LLVM  8.0.1
CloneFunction.cpp
Go to the documentation of this file.
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/DomTreeUpdater.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
37 #include <map>
38 using namespace llvm;
39 
40 /// See comments in Cloning.h.
42  const Twine &NameSuffix, Function *F,
43  ClonedCodeInfo *CodeInfo,
44  DebugInfoFinder *DIFinder) {
46  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
47  if (BB->hasName())
48  NewBB->setName(BB->getName() + NameSuffix);
49 
50  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
51  Module *TheModule = F ? F->getParent() : nullptr;
52 
53  // Loop over all instructions, and copy them over.
54  for (const Instruction &I : *BB) {
55  if (DIFinder && TheModule)
56  DIFinder->processInstruction(*TheModule, I);
57 
58  Instruction *NewInst = I.clone();
59  if (I.hasName())
60  NewInst->setName(I.getName() + NameSuffix);
61  NewBB->getInstList().push_back(NewInst);
62  VMap[&I] = NewInst; // Add instruction map to value.
63 
64  hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
65  if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
66  if (isa<ConstantInt>(AI->getArraySize()))
67  hasStaticAllocas = true;
68  else
69  hasDynamicAllocas = true;
70  }
71  }
72 
73  if (CodeInfo) {
74  CodeInfo->ContainsCalls |= hasCalls;
75  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
76  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
77  BB != &BB->getParent()->getEntryBlock();
78  }
79  return NewBB;
80 }
81 
82 // Clone OldFunc into NewFunc, transforming the old arguments into references to
83 // VMap values.
84 //
85 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
86  ValueToValueMapTy &VMap,
87  bool ModuleLevelChanges,
89  const char *NameSuffix, ClonedCodeInfo *CodeInfo,
90  ValueMapTypeRemapper *TypeMapper,
91  ValueMaterializer *Materializer) {
92  assert(NameSuffix && "NameSuffix cannot be null!");
93 
94 #ifndef NDEBUG
95  for (const Argument &I : OldFunc->args())
96  assert(VMap.count(&I) && "No mapping from source argument specified!");
97 #endif
98 
99  // Copy all attributes other than those stored in the AttributeList. We need
100  // to remap the parameter indices of the AttributeList.
101  AttributeList NewAttrs = NewFunc->getAttributes();
102  NewFunc->copyAttributesFrom(OldFunc);
103  NewFunc->setAttributes(NewAttrs);
104 
105  // Fix up the personality function that got copied over.
106  if (OldFunc->hasPersonalityFn())
107  NewFunc->setPersonalityFn(
108  MapValue(OldFunc->getPersonalityFn(), VMap,
109  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
110  TypeMapper, Materializer));
111 
112  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
113  AttributeList OldAttrs = OldFunc->getAttributes();
114 
115  // Clone any argument attributes that are present in the VMap.
116  for (const Argument &OldArg : OldFunc->args()) {
117  if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
118  NewArgAttrs[NewArg->getArgNo()] =
119  OldAttrs.getParamAttributes(OldArg.getArgNo());
120  }
121  }
122 
123  NewFunc->setAttributes(
124  AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
125  OldAttrs.getRetAttributes(), NewArgAttrs));
126 
127  bool MustCloneSP =
128  OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
129  DISubprogram *SP = OldFunc->getSubprogram();
130  if (SP) {
131  assert(!MustCloneSP || ModuleLevelChanges);
132  // Add mappings for some DebugInfo nodes that we don't want duplicated
133  // even if they're distinct.
134  auto &MD = VMap.MD();
135  MD[SP->getUnit()].reset(SP->getUnit());
136  MD[SP->getType()].reset(SP->getType());
137  MD[SP->getFile()].reset(SP->getFile());
138  // If we're not cloning into the same module, no need to clone the
139  // subprogram
140  if (!MustCloneSP)
141  MD[SP].reset(SP);
142  }
143 
145  OldFunc->getAllMetadata(MDs);
146  for (auto MD : MDs) {
147  NewFunc->addMetadata(
148  MD.first,
149  *MapMetadata(MD.second, VMap,
150  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
151  TypeMapper, Materializer));
152  }
153 
154  // When we remap instructions, we want to avoid duplicating inlined
155  // DISubprograms, so record all subprograms we find as we duplicate
156  // instructions and then freeze them in the MD map.
157  // We also record information about dbg.value and dbg.declare to avoid
158  // duplicating the types.
159  DebugInfoFinder DIFinder;
160 
161  // Loop over all of the basic blocks in the function, cloning them as
162  // appropriate. Note that we save BE this way in order to handle cloning of
163  // recursive functions into themselves.
164  //
165  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
166  BI != BE; ++BI) {
167  const BasicBlock &BB = *BI;
168 
169  // Create a new basic block and copy instructions into it!
170  BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
171  ModuleLevelChanges ? &DIFinder : nullptr);
172 
173  // Add basic block mapping.
174  VMap[&BB] = CBB;
175 
176  // It is only legal to clone a function if a block address within that
177  // function is never referenced outside of the function. Given that, we
178  // want to map block addresses from the old function to block addresses in
179  // the clone. (This is different from the generic ValueMapper
180  // implementation, which generates an invalid blockaddress when
181  // cloning a function.)
182  if (BB.hasAddressTaken()) {
183  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
184  const_cast<BasicBlock*>(&BB));
185  VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
186  }
187 
188  // Note return instructions for the caller.
189  if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
190  Returns.push_back(RI);
191  }
192 
193  for (DISubprogram *ISP : DIFinder.subprograms())
194  if (ISP != SP)
195  VMap.MD()[ISP].reset(ISP);
196 
197  for (DICompileUnit *CU : DIFinder.compile_units())
198  VMap.MD()[CU].reset(CU);
199 
200  for (DIType *Type : DIFinder.types())
201  VMap.MD()[Type].reset(Type);
202 
203  // Loop over all of the instructions in the function, fixing up operand
204  // references as we go. This uses VMap to do all the hard work.
205  for (Function::iterator BB =
206  cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
207  BE = NewFunc->end();
208  BB != BE; ++BB)
209  // Loop over all instructions, fixing each one as we find it...
210  for (Instruction &II : *BB)
211  RemapInstruction(&II, VMap,
212  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
213  TypeMapper, Materializer);
214 }
215 
216 /// Return a copy of the specified function and add it to that function's
217 /// module. Also, any references specified in the VMap are changed to refer to
218 /// their mapped value instead of the original one. If any of the arguments to
219 /// the function are in the VMap, the arguments are deleted from the resultant
220 /// function. The VMap is updated to include mappings from all of the
221 /// instructions and basicblocks in the function from their old to new values.
222 ///
224  ClonedCodeInfo *CodeInfo) {
225  std::vector<Type*> ArgTypes;
226 
227  // The user might be deleting arguments to the function by specifying them in
228  // the VMap. If so, we need to not add the arguments to the arg ty vector
229  //
230  for (const Argument &I : F->args())
231  if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
232  ArgTypes.push_back(I.getType());
233 
234  // Create a new function type...
236  ArgTypes, F->getFunctionType()->isVarArg());
237 
238  // Create the new function...
239  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
240  F->getName(), F->getParent());
241 
242  // Loop over the arguments, copying the names of the mapped arguments over...
243  Function::arg_iterator DestI = NewF->arg_begin();
244  for (const Argument & I : F->args())
245  if (VMap.count(&I) == 0) { // Is this argument preserved?
246  DestI->setName(I.getName()); // Copy the name over...
247  VMap[&I] = &*DestI++; // Add mapping to VMap
248  }
249 
250  SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
251  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
252  CodeInfo);
253 
254  return NewF;
255 }
256 
257 
258 
259 namespace {
260  /// This is a private class used to implement CloneAndPruneFunctionInto.
261  struct PruningFunctionCloner {
262  Function *NewFunc;
263  const Function *OldFunc;
264  ValueToValueMapTy &VMap;
265  bool ModuleLevelChanges;
266  const char *NameSuffix;
267  ClonedCodeInfo *CodeInfo;
268 
269  public:
270  PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
271  ValueToValueMapTy &valueMap, bool moduleLevelChanges,
272  const char *nameSuffix, ClonedCodeInfo *codeInfo)
273  : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
274  ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
275  CodeInfo(codeInfo) {}
276 
277  /// The specified block is found to be reachable, clone it and
278  /// anything that it can reach.
279  void CloneBlock(const BasicBlock *BB,
280  BasicBlock::const_iterator StartingInst,
281  std::vector<const BasicBlock*> &ToClone);
282  };
283 }
284 
285 /// The specified block is found to be reachable, clone it and
286 /// anything that it can reach.
287 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
288  BasicBlock::const_iterator StartingInst,
289  std::vector<const BasicBlock*> &ToClone){
290  WeakTrackingVH &BBEntry = VMap[BB];
291 
292  // Have we already cloned this block?
293  if (BBEntry) return;
294 
295  // Nope, clone it now.
296  BasicBlock *NewBB;
297  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
298  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
299 
300  // It is only legal to clone a function if a block address within that
301  // function is never referenced outside of the function. Given that, we
302  // want to map block addresses from the old function to block addresses in
303  // the clone. (This is different from the generic ValueMapper
304  // implementation, which generates an invalid blockaddress when
305  // cloning a function.)
306  //
307  // Note that we don't need to fix the mapping for unreachable blocks;
308  // the default mapping there is safe.
309  if (BB->hasAddressTaken()) {
310  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
311  const_cast<BasicBlock*>(BB));
312  VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
313  }
314 
315  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
316 
317  // Loop over all instructions, and copy them over, DCE'ing as we go. This
318  // loop doesn't include the terminator.
319  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
320  II != IE; ++II) {
321 
322  Instruction *NewInst = II->clone();
323 
324  // Eagerly remap operands to the newly cloned instruction, except for PHI
325  // nodes for which we defer processing until we update the CFG.
326  if (!isa<PHINode>(NewInst)) {
327  RemapInstruction(NewInst, VMap,
328  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
329 
330  // If we can simplify this instruction to some other value, simply add
331  // a mapping to that value rather than inserting a new instruction into
332  // the basic block.
333  if (Value *V =
334  SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
335  // On the off-chance that this simplifies to an instruction in the old
336  // function, map it back into the new function.
337  if (NewFunc != OldFunc)
338  if (Value *MappedV = VMap.lookup(V))
339  V = MappedV;
340 
341  if (!NewInst->mayHaveSideEffects()) {
342  VMap[&*II] = V;
343  NewInst->deleteValue();
344  continue;
345  }
346  }
347  }
348 
349  if (II->hasName())
350  NewInst->setName(II->getName()+NameSuffix);
351  VMap[&*II] = NewInst; // Add instruction map to value.
352  NewBB->getInstList().push_back(NewInst);
353  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
354 
355  if (CodeInfo)
356  if (auto CS = ImmutableCallSite(&*II))
357  if (CS.hasOperandBundles())
358  CodeInfo->OperandBundleCallSites.push_back(NewInst);
359 
360  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
361  if (isa<ConstantInt>(AI->getArraySize()))
362  hasStaticAllocas = true;
363  else
364  hasDynamicAllocas = true;
365  }
366  }
367 
368  // Finally, clone over the terminator.
369  const Instruction *OldTI = BB->getTerminator();
370  bool TerminatorDone = false;
371  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
372  if (BI->isConditional()) {
373  // If the condition was a known constant in the callee...
374  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
375  // Or is a known constant in the caller...
376  if (!Cond) {
377  Value *V = VMap.lookup(BI->getCondition());
378  Cond = dyn_cast_or_null<ConstantInt>(V);
379  }
380 
381  // Constant fold to uncond branch!
382  if (Cond) {
383  BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
384  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
385  ToClone.push_back(Dest);
386  TerminatorDone = true;
387  }
388  }
389  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
390  // If switching on a value known constant in the caller.
391  ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
392  if (!Cond) { // Or known constant after constant prop in the callee...
393  Value *V = VMap.lookup(SI->getCondition());
394  Cond = dyn_cast_or_null<ConstantInt>(V);
395  }
396  if (Cond) { // Constant fold to uncond branch!
397  SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
398  BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
399  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
400  ToClone.push_back(Dest);
401  TerminatorDone = true;
402  }
403  }
404 
405  if (!TerminatorDone) {
406  Instruction *NewInst = OldTI->clone();
407  if (OldTI->hasName())
408  NewInst->setName(OldTI->getName()+NameSuffix);
409  NewBB->getInstList().push_back(NewInst);
410  VMap[OldTI] = NewInst; // Add instruction map to value.
411 
412  if (CodeInfo)
413  if (auto CS = ImmutableCallSite(OldTI))
414  if (CS.hasOperandBundles())
415  CodeInfo->OperandBundleCallSites.push_back(NewInst);
416 
417  // Recursively clone any reachable successor blocks.
418  const Instruction *TI = BB->getTerminator();
419  for (const BasicBlock *Succ : successors(TI))
420  ToClone.push_back(Succ);
421  }
422 
423  if (CodeInfo) {
424  CodeInfo->ContainsCalls |= hasCalls;
425  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
426  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
427  BB != &BB->getParent()->front();
428  }
429 }
430 
431 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
432 /// entire function. Instead it starts at an instruction provided by the caller
433 /// and copies (and prunes) only the code reachable from that instruction.
434 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
435  const Instruction *StartingInst,
436  ValueToValueMapTy &VMap,
437  bool ModuleLevelChanges,
439  const char *NameSuffix,
440  ClonedCodeInfo *CodeInfo) {
441  assert(NameSuffix && "NameSuffix cannot be null!");
442 
443  ValueMapTypeRemapper *TypeMapper = nullptr;
444  ValueMaterializer *Materializer = nullptr;
445 
446 #ifndef NDEBUG
447  // If the cloning starts at the beginning of the function, verify that
448  // the function arguments are mapped.
449  if (!StartingInst)
450  for (const Argument &II : OldFunc->args())
451  assert(VMap.count(&II) && "No mapping from source argument specified!");
452 #endif
453 
454  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
455  NameSuffix, CodeInfo);
456  const BasicBlock *StartingBB;
457  if (StartingInst)
458  StartingBB = StartingInst->getParent();
459  else {
460  StartingBB = &OldFunc->getEntryBlock();
461  StartingInst = &StartingBB->front();
462  }
463 
464  // Clone the entry block, and anything recursively reachable from it.
465  std::vector<const BasicBlock*> CloneWorklist;
466  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
467  while (!CloneWorklist.empty()) {
468  const BasicBlock *BB = CloneWorklist.back();
469  CloneWorklist.pop_back();
470  PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
471  }
472 
473  // Loop over all of the basic blocks in the old function. If the block was
474  // reachable, we have cloned it and the old block is now in the value map:
475  // insert it into the new function in the right order. If not, ignore it.
476  //
477  // Defer PHI resolution until rest of function is resolved.
478  SmallVector<const PHINode*, 16> PHIToResolve;
479  for (const BasicBlock &BI : *OldFunc) {
480  Value *V = VMap.lookup(&BI);
481  BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
482  if (!NewBB) continue; // Dead block.
483 
484  // Add the new block to the new function.
485  NewFunc->getBasicBlockList().push_back(NewBB);
486 
487  // Handle PHI nodes specially, as we have to remove references to dead
488  // blocks.
489  for (const PHINode &PN : BI.phis()) {
490  // PHI nodes may have been remapped to non-PHI nodes by the caller or
491  // during the cloning process.
492  if (isa<PHINode>(VMap[&PN]))
493  PHIToResolve.push_back(&PN);
494  else
495  break;
496  }
497 
498  // Finally, remap the terminator instructions, as those can't be remapped
499  // until all BBs are mapped.
500  RemapInstruction(NewBB->getTerminator(), VMap,
501  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
502  TypeMapper, Materializer);
503  }
504 
505  // Defer PHI resolution until rest of function is resolved, PHI resolution
506  // requires the CFG to be up-to-date.
507  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
508  const PHINode *OPN = PHIToResolve[phino];
509  unsigned NumPreds = OPN->getNumIncomingValues();
510  const BasicBlock *OldBB = OPN->getParent();
511  BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
512 
513  // Map operands for blocks that are live and remove operands for blocks
514  // that are dead.
515  for (; phino != PHIToResolve.size() &&
516  PHIToResolve[phino]->getParent() == OldBB; ++phino) {
517  OPN = PHIToResolve[phino];
518  PHINode *PN = cast<PHINode>(VMap[OPN]);
519  for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
520  Value *V = VMap.lookup(PN->getIncomingBlock(pred));
521  if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
522  Value *InVal = MapValue(PN->getIncomingValue(pred),
523  VMap,
524  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
525  assert(InVal && "Unknown input value?");
526  PN->setIncomingValue(pred, InVal);
527  PN->setIncomingBlock(pred, MappedBlock);
528  } else {
529  PN->removeIncomingValue(pred, false);
530  --pred; // Revisit the next entry.
531  --e;
532  }
533  }
534  }
535 
536  // The loop above has removed PHI entries for those blocks that are dead
537  // and has updated others. However, if a block is live (i.e. copied over)
538  // but its terminator has been changed to not go to this block, then our
539  // phi nodes will have invalid entries. Update the PHI nodes in this
540  // case.
541  PHINode *PN = cast<PHINode>(NewBB->begin());
542  NumPreds = pred_size(NewBB);
543  if (NumPreds != PN->getNumIncomingValues()) {
544  assert(NumPreds < PN->getNumIncomingValues());
545  // Count how many times each predecessor comes to this block.
546  std::map<BasicBlock*, unsigned> PredCount;
547  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
548  PI != E; ++PI)
549  --PredCount[*PI];
550 
551  // Figure out how many entries to remove from each PHI.
552  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
553  ++PredCount[PN->getIncomingBlock(i)];
554 
555  // At this point, the excess predecessor entries are positive in the
556  // map. Loop over all of the PHIs and remove excess predecessor
557  // entries.
558  BasicBlock::iterator I = NewBB->begin();
559  for (; (PN = dyn_cast<PHINode>(I)); ++I) {
560  for (const auto &PCI : PredCount) {
561  BasicBlock *Pred = PCI.first;
562  for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
563  PN->removeIncomingValue(Pred, false);
564  }
565  }
566  }
567 
568  // If the loops above have made these phi nodes have 0 or 1 operand,
569  // replace them with undef or the input value. We must do this for
570  // correctness, because 0-operand phis are not valid.
571  PN = cast<PHINode>(NewBB->begin());
572  if (PN->getNumIncomingValues() == 0) {
573  BasicBlock::iterator I = NewBB->begin();
574  BasicBlock::const_iterator OldI = OldBB->begin();
575  while ((PN = dyn_cast<PHINode>(I++))) {
576  Value *NV = UndefValue::get(PN->getType());
577  PN->replaceAllUsesWith(NV);
578  assert(VMap[&*OldI] == PN && "VMap mismatch");
579  VMap[&*OldI] = NV;
580  PN->eraseFromParent();
581  ++OldI;
582  }
583  }
584  }
585 
586  // Make a second pass over the PHINodes now that all of them have been
587  // remapped into the new function, simplifying the PHINode and performing any
588  // recursive simplifications exposed. This will transparently update the
589  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
590  // two PHINodes, the iteration over the old PHIs remains valid, and the
591  // mapping will just map us to the new node (which may not even be a PHI
592  // node).
593  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
595  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
596  if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
597  Worklist.insert(PHIToResolve[Idx]);
598 
599  // Note that we must test the size on each iteration, the worklist can grow.
600  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
601  const Value *OrigV = Worklist[Idx];
602  auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
603  if (!I)
604  continue;
605 
606  // Skip over non-intrinsic callsites, we don't want to remove any nodes from
607  // the CGSCC.
608  CallSite CS = CallSite(I);
609  if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
610  continue;
611 
612  // See if this instruction simplifies.
613  Value *SimpleV = SimplifyInstruction(I, DL);
614  if (!SimpleV)
615  continue;
616 
617  // Stash away all the uses of the old instruction so we can check them for
618  // recursive simplifications after a RAUW. This is cheaper than checking all
619  // uses of To on the recursive step in most cases.
620  for (const User *U : OrigV->users())
621  Worklist.insert(cast<Instruction>(U));
622 
623  // Replace the instruction with its simplified value.
624  I->replaceAllUsesWith(SimpleV);
625 
626  // If the original instruction had no side effects, remove it.
628  I->eraseFromParent();
629  else
630  VMap[OrigV] = I;
631  }
632 
633  // Now that the inlined function body has been fully constructed, go through
634  // and zap unconditional fall-through branches. This happens all the time when
635  // specializing code: code specialization turns conditional branches into
636  // uncond branches, and this code folds them.
637  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
638  Function::iterator I = Begin;
639  while (I != NewFunc->end()) {
640  // We need to simplify conditional branches and switches with a constant
641  // operand. We try to prune these out when cloning, but if the
642  // simplification required looking through PHI nodes, those are only
643  // available after forming the full basic block. That may leave some here,
644  // and we still want to prune the dead code as early as possible.
645  //
646  // Do the folding before we check if the block is dead since we want code
647  // like
648  // bb:
649  // br i1 undef, label %bb, label %bb
650  // to be simplified to
651  // bb:
652  // br label %bb
653  // before we call I->getSinglePredecessor().
655 
656  // Check if this block has become dead during inlining or other
657  // simplifications. Note that the first block will appear dead, as it has
658  // not yet been wired up properly.
659  if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
660  I->getSinglePredecessor() == &*I)) {
661  BasicBlock *DeadBB = &*I++;
662  DeleteDeadBlock(DeadBB);
663  continue;
664  }
665 
666  BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
667  if (!BI || BI->isConditional()) { ++I; continue; }
668 
669  BasicBlock *Dest = BI->getSuccessor(0);
670  if (!Dest->getSinglePredecessor()) {
671  ++I; continue;
672  }
673 
674  // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
675  // above should have zapped all of them..
676  assert(!isa<PHINode>(Dest->begin()));
677 
678  // We know all single-entry PHI nodes in the inlined function have been
679  // removed, so we just need to splice the blocks.
680  BI->eraseFromParent();
681 
682  // Make all PHI nodes that referred to Dest now refer to I as their source.
683  Dest->replaceAllUsesWith(&*I);
684 
685  // Move all the instructions in the succ to the pred.
686  I->getInstList().splice(I->end(), Dest->getInstList());
687 
688  // Remove the dest block.
689  Dest->eraseFromParent();
690 
691  // Do not increment I, iteratively merge all things this block branches to.
692  }
693 
694  // Make a final pass over the basic blocks from the old function to gather
695  // any return instructions which survived folding. We have to do this here
696  // because we can iteratively remove and merge returns above.
697  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
698  E = NewFunc->end();
699  I != E; ++I)
700  if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
701  Returns.push_back(RI);
702 }
703 
704 
705 /// This works exactly like CloneFunctionInto,
706 /// except that it does some simple constant prop and DCE on the fly. The
707 /// effect of this is to copy significantly less code in cases where (for
708 /// example) a function call with constant arguments is inlined, and those
709 /// constant arguments cause a significant amount of code in the callee to be
710 /// dead. Since this doesn't produce an exact copy of the input, it can't be
711 /// used for things like CloneFunction or CloneModule.
712 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
713  ValueToValueMapTy &VMap,
714  bool ModuleLevelChanges,
716  const char *NameSuffix,
717  ClonedCodeInfo *CodeInfo,
718  Instruction *TheCall) {
719  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
720  ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
721 }
722 
723 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
725  const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
726  // Rewrite the code to refer to itself.
727  for (auto *BB : Blocks)
728  for (auto &Inst : *BB)
729  RemapInstruction(&Inst, VMap,
731 }
732 
733 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
734 /// Blocks.
735 ///
736 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
737 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
739  Loop *OrigLoop, ValueToValueMapTy &VMap,
740  const Twine &NameSuffix, LoopInfo *LI,
741  DominatorTree *DT,
743  assert(OrigLoop->getSubLoops().empty() &&
744  "Loop to be cloned cannot have inner loop");
745  Function *F = OrigLoop->getHeader()->getParent();
746  Loop *ParentLoop = OrigLoop->getParentLoop();
747 
748  Loop *NewLoop = LI->AllocateLoop();
749  if (ParentLoop)
750  ParentLoop->addChildLoop(NewLoop);
751  else
752  LI->addTopLevelLoop(NewLoop);
753 
754  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
755  assert(OrigPH && "No preheader");
756  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
757  // To rename the loop PHIs.
758  VMap[OrigPH] = NewPH;
759  Blocks.push_back(NewPH);
760 
761  // Update LoopInfo.
762  if (ParentLoop)
763  ParentLoop->addBasicBlockToLoop(NewPH, *LI);
764 
765  // Update DominatorTree.
766  DT->addNewBlock(NewPH, LoopDomBB);
767 
768  for (BasicBlock *BB : OrigLoop->getBlocks()) {
769  BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
770  VMap[BB] = NewBB;
771 
772  // Update LoopInfo.
773  NewLoop->addBasicBlockToLoop(NewBB, *LI);
774 
775  // Add DominatorTree node. After seeing all blocks, update to correct IDom.
776  DT->addNewBlock(NewBB, NewPH);
777 
778  Blocks.push_back(NewBB);
779  }
780 
781  for (BasicBlock *BB : OrigLoop->getBlocks()) {
782  // Update DominatorTree.
783  BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
784  DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
785  cast<BasicBlock>(VMap[IDomBB]));
786  }
787 
788  // Move them physically from the end of the block list.
789  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
790  NewPH);
791  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
792  NewLoop->getHeader()->getIterator(), F->end());
793 
794  return NewLoop;
795 }
796 
797 /// Duplicate non-Phi instructions from the beginning of block up to
798 /// StopAt instruction into a split block between BB and its predecessor.
800  BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
802 
803  assert(count(successors(PredBB), BB) == 1 &&
804  "There must be a single edge between PredBB and BB!");
805  // We are going to have to map operands from the original BB block to the new
806  // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
807  // account for entry from PredBB.
808  BasicBlock::iterator BI = BB->begin();
809  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
810  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
811 
812  BasicBlock *NewBB = SplitEdge(PredBB, BB);
813  NewBB->setName(PredBB->getName() + ".split");
814  Instruction *NewTerm = NewBB->getTerminator();
815 
816  // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
817  // in the update set here.
818  DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
819  {DominatorTree::Insert, PredBB, NewBB},
820  {DominatorTree::Insert, NewBB, BB}});
821 
822  // Clone the non-phi instructions of BB into NewBB, keeping track of the
823  // mapping and using it to remap operands in the cloned instructions.
824  // Stop once we see the terminator too. This covers the case where BB's
825  // terminator gets replaced and StopAt == BB's terminator.
826  for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
827  Instruction *New = BI->clone();
828  New->setName(BI->getName());
829  New->insertBefore(NewTerm);
830  ValueMapping[&*BI] = New;
831 
832  // Remap operands to patch up intra-block references.
833  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
834  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
835  auto I = ValueMapping.find(Inst);
836  if (I != ValueMapping.end())
837  New->setOperand(i, I->second);
838  }
839  }
840 
841  return NewBB;
842 }
Return a value (possibly void), from a function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:199
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
DiagnosticInfoOptimizationBase::Argument NV
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
This class represents lattice values for constants.
Definition: AllocatorList.h:24
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:78
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:106
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
iterator end()
Definition: Function.h:658
DIFile * getFile() const
This file contains the declarations for metadata subclasses.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Definition: LoopInfoImpl.h:174
Function * CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo=nullptr)
Return a copy of the specified function and add it to that function&#39;s module.
void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
Delete the specified block, which must have no predecessors.
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:98
BasicBlock * getSuccessor(unsigned i) const
F(f)
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1417
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
Metadata * MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Lookup or compute a mapping for a piece of metadata.
Definition: ValueMapper.h:228
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Split the edge connecting specified block.
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:134
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values...
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
Utility to find all debug info in a module.
Definition: DebugInfo.h:65
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:285
BlockT * getHeader() const
Definition: LoopInfo.h:100
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
Subprogram description.
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, Instruction *TheCall=nullptr)
This works exactly like CloneFunctionInto, except that it does some simple constant prop and DCE on t...
Class to represent function types.
Definition: DerivedTypes.h:103
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:182
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:142
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
Definition: LoopInfoImpl.h:251
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
Definition: LoopInfo.h:741
bool isVarArg() const
Definition: DerivedTypes.h:123
iterator find(const KeyT &Val)
Definition: ValueMap.h:162
iterator_range< type_iterator > types() const
Definition: DebugInfo.h:116
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:224
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:702
LinkageTypes getLinkage() const
Definition: GlobalValue.h:451
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:171
iterator begin()
Definition: Function.h:656
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
Value * getOperand(unsigned i) const
Definition: User.h:170
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:73
auto count(R &&Range, const E &Element) -> typename std::iterator_traits< decltype(adl_begin(Range))>::difference_type
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:1252
const BasicBlock & getEntryBlock() const
Definition: Function.h:640
NodeT * getBlock() const
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:51
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:136
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:234
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction...
Definition: Instruction.cpp:74
bool hasName() const
Definition: Value.h:251
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1508
Conditional or Unconditional Branch instruction.
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1434
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node&#39;s...
DomTreeNodeBase * getIDom() const
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition: Function.cpp:484
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const Instruction & front() const
Definition: BasicBlock.h:281
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:562
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:113
const Instruction & back() const
Definition: BasicBlock.h:283
unsigned getAddressSpace() const
Definition: Globals.cpp:111
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
size_t arg_size() const
Definition: Function.h:698
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:116
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:100
self_iterator getIterator()
Definition: ilist_node.h:82
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works like CloneAndPruneFunctionInto, except that it does not clone the entire function...
iterator_range< compile_unit_iterator > compile_units() const
Definition: DebugInfo.h:104
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:193
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
size_t size() const
Definition: SmallVector.h:53
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Look up or compute a value in the value map.
Definition: ValueMapper.h:206
void processInstruction(const Module &M, const Instruction &I)
Process a single instruction and collect debug info anchors.
Definition: DebugInfo.cpp:107
hexagon gen pred
iterator end()
Definition: ValueMap.h:142
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:392
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:334
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:298
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:192
Base class for types.
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
void setIncomingBlock(unsigned i, BasicBlock *BB)
iterator end()
Definition: BasicBlock.h:271
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Module.h This file contains the declarations for the Module class.
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1394
LoopT * AllocateLoop(ArgsTy &&... Args)
Definition: LoopInfo.h:654
void applyUpdates(ArrayRef< DominatorTree::UpdateType > Updates, bool ForceRemoveDuplicates=false)
Apply updates on all available trees.
Type * getReturnType() const
Definition: DerivedTypes.h:124
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
bool isConditional() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
void setAttributes(AttributeList Attrs)
Set the attribute list for this Function.
Definition: Function.h:227
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:164
void push_back(pointer val)
Definition: ilist.h:313
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
iterator_range< user_iterator > users()
Definition: Value.h:400
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM...
Definition: ValueMapper.h:251
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:38
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:91
bool ContainsCalls
This is set to true if the cloned code contains a normal call instruction.
Definition: Cloning.h:68
LoopT * getParentLoop() const
Definition: LoopInfo.h:101
const std::vector< LoopT * > & getSubLoops() const
Return the loops contained entirely within this loop.
Definition: LoopInfo.h:131
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
Definition: LoopInfo.h:331
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Definition: LoopInfo.h:149
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
Establish a view to a call site for examination.
Definition: CallSite.h:711
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
unsigned pred_size(const BasicBlock *BB)
Get the number of predecessors of BB.
Definition: CFG.h:122
SymbolTableList< BasicBlock >::iterator eraseFromParent()
Unlink &#39;this&#39; from the containing function and delete it.
Definition: BasicBlock.cpp:115
#define I(x, y, z)
Definition: MD5.cpp:58
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
This struct can be used to capture information about code being cloned, while it is being cloned...
Definition: Cloning.h:66
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:633
uint32_t Size
Definition: Profile.cpp:47
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
Multiway switch.
Helper struct that represents how a value is mapped through different register banks.
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: ValueMap.h:158
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool ContainsDynamicAllocas
This is set to true if the cloned code contains a &#39;dynamic&#39; alloca.
Definition: Cloning.h:73
const BasicBlock & front() const
Definition: Function.h:663
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction has no side ef...
Definition: Local.cpp:349
LLVM Value Representation.
Definition: Value.h:73
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1299
succ_range successors(Instruction *I)
Definition: CFG.h:264
iterator_range< subprogram_iterator > subprograms() const
Definition: DebugInfo.h:108
Loop * cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl< BasicBlock *> &Blocks)
Clones a loop OrigLoop.
A handle to a particular switch case.
void setPersonalityFn(Constant *Fn)
Definition: Function.cpp:1304
void setIncomingValue(unsigned i, Value *V)
MDMapT & MD()
Definition: ValueMap.h:117
Value * SimplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute >> Attrs)
Create an AttributeList with the specified parameters in it.
Definition: Attributes.cpp:873
iterator_range< arg_iterator > args()
Definition: Function.h:689
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
void remapInstructionsInBlocks(const SmallVectorImpl< BasicBlock *> &Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.