LLVM  8.0.1
Type.cpp
Go to the documentation of this file.
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Casting.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 // Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
40  switch (IDNumber) {
41  case VoidTyID : return getVoidTy(C);
42  case HalfTyID : return getHalfTy(C);
43  case FloatTyID : return getFloatTy(C);
44  case DoubleTyID : return getDoubleTy(C);
45  case X86_FP80TyID : return getX86_FP80Ty(C);
46  case FP128TyID : return getFP128Ty(C);
47  case PPC_FP128TyID : return getPPC_FP128Ty(C);
48  case LabelTyID : return getLabelTy(C);
49  case MetadataTyID : return getMetadataTy(C);
50  case X86_MMXTyID : return getX86_MMXTy(C);
51  case TokenTyID : return getTokenTy(C);
52  default:
53  return nullptr;
54  }
55 }
56 
57 bool Type::isIntegerTy(unsigned Bitwidth) const {
58  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
59 }
60 
62  // Identity cast means no change so return true
63  if (this == Ty)
64  return true;
65 
66  // They are not convertible unless they are at least first class types
67  if (!this->isFirstClassType() || !Ty->isFirstClassType())
68  return false;
69 
70  // Vector -> Vector conversions are always lossless if the two vector types
71  // have the same size, otherwise not. Also, 64-bit vector types can be
72  // converted to x86mmx.
73  if (auto *thisPTy = dyn_cast<VectorType>(this)) {
74  if (auto *thatPTy = dyn_cast<VectorType>(Ty))
75  return thisPTy->getBitWidth() == thatPTy->getBitWidth();
76  if (Ty->getTypeID() == Type::X86_MMXTyID &&
77  thisPTy->getBitWidth() == 64)
78  return true;
79  }
80 
81  if (this->getTypeID() == Type::X86_MMXTyID)
82  if (auto *thatPTy = dyn_cast<VectorType>(Ty))
83  if (thatPTy->getBitWidth() == 64)
84  return true;
85 
86  // At this point we have only various mismatches of the first class types
87  // remaining and ptr->ptr. Just select the lossless conversions. Everything
88  // else is not lossless. Conservatively assume we can't losslessly convert
89  // between pointers with different address spaces.
90  if (auto *PTy = dyn_cast<PointerType>(this)) {
91  if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
92  return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
93  return false;
94  }
95  return false; // Other types have no identity values
96 }
97 
98 bool Type::isEmptyTy() const {
99  if (auto *ATy = dyn_cast<ArrayType>(this)) {
100  unsigned NumElements = ATy->getNumElements();
101  return NumElements == 0 || ATy->getElementType()->isEmptyTy();
102  }
103 
104  if (auto *STy = dyn_cast<StructType>(this)) {
105  unsigned NumElements = STy->getNumElements();
106  for (unsigned i = 0; i < NumElements; ++i)
107  if (!STy->getElementType(i)->isEmptyTy())
108  return false;
109  return true;
110  }
111 
112  return false;
113 }
114 
116  switch (getTypeID()) {
117  case Type::HalfTyID: return 16;
118  case Type::FloatTyID: return 32;
119  case Type::DoubleTyID: return 64;
120  case Type::X86_FP80TyID: return 80;
121  case Type::FP128TyID: return 128;
122  case Type::PPC_FP128TyID: return 128;
123  case Type::X86_MMXTyID: return 64;
124  case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
125  case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
126  default: return 0;
127  }
128 }
129 
130 unsigned Type::getScalarSizeInBits() const {
132 }
133 
135  if (auto *VTy = dyn_cast<VectorType>(this))
136  return VTy->getElementType()->getFPMantissaWidth();
137  assert(isFloatingPointTy() && "Not a floating point type!");
138  if (getTypeID() == HalfTyID) return 11;
139  if (getTypeID() == FloatTyID) return 24;
140  if (getTypeID() == DoubleTyID) return 53;
141  if (getTypeID() == X86_FP80TyID) return 64;
142  if (getTypeID() == FP128TyID) return 113;
143  assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
144  return -1;
145 }
146 
147 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
148  if (auto *ATy = dyn_cast<ArrayType>(this))
149  return ATy->getElementType()->isSized(Visited);
150 
151  if (auto *VTy = dyn_cast<VectorType>(this))
152  return VTy->getElementType()->isSized(Visited);
153 
154  return cast<StructType>(this)->isSized(Visited);
155 }
156 
157 //===----------------------------------------------------------------------===//
158 // Primitive 'Type' data
159 //===----------------------------------------------------------------------===//
160 
172 
179 
181  return IntegerType::get(C, N);
182 }
183 
185  return getHalfTy(C)->getPointerTo(AS);
186 }
187 
189  return getFloatTy(C)->getPointerTo(AS);
190 }
191 
193  return getDoubleTy(C)->getPointerTo(AS);
194 }
195 
197  return getX86_FP80Ty(C)->getPointerTo(AS);
198 }
199 
201  return getFP128Ty(C)->getPointerTo(AS);
202 }
203 
205  return getPPC_FP128Ty(C)->getPointerTo(AS);
206 }
207 
209  return getX86_MMXTy(C)->getPointerTo(AS);
210 }
211 
212 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
213  return getIntNTy(C, N)->getPointerTo(AS);
214 }
215 
217  return getInt1Ty(C)->getPointerTo(AS);
218 }
219 
221  return getInt8Ty(C)->getPointerTo(AS);
222 }
223 
225  return getInt16Ty(C)->getPointerTo(AS);
226 }
227 
229  return getInt32Ty(C)->getPointerTo(AS);
230 }
231 
233  return getInt64Ty(C)->getPointerTo(AS);
234 }
235 
236 //===----------------------------------------------------------------------===//
237 // IntegerType Implementation
238 //===----------------------------------------------------------------------===//
239 
241  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
242  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
243 
244  // Check for the built-in integer types
245  switch (NumBits) {
246  case 1: return cast<IntegerType>(Type::getInt1Ty(C));
247  case 8: return cast<IntegerType>(Type::getInt8Ty(C));
248  case 16: return cast<IntegerType>(Type::getInt16Ty(C));
249  case 32: return cast<IntegerType>(Type::getInt32Ty(C));
250  case 64: return cast<IntegerType>(Type::getInt64Ty(C));
251  case 128: return cast<IntegerType>(Type::getInt128Ty(C));
252  default:
253  break;
254  }
255 
256  IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
257 
258  if (!Entry)
259  Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
260 
261  return Entry;
262 }
263 
265  unsigned BitWidth = getBitWidth();
266  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
267 }
268 
271 }
272 
273 //===----------------------------------------------------------------------===//
274 // FunctionType Implementation
275 //===----------------------------------------------------------------------===//
276 
277 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
278  bool IsVarArgs)
279  : Type(Result->getContext(), FunctionTyID) {
280  Type **SubTys = reinterpret_cast<Type**>(this+1);
281  assert(isValidReturnType(Result) && "invalid return type for function");
282  setSubclassData(IsVarArgs);
283 
284  SubTys[0] = Result;
285 
286  for (unsigned i = 0, e = Params.size(); i != e; ++i) {
287  assert(isValidArgumentType(Params[i]) &&
288  "Not a valid type for function argument!");
289  SubTys[i+1] = Params[i];
290  }
291 
292  ContainedTys = SubTys;
293  NumContainedTys = Params.size() + 1; // + 1 for result type
294 }
295 
296 // This is the factory function for the FunctionType class.
298  ArrayRef<Type*> Params, bool isVarArg) {
299  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
300  const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
301  FunctionType *FT;
302  // Since we only want to allocate a fresh function type in case none is found
303  // and we don't want to perform two lookups (one for checking if existent and
304  // one for inserting the newly allocated one), here we instead lookup based on
305  // Key and update the reference to the function type in-place to a newly
306  // allocated one if not found.
307  auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
308  if (Insertion.second) {
309  // The function type was not found. Allocate one and update FunctionTypes
310  // in-place.
311  FT = (FunctionType *)pImpl->TypeAllocator.Allocate(
312  sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
313  alignof(FunctionType));
314  new (FT) FunctionType(ReturnType, Params, isVarArg);
315  *Insertion.first = FT;
316  } else {
317  // The function type was found. Just return it.
318  FT = *Insertion.first;
319  }
320  return FT;
321 }
322 
323 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
324  return get(Result, None, isVarArg);
325 }
326 
328  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
329  !RetTy->isMetadataTy();
330 }
331 
333  return ArgTy->isFirstClassType();
334 }
335 
336 //===----------------------------------------------------------------------===//
337 // StructType Implementation
338 //===----------------------------------------------------------------------===//
339 
340 // Primitive Constructors.
341 
343  bool isPacked) {
344  LLVMContextImpl *pImpl = Context.pImpl;
345  const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
346 
347  StructType *ST;
348  // Since we only want to allocate a fresh struct type in case none is found
349  // and we don't want to perform two lookups (one for checking if existent and
350  // one for inserting the newly allocated one), here we instead lookup based on
351  // Key and update the reference to the struct type in-place to a newly
352  // allocated one if not found.
353  auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
354  if (Insertion.second) {
355  // The struct type was not found. Allocate one and update AnonStructTypes
356  // in-place.
357  ST = new (Context.pImpl->TypeAllocator) StructType(Context);
358  ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
359  ST->setBody(ETypes, isPacked);
360  *Insertion.first = ST;
361  } else {
362  // The struct type was found. Just return it.
363  ST = *Insertion.first;
364  }
365 
366  return ST;
367 }
368 
369 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
370  assert(isOpaque() && "Struct body already set!");
371 
372  setSubclassData(getSubclassData() | SCDB_HasBody);
373  if (isPacked)
374  setSubclassData(getSubclassData() | SCDB_Packed);
375 
376  NumContainedTys = Elements.size();
377 
378  if (Elements.empty()) {
379  ContainedTys = nullptr;
380  return;
381  }
382 
383  ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data();
384 }
385 
387  if (Name == getName()) return;
388 
390 
391  using EntryTy = StringMap<StructType *>::MapEntryTy;
392 
393  // If this struct already had a name, remove its symbol table entry. Don't
394  // delete the data yet because it may be part of the new name.
395  if (SymbolTableEntry)
396  SymbolTable.remove((EntryTy *)SymbolTableEntry);
397 
398  // If this is just removing the name, we're done.
399  if (Name.empty()) {
400  if (SymbolTableEntry) {
401  // Delete the old string data.
402  ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
403  SymbolTableEntry = nullptr;
404  }
405  return;
406  }
407 
408  // Look up the entry for the name.
409  auto IterBool =
410  getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
411 
412  // While we have a name collision, try a random rename.
413  if (!IterBool.second) {
414  SmallString<64> TempStr(Name);
415  TempStr.push_back('.');
416  raw_svector_ostream TmpStream(TempStr);
417  unsigned NameSize = Name.size();
418 
419  do {
420  TempStr.resize(NameSize + 1);
421  TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
422 
423  IterBool = getContext().pImpl->NamedStructTypes.insert(
424  std::make_pair(TmpStream.str(), this));
425  } while (!IterBool.second);
426  }
427 
428  // Delete the old string data.
429  if (SymbolTableEntry)
430  ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
431  SymbolTableEntry = &*IterBool.first;
432 }
433 
434 //===----------------------------------------------------------------------===//
435 // StructType Helper functions.
436 
438  StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
439  if (!Name.empty())
440  ST->setName(Name);
441  return ST;
442 }
443 
444 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
445  return get(Context, None, isPacked);
446 }
447 
449  StringRef Name, bool isPacked) {
450  StructType *ST = create(Context, Name);
451  ST->setBody(Elements, isPacked);
452  return ST;
453 }
454 
456  return create(Context, Elements, StringRef());
457 }
458 
460  return create(Context, StringRef());
461 }
462 
464  bool isPacked) {
465  assert(!Elements.empty() &&
466  "This method may not be invoked with an empty list");
467  return create(Elements[0]->getContext(), Elements, Name, isPacked);
468 }
469 
471  assert(!Elements.empty() &&
472  "This method may not be invoked with an empty list");
473  return create(Elements[0]->getContext(), Elements, StringRef());
474 }
475 
477  if ((getSubclassData() & SCDB_IsSized) != 0)
478  return true;
479  if (isOpaque())
480  return false;
481 
482  if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
483  return false;
484 
485  // Okay, our struct is sized if all of the elements are, but if one of the
486  // elements is opaque, the struct isn't sized *yet*, but may become sized in
487  // the future, so just bail out without caching.
488  for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
489  if (!(*I)->isSized(Visited))
490  return false;
491 
492  // Here we cheat a bit and cast away const-ness. The goal is to memoize when
493  // we find a sized type, as types can only move from opaque to sized, not the
494  // other way.
495  const_cast<StructType*>(this)->setSubclassData(
496  getSubclassData() | SCDB_IsSized);
497  return true;
498 }
499 
501  assert(!isLiteral() && "Literal structs never have names");
502  if (!SymbolTableEntry) return StringRef();
503 
504  return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
505 }
506 
508  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
509  !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
510  !ElemTy->isTokenTy();
511 }
512 
514  if (this == Other) return true;
515 
516  if (isPacked() != Other->isPacked())
517  return false;
518 
519  return elements() == Other->elements();
520 }
521 
523  return getContext().pImpl->NamedStructTypes.lookup(Name);
524 }
525 
526 //===----------------------------------------------------------------------===//
527 // CompositeType Implementation
528 //===----------------------------------------------------------------------===//
529 
531  if (auto *STy = dyn_cast<StructType>(this)) {
532  unsigned Idx =
533  (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
534  assert(indexValid(Idx) && "Invalid structure index!");
535  return STy->getElementType(Idx);
536  }
537 
538  return cast<SequentialType>(this)->getElementType();
539 }
540 
541 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
542  if (auto *STy = dyn_cast<StructType>(this)) {
543  assert(indexValid(Idx) && "Invalid structure index!");
544  return STy->getElementType(Idx);
545  }
546 
547  return cast<SequentialType>(this)->getElementType();
548 }
549 
550 bool CompositeType::indexValid(const Value *V) const {
551  if (auto *STy = dyn_cast<StructType>(this)) {
552  // Structure indexes require (vectors of) 32-bit integer constants. In the
553  // vector case all of the indices must be equal.
554  if (!V->getType()->isIntOrIntVectorTy(32))
555  return false;
556  const Constant *C = dyn_cast<Constant>(V);
557  if (C && V->getType()->isVectorTy())
558  C = C->getSplatValue();
559  const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
560  return CU && CU->getZExtValue() < STy->getNumElements();
561  }
562 
563  // Sequential types can be indexed by any integer.
564  return V->getType()->isIntOrIntVectorTy();
565 }
566 
567 bool CompositeType::indexValid(unsigned Idx) const {
568  if (auto *STy = dyn_cast<StructType>(this))
569  return Idx < STy->getNumElements();
570  // Sequential types can be indexed by any integer.
571  return true;
572 }
573 
574 //===----------------------------------------------------------------------===//
575 // ArrayType Implementation
576 //===----------------------------------------------------------------------===//
577 
578 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
579  : SequentialType(ArrayTyID, ElType, NumEl) {}
580 
581 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
582  assert(isValidElementType(ElementType) && "Invalid type for array element!");
583 
584  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
585  ArrayType *&Entry =
586  pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
587 
588  if (!Entry)
589  Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
590  return Entry;
591 }
592 
594  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
595  !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
596  !ElemTy->isTokenTy();
597 }
598 
599 //===----------------------------------------------------------------------===//
600 // VectorType Implementation
601 //===----------------------------------------------------------------------===//
602 
603 VectorType::VectorType(Type *ElType, unsigned NumEl)
604  : SequentialType(VectorTyID, ElType, NumEl) {}
605 
606 VectorType *VectorType::get(Type *ElementType, unsigned NumElements) {
607  assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
608  assert(isValidElementType(ElementType) && "Element type of a VectorType must "
609  "be an integer, floating point, or "
610  "pointer type.");
611 
612  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
613  VectorType *&Entry = ElementType->getContext().pImpl
614  ->VectorTypes[std::make_pair(ElementType, NumElements)];
615 
616  if (!Entry)
617  Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
618  return Entry;
619 }
620 
622  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
623  ElemTy->isPointerTy();
624 }
625 
626 //===----------------------------------------------------------------------===//
627 // PointerType Implementation
628 //===----------------------------------------------------------------------===//
629 
631  assert(EltTy && "Can't get a pointer to <null> type!");
632  assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
633 
634  LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
635 
636  // Since AddressSpace #0 is the common case, we special case it.
637  PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
638  : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
639 
640  if (!Entry)
641  Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
642  return Entry;
643 }
644 
645 PointerType::PointerType(Type *E, unsigned AddrSpace)
646  : Type(E->getContext(), PointerTyID), PointeeTy(E) {
647  ContainedTys = &PointeeTy;
648  NumContainedTys = 1;
649  setSubclassData(AddrSpace);
650 }
651 
652 PointerType *Type::getPointerTo(unsigned addrs) const {
653  return PointerType::get(const_cast<Type*>(this), addrs);
654 }
655 
657  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
658  !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
659 }
660 
662  return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
663 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
uint64_t CallInst * C
DenseMap< unsigned, IntegerType * > IntegerTypes
7: Labels
Definition: Type.h:64
static Type * getDoubleTy(LLVMContext &C)
Definition: Type.cpp:165
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:173
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:562
bool isMetadataTy() const
Return true if this is &#39;metadata&#39;.
Definition: Type.h:191
This class represents lattice values for constants.
Definition: AllocatorList.h:24
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:126
void remove(MapEntryTy *KeyValue)
remove - Remove the specified key/value pair from the map, but do not erase it.
Definition: StringMap.h:432
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:265
2: 32-bit floating point type
Definition: Type.h:59
ArrayRef< Type * > const elements() const
Definition: DerivedTypes.h:305
void push_back(const T &Elt)
Definition: SmallVector.h:218
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
static PointerType * getInt32PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:228
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space...
Definition: Type.cpp:630
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:510
4: 80-bit floating point type (X87)
Definition: Type.h:61
static bool isValidReturnType(Type *RetTy)
Return true if the specified type is valid as a return type.
Definition: Type.cpp:327
static bool isLoadableOrStorableType(Type *ElemTy)
Return true if we can load or store from a pointer to this type.
Definition: Type.cpp:661
1: 16-bit floating point type
Definition: Type.h:58
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:177
DenseMap< std::pair< Type *, unsigned >, PointerType * > ASPointerTypes
static Type * getMetadataTy(LLVMContext &C)
Definition: Type.cpp:166
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
15: Pointers
Definition: Type.h:75
static bool isValidArgumentType(Type *ArgTy)
Return true if the specified type is valid as an argument type.
Definition: Type.cpp:332
static IntegerType * getInt16Ty(LLVMContext &C)
Definition: Type.cpp:175
static Type * getX86_MMXTy(LLVMContext &C)
Definition: Type.cpp:171
static PointerType * getX86_MMXPtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:208
12: Functions
Definition: Type.h:72
static PointerType * getInt64PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:232
static Type * getX86_FP80Ty(LLVMContext &C)
Definition: Type.cpp:168
Type *const * ContainedTys
A pointer to the array of Types contained by this Type.
Definition: Type.h:111
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:130
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
bool indexValid(const Value *V) const
Definition: Type.cpp:550
amdgpu Simplify well known AMD library false Value Value const Twine & Name
APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition: Type.cpp:269
static Type * getTokenTy(LLVMContext &C)
Definition: Type.cpp:167
static Type * getFloatTy(LLVMContext &C)
Definition: Type.cpp:164
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:138
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
Class to represent struct types.
Definition: DerivedTypes.h:201
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:652
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
DenseMap< std::pair< Type *, uint64_t >, ArrayType * > ArrayTypes
static StringRef getName(Value *V)
TypeID
Definitions of all of the base types for the Type system.
Definition: Type.h:55
static PointerType * getInt16PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:224
ArrayRef< T > copy(Allocator &A)
Definition: ArrayRef.h:164
static Type * getPPC_FP128Ty(LLVMContext &C)
Definition: Type.cpp:170
static StructType * get(LLVMContext &Context, ArrayRef< Type *> Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:342
BumpPtrAllocator TypeAllocator
TypeAllocator - All dynamically allocated types are allocated from this.
This file implements a class to represent arbitrary precision integral constant values and operations...
Key
PAL metadata keys.
Class to represent function types.
Definition: DerivedTypes.h:103
static Type * getLabelTy(LLVMContext &C)
Definition: Type.cpp:162
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value. ...
Definition: Type.h:244
Class to represent array types.
Definition: DerivedTypes.h:369
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:621
static PointerType * getDoublePtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:192
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:203
int getFPMantissaWidth() const
Return the width of the mantissa of this type.
Definition: Type.cpp:134
Type(LLVMContext &C, TypeID tid)
Definition: Type.h:91
void setBody(ArrayRef< Type *> Elements, bool isPacked=false)
Specify a body for an opaque identified type.
Definition: Type.cpp:369
Type::subtype_iterator element_iterator
Definition: DerivedTypes.h:301
DenseMap< std::pair< Type *, unsigned >, VectorType * > VectorTypes
Class to represent pointers.
Definition: DerivedTypes.h:467
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:304
11: Arbitrary bit width integers
Definition: Type.h:71
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:141
0: type with no size
Definition: Type.h:57
static IntegerType * getInt128Ty(LLVMContext &C)
Definition: Type.cpp:178
bool isLabelTy() const
Return true if this is &#39;label&#39;.
Definition: Type.h:188
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
std::pair< iterator, bool > insert_as(const ValueT &V, const LookupKeyT &LookupKey)
Alternative version of insert that uses a different (and possibly less expensive) key type...
Definition: DenseSet.h:201
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:429
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void * Allocate(size_t Size, size_t Alignment)
Allocate space at the specified alignment.
Definition: Allocator.h:215
10: Tokens
Definition: Type.h:67
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:161
StringRef getName() const
Return the name for this struct type if it has an identity.
Definition: Type.cpp:500
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:63
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
Class to represent integer types.
Definition: DerivedTypes.h:40
static PointerType * getPPC_FP128PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:204
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:507
static PointerType * getFloatPtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:188
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:220
Constant * getSplatValue() const
If this is a splat vector constant, meaning that all of the elements have the same value...
Definition: Constants.cpp:1368
LLVMContextImpl *const pImpl
Definition: LLVMContext.h:71
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
isSized - Return true if this is a sized type.
Definition: Type.cpp:476
static Type * getFP128Ty(LLVMContext &C)
Definition: Type.cpp:169
static PointerType * getX86_FP80PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:196
14: Arrays
Definition: Type.h:74
This is the superclass of the array and vector type classes.
Definition: DerivedTypes.h:343
static Type * getHalfTy(LLVMContext &C)
Definition: Type.cpp:163
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:216
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:656
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:76
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
Module.h This file contains the declarations for the Module class.
AllocatorTy & getAllocator()
Definition: StringMap.h:304
AddressSpace
Definition: NVPTXBaseInfo.h:22
FunctionTypeSet FunctionTypes
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition: Type.cpp:180
static PointerType * getHalfPtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:184
StringRef str()
Return a StringRef for the vector contents.
Definition: raw_ostream.h:535
static Type * getPrimitiveType(LLVMContext &C, TypeID IDNumber)
Return a type based on an identifier.
Definition: Type.cpp:39
static PointerType * getFP128PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:200
8: Metadata
Definition: Type.h:65
Symbol info for RuntimeDyld.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings"...
Definition: StringMap.h:220
Class to represent vector types.
Definition: DerivedTypes.h:393
Class for arbitrary precision integers.
Definition: APInt.h:70
StructTypeSet AnonStructTypes
void setName(StringRef Name)
Change the name of this type to the specified name, or to a name with a suffix if there is a collisio...
Definition: Type.cpp:386
bool isLayoutIdentical(StructType *Other) const
Return true if this is layout identical to the specified struct.
Definition: Type.cpp:513
unsigned getSubclassData() const
Definition: Type.h:95
bool isPowerOf2ByteWidth() const
This method determines if the width of this IntegerType is a power-of-2 in terms of 8 bit bytes...
Definition: Type.cpp:264
bool isPacked() const
Definition: DerivedTypes.h:261
bool isFunctionTy() const
True if this is an instance of FunctionType.
Definition: Type.h:215
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
StringMap< StructType * > NamedStructTypes
bool isTokenTy() const
Return true if this is &#39;token&#39;.
Definition: Type.h:194
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:593
bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type &#39;Ty&#39;. ...
Definition: Type.cpp:61
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
static bool isValidElementType(Type *Ty)
Predicate for the element types that the SLP vectorizer supports.
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:581
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
StructType * getTypeByName(StringRef Name) const
Return the type with the specified name, or null if there is none by that name.
Definition: Type.cpp:522
static PointerType * getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS=0)
Definition: Type.cpp:212
3: 64-bit floating point type
Definition: Type.h:60
void setSubclassData(unsigned val)
Definition: Type.h:97
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
LLVM Value Representation.
Definition: Value.h:73
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:606
static StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:437
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
DenseMap< Type *, PointerType * > PointerTypes
bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty...
Definition: Type.cpp:98
9: MMX vectors (64 bits, X86 specific)
Definition: Type.h:66
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
unsigned NumContainedTys
Keeps track of how many Type*&#39;s there are in the ContainedTys list.
Definition: Type.h:104
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
Type * getTypeAtIndex(const Value *V) const
Given an index value into the type, return the type of the element.
Definition: Type.cpp:530
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:62
void resize(size_type N)
Definition: SmallVector.h:351