "\n");
2277 
2278  // Unless PredBB ends with an unconditional branch, split the edge so that we
2279  // can just clone the bits from BB into the end of the new PredBB.
2280  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2281 
2282  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2283  BasicBlock *OldPredBB = PredBB;
2284  PredBB = SplitEdge(OldPredBB, BB);
2285  Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2286  Updates.push_back({DominatorTree::Insert, PredBB, BB});
2287  Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2288  OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2289  }
2290 
2291  // We are going to have to map operands from the original BB block into the
2292  // PredBB block. Evaluate PHI nodes in BB.
2294 
2295  BasicBlock::iterator BI = BB->begin();
2296  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2297  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2298  // Clone the non-phi instructions of BB into PredBB, keeping track of the
2299  // mapping and using it to remap operands in the cloned instructions.
2300  for (; BI != BB->end(); ++BI) {
2301  Instruction *New = BI->clone();
2302 
2303  // Remap operands to patch up intra-block references.
2304  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2305  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2306  DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2307  if (I != ValueMapping.end())
2308  New->setOperand(i, I->second);
2309  }
2310 
2311  // If this instruction can be simplified after the operands are updated,
2312  // just use the simplified value instead. This frequently happens due to
2313  // phi translation.
2314  if (Value *IV = SimplifyInstruction(
2315  New,
2316  {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2317  ValueMapping[&*BI] = IV;
2318  if (!New->mayHaveSideEffects()) {
2319  New->deleteValue();
2320  New = nullptr;
2321  }
2322  } else {
2323  ValueMapping[&*BI] = New;
2324  }
2325  if (New) {
2326  // Otherwise, insert the new instruction into the block.
2327  New->setName(BI->getName());
2328  PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2329  // Update Dominance from simplified New instruction operands.
2330  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2331  if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2332  Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2333  }
2334  }
2335 
2336  // Check to see if the targets of the branch had PHI nodes. If so, we need to
2337  // add entries to the PHI nodes for branch from PredBB now.
2338  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2339  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2340  ValueMapping);
2341  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2342  ValueMapping);
2343 
2344  // If there were values defined in BB that are used outside the block, then we
2345  // now have to update all uses of the value to use either the original value,
2346  // the cloned value, or some PHI derived value. This can require arbitrary
2347  // PHI insertion, of which we are prepared to do, clean these up now.
2348  SSAUpdater SSAUpdate;
2349  SmallVector<Use*, 16> UsesToRename;
2350  for (Instruction &I : *BB) {
2351  // Scan all uses of this instruction to see if it is used outside of its
2352  // block, and if so, record them in UsesToRename.
2353  for (Use &U : I.uses()) {
2354  Instruction *User = cast<Instruction>(U.getUser());
2355  if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2356  if (UserPN->getIncomingBlock(U) == BB)
2357  continue;
2358  } else if (User->getParent() == BB)
2359  continue;
2360 
2361  UsesToRename.push_back(&U);
2362  }
2363 
2364  // If there are no uses outside the block, we're done with this instruction.
2365  if (UsesToRename.empty())
2366  continue;
2367 
2368  LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2369 
2370  // We found a use of I outside of BB. Rename all uses of I that are outside
2371  // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2372  // with the two values we know.
2373  SSAUpdate.Initialize(I.getType(), I.getName());
2374  SSAUpdate.AddAvailableValue(BB, &I);
2375  SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2376 
2377  while (!UsesToRename.empty())
2378  SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2379  LLVM_DEBUG(dbgs() << "\n");
2380  }
2381 
2382  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2383  // that we nuked.
2384  BB->removePredecessor(PredBB, true);
2385 
2386  // Remove the unconditional branch at the end of the PredBB block.
2387  OldPredBranch->eraseFromParent();
2388  DTU->applyUpdates(Updates);
2389 
2390  ++NumDupes;
2391  return true;
2392 }
2393 
2394 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2395 // a Select instruction in Pred. BB has other predecessors and SI is used in
2396 // a PHI node in BB. SI has no other use.
2397 // A new basic block, NewBB, is created and SI is converted to compare and
2398 // conditional branch. SI is erased from parent.
2400  SelectInst *SI, PHINode *SIUse,
2401  unsigned Idx) {
2402  // Expand the select.
2403  //
2404  // Pred --
2405  // | v
2406  // | NewBB
2407  // | |
2408  // |-----
2409  // v
2410  // BB
2411  BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2412  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2413  BB->getParent(), BB);
2414  // Move the unconditional branch to NewBB.
2415  PredTerm->removeFromParent();
2416  NewBB->getInstList().insert(NewBB->end(), PredTerm);
2417  // Create a conditional branch and update PHI nodes.
2418  BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2419  SIUse->setIncomingValue(Idx, SI->getFalseValue());
2420  SIUse->addIncoming(SI->getTrueValue(), NewBB);
2421 
2422  // The select is now dead.
2423  SI->eraseFromParent();
2424  DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2425  {DominatorTree::Insert, Pred, NewBB}});
2426 
2427  // Update any other PHI nodes in BB.
2428  for (BasicBlock::iterator BI = BB->begin();
2429  PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2430  if (Phi != SIUse)
2431  Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2432 }
2433 
2435  PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2436 
2437  if (!CondPHI || CondPHI->getParent() != BB)
2438  return false;
2439 
2440  for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2441  BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2442  SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2443 
2444  // The second and third condition can be potentially relaxed. Currently
2445  // the conditions help to simplify the code and allow us to reuse existing
2446  // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2447  if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2448  continue;
2449 
2450  BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2451  if (!PredTerm || !PredTerm->isUnconditional())
2452  continue;
2453 
2454  UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2455  return true;
2456  }
2457  return false;
2458 }
2459 
2460 /// TryToUnfoldSelect - Look for blocks of the form
2461 /// bb1:
2462 /// %a = select
2463 /// br bb2
2464 ///
2465 /// bb2:
2466 /// %p = phi [%a, %bb1] ...
2467 /// %c = icmp %p
2468 /// br i1 %c
2469 ///
2470 /// And expand the select into a branch structure if one of its arms allows %c
2471 /// to be folded. This later enables threading from bb1 over bb2.
2473  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2474  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2475  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2476 
2477  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2478  CondLHS->getParent() != BB)
2479  return false;
2480 
2481  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2482  BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2483  SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2484 
2485  // Look if one of the incoming values is a select in the corresponding
2486  // predecessor.
2487  if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2488  continue;
2489 
2490  BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2491  if (!PredTerm || !PredTerm->isUnconditional())
2492  continue;
2493 
2494  // Now check if one of the select values would allow us to constant fold the
2495  // terminator in BB. We don't do the transform if both sides fold, those
2496  // cases will be threaded in any case.
2497  if (DTU->hasPendingDomTreeUpdates())
2498  LVI->disableDT();
2499  else
2500  LVI->enableDT();
2501  LazyValueInfo::Tristate LHSFolds =
2502  LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2503  CondRHS, Pred, BB, CondCmp);
2504  LazyValueInfo::Tristate RHSFolds =
2505  LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2506  CondRHS, Pred, BB, CondCmp);
2507  if ((LHSFolds != LazyValueInfo::Unknown ||
2508  RHSFolds != LazyValueInfo::Unknown) &&
2509  LHSFolds != RHSFolds) {
2510  UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2511  return true;
2512  }
2513  }
2514  return false;
2515 }
2516 
2517 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2518 /// same BB in the form
2519 /// bb:
2520 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2521 /// %s = select %p, trueval, falseval
2522 ///
2523 /// or
2524 ///
2525 /// bb:
2526 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2527 /// %c = cmp %p, 0
2528 /// %s = select %c, trueval, falseval
2529 ///
2530 /// And expand the select into a branch structure. This later enables
2531 /// jump-threading over bb in this pass.
2532 ///
2533 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2534 /// select if the associated PHI has at least one constant. If the unfolded
2535 /// select is not jump-threaded, it will be folded again in the later
2536 /// optimizations.
2538  // If threading this would thread across a loop header, don't thread the edge.
2539  // See the comments above FindLoopHeaders for justifications and caveats.
2540  if (LoopHeaders.count(BB))
2541  return false;
2542 
2543  for (BasicBlock::iterator BI = BB->begin();
2544  PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2545  // Look for a Phi having at least one constant incoming value.
2546  if (llvm::all_of(PN->incoming_values(),
2547  [](Value *V) { return !isa<ConstantInt>(V); }))
2548  continue;
2549 
2550  auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2551  // Check if SI is in BB and use V as condition.
2552  if (SI->getParent() != BB)
2553  return false;
2554  Value *Cond = SI->getCondition();
2555  return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2556  };
2557 
2558  SelectInst *SI = nullptr;
2559  for (Use &U : PN->uses()) {
2560  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2561  // Look for a ICmp in BB that compares PN with a constant and is the
2562  // condition of a Select.
2563  if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2564  isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2565  if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2566  if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2567  SI = SelectI;
2568  break;
2569  }
2570  } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2571  // Look for a Select in BB that uses PN as condition.
2572  if (isUnfoldCandidate(SelectI, U.get())) {
2573  SI = SelectI;
2574  break;
2575  }
2576  }
2577  }
2578 
2579  if (!SI)
2580  continue;
2581  // Expand the select.
2582  Instruction *Term =
2583  SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2584  BasicBlock *SplitBB = SI->getParent();
2585  BasicBlock *NewBB = Term->getParent();
2586  PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2587  NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2588  NewPN->addIncoming(SI->getFalseValue(), BB);
2589  SI->replaceAllUsesWith(NewPN);
2590  SI->eraseFromParent();
2591  // NewBB and SplitBB are newly created blocks which require insertion.
2592  std::vector<DominatorTree::UpdateType> Updates;
2593  Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2594  Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2595  Updates.push_back({DominatorTree::Insert, BB, NewBB});
2596  Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2597  // BB's successors were moved to SplitBB, update DTU accordingly.
2598  for (auto *Succ : successors(SplitBB)) {
2599  Updates.push_back({DominatorTree::Delete, BB, Succ});
2600  Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2601  }
2602  DTU->applyUpdates(Updates);
2603  return true;
2604  }
2605  return false;
2606 }
2607 
2608 /// Try to propagate a guard from the current BB into one of its predecessors
2609 /// in case if another branch of execution implies that the condition of this
2610 /// guard is always true. Currently we only process the simplest case that
2611 /// looks like:
2612 ///
2613 /// Start:
2614 /// %cond = ...
2615 /// br i1 %cond, label %T1, label %F1
2616 /// T1:
2617 /// br label %Merge
2618 /// F1:
2619 /// br label %Merge
2620 /// Merge:
2621 /// %condGuard = ...
2622 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2623 ///
2624 /// And cond either implies condGuard or !condGuard. In this case all the
2625 /// instructions before the guard can be duplicated in both branches, and the
2626 /// guard is then threaded to one of them.
2628  using namespace PatternMatch;
2629 
2630  // We only want to deal with two predecessors.
2631  BasicBlock *Pred1, *Pred2;
2632  auto PI = pred_begin(BB), PE = pred_end(BB);
2633  if (PI == PE)
2634  return false;
2635  Pred1 = *PI++;
2636  if (PI == PE)
2637  return false;
2638  Pred2 = *PI++;
2639  if (PI != PE)
2640  return false;
2641  if (Pred1 == Pred2)
2642  return false;
2643 
2644  // Try to thread one of the guards of the block.
2645  // TODO: Look up deeper than to immediate predecessor?
2646  auto *Parent = Pred1->getSinglePredecessor();
2647  if (!Parent || Parent != Pred2->getSinglePredecessor())
2648  return false;
2649 
2650  if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2651  for (auto &I : *BB)
2652  if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2653  return true;
2654 
2655  return false;
2656 }
2657 
2658 /// Try to propagate the guard from BB which is the lower block of a diamond
2659 /// to one of its branches, in case if diamond's condition implies guard's
2660 /// condition.
2662  BranchInst *BI) {
2663  assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2664  assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2665  Value *GuardCond = Guard->getArgOperand(0);
2666  Value *BranchCond = BI->getCondition();
2667  BasicBlock *TrueDest = BI->getSuccessor(0);
2668  BasicBlock *FalseDest = BI->getSuccessor(1);
2669 
2670  auto &DL = BB->getModule()->getDataLayout();
2671  bool TrueDestIsSafe = false;
2672  bool FalseDestIsSafe = false;
2673 
2674  // True dest is safe if BranchCond => GuardCond.
2675  auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2676  if (Impl && *Impl)
2677  TrueDestIsSafe = true;
2678  else {
2679  // False dest is safe if !BranchCond => GuardCond.
2680  Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2681  if (Impl && *Impl)
2682  FalseDestIsSafe = true;
2683  }
2684 
2685  if (!TrueDestIsSafe && !FalseDestIsSafe)
2686  return false;
2687 
2688  BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2689  BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2690 
2691  ValueToValueMapTy UnguardedMapping, GuardedMapping;
2692  Instruction *AfterGuard = Guard->getNextNode();
2693  unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2694  if (Cost > BBDupThreshold)
2695  return false;
2696  // Duplicate all instructions before the guard and the guard itself to the
2697  // branch where implication is not proved.
2699  BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2700  assert(GuardedBlock && "Could not create the guarded block?");
2701  // Duplicate all instructions before the guard in the unguarded branch.
2702  // Since we have successfully duplicated the guarded block and this block
2703  // has fewer instructions, we expect it to succeed.
2705  BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2706  assert(UnguardedBlock && "Could not create the unguarded block?");
2707  LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2708  << GuardedBlock->getName() << "\n");
2709  // Some instructions before the guard may still have uses. For them, we need
2710  // to create Phi nodes merging their copies in both guarded and unguarded
2711  // branches. Those instructions that have no uses can be just removed.
2713  for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2714  if (!isa<PHINode>(&*BI))
2715  ToRemove.push_back(&*BI);
2716 
2717  Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2718  assert(InsertionPoint && "Empty block?");
2719  // Substitute with Phis & remove.
2720  for (auto *Inst : reverse(ToRemove)) {
2721  if (!Inst->use_empty()) {
2722  PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2723  NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2724  NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2725  NewPN->insertBefore(InsertionPoint);
2726  Inst->replaceAllUsesWith(NewPN);
2727  }
2728  Inst->eraseFromParent();
2729  }
2730  return true;
2731 }
Legacy wrapper pass to provide the GlobalsAAResult object.
bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl< BasicBlock *> &PredBBs, BasicBlock *SuccBB)
ThreadEdge - We have decided that it is safe and profitable to factor the blocks in PredBBs to one pr...
uint64_t CallInst * C
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:585
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:71
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT)
This is the entry point for all transforms.
iterator_range< use_iterator > uses()
Definition: Value.h:355
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs=false)
Notify the BasicBlock that the predecessor Pred is no longer able to reach it.
Definition: BasicBlock.cpp:302
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:173
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:39
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
BranchProbability getCompl() const
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:770
This class represents lattice values for constants.
Definition: AllocatorList.h:24
bool isAtomic() const
Return true if this instruction has an AtomicOrdering of unordered or higher.
Wrapper around LazyValueInfo.
This is the interface for a simple mod/ref and alias analysis over globals.
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type &#39;Ty&#39;.
Definition: SSAUpdater.cpp:54
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:106
BasicBlock * getSuccessor(unsigned Idx) const
Return the specified successor. This instruction must be a terminator.
void initializeJumpThreadingPass(PassRegistry &)
Implements a dense probed hash-table based set.
Definition: DenseSet.h:250
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value...
Definition: SSAUpdater.cpp:72
This class represents a function call, abstracting a target machine&#39;s calling convention.
cl::opt< unsigned > DefMaxInstsToScan
The default number of maximum instructions to scan in the block, used by FindAvailableLoadedValue().
This file contains the declarations for metadata subclasses.
Value * getCondition() const
const Value * getTrueValue() const
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Definition: Instructions.h:248
void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
Delete the specified block, which must have no predecessors.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:98
static cl::opt< unsigned > ImplicationSearchThreshold("jump-threading-implication-search-threshold", cl::desc("The number of predecessors to search for a stronger " "condition to use to thread over a weaker condition"), cl::init(3), cl::Hidden)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1186
Value * FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, bool AtLeastAtomic, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AliasAnalysis *AA, bool *IsLoad, unsigned *NumScanedInst)
Scan backwards to see if we have the value of the given pointer available locally within a small numb...
Definition: Loads.cpp:336
static BasicBlock * FindMostPopularDest(BasicBlock *BB, const SmallVectorImpl< std::pair< BasicBlock *, BasicBlock *>> &PredToDestList)
FindMostPopularDest - The specified list contains multiple possible threadable destinations.
BasicBlock * getSuccessor(unsigned i) const
STATISTIC(NumFunctions, "Total number of functions")
bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr)
Scan the specified basic block and try to simplify any instructions in it and recursively delete dead...
Definition: Local.cpp:592
Metadata node.
Definition: Metadata.h:864
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:231
F(f)
An instruction for reading from memory.
Definition: Instructions.h:168
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2, bool OnlyIfReduced=false)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1956
Value * getCondition() const
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
This defines the Use class.
const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
Definition: Value.cpp:697
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
FunctionPass * createJumpThreadingPass(int Threshold=-1)
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Split the edge connecting specified block.
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1135
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:221
bool runImpl(Function &F, TargetLibraryInfo *TLI_, LazyValueInfo *LVI_, AliasAnalysis *AA_, DomTreeUpdater *DTU_, bool HasProfileData_, std::unique_ptr< BlockFrequencyInfo > BFI_, std::unique_ptr< BranchProbabilityInfo > BPI_)
The address of a basic block.
Definition: Constants.h:840
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:48
AnalysisUsage & addRequired()
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:134
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
BB is a block with one predecessor and its predecessor is known to have one successor (BB!)...
Definition: Local.cpp:675
StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
Definition: Function.cpp:626
This class represents the LLVM &#39;select&#39; instruction.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
static cl::opt< unsigned > BBDuplicateThreshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden)
&#39;undef&#39; values are things that do not have specified contents.
Definition: Constants.h:1286
Value * FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=DefMaxInstsToScan, AliasAnalysis *AA=nullptr, bool *IsLoadCSE=nullptr, unsigned *NumScanedInst=nullptr)
Scan backwards to see if we have the value of the given load available locally within a small number ...
Definition: Loads.cpp:321
unsigned getNumSuccessors() const
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
jump threading
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:285
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
bool TryToUnfoldSelectInCurrBB(BasicBlock *BB)
TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the same BB in the form bb: p = ...
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:642
void assign(size_type NumElts, const T &Elt)
Definition: SmallVector.h:423
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:267
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
Definition: Constants.h:201
bool ComputeValueKnownInPredecessorsImpl(Value *V, BasicBlock *BB, jumpthreading::PredValueInfo &Result, jumpthreading::ConstantPreference Preference, DenseSet< std::pair< Value *, BasicBlock *>> &RecursionSet, Instruction *CxtI=nullptr)
ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see if we can infer that the ...
Value * SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
BB is known to contain an unconditional branch, and contains no instructions other than PHI nodes...
Definition: Local.cpp:960
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:221
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:82
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:138
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1282
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI, AAResults &AA)
Definition: Sink.cpp:199
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
static Constant * getKnownConstant(Value *Val, ConstantPreference Preference)
getKnownConstant - Helper method to determine if we can thread over a terminator with the given value...
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
unsigned getNumSuccessors() const
Return the number of successors that this instruction has.
Value * getOperand(unsigned i) const
Definition: User.h:170
void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
Definition: Constants.cpp:537
void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock *> Preds, const char *Suffix, const char *Suffix2, SmallVectorImpl< BasicBlock *> &NewBBs, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method transforms the landing pad, OrigBB, by introducing two new basic blocks into the function...
StringRef getString() const
Definition: Metadata.cpp:464
const BasicBlock & getEntryBlock() const
Definition: Function.h:640
void getAAMetadata(AAMDNodes &N, bool Merge=false) const
Fills the AAMDNodes structure with AA metadata from this instruction.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
static bool runOnFunction(Function &F, bool PostInlining)
#define P(N)
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock *> Preds, const char *Suffix, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:1083
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:190
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:154
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:217
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:308
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:234
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction...
Definition: Instruction.cpp:74
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
Conditional or Unconditional Branch instruction.
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1434
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB)
Return true if Op is an instruction defined in the given block.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const Instruction & front() const
Definition: BasicBlock.h:281
Indirect Branch Instruction.
A manager for alias analyses.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:562
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:113
bool isUnordered() const
Definition: Instructions.h:279
Represent the analysis usage information of a pass.
This instruction compares its operands according to the predicate given to the constructor.
Analysis pass providing a never-invalidated alias analysis result.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:646
jump Jump Threading
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:116
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:100
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
bool pred_empty(const BasicBlock *BB)
Definition: CFG.h:117
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2232
void FindLoopHeaders(Function &F)
FindLoopHeaders - We do not want jump threading to turn proper loop structures into irreducible loops...
const Value * getCondition() const
static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB)
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:529
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:160
bool isExceptionalTerminator() const
Definition: Instruction.h:136
size_t size() const
Definition: SmallVector.h:53
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1226
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB)
GetBestDestForBranchOnUndef - If we determine that the specified block ends in an undefined jump...
Tristate
This is used to return true/false/dunno results.
Definition: LazyValueInfo.h:63
bool ProcessBranchOnPHI(PHINode *PN)
ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on a PHI node in the curren...
size_type size() const
Definition: SmallPtrSet.h:93
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:468
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:392
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:334
static cl::opt< bool > PrintLVIAfterJumpThreading("print-lvi-after-jump-threading", cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), cl::Hidden)
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:192
void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
Definition: BasicBlock.cpp:128
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
See the file comment.
Definition: ValueMap.h:86
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
iterator end()
Definition: BasicBlock.h:271
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Module.h This file contains the declarations for the Module class.
Provides information about what library functions are available for the current target.
This pass performs &#39;jump threading&#39;, which looks at blocks that have multiple predecessors and multip...
Definition: JumpThreading.h:78
This class represents a range of values.
Definition: ConstantRange.h:47
static BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:644
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
bool SimplifyPartiallyRedundantLoad(LoadInst *LI)
SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially redundant load instruction...
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
bool isConditional() const
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
pred_range predecessors(BasicBlock *BB)
Definition: CFG.h:125
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:578
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2&#39;s erase_if which is equivalent t...
Definition: STLExtras.h:1330
bool isGuard(const User *U)
Returns true iff U has semantics of a guard.
Definition: GuardUtils.cpp:18
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, Instruction *StopAt, unsigned Threshold)
Return the cost of duplicating a piece of this block from first non-phi and before StopAt instruction...
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition: Module.cpp:176
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
void push_back(pointer val)
Definition: ilist.h:313
static cl::opt< unsigned > Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), cl::init(100), cl::Hidden)
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1530
const Value * getFalseValue() const
void removeFromParent()
This method unlinks &#39;this&#39; from the containing basic block, but does not delete it.
Definition: Instruction.cpp:64
Instruction * SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:721
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:546
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
Analysis providing branch probability information.
iterator insert(iterator where, pointer New)
Definition: ilist.h:228
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:311
unsigned getAlignment() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:241
void emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:652
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
void UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, SelectInst *SI, PHINode *SIUse, unsigned Idx)
iterator begin()
Definition: DenseMap.h:100
bool ProcessBranchOnXOR(BinaryOperator *BO)
ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on a xor instruction in the...
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Definition: Instructions.h:260
bool ProcessImpliedCondition(BasicBlock *BB)
unsigned pred_size(const BasicBlock *BB)
Get the number of predecessors of BB.
Definition: CFG.h:122
#define I(x, y, z)
Definition: MD5.cpp:58
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:193
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal)
uint32_t Size
Definition: Profile.cpp:47
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:175
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:325
bool isUnconditional() const
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, BasicBlock *OldPred, BasicBlock *NewPred, DenseMap< Instruction *, Value *> &ValueMap)
AddPHINodeEntriesForMappedBlock - We&#39;re adding &#39;NewPred&#39; as a new predecessor to the PHIBB block...
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:211
bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, jumpthreading::ConstantPreference Preference, Instruction *CxtI=nullptr)
Optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
void FindFunctionBackedges(const Function &F, SmallVectorImpl< std::pair< const BasicBlock *, const BasicBlock *> > &Result)
Analyze the specified function to find all of the loop backedges in the function and return them...
Definition: CFG.cpp:27
Analysis pass providing the TargetLibraryInfo.
Multiway switch.
Helper struct that represents how a value is mapped through different register banks.
This pass computes, caches, and vends lazy value constraint information.
Definition: LazyValueInfo.h:32
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
See the comments on JumpThreadingPass.
bool isSafeToSpeculativelyExecute(const Value *V, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isEHPad() const
Return true if this basic block is an exception handling block.
Definition: BasicBlock.h:399
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
bool ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, BranchInst *BI)
Try to propagate the guard from BB which is the lower block of a diamond to one of its branches...
bool ProcessGuards(BasicBlock *BB)
Try to propagate a guard from the current BB into one of its predecessors in case if another branch o...
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction has no side ef...
Definition: Local.cpp:349
LLVM Value Representation.
Definition: Value.h:73
succ_range successors(Instruction *I)
Definition: CFG.h:264
bool ProcessBlock(BasicBlock *BB)
ProcessBlock - If there are any predecessors whose control can be threaded through to a successor...
static const Function * getParent(const Value *V)
void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
Definition: Local.cpp:2352
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
A single uniqued string.
Definition: Metadata.h:604
A container for analyses that lazily runs them and caches their results.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:260
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
This header defines various interfaces for pass management in LLVM.
void setIncomingValue(unsigned i, Value *V)
INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", "Jump Threading", false, false) INITIALIZE_PASS_END(JumpThreading
#define LLVM_DEBUG(X)
Definition: Debug.h:123
bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const
Retrieve the raw weight values of a conditional branch or select.
Definition: Metadata.cpp:1315
op_range incoming_values()
ConstantRange inverse() const
Return a new range that is the logical not of the current set.
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
Definition: SSAUpdater.cpp:190
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, const SmallVectorImpl< BasicBlock *> &PredBBs)
DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch to BB which contains an i1...
static bool hasAddressTakenAndUsed(BasicBlock *BB)
Value * SimplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
bool hasProfileData() const
Return true if the function is annotated with profile data.
Definition: Function.h:308
uint32_t getNumerator() const
bool use_empty() const
Definition: Value.h:323
unsigned replaceNonLocalUsesWith(Instruction *From, Value *To)
Definition: Local.cpp:2417
Analysis to compute lazy value information.
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
const BasicBlock * getParent() const
Definition: Instruction.h:67
bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB)
TryToUnfoldSelect - Look for blocks of the form bb1: a = select br bb2.
void resize(size_type N)
Definition: SmallVector.h:351
static Constant * get(unsigned Opcode, Constant *C1, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a unary operator constant expression, folding if possible.
Definition: Constants.cpp:1806
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:1245