LLVM  8.0.1
InstructionCombining.cpp
Go to the documentation of this file.
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "InstCombineInternal.h"
37 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/None.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/TinyPtrVector.h"
50 #include "llvm/Analysis/CFG.h"
55 #include "llvm/Analysis/LoopInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DIBuilder.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Function.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/PassManager.h"
81 #include "llvm/IR/PatternMatch.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Use.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/IR/ValueHandle.h"
87 #include "llvm/Pass.h"
89 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/KnownBits.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <memory>
104 #include <string>
105 #include <utility>
106 
107 using namespace llvm;
108 using namespace llvm::PatternMatch;
109 
110 #define DEBUG_TYPE "instcombine"
111 
112 STATISTIC(NumCombined , "Number of insts combined");
113 STATISTIC(NumConstProp, "Number of constant folds");
114 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
115 STATISTIC(NumSunkInst , "Number of instructions sunk");
116 STATISTIC(NumExpand, "Number of expansions");
117 STATISTIC(NumFactor , "Number of factorizations");
118 STATISTIC(NumReassoc , "Number of reassociations");
119 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
120  "Controls which instructions are visited");
121 
122 static cl::opt<bool>
123 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
124  cl::init(true));
125 
126 static cl::opt<bool>
127 EnableExpensiveCombines("expensive-combines",
128  cl::desc("Enable expensive instruction combines"));
129 
130 static cl::opt<unsigned>
131 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
132  cl::desc("Maximum array size considered when doing a combine"));
133 
134 // FIXME: Remove this flag when it is no longer necessary to convert
135 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
136 // increases variable availability at the cost of accuracy. Variables that
137 // cannot be promoted by mem2reg or SROA will be described as living in memory
138 // for their entire lifetime. However, passes like DSE and instcombine can
139 // delete stores to the alloca, leading to misleading and inaccurate debug
140 // information. This flag can be removed when those passes are fixed.
141 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
142  cl::Hidden, cl::init(true));
143 
144 Value *InstCombiner::EmitGEPOffset(User *GEP) {
145  return llvm::EmitGEPOffset(&Builder, DL, GEP);
146 }
147 
148 /// Return true if it is desirable to convert an integer computation from a
149 /// given bit width to a new bit width.
150 /// We don't want to convert from a legal to an illegal type or from a smaller
151 /// to a larger illegal type. A width of '1' is always treated as a legal type
152 /// because i1 is a fundamental type in IR, and there are many specialized
153 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
154 /// legal to convert to, in order to open up more combining opportunities.
155 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
156 /// from frontend languages.
157 bool InstCombiner::shouldChangeType(unsigned FromWidth,
158  unsigned ToWidth) const {
159  bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
160  bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
161 
162  // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
163  // shrink types, to prevent infinite loops.
164  if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
165  return true;
166 
167  // If this is a legal integer from type, and the result would be an illegal
168  // type, don't do the transformation.
169  if (FromLegal && !ToLegal)
170  return false;
171 
172  // Otherwise, if both are illegal, do not increase the size of the result. We
173  // do allow things like i160 -> i64, but not i64 -> i160.
174  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
175  return false;
176 
177  return true;
178 }
179 
180 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
181 /// We don't want to convert from a legal to an illegal type or from a smaller
182 /// to a larger illegal type. i1 is always treated as a legal type because it is
183 /// a fundamental type in IR, and there are many specialized optimizations for
184 /// i1 types.
185 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
186  // TODO: This could be extended to allow vectors. Datalayout changes might be
187  // needed to properly support that.
188  if (!From->isIntegerTy() || !To->isIntegerTy())
189  return false;
190 
191  unsigned FromWidth = From->getPrimitiveSizeInBits();
192  unsigned ToWidth = To->getPrimitiveSizeInBits();
193  return shouldChangeType(FromWidth, ToWidth);
194 }
195 
196 // Return true, if No Signed Wrap should be maintained for I.
197 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
198 // where both B and C should be ConstantInts, results in a constant that does
199 // not overflow. This function only handles the Add and Sub opcodes. For
200 // all other opcodes, the function conservatively returns false.
203  if (!OBO || !OBO->hasNoSignedWrap())
204  return false;
205 
206  // We reason about Add and Sub Only.
207  Instruction::BinaryOps Opcode = I.getOpcode();
208  if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
209  return false;
210 
211  const APInt *BVal, *CVal;
212  if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
213  return false;
214 
215  bool Overflow = false;
216  if (Opcode == Instruction::Add)
217  (void)BVal->sadd_ov(*CVal, Overflow);
218  else
219  (void)BVal->ssub_ov(*CVal, Overflow);
220 
221  return !Overflow;
222 }
223 
224 /// Conservatively clears subclassOptionalData after a reassociation or
225 /// commutation. We preserve fast-math flags when applicable as they can be
226 /// preserved.
229  if (!FPMO) {
231  return;
232  }
233 
236  I.setFastMathFlags(FMF);
237 }
238 
239 /// Combine constant operands of associative operations either before or after a
240 /// cast to eliminate one of the associative operations:
241 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
242 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
244  auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
245  if (!Cast || !Cast->hasOneUse())
246  return false;
247 
248  // TODO: Enhance logic for other casts and remove this check.
249  auto CastOpcode = Cast->getOpcode();
250  if (CastOpcode != Instruction::ZExt)
251  return false;
252 
253  // TODO: Enhance logic for other BinOps and remove this check.
254  if (!BinOp1->isBitwiseLogicOp())
255  return false;
256 
257  auto AssocOpcode = BinOp1->getOpcode();
258  auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
259  if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
260  return false;
261 
262  Constant *C1, *C2;
263  if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
264  !match(BinOp2->getOperand(1), m_Constant(C2)))
265  return false;
266 
267  // TODO: This assumes a zext cast.
268  // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
269  // to the destination type might lose bits.
270 
271  // Fold the constants together in the destination type:
272  // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
273  Type *DestTy = C1->getType();
274  Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
275  Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
276  Cast->setOperand(0, BinOp2->getOperand(0));
277  BinOp1->setOperand(1, FoldedC);
278  return true;
279 }
280 
281 /// This performs a few simplifications for operators that are associative or
282 /// commutative:
283 ///
284 /// Commutative operators:
285 ///
286 /// 1. Order operands such that they are listed from right (least complex) to
287 /// left (most complex). This puts constants before unary operators before
288 /// binary operators.
289 ///
290 /// Associative operators:
291 ///
292 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
293 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
294 ///
295 /// Associative and commutative operators:
296 ///
297 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
298 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
299 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
300 /// if C1 and C2 are constants.
301 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
302  Instruction::BinaryOps Opcode = I.getOpcode();
303  bool Changed = false;
304 
305  do {
306  // Order operands such that they are listed from right (least complex) to
307  // left (most complex). This puts constants before unary operators before
308  // binary operators.
309  if (I.isCommutative() && getComplexity(I.getOperand(0)) <
311  Changed = !I.swapOperands();
312 
315 
316  if (I.isAssociative()) {
317  // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
318  if (Op0 && Op0->getOpcode() == Opcode) {
319  Value *A = Op0->getOperand(0);
320  Value *B = Op0->getOperand(1);
321  Value *C = I.getOperand(1);
322 
323  // Does "B op C" simplify?
324  if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
325  // It simplifies to V. Form "A op V".
326  I.setOperand(0, A);
327  I.setOperand(1, V);
328  // Conservatively clear the optional flags, since they may not be
329  // preserved by the reassociation.
330  if (MaintainNoSignedWrap(I, B, C) &&
331  (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
332  // Note: this is only valid because SimplifyBinOp doesn't look at
333  // the operands to Op0.
335  I.setHasNoSignedWrap(true);
336  } else {
338  }
339 
340  Changed = true;
341  ++NumReassoc;
342  continue;
343  }
344  }
345 
346  // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
347  if (Op1 && Op1->getOpcode() == Opcode) {
348  Value *A = I.getOperand(0);
349  Value *B = Op1->getOperand(0);
350  Value *C = Op1->getOperand(1);
351 
352  // Does "A op B" simplify?
353  if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
354  // It simplifies to V. Form "V op C".
355  I.setOperand(0, V);
356  I.setOperand(1, C);
357  // Conservatively clear the optional flags, since they may not be
358  // preserved by the reassociation.
360  Changed = true;
361  ++NumReassoc;
362  continue;
363  }
364  }
365  }
366 
367  if (I.isAssociative() && I.isCommutative()) {
368  if (simplifyAssocCastAssoc(&I)) {
369  Changed = true;
370  ++NumReassoc;
371  continue;
372  }
373 
374  // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
375  if (Op0 && Op0->getOpcode() == Opcode) {
376  Value *A = Op0->getOperand(0);
377  Value *B = Op0->getOperand(1);
378  Value *C = I.getOperand(1);
379 
380  // Does "C op A" simplify?
381  if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
382  // It simplifies to V. Form "V op B".
383  I.setOperand(0, V);
384  I.setOperand(1, B);
385  // Conservatively clear the optional flags, since they may not be
386  // preserved by the reassociation.
388  Changed = true;
389  ++NumReassoc;
390  continue;
391  }
392  }
393 
394  // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
395  if (Op1 && Op1->getOpcode() == Opcode) {
396  Value *A = I.getOperand(0);
397  Value *B = Op1->getOperand(0);
398  Value *C = Op1->getOperand(1);
399 
400  // Does "C op A" simplify?
401  if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
402  // It simplifies to V. Form "B op V".
403  I.setOperand(0, B);
404  I.setOperand(1, V);
405  // Conservatively clear the optional flags, since they may not be
406  // preserved by the reassociation.
408  Changed = true;
409  ++NumReassoc;
410  continue;
411  }
412  }
413 
414  // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
415  // if C1 and C2 are constants.
416  Value *A, *B;
417  Constant *C1, *C2;
418  if (Op0 && Op1 &&
419  Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
420  match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
421  match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
422  BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
423  if (isa<FPMathOperator>(NewBO)) {
424  FastMathFlags Flags = I.getFastMathFlags();
425  Flags &= Op0->getFastMathFlags();
426  Flags &= Op1->getFastMathFlags();
427  NewBO->setFastMathFlags(Flags);
428  }
429  InsertNewInstWith(NewBO, I);
430  NewBO->takeName(Op1);
431  I.setOperand(0, NewBO);
432  I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
433  // Conservatively clear the optional flags, since they may not be
434  // preserved by the reassociation.
436 
437  Changed = true;
438  continue;
439  }
440  }
441 
442  // No further simplifications.
443  return Changed;
444  } while (true);
445 }
446 
447 /// Return whether "X LOp (Y ROp Z)" is always equal to
448 /// "(X LOp Y) ROp (X LOp Z)".
451  // X & (Y | Z) <--> (X & Y) | (X & Z)
452  // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
453  if (LOp == Instruction::And)
454  return ROp == Instruction::Or || ROp == Instruction::Xor;
455 
456  // X | (Y & Z) <--> (X | Y) & (X | Z)
457  if (LOp == Instruction::Or)
458  return ROp == Instruction::And;
459 
460  // X * (Y + Z) <--> (X * Y) + (X * Z)
461  // X * (Y - Z) <--> (X * Y) - (X * Z)
462  if (LOp == Instruction::Mul)
463  return ROp == Instruction::Add || ROp == Instruction::Sub;
464 
465  return false;
466 }
467 
468 /// Return whether "(X LOp Y) ROp Z" is always equal to
469 /// "(X ROp Z) LOp (Y ROp Z)".
473  return leftDistributesOverRight(ROp, LOp);
474 
475  // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
477 
478  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
479  // but this requires knowing that the addition does not overflow and other
480  // such subtleties.
481 }
482 
483 /// This function returns identity value for given opcode, which can be used to
484 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
486  if (isa<Constant>(V))
487  return nullptr;
488 
489  return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
490 }
491 
492 /// This function predicates factorization using distributive laws. By default,
493 /// it just returns the 'Op' inputs. But for special-cases like
494 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
495 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
496 /// allow more factorization opportunities.
499  Value *&LHS, Value *&RHS) {
500  assert(Op && "Expected a binary operator");
501  LHS = Op->getOperand(0);
502  RHS = Op->getOperand(1);
503  if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
504  Constant *C;
505  if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
506  // X << C --> X * (1 << C)
507  RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
508  return Instruction::Mul;
509  }
510  // TODO: We can add other conversions e.g. shr => div etc.
511  }
512  return Op->getOpcode();
513 }
514 
515 /// This tries to simplify binary operations by factorizing out common terms
516 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
517 Value *InstCombiner::tryFactorization(BinaryOperator &I,
518  Instruction::BinaryOps InnerOpcode,
519  Value *A, Value *B, Value *C, Value *D) {
520  assert(A && B && C && D && "All values must be provided");
521 
522  Value *V = nullptr;
523  Value *SimplifiedInst = nullptr;
524  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
525  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
526 
527  // Does "X op' Y" always equal "Y op' X"?
528  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
529 
530  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
531  if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
532  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
533  // commutative case, "(A op' B) op (C op' A)"?
534  if (A == C || (InnerCommutative && A == D)) {
535  if (A != C)
536  std::swap(C, D);
537  // Consider forming "A op' (B op D)".
538  // If "B op D" simplifies then it can be formed with no cost.
539  V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
540  // If "B op D" doesn't simplify then only go on if both of the existing
541  // operations "A op' B" and "C op' D" will be zapped as no longer used.
542  if (!V && LHS->hasOneUse() && RHS->hasOneUse())
543  V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
544  if (V) {
545  SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
546  }
547  }
548 
549  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
550  if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
551  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
552  // commutative case, "(A op' B) op (B op' D)"?
553  if (B == D || (InnerCommutative && B == C)) {
554  if (B != D)
555  std::swap(C, D);
556  // Consider forming "(A op C) op' B".
557  // If "A op C" simplifies then it can be formed with no cost.
558  V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
559 
560  // If "A op C" doesn't simplify then only go on if both of the existing
561  // operations "A op' B" and "C op' D" will be zapped as no longer used.
562  if (!V && LHS->hasOneUse() && RHS->hasOneUse())
563  V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
564  if (V) {
565  SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
566  }
567  }
568 
569  if (SimplifiedInst) {
570  ++NumFactor;
571  SimplifiedInst->takeName(&I);
572 
573  // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
574  // TODO: Check for NUW.
575  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
576  if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
577  bool HasNSW = false;
578  if (isa<OverflowingBinaryOperator>(&I))
579  HasNSW = I.hasNoSignedWrap();
580 
581  if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
582  HasNSW &= LOBO->hasNoSignedWrap();
583 
584  if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
585  HasNSW &= ROBO->hasNoSignedWrap();
586 
587  // We can propagate 'nsw' if we know that
588  // %Y = mul nsw i16 %X, C
589  // %Z = add nsw i16 %Y, %X
590  // =>
591  // %Z = mul nsw i16 %X, C+1
592  //
593  // iff C+1 isn't INT_MIN
594  const APInt *CInt;
595  if (TopLevelOpcode == Instruction::Add &&
596  InnerOpcode == Instruction::Mul)
597  if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
598  BO->setHasNoSignedWrap(HasNSW);
599  }
600  }
601  }
602  return SimplifiedInst;
603 }
604 
605 /// This tries to simplify binary operations which some other binary operation
606 /// distributes over either by factorizing out common terms
607 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
608 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
609 /// Returns the simplified value, or null if it didn't simplify.
610 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
611  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
614  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
615 
616  {
617  // Factorization.
618  Value *A, *B, *C, *D;
619  Instruction::BinaryOps LHSOpcode, RHSOpcode;
620  if (Op0)
621  LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
622  if (Op1)
623  RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
624 
625  // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
626  // a common term.
627  if (Op0 && Op1 && LHSOpcode == RHSOpcode)
628  if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
629  return V;
630 
631  // The instruction has the form "(A op' B) op (C)". Try to factorize common
632  // term.
633  if (Op0)
634  if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
635  if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
636  return V;
637 
638  // The instruction has the form "(B) op (C op' D)". Try to factorize common
639  // term.
640  if (Op1)
641  if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
642  if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
643  return V;
644  }
645 
646  // Expansion.
647  if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
648  // The instruction has the form "(A op' B) op C". See if expanding it out
649  // to "(A op C) op' (B op C)" results in simplifications.
650  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
651  Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
652 
653  Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
654  Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
655 
656  // Do "A op C" and "B op C" both simplify?
657  if (L && R) {
658  // They do! Return "L op' R".
659  ++NumExpand;
660  C = Builder.CreateBinOp(InnerOpcode, L, R);
661  C->takeName(&I);
662  return C;
663  }
664 
665  // Does "A op C" simplify to the identity value for the inner opcode?
666  if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
667  // They do! Return "B op C".
668  ++NumExpand;
669  C = Builder.CreateBinOp(TopLevelOpcode, B, C);
670  C->takeName(&I);
671  return C;
672  }
673 
674  // Does "B op C" simplify to the identity value for the inner opcode?
675  if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
676  // They do! Return "A op C".
677  ++NumExpand;
678  C = Builder.CreateBinOp(TopLevelOpcode, A, C);
679  C->takeName(&I);
680  return C;
681  }
682  }
683 
684  if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
685  // The instruction has the form "A op (B op' C)". See if expanding it out
686  // to "(A op B) op' (A op C)" results in simplifications.
687  Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
688  Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
689 
690  Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
691  Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
692 
693  // Do "A op B" and "A op C" both simplify?
694  if (L && R) {
695  // They do! Return "L op' R".
696  ++NumExpand;
697  A = Builder.CreateBinOp(InnerOpcode, L, R);
698  A->takeName(&I);
699  return A;
700  }
701 
702  // Does "A op B" simplify to the identity value for the inner opcode?
703  if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
704  // They do! Return "A op C".
705  ++NumExpand;
706  A = Builder.CreateBinOp(TopLevelOpcode, A, C);
707  A->takeName(&I);
708  return A;
709  }
710 
711  // Does "A op C" simplify to the identity value for the inner opcode?
712  if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
713  // They do! Return "A op B".
714  ++NumExpand;
715  A = Builder.CreateBinOp(TopLevelOpcode, A, B);
716  A->takeName(&I);
717  return A;
718  }
719  }
720 
721  return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
722 }
723 
724 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
725  Value *LHS, Value *RHS) {
726  Instruction::BinaryOps Opcode = I.getOpcode();
727  // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
728  // c, e)))
729  Value *A, *B, *C, *D, *E;
730  Value *SI = nullptr;
731  if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
732  match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
733  bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
734  BuilderTy::FastMathFlagGuard Guard(Builder);
735  if (isa<FPMathOperator>(&I))
736  Builder.setFastMathFlags(I.getFastMathFlags());
737 
738  Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I));
739  Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I));
740  if (V1 && V2)
741  SI = Builder.CreateSelect(A, V2, V1);
742  else if (V2 && SelectsHaveOneUse)
743  SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
744  else if (V1 && SelectsHaveOneUse)
745  SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
746 
747  if (SI)
748  SI->takeName(&I);
749  }
750 
751  return SI;
752 }
753 
754 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
755 /// constant zero (which is the 'negate' form).
756 Value *InstCombiner::dyn_castNegVal(Value *V) const {
757  Value *NegV;
758  if (match(V, m_Neg(m_Value(NegV))))
759  return NegV;
760 
761  // Constants can be considered to be negated values if they can be folded.
762  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
763  return ConstantExpr::getNeg(C);
764 
765  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
766  if (C->getType()->getElementType()->isIntegerTy())
767  return ConstantExpr::getNeg(C);
768 
769  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
770  for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
771  Constant *Elt = CV->getAggregateElement(i);
772  if (!Elt)
773  return nullptr;
774 
775  if (isa<UndefValue>(Elt))
776  continue;
777 
778  if (!isa<ConstantInt>(Elt))
779  return nullptr;
780  }
781  return ConstantExpr::getNeg(CV);
782  }
783 
784  return nullptr;
785 }
786 
788  InstCombiner::BuilderTy &Builder) {
789  if (auto *Cast = dyn_cast<CastInst>(&I))
790  return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
791 
792  assert(I.isBinaryOp() && "Unexpected opcode for select folding");
793 
794  // Figure out if the constant is the left or the right argument.
795  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
796  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
797 
798  if (auto *SOC = dyn_cast<Constant>(SO)) {
799  if (ConstIsRHS)
800  return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
801  return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
802  }
803 
804  Value *Op0 = SO, *Op1 = ConstOperand;
805  if (!ConstIsRHS)
806  std::swap(Op0, Op1);
807 
808  auto *BO = cast<BinaryOperator>(&I);
809  Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
810  SO->getName() + ".op");
811  auto *FPInst = dyn_cast<Instruction>(RI);
812  if (FPInst && isa<FPMathOperator>(FPInst))
813  FPInst->copyFastMathFlags(BO);
814  return RI;
815 }
816 
817 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
818  // Don't modify shared select instructions.
819  if (!SI->hasOneUse())
820  return nullptr;
821 
822  Value *TV = SI->getTrueValue();
823  Value *FV = SI->getFalseValue();
824  if (!(isa<Constant>(TV) || isa<Constant>(FV)))
825  return nullptr;
826 
827  // Bool selects with constant operands can be folded to logical ops.
828  if (SI->getType()->isIntOrIntVectorTy(1))
829  return nullptr;
830 
831  // If it's a bitcast involving vectors, make sure it has the same number of
832  // elements on both sides.
833  if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
834  VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
835  VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
836 
837  // Verify that either both or neither are vectors.
838  if ((SrcTy == nullptr) != (DestTy == nullptr))
839  return nullptr;
840 
841  // If vectors, verify that they have the same number of elements.
842  if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
843  return nullptr;
844  }
845 
846  // Test if a CmpInst instruction is used exclusively by a select as
847  // part of a minimum or maximum operation. If so, refrain from doing
848  // any other folding. This helps out other analyses which understand
849  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
850  // and CodeGen. And in this case, at least one of the comparison
851  // operands has at least one user besides the compare (the select),
852  // which would often largely negate the benefit of folding anyway.
853  if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
854  if (CI->hasOneUse()) {
855  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
856  if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
857  (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
858  return nullptr;
859  }
860  }
861 
862  Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
863  Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
864  return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
865 }
866 
868  InstCombiner::BuilderTy &Builder) {
869  bool ConstIsRHS = isa<Constant>(I->getOperand(1));
870  Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
871 
872  if (auto *InC = dyn_cast<Constant>(InV)) {
873  if (ConstIsRHS)
874  return ConstantExpr::get(I->getOpcode(), InC, C);
875  return ConstantExpr::get(I->getOpcode(), C, InC);
876  }
877 
878  Value *Op0 = InV, *Op1 = C;
879  if (!ConstIsRHS)
880  std::swap(Op0, Op1);
881 
882  Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
883  auto *FPInst = dyn_cast<Instruction>(RI);
884  if (FPInst && isa<FPMathOperator>(FPInst))
885  FPInst->copyFastMathFlags(I);
886  return RI;
887 }
888 
889 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
890  unsigned NumPHIValues = PN->getNumIncomingValues();
891  if (NumPHIValues == 0)
892  return nullptr;
893 
894  // We normally only transform phis with a single use. However, if a PHI has
895  // multiple uses and they are all the same operation, we can fold *all* of the
896  // uses into the PHI.
897  if (!PN->hasOneUse()) {
898  // Walk the use list for the instruction, comparing them to I.
899  for (User *U : PN->users()) {
900  Instruction *UI = cast<Instruction>(U);
901  if (UI != &I && !I.isIdenticalTo(UI))
902  return nullptr;
903  }
904  // Otherwise, we can replace *all* users with the new PHI we form.
905  }
906 
907  // Check to see if all of the operands of the PHI are simple constants
908  // (constantint/constantfp/undef). If there is one non-constant value,
909  // remember the BB it is in. If there is more than one or if *it* is a PHI,
910  // bail out. We don't do arbitrary constant expressions here because moving
911  // their computation can be expensive without a cost model.
912  BasicBlock *NonConstBB = nullptr;
913  for (unsigned i = 0; i != NumPHIValues; ++i) {
914  Value *InVal = PN->getIncomingValue(i);
915  if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
916  continue;
917 
918  if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
919  if (NonConstBB) return nullptr; // More than one non-const value.
920 
921  NonConstBB = PN->getIncomingBlock(i);
922 
923  // If the InVal is an invoke at the end of the pred block, then we can't
924  // insert a computation after it without breaking the edge.
925  if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
926  if (II->getParent() == NonConstBB)
927  return nullptr;
928 
929  // If the incoming non-constant value is in I's block, we will remove one
930  // instruction, but insert another equivalent one, leading to infinite
931  // instcombine.
932  if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
933  return nullptr;
934  }
935 
936  // If there is exactly one non-constant value, we can insert a copy of the
937  // operation in that block. However, if this is a critical edge, we would be
938  // inserting the computation on some other paths (e.g. inside a loop). Only
939  // do this if the pred block is unconditionally branching into the phi block.
940  if (NonConstBB != nullptr) {
941  BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
942  if (!BI || !BI->isUnconditional()) return nullptr;
943  }
944 
945  // Okay, we can do the transformation: create the new PHI node.
947  InsertNewInstBefore(NewPN, *PN);
948  NewPN->takeName(PN);
949 
950  // If we are going to have to insert a new computation, do so right before the
951  // predecessor's terminator.
952  if (NonConstBB)
953  Builder.SetInsertPoint(NonConstBB->getTerminator());
954 
955  // Next, add all of the operands to the PHI.
956  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
957  // We only currently try to fold the condition of a select when it is a phi,
958  // not the true/false values.
959  Value *TrueV = SI->getTrueValue();
960  Value *FalseV = SI->getFalseValue();
961  BasicBlock *PhiTransBB = PN->getParent();
962  for (unsigned i = 0; i != NumPHIValues; ++i) {
963  BasicBlock *ThisBB = PN->getIncomingBlock(i);
964  Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
965  Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
966  Value *InV = nullptr;
967  // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
968  // even if currently isNullValue gives false.
969  Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
970  // For vector constants, we cannot use isNullValue to fold into
971  // FalseVInPred versus TrueVInPred. When we have individual nonzero
972  // elements in the vector, we will incorrectly fold InC to
973  // `TrueVInPred`.
974  if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
975  InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
976  else {
977  // Generate the select in the same block as PN's current incoming block.
978  // Note: ThisBB need not be the NonConstBB because vector constants
979  // which are constants by definition are handled here.
980  // FIXME: This can lead to an increase in IR generation because we might
981  // generate selects for vector constant phi operand, that could not be
982  // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
983  // non-vector phis, this transformation was always profitable because
984  // the select would be generated exactly once in the NonConstBB.
985  Builder.SetInsertPoint(ThisBB->getTerminator());
986  InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
987  FalseVInPred, "phitmp");
988  }
989  NewPN->addIncoming(InV, ThisBB);
990  }
991  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
992  Constant *C = cast<Constant>(I.getOperand(1));
993  for (unsigned i = 0; i != NumPHIValues; ++i) {
994  Value *InV = nullptr;
995  if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
996  InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
997  else if (isa<ICmpInst>(CI))
998  InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
999  C, "phitmp");
1000  else
1001  InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
1002  C, "phitmp");
1003  NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1004  }
1005  } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1006  for (unsigned i = 0; i != NumPHIValues; ++i) {
1008  Builder);
1009  NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1010  }
1011  } else {
1012  CastInst *CI = cast<CastInst>(&I);
1013  Type *RetTy = CI->getType();
1014  for (unsigned i = 0; i != NumPHIValues; ++i) {
1015  Value *InV;
1016  if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1017  InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1018  else
1019  InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1020  I.getType(), "phitmp");
1021  NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1022  }
1023  }
1024 
1025  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1026  Instruction *User = cast<Instruction>(*UI++);
1027  if (User == &I) continue;
1028  replaceInstUsesWith(*User, NewPN);
1029  eraseInstFromFunction(*User);
1030  }
1031  return replaceInstUsesWith(I, NewPN);
1032 }
1033 
1034 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1035  if (!isa<Constant>(I.getOperand(1)))
1036  return nullptr;
1037 
1038  if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1039  if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1040  return NewSel;
1041  } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1042  if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1043  return NewPhi;
1044  }
1045  return nullptr;
1046 }
1047 
1048 /// Given a pointer type and a constant offset, determine whether or not there
1049 /// is a sequence of GEP indices into the pointed type that will land us at the
1050 /// specified offset. If so, fill them into NewIndices and return the resultant
1051 /// element type, otherwise return null.
1052 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1053  SmallVectorImpl<Value *> &NewIndices) {
1054  Type *Ty = PtrTy->getElementType();
1055  if (!Ty->isSized())
1056  return nullptr;
1057 
1058  // Start with the index over the outer type. Note that the type size
1059  // might be zero (even if the offset isn't zero) if the indexed type
1060  // is something like [0 x {int, int}]
1061  Type *IndexTy = DL.getIndexType(PtrTy);
1062  int64_t FirstIdx = 0;
1063  if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1064  FirstIdx = Offset/TySize;
1065  Offset -= FirstIdx*TySize;
1066 
1067  // Handle hosts where % returns negative instead of values [0..TySize).
1068  if (Offset < 0) {
1069  --FirstIdx;
1070  Offset += TySize;
1071  assert(Offset >= 0);
1072  }
1073  assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1074  }
1075 
1076  NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1077 
1078  // Index into the types. If we fail, set OrigBase to null.
1079  while (Offset) {
1080  // Indexing into tail padding between struct/array elements.
1081  if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1082  return nullptr;
1083 
1084  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1085  const StructLayout *SL = DL.getStructLayout(STy);
1086  assert(Offset < (int64_t)SL->getSizeInBytes() &&
1087  "Offset must stay within the indexed type");
1088 
1089  unsigned Elt = SL->getElementContainingOffset(Offset);
1091  Elt));
1092 
1093  Offset -= SL->getElementOffset(Elt);
1094  Ty = STy->getElementType(Elt);
1095  } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1096  uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1097  assert(EltSize && "Cannot index into a zero-sized array");
1098  NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1099  Offset %= EltSize;
1100  Ty = AT->getElementType();
1101  } else {
1102  // Otherwise, we can't index into the middle of this atomic type, bail.
1103  return nullptr;
1104  }
1105  }
1106 
1107  return Ty;
1108 }
1109 
1111  // If this GEP has only 0 indices, it is the same pointer as
1112  // Src. If Src is not a trivial GEP too, don't combine
1113  // the indices.
1114  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1115  !Src.hasOneUse())
1116  return false;
1117  return true;
1118 }
1119 
1120 /// Return a value X such that Val = X * Scale, or null if none.
1121 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1122 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1123  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1124  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1125  Scale.getBitWidth() && "Scale not compatible with value!");
1126 
1127  // If Val is zero or Scale is one then Val = Val * Scale.
1128  if (match(Val, m_Zero()) || Scale == 1) {
1129  NoSignedWrap = true;
1130  return Val;
1131  }
1132 
1133  // If Scale is zero then it does not divide Val.
1134  if (Scale.isMinValue())
1135  return nullptr;
1136 
1137  // Look through chains of multiplications, searching for a constant that is
1138  // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1139  // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1140  // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1141  // down from Val:
1142  //
1143  // Val = M1 * X || Analysis starts here and works down
1144  // M1 = M2 * Y || Doesn't descend into terms with more
1145  // M2 = Z * 4 \/ than one use
1146  //
1147  // Then to modify a term at the bottom:
1148  //
1149  // Val = M1 * X
1150  // M1 = Z * Y || Replaced M2 with Z
1151  //
1152  // Then to work back up correcting nsw flags.
1153 
1154  // Op - the term we are currently analyzing. Starts at Val then drills down.
1155  // Replaced with its descaled value before exiting from the drill down loop.
1156  Value *Op = Val;
1157 
1158  // Parent - initially null, but after drilling down notes where Op came from.
1159  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1160  // 0'th operand of Val.
1161  std::pair<Instruction *, unsigned> Parent;
1162 
1163  // Set if the transform requires a descaling at deeper levels that doesn't
1164  // overflow.
1165  bool RequireNoSignedWrap = false;
1166 
1167  // Log base 2 of the scale. Negative if not a power of 2.
1168  int32_t logScale = Scale.exactLogBase2();
1169 
1170  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1171  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1172  // If Op is a constant divisible by Scale then descale to the quotient.
1173  APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1174  APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1175  if (!Remainder.isMinValue())
1176  // Not divisible by Scale.
1177  return nullptr;
1178  // Replace with the quotient in the parent.
1179  Op = ConstantInt::get(CI->getType(), Quotient);
1180  NoSignedWrap = true;
1181  break;
1182  }
1183 
1184  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1185  if (BO->getOpcode() == Instruction::Mul) {
1186  // Multiplication.
1187  NoSignedWrap = BO->hasNoSignedWrap();
1188  if (RequireNoSignedWrap && !NoSignedWrap)
1189  return nullptr;
1190 
1191  // There are three cases for multiplication: multiplication by exactly
1192  // the scale, multiplication by a constant different to the scale, and
1193  // multiplication by something else.
1194  Value *LHS = BO->getOperand(0);
1195  Value *RHS = BO->getOperand(1);
1196 
1197  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1198  // Multiplication by a constant.
1199  if (CI->getValue() == Scale) {
1200  // Multiplication by exactly the scale, replace the multiplication
1201  // by its left-hand side in the parent.
1202  Op = LHS;
1203  break;
1204  }
1205 
1206  // Otherwise drill down into the constant.
1207  if (!Op->hasOneUse())
1208  return nullptr;
1209 
1210  Parent = std::make_pair(BO, 1);
1211  continue;
1212  }
1213 
1214  // Multiplication by something else. Drill down into the left-hand side
1215  // since that's where the reassociate pass puts the good stuff.
1216  if (!Op->hasOneUse())
1217  return nullptr;
1218 
1219  Parent = std::make_pair(BO, 0);
1220  continue;
1221  }
1222 
1223  if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1224  isa<ConstantInt>(BO->getOperand(1))) {
1225  // Multiplication by a power of 2.
1226  NoSignedWrap = BO->hasNoSignedWrap();
1227  if (RequireNoSignedWrap && !NoSignedWrap)
1228  return nullptr;
1229 
1230  Value *LHS = BO->getOperand(0);
1231  int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1232  getLimitedValue(Scale.getBitWidth());
1233  // Op = LHS << Amt.
1234 
1235  if (Amt == logScale) {
1236  // Multiplication by exactly the scale, replace the multiplication
1237  // by its left-hand side in the parent.
1238  Op = LHS;
1239  break;
1240  }
1241  if (Amt < logScale || !Op->hasOneUse())
1242  return nullptr;
1243 
1244  // Multiplication by more than the scale. Reduce the multiplying amount
1245  // by the scale in the parent.
1246  Parent = std::make_pair(BO, 1);
1247  Op = ConstantInt::get(BO->getType(), Amt - logScale);
1248  break;
1249  }
1250  }
1251 
1252  if (!Op->hasOneUse())
1253  return nullptr;
1254 
1255  if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1256  if (Cast->getOpcode() == Instruction::SExt) {
1257  // Op is sign-extended from a smaller type, descale in the smaller type.
1258  unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1259  APInt SmallScale = Scale.trunc(SmallSize);
1260  // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1261  // descale Op as (sext Y) * Scale. In order to have
1262  // sext (Y * SmallScale) = (sext Y) * Scale
1263  // some conditions need to hold however: SmallScale must sign-extend to
1264  // Scale and the multiplication Y * SmallScale should not overflow.
1265  if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1266  // SmallScale does not sign-extend to Scale.
1267  return nullptr;
1268  assert(SmallScale.exactLogBase2() == logScale);
1269  // Require that Y * SmallScale must not overflow.
1270  RequireNoSignedWrap = true;
1271 
1272  // Drill down through the cast.
1273  Parent = std::make_pair(Cast, 0);
1274  Scale = SmallScale;
1275  continue;
1276  }
1277 
1278  if (Cast->getOpcode() == Instruction::Trunc) {
1279  // Op is truncated from a larger type, descale in the larger type.
1280  // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1281  // trunc (Y * sext Scale) = (trunc Y) * Scale
1282  // always holds. However (trunc Y) * Scale may overflow even if
1283  // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1284  // from this point up in the expression (see later).
1285  if (RequireNoSignedWrap)
1286  return nullptr;
1287 
1288  // Drill down through the cast.
1289  unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1290  Parent = std::make_pair(Cast, 0);
1291  Scale = Scale.sext(LargeSize);
1292  if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1293  logScale = -1;
1294  assert(Scale.exactLogBase2() == logScale);
1295  continue;
1296  }
1297  }
1298 
1299  // Unsupported expression, bail out.
1300  return nullptr;
1301  }
1302 
1303  // If Op is zero then Val = Op * Scale.
1304  if (match(Op, m_Zero())) {
1305  NoSignedWrap = true;
1306  return Op;
1307  }
1308 
1309  // We know that we can successfully descale, so from here on we can safely
1310  // modify the IR. Op holds the descaled version of the deepest term in the
1311  // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1312  // not to overflow.
1313 
1314  if (!Parent.first)
1315  // The expression only had one term.
1316  return Op;
1317 
1318  // Rewrite the parent using the descaled version of its operand.
1319  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1320  assert(Op != Parent.first->getOperand(Parent.second) &&
1321  "Descaling was a no-op?");
1322  Parent.first->setOperand(Parent.second, Op);
1323  Worklist.Add(Parent.first);
1324 
1325  // Now work back up the expression correcting nsw flags. The logic is based
1326  // on the following observation: if X * Y is known not to overflow as a signed
1327  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1328  // then X * Z will not overflow as a signed multiplication either. As we work
1329  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1330  // current level has strictly smaller absolute value than the original.
1331  Instruction *Ancestor = Parent.first;
1332  do {
1333  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1334  // If the multiplication wasn't nsw then we can't say anything about the
1335  // value of the descaled multiplication, and we have to clear nsw flags
1336  // from this point on up.
1337  bool OpNoSignedWrap = BO->hasNoSignedWrap();
1338  NoSignedWrap &= OpNoSignedWrap;
1339  if (NoSignedWrap != OpNoSignedWrap) {
1340  BO->setHasNoSignedWrap(NoSignedWrap);
1341  Worklist.Add(Ancestor);
1342  }
1343  } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1344  // The fact that the descaled input to the trunc has smaller absolute
1345  // value than the original input doesn't tell us anything useful about
1346  // the absolute values of the truncations.
1347  NoSignedWrap = false;
1348  }
1349  assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1350  "Failed to keep proper track of nsw flags while drilling down?");
1351 
1352  if (Ancestor == Val)
1353  // Got to the top, all done!
1354  return Val;
1355 
1356  // Move up one level in the expression.
1357  assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1358  Ancestor = Ancestor->user_back();
1359  } while (true);
1360 }
1361 
1362 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1363  if (!Inst.getType()->isVectorTy()) return nullptr;
1364 
1365  BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1366  unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
1367  Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1368  assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
1369  assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
1370 
1371  // If both operands of the binop are vector concatenations, then perform the
1372  // narrow binop on each pair of the source operands followed by concatenation
1373  // of the results.
1374  Value *L0, *L1, *R0, *R1;
1375  Constant *Mask;
1376  if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
1377  match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
1378  LHS->hasOneUse() && RHS->hasOneUse() &&
1379  cast<ShuffleVectorInst>(LHS)->isConcat() &&
1380  cast<ShuffleVectorInst>(RHS)->isConcat()) {
1381  // This transform does not have the speculative execution constraint as
1382  // below because the shuffle is a concatenation. The new binops are
1383  // operating on exactly the same elements as the existing binop.
1384  // TODO: We could ease the mask requirement to allow different undef lanes,
1385  // but that requires an analysis of the binop-with-undef output value.
1386  Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1387  if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1388  BO->copyIRFlags(&Inst);
1389  Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1390  if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1391  BO->copyIRFlags(&Inst);
1392  return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1393  }
1394 
1395  // It may not be safe to reorder shuffles and things like div, urem, etc.
1396  // because we may trap when executing those ops on unknown vector elements.
1397  // See PR20059.
1398  if (!isSafeToSpeculativelyExecute(&Inst))
1399  return nullptr;
1400 
1401  auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
1402  Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1403  if (auto *BO = dyn_cast<BinaryOperator>(XY))
1404  BO->copyIRFlags(&Inst);
1405  return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1406  };
1407 
1408  // If both arguments of the binary operation are shuffles that use the same
1409  // mask and shuffle within a single vector, move the shuffle after the binop.
1410  Value *V1, *V2;
1411  if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
1412  match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
1413  V1->getType() == V2->getType() &&
1414  (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1415  // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1416  return createBinOpShuffle(V1, V2, Mask);
1417  }
1418 
1419  // If one argument is a shuffle within one vector and the other is a constant,
1420  // try moving the shuffle after the binary operation. This canonicalization
1421  // intends to move shuffles closer to other shuffles and binops closer to
1422  // other binops, so they can be folded. It may also enable demanded elements
1423  // transforms.
1424  Constant *C;
1425  if (match(&Inst, m_c_BinOp(
1427  m_Constant(C))) &&
1428  V1->getType()->getVectorNumElements() <= NumElts) {
1429  assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1430  "Shuffle should not change scalar type");
1431 
1432  // Find constant NewC that has property:
1433  // shuffle(NewC, ShMask) = C
1434  // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1435  // reorder is not possible. A 1-to-1 mapping is not required. Example:
1436  // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1437  bool ConstOp1 = isa<Constant>(RHS);
1438  SmallVector<int, 16> ShMask;
1439  ShuffleVectorInst::getShuffleMask(Mask, ShMask);
1440  unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
1441  UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1442  SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1443  bool MayChange = true;
1444  for (unsigned I = 0; I < NumElts; ++I) {
1445  Constant *CElt = C->getAggregateElement(I);
1446  if (ShMask[I] >= 0) {
1447  assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1448  Constant *NewCElt = NewVecC[ShMask[I]];
1449  // Bail out if:
1450  // 1. The constant vector contains a constant expression.
1451  // 2. The shuffle needs an element of the constant vector that can't
1452  // be mapped to a new constant vector.
1453  // 3. This is a widening shuffle that copies elements of V1 into the
1454  // extended elements (extending with undef is allowed).
1455  if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1456  I >= SrcVecNumElts) {
1457  MayChange = false;
1458  break;
1459  }
1460  NewVecC[ShMask[I]] = CElt;
1461  }
1462  // If this is a widening shuffle, we must be able to extend with undef
1463  // elements. If the original binop does not produce an undef in the high
1464  // lanes, then this transform is not safe.
1465  // TODO: We could shuffle those non-undef constant values into the
1466  // result by using a constant vector (rather than an undef vector)
1467  // as operand 1 of the new binop, but that might be too aggressive
1468  // for target-independent shuffle creation.
1469  if (I >= SrcVecNumElts) {
1470  Constant *MaybeUndef =
1471  ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1472  : ConstantExpr::get(Opcode, CElt, UndefScalar);
1473  if (!isa<UndefValue>(MaybeUndef)) {
1474  MayChange = false;
1475  break;
1476  }
1477  }
1478  }
1479  if (MayChange) {
1480  Constant *NewC = ConstantVector::get(NewVecC);
1481  // It may not be safe to execute a binop on a vector with undef elements
1482  // because the entire instruction can be folded to undef or create poison
1483  // that did not exist in the original code.
1484  if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1485  NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1486 
1487  // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1488  // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1489  Value *NewLHS = ConstOp1 ? V1 : NewC;
1490  Value *NewRHS = ConstOp1 ? NewC : V1;
1491  return createBinOpShuffle(NewLHS, NewRHS, Mask);
1492  }
1493  }
1494 
1495  return nullptr;
1496 }
1497 
1498 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1499 /// of a value. This requires a potentially expensive known bits check to make
1500 /// sure the narrow op does not overflow.
1501 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1502  // We need at least one extended operand.
1503  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1504 
1505  // If this is a sub, we swap the operands since we always want an extension
1506  // on the RHS. The LHS can be an extension or a constant.
1507  if (BO.getOpcode() == Instruction::Sub)
1508  std::swap(Op0, Op1);
1509 
1510  Value *X;
1511  bool IsSext = match(Op0, m_SExt(m_Value(X)));
1512  if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1513  return nullptr;
1514 
1515  // If both operands are the same extension from the same source type and we
1516  // can eliminate at least one (hasOneUse), this might work.
1517  CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1518  Value *Y;
1519  if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1520  cast<Operator>(Op1)->getOpcode() == CastOpc &&
1521  (Op0->hasOneUse() || Op1->hasOneUse()))) {
1522  // If that did not match, see if we have a suitable constant operand.
1523  // Truncating and extending must produce the same constant.
1524  Constant *WideC;
1525  if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1526  return nullptr;
1527  Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1528  if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1529  return nullptr;
1530  Y = NarrowC;
1531  }
1532 
1533  // Swap back now that we found our operands.
1534  if (BO.getOpcode() == Instruction::Sub)
1535  std::swap(X, Y);
1536 
1537  // Both operands have narrow versions. Last step: the math must not overflow
1538  // in the narrow width.
1539  if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1540  return nullptr;
1541 
1542  // bo (ext X), (ext Y) --> ext (bo X, Y)
1543  // bo (ext X), C --> ext (bo X, C')
1544  Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1545  if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1546  if (IsSext)
1547  NewBinOp->setHasNoSignedWrap();
1548  else
1549  NewBinOp->setHasNoUnsignedWrap();
1550  }
1551  return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1552 }
1553 
1555  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1556  Type *GEPType = GEP.getType();
1557  Type *GEPEltType = GEP.getSourceElementType();
1558  if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1559  return replaceInstUsesWith(GEP, V);
1560 
1561  Value *PtrOp = GEP.getOperand(0);
1562 
1563  // Eliminate unneeded casts for indices, and replace indices which displace
1564  // by multiples of a zero size type with zero.
1565  bool MadeChange = false;
1566 
1567  // Index width may not be the same width as pointer width.
1568  // Data layout chooses the right type based on supported integer types.
1569  Type *NewScalarIndexTy =
1570  DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1571 
1572  gep_type_iterator GTI = gep_type_begin(GEP);
1573  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1574  ++I, ++GTI) {
1575  // Skip indices into struct types.
1576  if (GTI.isStruct())
1577  continue;
1578 
1579  Type *IndexTy = (*I)->getType();
1580  Type *NewIndexType =
1581  IndexTy->isVectorTy()
1582  ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
1583  : NewScalarIndexTy;
1584 
1585  // If the element type has zero size then any index over it is equivalent
1586  // to an index of zero, so replace it with zero if it is not zero already.
1587  Type *EltTy = GTI.getIndexedType();
1588  if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1589  if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1590  *I = Constant::getNullValue(NewIndexType);
1591  MadeChange = true;
1592  }
1593 
1594  if (IndexTy != NewIndexType) {
1595  // If we are using a wider index than needed for this platform, shrink
1596  // it to what we need. If narrower, sign-extend it to what we need.
1597  // This explicit cast can make subsequent optimizations more obvious.
1598  *I = Builder.CreateIntCast(*I, NewIndexType, true);
1599  MadeChange = true;
1600  }
1601  }
1602  if (MadeChange)
1603  return &GEP;
1604 
1605  // Check to see if the inputs to the PHI node are getelementptr instructions.
1606  if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1607  auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1608  if (!Op1)
1609  return nullptr;
1610 
1611  // Don't fold a GEP into itself through a PHI node. This can only happen
1612  // through the back-edge of a loop. Folding a GEP into itself means that
1613  // the value of the previous iteration needs to be stored in the meantime,
1614  // thus requiring an additional register variable to be live, but not
1615  // actually achieving anything (the GEP still needs to be executed once per
1616  // loop iteration).
1617  if (Op1 == &GEP)
1618  return nullptr;
1619 
1620  int DI = -1;
1621 
1622  for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1623  auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1624  if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1625  return nullptr;
1626 
1627  // As for Op1 above, don't try to fold a GEP into itself.
1628  if (Op2 == &GEP)
1629  return nullptr;
1630 
1631  // Keep track of the type as we walk the GEP.
1632  Type *CurTy = nullptr;
1633 
1634  for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1635  if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1636  return nullptr;
1637 
1638  if (Op1->getOperand(J) != Op2->getOperand(J)) {
1639  if (DI == -1) {
1640  // We have not seen any differences yet in the GEPs feeding the
1641  // PHI yet, so we record this one if it is allowed to be a
1642  // variable.
1643 
1644  // The first two arguments can vary for any GEP, the rest have to be
1645  // static for struct slots
1646  if (J > 1 && CurTy->isStructTy())
1647  return nullptr;
1648 
1649  DI = J;
1650  } else {
1651  // The GEP is different by more than one input. While this could be
1652  // extended to support GEPs that vary by more than one variable it
1653  // doesn't make sense since it greatly increases the complexity and
1654  // would result in an R+R+R addressing mode which no backend
1655  // directly supports and would need to be broken into several
1656  // simpler instructions anyway.
1657  return nullptr;
1658  }
1659  }
1660 
1661  // Sink down a layer of the type for the next iteration.
1662  if (J > 0) {
1663  if (J == 1) {
1664  CurTy = Op1->getSourceElementType();
1665  } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
1666  CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1667  } else {
1668  CurTy = nullptr;
1669  }
1670  }
1671  }
1672  }
1673 
1674  // If not all GEPs are identical we'll have to create a new PHI node.
1675  // Check that the old PHI node has only one use so that it will get
1676  // removed.
1677  if (DI != -1 && !PN->hasOneUse())
1678  return nullptr;
1679 
1680  auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1681  if (DI == -1) {
1682  // All the GEPs feeding the PHI are identical. Clone one down into our
1683  // BB so that it can be merged with the current GEP.
1684  GEP.getParent()->getInstList().insert(
1685  GEP.getParent()->getFirstInsertionPt(), NewGEP);
1686  } else {
1687  // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1688  // into the current block so it can be merged, and create a new PHI to
1689  // set that index.
1690  PHINode *NewPN;
1691  {
1692  IRBuilderBase::InsertPointGuard Guard(Builder);
1693  Builder.SetInsertPoint(PN);
1694  NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1695  PN->getNumOperands());
1696  }
1697 
1698  for (auto &I : PN->operands())
1699  NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1700  PN->getIncomingBlock(I));
1701 
1702  NewGEP->setOperand(DI, NewPN);
1703  GEP.getParent()->getInstList().insert(
1704  GEP.getParent()->getFirstInsertionPt(), NewGEP);
1705  NewGEP->setOperand(DI, NewPN);
1706  }
1707 
1708  GEP.setOperand(0, NewGEP);
1709  PtrOp = NewGEP;
1710  }
1711 
1712  // Combine Indices - If the source pointer to this getelementptr instruction
1713  // is a getelementptr instruction, combine the indices of the two
1714  // getelementptr instructions into a single instruction.
1715  if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1716  if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1717  return nullptr;
1718 
1719  // Try to reassociate loop invariant GEP chains to enable LICM.
1720  if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1721  Src->hasOneUse()) {
1722  if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1723  Value *GO1 = GEP.getOperand(1);
1724  Value *SO1 = Src->getOperand(1);
1725  // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1726  // invariant: this breaks the dependence between GEPs and allows LICM
1727  // to hoist the invariant part out of the loop.
1728  if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1729  // We have to be careful here.
1730  // We have something like:
1731  // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1732  // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1733  // If we just swap idx & idx2 then we could inadvertantly
1734  // change %src from a vector to a scalar, or vice versa.
1735  // Cases:
1736  // 1) %base a scalar & idx a scalar & idx2 a vector
1737  // => Swapping idx & idx2 turns %src into a vector type.
1738  // 2) %base a scalar & idx a vector & idx2 a scalar
1739  // => Swapping idx & idx2 turns %src in a scalar type
1740  // 3) %base, %idx, and %idx2 are scalars
1741  // => %src & %gep are scalars
1742  // => swapping idx & idx2 is safe
1743  // 4) %base a vector
1744  // => %src is a vector
1745  // => swapping idx & idx2 is safe.
1746  auto *SO0 = Src->getOperand(0);
1747  auto *SO0Ty = SO0->getType();
1748  if (!isa<VectorType>(GEPType) || // case 3
1749  isa<VectorType>(SO0Ty)) { // case 4
1750  Src->setOperand(1, GO1);
1751  GEP.setOperand(1, SO1);
1752  return &GEP;
1753  } else {
1754  // Case 1 or 2
1755  // -- have to recreate %src & %gep
1756  // put NewSrc at same location as %src
1757  Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1758  auto *NewSrc = cast<GetElementPtrInst>(
1759  Builder.CreateGEP(SO0, GO1, Src->getName()));
1760  NewSrc->setIsInBounds(Src->isInBounds());
1761  auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1});
1762  NewGEP->setIsInBounds(GEP.isInBounds());
1763  return NewGEP;
1764  }
1765  }
1766  }
1767  }
1768 
1769  // Note that if our source is a gep chain itself then we wait for that
1770  // chain to be resolved before we perform this transformation. This
1771  // avoids us creating a TON of code in some cases.
1772  if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1773  if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1774  return nullptr; // Wait until our source is folded to completion.
1775 
1776  SmallVector<Value*, 8> Indices;
1777 
1778  // Find out whether the last index in the source GEP is a sequential idx.
1779  bool EndsWithSequential = false;
1780  for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1781  I != E; ++I)
1782  EndsWithSequential = I.isSequential();
1783 
1784  // Can we combine the two pointer arithmetics offsets?
1785  if (EndsWithSequential) {
1786  // Replace: gep (gep %P, long B), long A, ...
1787  // With: T = long A+B; gep %P, T, ...
1788  Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1789  Value *GO1 = GEP.getOperand(1);
1790 
1791  // If they aren't the same type, then the input hasn't been processed
1792  // by the loop above yet (which canonicalizes sequential index types to
1793  // intptr_t). Just avoid transforming this until the input has been
1794  // normalized.
1795  if (SO1->getType() != GO1->getType())
1796  return nullptr;
1797 
1798  Value *Sum =
1799  SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
1800  // Only do the combine when we are sure the cost after the
1801  // merge is never more than that before the merge.
1802  if (Sum == nullptr)
1803  return nullptr;
1804 
1805  // Update the GEP in place if possible.
1806  if (Src->getNumOperands() == 2) {
1807  GEP.setOperand(0, Src->getOperand(0));
1808  GEP.setOperand(1, Sum);
1809  return &GEP;
1810  }
1811  Indices.append(Src->op_begin()+1, Src->op_end()-1);
1812  Indices.push_back(Sum);
1813  Indices.append(GEP.op_begin()+2, GEP.op_end());
1814  } else if (isa<Constant>(*GEP.idx_begin()) &&
1815  cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1816  Src->getNumOperands() != 1) {
1817  // Otherwise we can do the fold if the first index of the GEP is a zero
1818  Indices.append(Src->op_begin()+1, Src->op_end());
1819  Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1820  }
1821 
1822  if (!Indices.empty())
1823  return GEP.isInBounds() && Src->isInBounds()
1825  Src->getSourceElementType(), Src->getOperand(0), Indices,
1826  GEP.getName())
1827  : GetElementPtrInst::Create(Src->getSourceElementType(),
1828  Src->getOperand(0), Indices,
1829  GEP.getName());
1830  }
1831 
1832  if (GEP.getNumIndices() == 1) {
1833  unsigned AS = GEP.getPointerAddressSpace();
1834  if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1835  DL.getIndexSizeInBits(AS)) {
1836  uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
1837 
1838  bool Matched = false;
1839  uint64_t C;
1840  Value *V = nullptr;
1841  if (TyAllocSize == 1) {
1842  V = GEP.getOperand(1);
1843  Matched = true;
1844  } else if (match(GEP.getOperand(1),
1845  m_AShr(m_Value(V), m_ConstantInt(C)))) {
1846  if (TyAllocSize == 1ULL << C)
1847  Matched = true;
1848  } else if (match(GEP.getOperand(1),
1849  m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1850  if (TyAllocSize == C)
1851  Matched = true;
1852  }
1853 
1854  if (Matched) {
1855  // Canonicalize (gep i8* X, -(ptrtoint Y))
1856  // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1857  // The GEP pattern is emitted by the SCEV expander for certain kinds of
1858  // pointer arithmetic.
1859  if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1860  Operator *Index = cast<Operator>(V);
1861  Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
1862  Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
1863  return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
1864  }
1865  // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1866  // to (bitcast Y)
1867  Value *Y;
1868  if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1869  m_PtrToInt(m_Specific(GEP.getOperand(0))))))
1871  }
1872  }
1873  }
1874 
1875  // We do not handle pointer-vector geps here.
1876  if (GEPType->isVectorTy())
1877  return nullptr;
1878 
1879  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1880  Value *StrippedPtr = PtrOp->stripPointerCasts();
1881  PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
1882 
1883  if (StrippedPtr != PtrOp) {
1884  bool HasZeroPointerIndex = false;
1885  if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1886  HasZeroPointerIndex = C->isZero();
1887 
1888  // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1889  // into : GEP [10 x i8]* X, i32 0, ...
1890  //
1891  // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1892  // into : GEP i8* X, ...
1893  //
1894  // This occurs when the program declares an array extern like "int X[];"
1895  if (HasZeroPointerIndex) {
1896  if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
1897  // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1898  if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1899  // -> GEP i8* X, ...
1900  SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1902  StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1903  Res->setIsInBounds(GEP.isInBounds());
1904  if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1905  return Res;
1906  // Insert Res, and create an addrspacecast.
1907  // e.g.,
1908  // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1909  // ->
1910  // %0 = GEP i8 addrspace(1)* X, ...
1911  // addrspacecast i8 addrspace(1)* %0 to i8*
1912  return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
1913  }
1914 
1915  if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) {
1916  // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1917  if (CATy->getElementType() == XATy->getElementType()) {
1918  // -> GEP [10 x i8]* X, i32 0, ...
1919  // At this point, we know that the cast source type is a pointer
1920  // to an array of the same type as the destination pointer
1921  // array. Because the array type is never stepped over (there
1922  // is a leading zero) we can fold the cast into this GEP.
1923  if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1924  GEP.setOperand(0, StrippedPtr);
1925  GEP.setSourceElementType(XATy);
1926  return &GEP;
1927  }
1928  // Cannot replace the base pointer directly because StrippedPtr's
1929  // address space is different. Instead, create a new GEP followed by
1930  // an addrspacecast.
1931  // e.g.,
1932  // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1933  // i32 0, ...
1934  // ->
1935  // %0 = GEP [10 x i8] addrspace(1)* X, ...
1936  // addrspacecast i8 addrspace(1)* %0 to i8*
1937  SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1938  Value *NewGEP = GEP.isInBounds()
1939  ? Builder.CreateInBoundsGEP(
1940  nullptr, StrippedPtr, Idx, GEP.getName())
1941  : Builder.CreateGEP(nullptr, StrippedPtr, Idx,
1942  GEP.getName());
1943  return new AddrSpaceCastInst(NewGEP, GEPType);
1944  }
1945  }
1946  }
1947  } else if (GEP.getNumOperands() == 2) {
1948  // Transform things like:
1949  // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1950  // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1951  Type *SrcEltTy = StrippedPtrTy->getElementType();
1952  if (SrcEltTy->isArrayTy() &&
1953  DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) ==
1954  DL.getTypeAllocSize(GEPEltType)) {
1955  Type *IdxType = DL.getIndexType(GEPType);
1956  Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1957  Value *NewGEP =
1958  GEP.isInBounds()
1959  ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1960  GEP.getName())
1961  : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1962 
1963  // V and GEP are both pointer types --> BitCast
1964  return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
1965  }
1966 
1967  // Transform things like:
1968  // %V = mul i64 %N, 4
1969  // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1970  // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1971  if (GEPEltType->isSized() && SrcEltTy->isSized()) {
1972  // Check that changing the type amounts to dividing the index by a scale
1973  // factor.
1974  uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
1975  uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy);
1976  if (ResSize && SrcSize % ResSize == 0) {
1977  Value *Idx = GEP.getOperand(1);
1978  unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1979  uint64_t Scale = SrcSize / ResSize;
1980 
1981  // Earlier transforms ensure that the index has the right type
1982  // according to Data Layout, which considerably simplifies the
1983  // logic by eliminating implicit casts.
1984  assert(Idx->getType() == DL.getIndexType(GEPType) &&
1985  "Index type does not match the Data Layout preferences");
1986 
1987  bool NSW;
1988  if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1989  // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1990  // If the multiplication NewIdx * Scale may overflow then the new
1991  // GEP may not be "inbounds".
1992  Value *NewGEP =
1993  GEP.isInBounds() && NSW
1994  ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1995  GEP.getName())
1996  : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx,
1997  GEP.getName());
1998 
1999  // The NewGEP must be pointer typed, so must the old one -> BitCast
2001  GEPType);
2002  }
2003  }
2004  }
2005 
2006  // Similarly, transform things like:
2007  // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2008  // (where tmp = 8*tmp2) into:
2009  // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2010  if (GEPEltType->isSized() && SrcEltTy->isSized() &&
2011  SrcEltTy->isArrayTy()) {
2012  // Check that changing to the array element type amounts to dividing the
2013  // index by a scale factor.
2014  uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2015  uint64_t ArrayEltSize =
2016  DL.getTypeAllocSize(SrcEltTy->getArrayElementType());
2017  if (ResSize && ArrayEltSize % ResSize == 0) {
2018  Value *Idx = GEP.getOperand(1);
2019  unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2020  uint64_t Scale = ArrayEltSize / ResSize;
2021 
2022  // Earlier transforms ensure that the index has the right type
2023  // according to the Data Layout, which considerably simplifies
2024  // the logic by eliminating implicit casts.
2025  assert(Idx->getType() == DL.getIndexType(GEPType) &&
2026  "Index type does not match the Data Layout preferences");
2027 
2028  bool NSW;
2029  if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2030  // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2031  // If the multiplication NewIdx * Scale may overflow then the new
2032  // GEP may not be "inbounds".
2033  Type *IndTy = DL.getIndexType(GEPType);
2034  Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2035 
2036  Value *NewGEP = GEP.isInBounds() && NSW
2037  ? Builder.CreateInBoundsGEP(
2038  SrcEltTy, StrippedPtr, Off, GEP.getName())
2039  : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off,
2040  GEP.getName());
2041  // The NewGEP must be pointer typed, so must the old one -> BitCast
2043  GEPType);
2044  }
2045  }
2046  }
2047  }
2048  }
2049 
2050  // addrspacecast between types is canonicalized as a bitcast, then an
2051  // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2052  // through the addrspacecast.
2053  Value *ASCStrippedPtrOp = PtrOp;
2054  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2055  // X = bitcast A addrspace(1)* to B addrspace(1)*
2056  // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2057  // Z = gep Y, <...constant indices...>
2058  // Into an addrspacecasted GEP of the struct.
2059  if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2060  ASCStrippedPtrOp = BC;
2061  }
2062 
2063  if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2064  Value *SrcOp = BCI->getOperand(0);
2065  PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2066  Type *SrcEltType = SrcType->getElementType();
2067 
2068  // GEP directly using the source operand if this GEP is accessing an element
2069  // of a bitcasted pointer to vector or array of the same dimensions:
2070  // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2071  // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2072  auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
2073  return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
2074  ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
2075  };
2076  if (GEP.getNumOperands() == 3 &&
2077  ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2078  areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
2079  (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2080  areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
2081 
2082  // Create a new GEP here, as using `setOperand()` followed by
2083  // `setSourceElementType()` won't actually update the type of the
2084  // existing GEP Value. Causing issues if this Value is accessed when
2085  // constructing an AddrSpaceCastInst
2086  Value *NGEP =
2087  GEP.isInBounds()
2088  ? Builder.CreateInBoundsGEP(nullptr, SrcOp, {Ops[1], Ops[2]})
2089  : Builder.CreateGEP(nullptr, SrcOp, {Ops[1], Ops[2]});
2090  NGEP->takeName(&GEP);
2091 
2092  // Preserve GEP address space to satisfy users
2093  if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2094  return new AddrSpaceCastInst(NGEP, GEPType);
2095 
2096  return replaceInstUsesWith(GEP, NGEP);
2097  }
2098 
2099  // See if we can simplify:
2100  // X = bitcast A* to B*
2101  // Y = gep X, <...constant indices...>
2102  // into a gep of the original struct. This is important for SROA and alias
2103  // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2104  unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2105  APInt Offset(OffsetBits, 0);
2106  if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2107  // If this GEP instruction doesn't move the pointer, just replace the GEP
2108  // with a bitcast of the real input to the dest type.
2109  if (!Offset) {
2110  // If the bitcast is of an allocation, and the allocation will be
2111  // converted to match the type of the cast, don't touch this.
2112  if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2113  // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2114  if (Instruction *I = visitBitCast(*BCI)) {
2115  if (I != BCI) {
2116  I->takeName(BCI);
2117  BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2118  replaceInstUsesWith(*BCI, I);
2119  }
2120  return &GEP;
2121  }
2122  }
2123 
2124  if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2125  return new AddrSpaceCastInst(SrcOp, GEPType);
2126  return new BitCastInst(SrcOp, GEPType);
2127  }
2128 
2129  // Otherwise, if the offset is non-zero, we need to find out if there is a
2130  // field at Offset in 'A's type. If so, we can pull the cast through the
2131  // GEP.
2132  SmallVector<Value*, 8> NewIndices;
2133  if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2134  Value *NGEP =
2135  GEP.isInBounds()
2136  ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices)
2137  : Builder.CreateGEP(nullptr, SrcOp, NewIndices);
2138 
2139  if (NGEP->getType() == GEPType)
2140  return replaceInstUsesWith(GEP, NGEP);
2141  NGEP->takeName(&GEP);
2142 
2143  if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2144  return new AddrSpaceCastInst(NGEP, GEPType);
2145  return new BitCastInst(NGEP, GEPType);
2146  }
2147  }
2148  }
2149 
2150  if (!GEP.isInBounds()) {
2151  unsigned IdxWidth =
2152  DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2153  APInt BasePtrOffset(IdxWidth, 0);
2154  Value *UnderlyingPtrOp =
2156  BasePtrOffset);
2157  if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2158  if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2159  BasePtrOffset.isNonNegative()) {
2160  APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
2161  if (BasePtrOffset.ule(AllocSize)) {
2163  PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
2164  }
2165  }
2166  }
2167  }
2168 
2169  return nullptr;
2170 }
2171 
2173  Instruction *AI) {
2174  if (isa<ConstantPointerNull>(V))
2175  return true;
2176  if (auto *LI = dyn_cast<LoadInst>(V))
2177  return isa<GlobalVariable>(LI->getPointerOperand());
2178  // Two distinct allocations will never be equal.
2179  // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2180  // through bitcasts of V can cause
2181  // the result statement below to be true, even when AI and V (ex:
2182  // i8* ->i32* ->i8* of AI) are the same allocations.
2183  return isAllocLikeFn(V, TLI) && V != AI;
2184 }
2185 
2188  const TargetLibraryInfo *TLI) {
2190  Worklist.push_back(AI);
2191 
2192  do {
2193  Instruction *PI = Worklist.pop_back_val();
2194  for (User *U : PI->users()) {
2195  Instruction *I = cast<Instruction>(U);
2196  switch (I->getOpcode()) {
2197  default:
2198  // Give up the moment we see something we can't handle.
2199  return false;
2200 
2201  case Instruction::AddrSpaceCast:
2202  case Instruction::BitCast:
2203  case Instruction::GetElementPtr:
2204  Users.emplace_back(I);
2205  Worklist.push_back(I);
2206  continue;
2207 
2208  case Instruction::ICmp: {
2209  ICmpInst *ICI = cast<ICmpInst>(I);
2210  // We can fold eq/ne comparisons with null to false/true, respectively.
2211  // We also fold comparisons in some conditions provided the alloc has
2212  // not escaped (see isNeverEqualToUnescapedAlloc).
2213  if (!ICI->isEquality())
2214  return false;
2215  unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2216  if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2217  return false;
2218  Users.emplace_back(I);
2219  continue;
2220  }
2221 
2222  case Instruction::Call:
2223  // Ignore no-op and store intrinsics.
2224  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2225  switch (II->getIntrinsicID()) {
2226  default:
2227  return false;
2228 
2229  case Intrinsic::memmove:
2230  case Intrinsic::memcpy:
2231  case Intrinsic::memset: {
2232  MemIntrinsic *MI = cast<MemIntrinsic>(II);
2233  if (MI->isVolatile() || MI->getRawDest() != PI)
2234  return false;
2236  }
2241  case Intrinsic::objectsize:
2242  Users.emplace_back(I);
2243  continue;
2244  }
2245  }
2246 
2247  if (isFreeCall(I, TLI)) {
2248  Users.emplace_back(I);
2249  continue;
2250  }
2251  return false;
2252 
2253  case Instruction::Store: {
2254  StoreInst *SI = cast<StoreInst>(I);
2255  if (SI->isVolatile() || SI->getPointerOperand() != PI)
2256  return false;
2257  Users.emplace_back(I);
2258  continue;
2259  }
2260  }
2261  llvm_unreachable("missing a return?");
2262  }
2263  } while (!Worklist.empty());
2264  return true;
2265 }
2266 
2268  // If we have a malloc call which is only used in any amount of comparisons to
2269  // null and free calls, delete the calls and replace the comparisons with true
2270  // or false as appropriate.
2271 
2272  // This is based on the principle that we can substitute our own allocation
2273  // function (which will never return null) rather than knowledge of the
2274  // specific function being called. In some sense this can change the permitted
2275  // outputs of a program (when we convert a malloc to an alloca, the fact that
2276  // the allocation is now on the stack is potentially visible, for example),
2277  // but we believe in a permissible manner.
2279 
2280  // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2281  // before each store.
2283  std::unique_ptr<DIBuilder> DIB;
2284  if (isa<AllocaInst>(MI)) {
2285  DIIs = FindDbgAddrUses(&MI);
2286  DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2287  }
2288 
2289  if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2290  for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2291  // Lowering all @llvm.objectsize calls first because they may
2292  // use a bitcast/GEP of the alloca we are removing.
2293  if (!Users[i])
2294  continue;
2295 
2296  Instruction *I = cast<Instruction>(&*Users[i]);
2297 
2298  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2299  if (II->getIntrinsicID() == Intrinsic::objectsize) {
2300  ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI,
2301  /*MustSucceed=*/true);
2302  replaceInstUsesWith(*I, Result);
2303  eraseInstFromFunction(*I);
2304  Users[i] = nullptr; // Skip examining in the next loop.
2305  }
2306  }
2307  }
2308  for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2309  if (!Users[i])
2310  continue;
2311 
2312  Instruction *I = cast<Instruction>(&*Users[i]);
2313 
2314  if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2315  replaceInstUsesWith(*C,
2317  C->isFalseWhenEqual()));
2318  } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
2319  isa<AddrSpaceCastInst>(I)) {
2320  replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2321  } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2322  for (auto *DII : DIIs)
2323  ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2324  }
2325  eraseInstFromFunction(*I);
2326  }
2327 
2328  if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2329  // Replace invoke with a NOP intrinsic to maintain the original CFG
2330  Module *M = II->getModule();
2332  InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2333  None, "", II->getParent());
2334  }
2335 
2336  for (auto *DII : DIIs)
2337  eraseInstFromFunction(*DII);
2338 
2339  return eraseInstFromFunction(MI);
2340  }
2341  return nullptr;
2342 }
2343 
2344 /// Move the call to free before a NULL test.
2345 ///
2346 /// Check if this free is accessed after its argument has been test
2347 /// against NULL (property 0).
2348 /// If yes, it is legal to move this call in its predecessor block.
2349 ///
2350 /// The move is performed only if the block containing the call to free
2351 /// will be removed, i.e.:
2352 /// 1. it has only one predecessor P, and P has two successors
2353 /// 2. it contains the call, noops, and an unconditional branch
2354 /// 3. its successor is the same as its predecessor's successor
2355 ///
2356 /// The profitability is out-of concern here and this function should
2357 /// be called only if the caller knows this transformation would be
2358 /// profitable (e.g., for code size).
2360  const DataLayout &DL) {
2361  Value *Op = FI.getArgOperand(0);
2362  BasicBlock *FreeInstrBB = FI.getParent();
2363  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2364 
2365  // Validate part of constraint #1: Only one predecessor
2366  // FIXME: We can extend the number of predecessor, but in that case, we
2367  // would duplicate the call to free in each predecessor and it may
2368  // not be profitable even for code size.
2369  if (!PredBB)
2370  return nullptr;
2371 
2372  // Validate constraint #2: Does this block contains only the call to
2373  // free, noops, and an unconditional branch?
2374  BasicBlock *SuccBB;
2375  Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2376  if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2377  return nullptr;
2378 
2379  // If there are only 2 instructions in the block, at this point,
2380  // this is the call to free and unconditional.
2381  // If there are more than 2 instructions, check that they are noops
2382  // i.e., they won't hurt the performance of the generated code.
2383  if (FreeInstrBB->size() != 2) {
2384  for (const Instruction &Inst : *FreeInstrBB) {
2385  if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2386  continue;
2387  auto *Cast = dyn_cast<CastInst>(&Inst);
2388  if (!Cast || !Cast->isNoopCast(DL))
2389  return nullptr;
2390  }
2391  }
2392  // Validate the rest of constraint #1 by matching on the pred branch.
2393  Instruction *TI = PredBB->getTerminator();
2394  BasicBlock *TrueBB, *FalseBB;
2395  ICmpInst::Predicate Pred;
2396  if (!match(TI, m_Br(m_ICmp(Pred,
2397  m_CombineOr(m_Specific(Op),
2398  m_Specific(Op->stripPointerCasts())),
2399  m_Zero()),
2400  TrueBB, FalseBB)))
2401  return nullptr;
2402  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2403  return nullptr;
2404 
2405  // Validate constraint #3: Ensure the null case just falls through.
2406  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2407  return nullptr;
2408  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2409  "Broken CFG: missing edge from predecessor to successor");
2410 
2411  // At this point, we know that everything in FreeInstrBB can be moved
2412  // before TI.
2413  for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2414  It != End;) {
2415  Instruction &Instr = *It++;
2416  if (&Instr == FreeInstrBBTerminator)
2417  break;
2418  Instr.moveBefore(TI);
2419  }
2420  assert(FreeInstrBB->size() == 1 &&
2421  "Only the branch instruction should remain");
2422  return &FI;
2423 }
2424 
2426  Value *Op = FI.getArgOperand(0);
2427 
2428  // free undef -> unreachable.
2429  if (isa<UndefValue>(Op)) {
2430  // Insert a new store to null because we cannot modify the CFG here.
2431  Builder.CreateStore(ConstantInt::getTrue(FI.getContext()),
2433  return eraseInstFromFunction(FI);
2434  }
2435 
2436  // If we have 'free null' delete the instruction. This can happen in stl code
2437  // when lots of inlining happens.
2438  if (isa<ConstantPointerNull>(Op))
2439  return eraseInstFromFunction(FI);
2440 
2441  // If we optimize for code size, try to move the call to free before the null
2442  // test so that simplify cfg can remove the empty block and dead code
2443  // elimination the branch. I.e., helps to turn something like:
2444  // if (foo) free(foo);
2445  // into
2446  // free(foo);
2447  if (MinimizeSize)
2448  if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2449  return I;
2450 
2451  return nullptr;
2452 }
2453 
2455  if (RI.getNumOperands() == 0) // ret void
2456  return nullptr;
2457 
2458  Value *ResultOp = RI.getOperand(0);
2459  Type *VTy = ResultOp->getType();
2460  if (!VTy->isIntegerTy())
2461  return nullptr;
2462 
2463  // There might be assume intrinsics dominating this return that completely
2464  // determine the value. If so, constant fold it.
2465  KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2466  if (Known.isConstant())
2467  RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
2468 
2469  return nullptr;
2470 }
2471 
2473  // Change br (not X), label True, label False to: br X, label False, True
2474  Value *X = nullptr;
2475  BasicBlock *TrueDest;
2476  BasicBlock *FalseDest;
2477  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2478  !isa<Constant>(X)) {
2479  // Swap Destinations and condition...
2480  BI.setCondition(X);
2481  BI.swapSuccessors();
2482  return &BI;
2483  }
2484 
2485  // If the condition is irrelevant, remove the use so that other
2486  // transforms on the condition become more effective.
2487  if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2488  BI.getSuccessor(0) == BI.getSuccessor(1)) {
2490  return &BI;
2491  }
2492 
2493  // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2494  CmpInst::Predicate Pred;
2495  if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest,
2496  FalseDest)) &&
2497  !isCanonicalPredicate(Pred)) {
2498  // Swap destinations and condition.
2499  CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2501  BI.swapSuccessors();
2502  Worklist.Add(Cond);
2503  return &BI;
2504  }
2505 
2506  return nullptr;
2507 }
2508 
2510  Value *Cond = SI.getCondition();
2511  Value *Op0;
2512  ConstantInt *AddRHS;
2513  if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2514  // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2515  for (auto Case : SI.cases()) {
2516  Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2517  assert(isa<ConstantInt>(NewCase) &&
2518  "Result of expression should be constant");
2519  Case.setValue(cast<ConstantInt>(NewCase));
2520  }
2521  SI.setCondition(Op0);
2522  return &SI;
2523  }
2524 
2525  KnownBits Known = computeKnownBits(Cond, 0, &SI);
2526  unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2527  unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2528 
2529  // Compute the number of leading bits we can ignore.
2530  // TODO: A better way to determine this would use ComputeNumSignBits().
2531  for (auto &C : SI.cases()) {
2532  LeadingKnownZeros = std::min(
2533  LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2534  LeadingKnownOnes = std::min(
2535  LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2536  }
2537 
2538  unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2539 
2540  // Shrink the condition operand if the new type is smaller than the old type.
2541  // But do not shrink to a non-standard type, because backend can't generate
2542  // good code for that yet.
2543  // TODO: We can make it aggressive again after fixing PR39569.
2544  if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2545  shouldChangeType(Known.getBitWidth(), NewWidth)) {
2546  IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2547  Builder.SetInsertPoint(&SI);
2548  Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2549  SI.setCondition(NewCond);
2550 
2551  for (auto Case : SI.cases()) {
2552  APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2553  Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2554  }
2555  return &SI;
2556  }
2557 
2558  return nullptr;
2559 }
2560 
2562  Value *Agg = EV.getAggregateOperand();
2563 
2564  if (!EV.hasIndices())
2565  return replaceInstUsesWith(EV, Agg);
2566 
2567  if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2568  SQ.getWithInstruction(&EV)))
2569  return replaceInstUsesWith(EV, V);
2570 
2571  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2572  // We're extracting from an insertvalue instruction, compare the indices
2573  const unsigned *exti, *exte, *insi, *inse;
2574  for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2575  exte = EV.idx_end(), inse = IV->idx_end();
2576  exti != exte && insi != inse;
2577  ++exti, ++insi) {
2578  if (*insi != *exti)
2579  // The insert and extract both reference distinctly different elements.
2580  // This means the extract is not influenced by the insert, and we can
2581  // replace the aggregate operand of the extract with the aggregate
2582  // operand of the insert. i.e., replace
2583  // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2584  // %E = extractvalue { i32, { i32 } } %I, 0
2585  // with
2586  // %E = extractvalue { i32, { i32 } } %A, 0
2587  return ExtractValueInst::Create(IV->getAggregateOperand(),
2588  EV.getIndices());
2589  }
2590  if (exti == exte && insi == inse)
2591  // Both iterators are at the end: Index lists are identical. Replace
2592  // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2593  // %C = extractvalue { i32, { i32 } } %B, 1, 0
2594  // with "i32 42"
2595  return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2596  if (exti == exte) {
2597  // The extract list is a prefix of the insert list. i.e. replace
2598  // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2599  // %E = extractvalue { i32, { i32 } } %I, 1
2600  // with
2601  // %X = extractvalue { i32, { i32 } } %A, 1
2602  // %E = insertvalue { i32 } %X, i32 42, 0
2603  // by switching the order of the insert and extract (though the
2604  // insertvalue should be left in, since it may have other uses).
2605  Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2606  EV.getIndices());
2607  return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2608  makeArrayRef(insi, inse));
2609  }
2610  if (insi == inse)
2611  // The insert list is a prefix of the extract list
2612  // We can simply remove the common indices from the extract and make it
2613  // operate on the inserted value instead of the insertvalue result.
2614  // i.e., replace
2615  // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2616  // %E = extractvalue { i32, { i32 } } %I, 1, 0
2617  // with
2618  // %E extractvalue { i32 } { i32 42 }, 0
2619  return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2620  makeArrayRef(exti, exte));
2621  }
2622  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2623  // We're extracting from an intrinsic, see if we're the only user, which
2624  // allows us to simplify multiple result intrinsics to simpler things that
2625  // just get one value.
2626  if (II->hasOneUse()) {
2627  // Check if we're grabbing the overflow bit or the result of a 'with
2628  // overflow' intrinsic. If it's the latter we can remove the intrinsic
2629  // and replace it with a traditional binary instruction.
2630  switch (II->getIntrinsicID()) {
2633  if (*EV.idx_begin() == 0) { // Normal result.
2634  Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2635  replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2636  eraseInstFromFunction(*II);
2637  return BinaryOperator::CreateAdd(LHS, RHS);
2638  }
2639 
2640  // If the normal result of the add is dead, and the RHS is a constant,
2641  // we can transform this into a range comparison.
2642  // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2643  if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2644  if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2645  return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2646  ConstantExpr::getNot(CI));
2647  break;
2650  if (*EV.idx_begin() == 0) { // Normal result.
2651  Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2652  replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2653  eraseInstFromFunction(*II);
2654  return BinaryOperator::CreateSub(LHS, RHS);
2655  }
2656  break;
2659  if (*EV.idx_begin() == 0) { // Normal result.
2660  Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2661  replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2662  eraseInstFromFunction(*II);
2663  return BinaryOperator::CreateMul(LHS, RHS);
2664  }
2665  break;
2666  default:
2667  break;
2668  }
2669  }
2670  }
2671  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2672  // If the (non-volatile) load only has one use, we can rewrite this to a
2673  // load from a GEP. This reduces the size of the load. If a load is used
2674  // only by extractvalue instructions then this either must have been
2675  // optimized before, or it is a struct with padding, in which case we
2676  // don't want to do the transformation as it loses padding knowledge.
2677  if (L->isSimple() && L->hasOneUse()) {
2678  // extractvalue has integer indices, getelementptr has Value*s. Convert.
2679  SmallVector<Value*, 4> Indices;
2680  // Prefix an i32 0 since we need the first element.
2681  Indices.push_back(Builder.getInt32(0));
2682  for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2683  I != E; ++I)
2684  Indices.push_back(Builder.getInt32(*I));
2685 
2686  // We need to insert these at the location of the old load, not at that of
2687  // the extractvalue.
2688  Builder.SetInsertPoint(L);
2689  Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2690  L->getPointerOperand(), Indices);
2691  Instruction *NL = Builder.CreateLoad(GEP);
2692  // Whatever aliasing information we had for the orignal load must also
2693  // hold for the smaller load, so propagate the annotations.
2694  AAMDNodes Nodes;
2695  L->getAAMetadata(Nodes);
2696  NL->setAAMetadata(Nodes);
2697  // Returning the load directly will cause the main loop to insert it in
2698  // the wrong spot, so use replaceInstUsesWith().
2699  return replaceInstUsesWith(EV, NL);
2700  }
2701  // We could simplify extracts from other values. Note that nested extracts may
2702  // already be simplified implicitly by the above: extract (extract (insert) )
2703  // will be translated into extract ( insert ( extract ) ) first and then just
2704  // the value inserted, if appropriate. Similarly for extracts from single-use
2705  // loads: extract (extract (load)) will be translated to extract (load (gep))
2706  // and if again single-use then via load (gep (gep)) to load (gep).
2707  // However, double extracts from e.g. function arguments or return values
2708  // aren't handled yet.
2709  return nullptr;
2710 }
2711 
2712 /// Return 'true' if the given typeinfo will match anything.
2713 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2714  switch (Personality) {
2715  case EHPersonality::GNU_C:
2717  case EHPersonality::Rust:
2718  // The GCC C EH and Rust personality only exists to support cleanups, so
2719  // it's not clear what the semantics of catch clauses are.
2720  return false;
2722  return false;
2724  // While __gnat_all_others_value will match any Ada exception, it doesn't
2725  // match foreign exceptions (or didn't, before gcc-4.7).
2726  return false;
2735  return TypeInfo->isNullValue();
2736  }
2737  llvm_unreachable("invalid enum");
2738 }
2739 
2740 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2741  return
2742  cast<ArrayType>(LHS->getType())->getNumElements()
2743  <
2744  cast<ArrayType>(RHS->getType())->getNumElements();
2745 }
2746 
2748  // The logic here should be correct for any real-world personality function.
2749  // However if that turns out not to be true, the offending logic can always
2750  // be conditioned on the personality function, like the catch-all logic is.
2751  EHPersonality Personality =
2753 
2754  // Simplify the list of clauses, eg by removing repeated catch clauses
2755  // (these are often created by inlining).
2756  bool MakeNewInstruction = false; // If true, recreate using the following:
2757  SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2758  bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2759 
2760  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2761  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2762  bool isLastClause = i + 1 == e;
2763  if (LI.isCatch(i)) {
2764  // A catch clause.
2765  Constant *CatchClause = LI.getClause(i);
2766  Constant *TypeInfo = CatchClause->stripPointerCasts();
2767 
2768  // If we already saw this clause, there is no point in having a second
2769  // copy of it.
2770  if (AlreadyCaught.insert(TypeInfo).second) {
2771  // This catch clause was not already seen.
2772  NewClauses.push_back(CatchClause);
2773  } else {
2774  // Repeated catch clause - drop the redundant copy.
2775  MakeNewInstruction = true;
2776  }
2777 
2778  // If this is a catch-all then there is no point in keeping any following
2779  // clauses or marking the landingpad as having a cleanup.
2780  if (isCatchAll(Personality, TypeInfo)) {
2781  if (!isLastClause)
2782  MakeNewInstruction = true;
2783  CleanupFlag = false;
2784  break;
2785  }
2786  } else {
2787  // A filter clause. If any of the filter elements were already caught
2788  // then they can be dropped from the filter. It is tempting to try to
2789  // exploit the filter further by saying that any typeinfo that does not
2790  // occur in the filter can't be caught later (and thus can be dropped).
2791  // However this would be wrong, since typeinfos can match without being
2792  // equal (for example if one represents a C++ class, and the other some
2793  // class derived from it).
2794  assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2795  Constant *FilterClause = LI.getClause(i);
2796  ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2797  unsigned NumTypeInfos = FilterType->getNumElements();
2798 
2799  // An empty filter catches everything, so there is no point in keeping any
2800  // following clauses or marking the landingpad as having a cleanup. By
2801  // dealing with this case here the following code is made a bit simpler.
2802  if (!NumTypeInfos) {
2803  NewClauses.push_back(FilterClause);
2804  if (!isLastClause)
2805  MakeNewInstruction = true;
2806  CleanupFlag = false;
2807  break;
2808  }
2809 
2810  bool MakeNewFilter = false; // If true, make a new filter.
2811  SmallVector<Constant *, 16> NewFilterElts; // New elements.
2812  if (isa<ConstantAggregateZero>(FilterClause)) {
2813  // Not an empty filter - it contains at least one null typeinfo.
2814  assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2815  Constant *TypeInfo =
2816  Constant::getNullValue(FilterType->getElementType());
2817  // If this typeinfo is a catch-all then the filter can never match.
2818  if (isCatchAll(Personality, TypeInfo)) {
2819  // Throw the filter away.
2820  MakeNewInstruction = true;
2821  continue;
2822  }
2823 
2824  // There is no point in having multiple copies of this typeinfo, so
2825  // discard all but the first copy if there is more than one.
2826  NewFilterElts.push_back(TypeInfo);
2827  if (NumTypeInfos > 1)
2828  MakeNewFilter = true;
2829  } else {
2830  ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2831  SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2832  NewFilterElts.reserve(NumTypeInfos);
2833 
2834  // Remove any filter elements that were already caught or that already
2835  // occurred in the filter. While there, see if any of the elements are
2836  // catch-alls. If so, the filter can be discarded.
2837  bool SawCatchAll = false;
2838  for (unsigned j = 0; j != NumTypeInfos; ++j) {
2839  Constant *Elt = Filter->getOperand(j);
2840  Constant *TypeInfo = Elt->stripPointerCasts();
2841  if (isCatchAll(Personality, TypeInfo)) {
2842  // This element is a catch-all. Bail out, noting this fact.
2843  SawCatchAll = true;
2844  break;
2845  }
2846 
2847  // Even if we've seen a type in a catch clause, we don't want to
2848  // remove it from the filter. An unexpected type handler may be
2849  // set up for a call site which throws an exception of the same
2850  // type caught. In order for the exception thrown by the unexpected
2851  // handler to propagate correctly, the filter must be correctly
2852  // described for the call site.
2853  //
2854  // Example:
2855  //
2856  // void unexpected() { throw 1;}
2857  // void foo() throw (int) {
2858  // std::set_unexpected(unexpected);
2859  // try {
2860  // throw 2.0;
2861  // } catch (int i) {}
2862  // }
2863 
2864  // There is no point in having multiple copies of the same typeinfo in
2865  // a filter, so only add it if we didn't already.
2866  if (SeenInFilter.insert(TypeInfo).second)
2867  NewFilterElts.push_back(cast<Constant>(Elt));
2868  }
2869  // A filter containing a catch-all cannot match anything by definition.
2870  if (SawCatchAll) {
2871  // Throw the filter away.
2872  MakeNewInstruction = true;
2873  continue;
2874  }
2875 
2876  // If we dropped something from the filter, make a new one.
2877  if (NewFilterElts.size() < NumTypeInfos)
2878  MakeNewFilter = true;
2879  }
2880  if (MakeNewFilter) {
2881  FilterType = ArrayType::get(FilterType->getElementType(),
2882  NewFilterElts.size());
2883  FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2884  MakeNewInstruction = true;
2885  }
2886 
2887  NewClauses.push_back(FilterClause);
2888 
2889  // If the new filter is empty then it will catch everything so there is
2890  // no point in keeping any following clauses or marking the landingpad
2891  // as having a cleanup. The case of the original filter being empty was
2892  // already handled above.
2893  if (MakeNewFilter && !NewFilterElts.size()) {
2894  assert(MakeNewInstruction && "New filter but not a new instruction!");
2895  CleanupFlag = false;
2896  break;
2897  }
2898  }
2899  }
2900 
2901  // If several filters occur in a row then reorder them so that the shortest
2902  // filters come first (those with the smallest number of elements). This is
2903  // advantageous because shorter filters are more likely to match, speeding up
2904  // unwinding, but mostly because it increases the effectiveness of the other
2905  // filter optimizations below.
2906  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2907  unsigned j;
2908  // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2909  for (j = i; j != e; ++j)
2910  if (!isa<ArrayType>(NewClauses[j]->getType()))
2911  break;
2912 
2913  // Check whether the filters are already sorted by length. We need to know
2914  // if sorting them is actually going to do anything so that we only make a
2915  // new landingpad instruction if it does.
2916  for (unsigned k = i; k + 1 < j; ++k)
2917  if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2918  // Not sorted, so sort the filters now. Doing an unstable sort would be
2919  // correct too but reordering filters pointlessly might confuse users.
2920  std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2921  shorter_filter);
2922  MakeNewInstruction = true;
2923  break;
2924  }
2925 
2926  // Look for the next batch of filters.
2927  i = j + 1;
2928  }
2929 
2930  // If typeinfos matched if and only if equal, then the elements of a filter L
2931  // that occurs later than a filter F could be replaced by the intersection of
2932  // the elements of F and L. In reality two typeinfos can match without being
2933  // equal (for example if one represents a C++ class, and the other some class
2934  // derived from it) so it would be wrong to perform this transform in general.
2935  // However the transform is correct and useful if F is a subset of L. In that
2936  // case L can be replaced by F, and thus removed altogether since repeating a
2937  // filter is pointless. So here we look at all pairs of filters F and L where
2938  // L follows F in the list of clauses, and remove L if every element of F is
2939  // an element of L. This can occur when inlining C++ functions with exception
2940  // specifications.
2941  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2942  // Examine each filter in turn.
2943  Value *Filter = NewClauses[i];
2944  ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2945  if (!FTy)
2946  // Not a filter - skip it.
2947  continue;
2948  unsigned FElts = FTy->getNumElements();
2949  // Examine each filter following this one. Doing this backwards means that
2950  // we don't have to worry about filters disappearing under us when removed.
2951  for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2952  Value *LFilter = NewClauses[j];
2953  ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2954  if (!LTy)
2955  // Not a filter - skip it.
2956  continue;
2957  // If Filter is a subset of LFilter, i.e. every element of Filter is also
2958  // an element of LFilter, then discard LFilter.
2959  SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2960  // If Filter is empty then it is a subset of LFilter.
2961  if (!FElts) {
2962  // Discard LFilter.
2963  NewClauses.erase(J);
2964  MakeNewInstruction = true;
2965  // Move on to the next filter.
2966  continue;
2967  }
2968  unsigned LElts = LTy->getNumElements();
2969  // If Filter is longer than LFilter then it cannot be a subset of it.
2970  if (FElts > LElts)
2971  // Move on to the next filter.
2972  continue;
2973  // At this point we know that LFilter has at least one element.
2974  if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2975  // Filter is a subset of LFilter iff Filter contains only zeros (as we
2976  // already know that Filter is not longer than LFilter).
2977  if (isa<ConstantAggregateZero>(Filter)) {
2978  assert(FElts <= LElts && "Should have handled this case earlier!");
2979  // Discard LFilter.
2980  NewClauses.erase(J);
2981  MakeNewInstruction = true;
2982  }
2983  // Move on to the next filter.
2984  continue;
2985  }
2986  ConstantArray *LArray = cast<ConstantArray>(LFilter);
2987  if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2988  // Since Filter is non-empty and contains only zeros, it is a subset of
2989  // LFilter iff LFilter contains a zero.
2990  assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2991  for (unsigned l = 0; l != LElts; ++l)
2992  if (LArray->getOperand(l)->isNullValue()) {
2993  // LFilter contains a zero - discard it.
2994  NewClauses.erase(J);
2995  MakeNewInstruction = true;
2996  break;
2997  }
2998  // Move on to the next filter.
2999  continue;
3000  }
3001  // At this point we know that both filters are ConstantArrays. Loop over
3002  // operands to see whether every element of Filter is also an element of
3003  // LFilter. Since filters tend to be short this is probably faster than
3004  // using a method that scales nicely.
3005  ConstantArray *FArray = cast<ConstantArray>(Filter);
3006  bool AllFound = true;
3007  for (unsigned f = 0; f != FElts; ++f) {
3008  Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3009  AllFound = false;
3010  for (unsigned l = 0; l != LElts; ++l) {
3011  Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3012  if (LTypeInfo == FTypeInfo) {
3013  AllFound = true;
3014  break;
3015  }
3016  }
3017  if (!AllFound)
3018  break;
3019  }
3020  if (AllFound) {
3021  // Discard LFilter.
3022  NewClauses.erase(J);
3023  MakeNewInstruction = true;
3024  }
3025  // Move on to the next filter.
3026  }
3027  }
3028 
3029  // If we changed any of the clauses, replace the old landingpad instruction
3030  // with a new one.
3031  if (MakeNewInstruction) {
3033  NewClauses.size());
3034  for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3035  NLI->addClause(NewClauses[i]);
3036  // A landing pad with no clauses must have the cleanup flag set. It is
3037  // theoretically possible, though highly unlikely, that we eliminated all
3038  // clauses. If so, force the cleanup flag to true.
3039  if (NewClauses.empty())
3040  CleanupFlag = true;
3041  NLI->setCleanup(CleanupFlag);
3042  return NLI;
3043  }
3044 
3045  // Even if none of the clauses changed, we may nonetheless have understood
3046  // that the cleanup flag is pointless. Clear it if so.
3047  if (LI.isCleanup() != CleanupFlag) {
3048  assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3049  LI.setCleanup(CleanupFlag);
3050  return &LI;
3051  }
3052 
3053  return nullptr;
3054 }
3055 
3056 /// Try to move the specified instruction from its current block into the
3057 /// beginning of DestBlock, which can only happen if it's safe to move the
3058 /// instruction past all of the instructions between it and the end of its
3059 /// block.
3060 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3061  assert(I->hasOneUse() && "Invariants didn't hold!");
3062  BasicBlock *SrcBlock = I->getParent();
3063 
3064  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3065  if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3066  I->isTerminator())
3067  return false;
3068 
3069  // Do not sink static or dynamic alloca instructions. Static allocas must
3070  // remain in the entry block, and dynamic allocas must not be sunk in between
3071  // a stacksave / stackrestore pair, which would incorrectly shorten its
3072  // lifetime.
3073  if (isa<AllocaInst>(I))
3074  return false;
3075 
3076  // Do not sink into catchswitch blocks.
3077  if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3078  return false;
3079 
3080  // Do not sink convergent call instructions.
3081  if (auto *CI = dyn_cast<CallInst>(I)) {
3082  if (CI->isConvergent())
3083  return false;
3084  }
3085  // We can only sink load instructions if there is nothing between the load and
3086  // the end of block that could change the value.
3087  if (I->mayReadFromMemory()) {
3088  for (BasicBlock::iterator Scan = I->getIterator(),
3089  E = I->getParent()->end();
3090  Scan != E; ++Scan)
3091  if (Scan->mayWriteToMemory())
3092  return false;
3093  }
3094  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3095  I->moveBefore(&*InsertPos);
3096  ++NumSunkInst;
3097 
3098  // Also sink all related debug uses from the source basic block. Otherwise we
3099  // get debug use before the def.
3101  findDbgUsers(DbgUsers, I);
3102  for (auto *DII : DbgUsers) {
3103  if (DII->getParent() == SrcBlock) {
3104  DII->moveBefore(&*InsertPos);
3105  LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
3106  }
3107  }
3108  return true;
3109 }
3110 
3112  while (!Worklist.isEmpty()) {
3113  Instruction *I = Worklist.RemoveOne();
3114  if (I == nullptr) continue; // skip null values.
3115 
3116  // Check to see if we can DCE the instruction.
3117  if (isInstructionTriviallyDead(I, &TLI)) {
3118  LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
3119  eraseInstFromFunction(*I);
3120  ++NumDeadInst;
3121  MadeIRChange = true;
3122  continue;
3123  }
3124 
3125  if (!DebugCounter::shouldExecute(VisitCounter))
3126  continue;
3127 
3128  // Instruction isn't dead, see if we can constant propagate it.
3129  if (!I->use_empty() &&
3130  (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3131  if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3132  LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3133  << '\n');
3134 
3135  // Add operands to the worklist.
3136  replaceInstUsesWith(*I, C);
3137  ++NumConstProp;
3138  if (isInstructionTriviallyDead(I, &TLI))
3139  eraseInstFromFunction(*I);
3140  MadeIRChange = true;
3141  continue;
3142  }
3143  }
3144 
3145  // In general, it is possible for computeKnownBits to determine all bits in
3146  // a value even when the operands are not all constants.
3147  Type *Ty = I->getType();
3148  if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
3149  KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
3150  if (Known.isConstant()) {
3151  Constant *C = ConstantInt::get(Ty, Known.getConstant());
3152  LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
3153  << " from: " << *I << '\n');
3154 
3155  // Add operands to the worklist.
3156  replaceInstUsesWith(*I, C);
3157  ++NumConstProp;
3158  if (isInstructionTriviallyDead(I, &TLI))
3159  eraseInstFromFunction(*I);
3160  MadeIRChange = true;
3161  continue;
3162  }
3163  }
3164 
3165  // See if we can trivially sink this instruction to a successor basic block.
3166  if (EnableCodeSinking && I->hasOneUse()) {
3167  BasicBlock *BB = I->getParent();
3168  Instruction *UserInst = cast<Instruction>(*I->user_begin());
3169  BasicBlock *UserParent;
3170 
3171  // Get the block the use occurs in.
3172  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3173  UserParent = PN->getIncomingBlock(*I->use_begin());
3174  else
3175  UserParent = UserInst->getParent();
3176 
3177  if (UserParent != BB) {
3178  bool UserIsSuccessor = false;
3179  // See if the user is one of our successors.
3180  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
3181  if (*SI == UserParent) {
3182  UserIsSuccessor = true;
3183  break;
3184  }
3185 
3186  // If the user is one of our immediate successors, and if that successor
3187  // only has us as a predecessors (we'd have to split the critical edge
3188  // otherwise), we can keep going.
3189  if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3190  // Okay, the CFG is simple enough, try to sink this instruction.
3191  if (TryToSinkInstruction(I, UserParent)) {
3192  LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3193  MadeIRChange = true;
3194  // We'll add uses of the sunk instruction below, but since sinking
3195  // can expose opportunities for it's *operands* add them to the
3196  // worklist
3197  for (Use &U : I->operands())
3198  if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3199  Worklist.Add(OpI);
3200  }
3201  }
3202  }
3203  }
3204 
3205  // Now that we have an instruction, try combining it to simplify it.
3206  Builder.SetInsertPoint(I);
3207  Builder.SetCurrentDebugLocation(I->getDebugLoc());
3208 
3209 #ifndef NDEBUG
3210  std::string OrigI;
3211 #endif
3212  LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3213  LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3214 
3215  if (Instruction *Result = visit(*I)) {
3216  ++NumCombined;
3217  // Should we replace the old instruction with a new one?
3218  if (Result != I) {
3219  LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3220  << " New = " << *Result << '\n');
3221 
3222  if (I->getDebugLoc())
3223  Result->setDebugLoc(I->getDebugLoc());
3224  // Everything uses the new instruction now.
3225  I->replaceAllUsesWith(Result);
3226 
3227  // Move the name to the new instruction first.
3228  Result->takeName(I);
3229 
3230  // Push the new instruction and any users onto the worklist.
3231  Worklist.AddUsersToWorkList(*Result);
3232  Worklist.Add(Result);
3233 
3234  // Insert the new instruction into the basic block...
3235  BasicBlock *InstParent = I->getParent();
3236  BasicBlock::iterator InsertPos = I->getIterator();
3237 
3238  // If we replace a PHI with something that isn't a PHI, fix up the
3239  // insertion point.
3240  if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3241  InsertPos = InstParent->getFirstInsertionPt();
3242 
3243  InstParent->getInstList().insert(InsertPos, Result);
3244 
3245  eraseInstFromFunction(*I);
3246  } else {
3247  LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3248  << " New = " << *I << '\n');
3249 
3250  // If the instruction was modified, it's possible that it is now dead.
3251  // if so, remove it.
3252  if (isInstructionTriviallyDead(I, &TLI)) {
3253  eraseInstFromFunction(*I);
3254  } else {
3255  Worklist.AddUsersToWorkList(*I);
3256  Worklist.Add(I);
3257  }
3258  }
3259  MadeIRChange = true;
3260  }
3261  }
3262 
3263  Worklist.Zap();
3264  return MadeIRChange;
3265 }
3266 
3267 /// Walk the function in depth-first order, adding all reachable code to the
3268 /// worklist.
3269 ///
3270 /// This has a couple of tricks to make the code faster and more powerful. In
3271 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3272 /// them to the worklist (this significantly speeds up instcombine on code where
3273 /// many instructions are dead or constant). Additionally, if we find a branch
3274 /// whose condition is a known constant, we only visit the reachable successors.
3277  InstCombineWorklist &ICWorklist,
3278  const TargetLibraryInfo *TLI) {
3279  bool MadeIRChange = false;
3281  Worklist.push_back(BB);
3282 
3283  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3284  DenseMap<Constant *, Constant *> FoldedConstants;
3285 
3286  do {
3287  BB = Worklist.pop_back_val();
3288 
3289  // We have now visited this block! If we've already been here, ignore it.
3290  if (!Visited.insert(BB).second)
3291  continue;
3292 
3293  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3294  Instruction *Inst = &*BBI++;
3295 
3296  // DCE instruction if trivially dead.
3297  if (isInstructionTriviallyDead(Inst, TLI)) {
3298  ++NumDeadInst;
3299  LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3300  salvageDebugInfo(*Inst);
3301  Inst->eraseFromParent();
3302  MadeIRChange = true;
3303  continue;
3304  }
3305 
3306  // ConstantProp instruction if trivially constant.
3307  if (!Inst->use_empty() &&
3308  (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3309  if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3310  LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3311  << '\n');
3312  Inst->replaceAllUsesWith(C);
3313  ++NumConstProp;
3314  if (isInstructionTriviallyDead(Inst, TLI))
3315  Inst->eraseFromParent();
3316  MadeIRChange = true;
3317  continue;
3318  }
3319 
3320  // See if we can constant fold its operands.
3321  for (Use &U : Inst->operands()) {
3322  if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3323  continue;
3324 
3325  auto *C = cast<Constant>(U);
3326  Constant *&FoldRes = FoldedConstants[C];
3327  if (!FoldRes)
3328  FoldRes = ConstantFoldConstant(C, DL, TLI);
3329  if (!FoldRes)
3330  FoldRes = C;
3331 
3332  if (FoldRes != C) {
3333  LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3334  << "\n Old = " << *C
3335  << "\n New = " << *FoldRes << '\n');
3336  U = FoldRes;
3337  MadeIRChange = true;
3338  }
3339  }
3340 
3341  // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3342  // consumes non-trivial amount of time and provides no value for the optimization.
3343  if (!isa<DbgInfoIntrinsic>(Inst))
3344  InstrsForInstCombineWorklist.push_back(Inst);
3345  }
3346 
3347  // Recursively visit successors. If this is a branch or switch on a
3348  // constant, only visit the reachable successor.
3349  Instruction *TI = BB->getTerminator();
3350  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3351  if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3352  bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3353  BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3354  Worklist.push_back(ReachableBB);
3355  continue;
3356  }
3357  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3358  if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3359  Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3360  continue;
3361  }
3362  }
3363 
3364  for (BasicBlock *SuccBB : successors(TI))
3365  Worklist.push_back(SuccBB);
3366  } while (!Worklist.empty());
3367 
3368  // Once we've found all of the instructions to add to instcombine's worklist,
3369  // add them in reverse order. This way instcombine will visit from the top
3370  // of the function down. This jives well with the way that it adds all uses
3371  // of instructions to the worklist after doing a transformation, thus avoiding
3372  // some N^2 behavior in pathological cases.
3373  ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3374 
3375  return MadeIRChange;
3376 }
3377 
3378 /// Populate the IC worklist from a function, and prune any dead basic
3379 /// blocks discovered in the process.
3380 ///
3381 /// This also does basic constant propagation and other forward fixing to make
3382 /// the combiner itself run much faster.
3384  TargetLibraryInfo *TLI,
3385  InstCombineWorklist &ICWorklist) {
3386  bool MadeIRChange = false;
3387 
3388  // Do a depth-first traversal of the function, populate the worklist with
3389  // the reachable instructions. Ignore blocks that are not reachable. Keep
3390  // track of which blocks we visit.
3392  MadeIRChange |=
3393  AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3394 
3395  // Do a quick scan over the function. If we find any blocks that are
3396  // unreachable, remove any instructions inside of them. This prevents
3397  // the instcombine code from having to deal with some bad special cases.
3398  for (BasicBlock &BB : F) {
3399  if (Visited.count(&BB))
3400  continue;
3401 
3402  unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3403  MadeIRChange |= NumDeadInstInBB > 0;
3404  NumDeadInst += NumDeadInstInBB;
3405  }
3406 
3407  return MadeIRChange;
3408 }
3409 
3411  Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3413  OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true,
3414  LoopInfo *LI = nullptr) {
3415  auto &DL = F.getParent()->getDataLayout();
3416  ExpensiveCombines |= EnableExpensiveCombines;
3417 
3418  /// Builder - This is an IRBuilder that automatically inserts new
3419  /// instructions into the worklist when they are created.
3421  F.getContext(), TargetFolder(DL),
3422  IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3423  Worklist.Add(I);
3424  if (match(I, m_Intrinsic<Intrinsic::assume>()))
3425  AC.registerAssumption(cast<CallInst>(I));
3426  }));
3427 
3428  // Lower dbg.declare intrinsics otherwise their value may be clobbered
3429  // by instcombiner.
3430  bool MadeIRChange = false;
3432  MadeIRChange = LowerDbgDeclare(F);
3433 
3434  // Iterate while there is work to do.
3435  int Iteration = 0;
3436  while (true) {
3437  ++Iteration;
3438  LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3439  << F.getName() << "\n");
3440 
3441  MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3442 
3443  InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA,
3444  AC, TLI, DT, ORE, DL, LI);
3446 
3447  if (!IC.run())
3448  break;
3449  }
3450 
3451  return MadeIRChange || Iteration > 1;
3452 }
3453 
3456  auto &AC = AM.getResult<AssumptionAnalysis>(F);
3457  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3458  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3460 
3461  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3462 
3463  auto *AA = &AM.getResult<AAManager>(F);
3464  if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3465  ExpensiveCombines, LI))
3466  // No changes, all analyses are preserved.
3467  return PreservedAnalyses::all();
3468 
3469  // Mark all the analyses that instcombine updates as preserved.
3470  PreservedAnalyses PA;
3471  PA.preserveSet<CFGAnalyses>();
3472  PA.preserve<AAManager>();
3473  PA.preserve<BasicAA>();
3474  PA.preserve<GlobalsAA>();
3475  return PA;
3476 }
3477 
3479  AU.setPreservesCFG();
3489 }
3490 
3492  if (skipFunction(F))
3493  return false;
3494 
3495  // Required analyses.
3496  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3497  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3498  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3499  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3500  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3501 
3502  // Optional analyses.
3503  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3504  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3505 
3506  return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3507  ExpensiveCombines, LI);
3508 }
3509 
3511 
3513  "Combine redundant instructions", false, false)
3521  "Combine redundant instructions", false, false)
3522 
3523 // Initialization Routines
3526 }
3527 
3530 }
3531 
3533  return new InstructionCombiningPass(ExpensiveCombines);
3534 }
3535 
3538 }
Legacy wrapper pass to provide the GlobalsAAResult object.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Type * getVectorElementType() const
Definition: Type.h:371
const NoneType None
Definition: None.h:24
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double, and whose elements are just simple data values (i.e.
Definition: Constants.h:762
Value * EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition: Local.h:29
uint64_t CallInst * C
Return a value (possibly void), from a function.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
bool isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates or reallocates memory (eith...
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, TargetLibraryInfo *TLI, InstCombineWorklist &ICWorklist)
Populate the IC worklist from a function, and prune any dead basic blocks discovered in the process...
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:585
void copyFastMathFlags(FastMathFlags FMF)
Convenience function for transferring all fast-math flag values to this instruction, which must be an operator which supports these flags.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:71
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
class_match< UndefValue > m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:87
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:173
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:79
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This instruction extracts a struct member or array element value from an aggregate value...
APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:834
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1298
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:654
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:376
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:770
void LLVMInitializeInstCombine(LLVMPassRegistryRef R)
This class represents lattice values for constants.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:316
void swapSuccessors()
Swap the successors of this branch instruction.
static bool isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo *TLI)
This is the interface for a simple mod/ref and alias analysis over globals.
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:265
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
static Value * foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, InstCombiner::BuilderTy &Builder)
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
void push_back(const T &Elt)
Definition: SmallVector.h:218
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Definition: Instructions.h:880
br_match m_UnconditionalBr(BasicBlock *&Succ)
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition: Registry.h:45
void findDbgUsers(SmallVectorImpl< DbgVariableIntrinsic *> &DbgInsts, Value *V)
Finds the debug info intrinsics describing a value.
Definition: Local.cpp:1507
This class represents a function call, abstracting a target machine&#39;s calling convention.
This file contains the declarations for metadata subclasses.
An immutable pass that tracks lazily created AssumptionCache objects.
Value * getCondition() const
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:90
static bool isCanonicalPredicate(CmpInst::Predicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
gep_type_iterator gep_type_end(const User *GEP)
const Value * getTrueValue() const
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:779
A cache of @llvm.assume calls within a function.
bool salvageDebugInfo(Instruction &I)
Assuming the instruction I is going to be deleted, attempt to salvage debug users of I by writing the...
Definition: Local.cpp:1591
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition: APInt.cpp:1837
This instruction constructs a fixed permutation of two input vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
bool isTerminator() const
Definition: Instruction.h:129
struct LLVMOpaquePassRegistry * LLVMPassRegistryRef
Definition: Types.h:131
void Add(Instruction *I)
Add - Add the specified instruction to the worklist if it isn&#39;t already in it.
BasicBlock * getSuccessor(unsigned i) const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:811
STATISTIC(NumFunctions, "Total number of functions")
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:231
F(f)
ThreeOps_match< V1_t, V2_t, Mask_t, Instruction::ShuffleVector > m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m)
Matches ShuffleVectorInst.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
An instruction for reading from memory.
Definition: Instructions.h:168
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2, bool OnlyIfReduced=false)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1956
Hexagon Common GEP
Value * getCondition() const
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2249
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
iv Induction Variable Users
Definition: IVUsers.cpp:52
static bool willNotOverflow(IntrinsicInst *II, LazyValueInfo *LVI)
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
This defines the Use class.
void reserve(size_type N)
Definition: SmallVector.h:376
idx_iterator idx_end() const
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Definition: TinyPtrVector.h:31
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
unsigned getBitWidth() const
Get the bit width of this value.
Definition: KnownBits.h:40
static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
Definition: Value.cpp:697
bool hasNoSignedWrap() const
Determine whether the no signed wrap flag is set.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
Definition: Instruction.h:173
op_iterator op_begin()
Definition: User.h:230
static Constant * get(ArrayType *T, ArrayRef< Constant *> V)
Definition: Constants.cpp:983
unsigned getElementContainingOffset(uint64_t Offset) const
Given a valid byte offset into the structure, returns the structure index that contains it...
Definition: DataLayout.cpp:84
static LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1509
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:130
const CallInst * isFreeCall(const Value *I, const TargetLibraryInfo *TLI)
isFreeCall - Returns non-null if the value is a call to the builtin free()
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:265
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
bool isIdenticalTo(const Instruction *I) const
Return true if the specified instruction is exactly identical to the current one. ...
bool swapOperands()
Exchange the two operands to this instruction.
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1135
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:48
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
AnalysisUsage & addRequired()
ArrayRef< unsigned > getIndices() const
Value * SimplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:529
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
This class represents a conversion between pointers from one address space to another.
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
This class represents the LLVM &#39;select&#39; instruction.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
Definition: InstrTypes.h:745
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
Attribute unwrap(LLVMAttributeRef Attr)
Definition: Attributes.h:195
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:369
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
&#39;undef&#39; values are things that do not have specified contents.
Definition: Constants.h:1286
uint64_t getArrayNumElements() const
Definition: DerivedTypes.h:388
Class to represent struct types.
Definition: DerivedTypes.h:201
Value * SimplifyGEPInst(Type *SrcTy, ArrayRef< Value *> Ops, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
static Optional< unsigned > getOpcode(ArrayRef< VPValue *> Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:197
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
The core instruction combiner logic.
void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM)
See llvm::createInstructionCombiningPass function.
static cl::opt< bool > EnableExpensiveCombines("expensive-combines", cl::desc("Enable expensive instruction combines"))
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:945
This file provides an implementation of debug counters.
static bool shorter_filter(const Value *LHS, const Value *RHS)
uint64_t getNumElements() const
Definition: DerivedTypes.h:359
Type * getSourceElementType() const
Definition: Instructions.h:951
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
This file implements a class to represent arbitrary precision integral constant values and operations...
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:642
Instruction * visitReturnInst(ReturnInst &RI)
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:103
Instruction * visitBranchInst(BranchInst &BI)
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
Definition: Instruction.h:178
unsigned getNumIndices() const
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Attempt to fold the constant using the specified DataLayout.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:85
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1575
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:606
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, Instruction *AI)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:124
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
Class to represent array types.
Definition: DerivedTypes.h:369
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
int32_t exactLogBase2() const
Definition: APInt.h:1788
This class represents a no-op cast from one type to another.
op_iterator idx_begin()
Definition: Instructions.h:979
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:82
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
TargetFolder - Create constants with target dependent folding.
Definition: TargetFolder.h:32
An instruction for storing to memory.
Definition: Instructions.h:321
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:203
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
FunctionPass * createInstructionCombiningPass(bool ExpensiveCombines=true)
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1020
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Value * getOperand(unsigned i) const
Definition: User.h:170
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS)
This function predicates factorization using distributive laws.
Class to represent pointers.
Definition: DerivedTypes.h:467
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:106
unsigned getAddressSpace() const
Returns the address space of this instruction&#39;s pointer type.
Definition: Instructions.h:963
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:335
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:304
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:854
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:62
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
Definition: Operator.h:501
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
The landingpad instruction holds all of the information necessary to generate correct exception handl...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:154
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt...
Definition: PatternMatch.h:176
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:217
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:719
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:234
bool run()
Run the combiner over the entire worklist until it is empty.
void setAAMetadata(const AAMDNodes &N)
Sets the metadata on this instruction from the AAMDNodes structure.
Definition: Metadata.cpp:1265
ConstantInt * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
Conditional or Unconditional Branch instruction.
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return &#39;true&#39; if the given typeinfo will match anything.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition: KnownBits.h:57
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides the primary interface to the instcombine pass.
A manager for alias analyses.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:562
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1888
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
size_t size() const
Definition: BasicBlock.h:279
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:502
void AddInitialGroup(ArrayRef< Instruction *> List)
AddInitialGroup - Add the specified batch of stuff in reverse order.
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
Value * SimplifyAddInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
brc_match< Cond_t > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:443
Represent the analysis usage information of a pass.
op_iterator op_end()
Definition: User.h:232
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:767
bool isConstant() const
Returns true if we know the value of all bits.
Definition: KnownBits.h:50
This instruction compares its operands according to the predicate given to the constructor.
Analysis pass providing a never-invalidated alias analysis result.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:646
bool isBinaryOp() const
Definition: Instruction.h:131
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl...
Definition: Operator.h:67
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
Definition: AsmWriter.cpp:4148
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false)
Return the identity constant for a binary opcode.
Definition: Constants.cpp:2326
match_combine_or< CastClass_match< OpTy, Instruction::ZExt >, CastClass_match< OpTy, Instruction::SExt > > m_ZExtOrSExt(const OpTy &Op)
void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
op_range operands()
Definition: User.h:238
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
static CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
Create a BitCast or an AddrSpaceCast cast instruction.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:495
bool isPotentiallyReachable(const Instruction *From, const Instruction *To, const DominatorTree *DT=nullptr, const LoopInfo *LI=nullptr)
Determine whether instruction &#39;To&#39; is reachable from &#39;From&#39;, returning true if uncertain.
Definition: CFG.cpp:187
self_iterator getIterator()
Definition: ilist_node.h:82
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:74
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:74
Class to represent integer types.
Definition: DerivedTypes.h:40
Constant Vector Declarations.
Definition: Constants.h:500
The legacy pass manager&#39;s instcombine pass.
Definition: InstCombine.h:43
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2232
void setSourceElementType(Type *Ty)
Definition: Instructions.h:953
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
const Value * getCondition() const
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:193
Type * getPointerOperandType() const
Method to return the pointer operand as a PointerType.
InstCombineWorklist - This is the worklist management logic for InstCombine.
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
const Constant * stripPointerCasts() const
Definition: Constant.h:174
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:529
iterator erase(const_iterator CI)
Definition: SmallVector.h:445
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:160
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass...
size_t size() const
Definition: SmallVector.h:53
static wasm::ValType getType(const TargetRegisterClass *RC)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
bool LowerDbgDeclare(Function &F)
Lowers llvm.dbg.declare intrinsics into appropriate set of llvm.dbg.value intrinsics.
Definition: Local.cpp:1373
bool isVolatile() const
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isFilter(unsigned Idx) const
Return &#39;true&#39; if the clause and index Idx is a filter clause.
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
Definition: Constants.cpp:302
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
A function analysis which provides an AssumptionCache.
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:334
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag...
This is the common base class for memset/memcpy/memmove.
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:192
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:216
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
TinyPtrVector< DbgVariableIntrinsic * > FindDbgAddrUses(Value *V)
Finds all intrinsics declaring local variables as living in the memory that &#39;V&#39; points to...
Definition: Local.cpp:1473
BlockVerifier::State From
iterator end()
Definition: BasicBlock.h:271
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:240
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition: Operator.h:31
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:64
Provides information about what library functions are available for the current target.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:644
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
uint64_t getSizeInBytes() const
Definition: DataLayout.h:537
Instruction * visitFree(CallInst &FI)
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1637
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
bool isConditional() const
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than it&#39;s terminator and any present EH pad instruct...
Definition: Local.cpp:1875
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:578
bool isCommutative() const
Return true if the instruction is commutative:
Definition: Instruction.h:478
static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, SmallPtrSetImpl< BasicBlock *> &Visited, InstCombineWorklist &ICWorklist, const TargetLibraryInfo *TLI)
Walk the function in depth-first order, adding all reachable code to the worklist.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:726
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a &#39;Neg&#39; as &#39;sub 0, V&#39;.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:462
struct LLVMOpaquePassManager * LLVMPassManagerRef
Definition: Types.h:128
static Value * foldOperationIntoSelectOperand(Instruction &I, Value *SO, InstCombiner::BuilderTy &Builder)
Class to represent vector types.
Definition: DerivedTypes.h:393
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
Accumulate offsets from stripInBoundsConstantOffsets().
Definition: Value.cpp:547
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
ConstantArray - Constant Array Declarations.
Definition: Constants.h:414
Class for arbitrary precision integers.
Definition: APInt.h:70
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1223
bool isCleanup() const
Return &#39;true&#39; if this landingpad instruction is a cleanup.
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
CastClass_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
typename SuperClass::iterator iterator
Definition: SmallVector.h:327
iterator_range< user_iterator > users()
Definition: Value.h:400
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property...
Definition: Operator.h:96
Instruction * visitSwitchInst(SwitchInst &SI)
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock...
Instruction * visitExtractValueInst(ExtractValueInst &EV)
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1530
Represents analyses that only rely on functions&#39; control flow.
Definition: PassManager.h:115
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition: KnownBits.h:151
const Value * getFalseValue() const
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:394
Instruction * visitLandingPadInst(LandingPadInst &LI)
use_iterator use_begin()
Definition: Value.h:339
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2219
Analysis pass providing a never-invalidated alias analysis result.
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass&#39;s ...
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Provides an &#39;InsertHelper&#39; that calls a user-provided callback after performing the default insertion...
Definition: IRBuilder.h:73
bool isVolatile() const
Return true if this is a store to a volatile memory location.
Definition: Instructions.h:354
iterator insert(iterator where, pointer New)
Definition: ilist.h:228
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:311
void registerAssumption(CallInst *CI)
Add an @llvm.assume intrinsic to this function&#39;s cache.
static bool combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, bool ExpensiveCombines=true, LoopInfo *LI=nullptr)
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:551
void emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:652
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
void setCondition(Value *V)
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value *> Args, const Twine &NameStr, Instruction *InsertBefore=nullptr)
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
void preserveSet()
Mark an analysis set as preserved.
Definition: PassManager.h:190
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
#define I(x, y, z)
Definition: MD5.cpp:58
bool isCatch(unsigned Idx) const
Return &#39;true&#39; if the clause and index Idx is a catch clause.
bool mayReadFromMemory() const
Return true if this instruction may read memory.
bool optForMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:595
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc...
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:789
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:581
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
idx_iterator idx_begin() const
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2309
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:175
DEBUG_COUNTER(VisitCounter, "instcombine-visit", "Controls which instructions are visited")
bool isUnconditional() const
void initializeInstructionCombiningPassPass(PassRegistry &)
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:437
void setCondition(Value *V)
Analysis pass providing the TargetLibraryInfo.
Multiway switch.
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1769
Value * SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
static GetElementPtrInst * CreateInBounds(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Definition: Instructions.h:914
INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", "Combine redundant instructions", false, false) INITIALIZE_PASS_END(InstructionCombiningPass
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:376
const BasicBlock & front() const
Definition: Function.h:663
SmallVector< int, 16 > getShuffleMask() const
bool isSafeToSpeculativelyExecute(const Value *V, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:483
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1875
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction has no side ef...
Definition: Local.cpp:349
LLVM Value Representation.
Definition: Value.h:73
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1299
This file provides internal interfaces used to implement the InstCombine.
void clearSubclassOptionalData()
Clear the optional flags contained in this value.
Definition: Value.h:476
succ_range successors(Instruction *I)
Definition: CFG.h:264
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:606
OptimizationRemarkEmitter legacy analysis pass.
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Definition: Instruction.cpp:87
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, StoreInst *SI, DIBuilder &Builder)
===---------------------------------------------------------------——===// Dbg Intrinsic utilities ...
Definition: Local.cpp:1277
Invoke instruction.
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition: KnownBits.h:146
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
Definition: Instruction.h:573
Type * getElementType() const
Definition: DerivedTypes.h:360
IRTranslator LLVM IR MI
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:160
unsigned greater than
Definition: InstrTypes.h:669
bool isIntDivRem() const
Definition: Instruction.h:132
This is the interface for LLVM&#39;s primary stateless and local alias analysis.
inst_range instructions(Function *F)
Definition: InstIterator.h:134
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:39
A container for analyses that lazily runs them and caches their results.
Type * getArrayElementType() const
Definition: Type.h:365
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:260
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
This header defines various interfaces for pass management in LLVM.
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Value * getPointerOperand()
Definition: Instructions.h:413
Instruction * visitAllocSite(Instruction &FI)
The optimization diagnostic interface.
Value * getRawDest() const
bool use_empty() const
Definition: Value.h:323
static Constant * get(ArrayRef< Constant *> V)
Definition: Constants.cpp:1079
Type * getElementType() const
Definition: DerivedTypes.h:486
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
BinaryOp_match< ValTy, cst_pred_ty< is_all_ones >, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a &#39;Not&#39; as &#39;xor V, -1&#39; or &#39;xor -1, V&#39;.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:218
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:221
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
const BasicBlock * getParent() const
Definition: Instruction.h:67
This instruction inserts a struct field of array element value into an aggregate value.
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Legacy wrapper pass to provide the BasicAAResult object.
gep_type_iterator gep_type_begin(const User *GEP)
static Constant * get(unsigned Opcode, Constant *C1, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a unary operator constant expression, folding if possible.
Definition: Constants.cpp:1806
user_iterator user_end()
Definition: Value.h:384