LLVM  8.0.1
TinyPtrVector.h
Go to the documentation of this file.
1 //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_ADT_TINYPTRVECTOR_H
11 #define LLVM_ADT_TINYPTRVECTOR_H
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/PointerUnion.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include <cassert>
18 #include <cstddef>
19 #include <iterator>
20 #include <type_traits>
21 
22 namespace llvm {
23 
24 /// TinyPtrVector - This class is specialized for cases where there are
25 /// normally 0 or 1 element in a vector, but is general enough to go beyond that
26 /// when required.
27 ///
28 /// NOTE: This container doesn't allow you to store a null pointer into it.
29 ///
30 template <typename EltTy>
32 public:
34  using value_type = typename VecTy::value_type;
36 
37 private:
38  PtrUnion Val;
39 
40 public:
41  TinyPtrVector() = default;
42 
44  if (VecTy *V = Val.template dyn_cast<VecTy*>())
45  delete V;
46  }
47 
48  TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
49  if (VecTy *V = Val.template dyn_cast<VecTy*>())
50  Val = new VecTy(*V);
51  }
52 
54  if (this == &RHS)
55  return *this;
56  if (RHS.empty()) {
57  this->clear();
58  return *this;
59  }
60 
61  // Try to squeeze into the single slot. If it won't fit, allocate a copied
62  // vector.
63  if (Val.template is<EltTy>()) {
64  if (RHS.size() == 1)
65  Val = RHS.front();
66  else
67  Val = new VecTy(*RHS.Val.template get<VecTy*>());
68  return *this;
69  }
70 
71  // If we have a full vector allocated, try to re-use it.
72  if (RHS.Val.template is<EltTy>()) {
73  Val.template get<VecTy*>()->clear();
74  Val.template get<VecTy*>()->push_back(RHS.front());
75  } else {
76  *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
77  }
78  return *this;
79  }
80 
81  TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
82  RHS.Val = (EltTy)nullptr;
83  }
84 
86  if (this == &RHS)
87  return *this;
88  if (RHS.empty()) {
89  this->clear();
90  return *this;
91  }
92 
93  // If this vector has been allocated on the heap, re-use it if cheap. If it
94  // would require more copying, just delete it and we'll steal the other
95  // side.
96  if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
97  if (RHS.Val.template is<EltTy>()) {
98  V->clear();
99  V->push_back(RHS.front());
100  RHS.Val = (EltTy)nullptr;
101  return *this;
102  }
103  delete V;
104  }
105 
106  Val = RHS.Val;
107  RHS.Val = (EltTy)nullptr;
108  return *this;
109  }
110 
111  TinyPtrVector(std::initializer_list<EltTy> IL)
112  : Val(IL.size() == 0
113  ? PtrUnion()
114  : IL.size() == 1 ? PtrUnion(*IL.begin())
115  : PtrUnion(new VecTy(IL.begin(), IL.end()))) {}
116 
117  /// Constructor from an ArrayRef.
118  ///
119  /// This also is a constructor for individual array elements due to the single
120  /// element constructor for ArrayRef.
122  : Val(Elts.empty()
123  ? PtrUnion()
124  : Elts.size() == 1
125  ? PtrUnion(Elts[0])
126  : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
127 
128  TinyPtrVector(size_t Count, EltTy Value)
129  : Val(Count == 0 ? PtrUnion()
130  : Count == 1 ? PtrUnion(Value)
131  : PtrUnion(new VecTy(Count, Value))) {}
132 
133  // implicit conversion operator to ArrayRef.
134  operator ArrayRef<EltTy>() const {
135  if (Val.isNull())
136  return None;
137  if (Val.template is<EltTy>())
138  return *Val.getAddrOfPtr1();
139  return *Val.template get<VecTy*>();
140  }
141 
142  // implicit conversion operator to MutableArrayRef.
144  if (Val.isNull())
145  return None;
146  if (Val.template is<EltTy>())
147  return *Val.getAddrOfPtr1();
148  return *Val.template get<VecTy*>();
149  }
150 
151  // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
152  template<typename U,
153  typename std::enable_if<
154  std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
155  bool>::type = false>
156  operator ArrayRef<U>() const {
157  return operator ArrayRef<EltTy>();
158  }
159 
160  bool empty() const {
161  // This vector can be empty if it contains no element, or if it
162  // contains a pointer to an empty vector.
163  if (Val.isNull()) return true;
164  if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
165  return Vec->empty();
166  return false;
167  }
168 
169  unsigned size() const {
170  if (empty())
171  return 0;
172  if (Val.template is<EltTy>())
173  return 1;
174  return Val.template get<VecTy*>()->size();
175  }
176 
177  using iterator = EltTy *;
178  using const_iterator = const EltTy *;
179  using reverse_iterator = std::reverse_iterator<iterator>;
180  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
181 
183  if (Val.template is<EltTy>())
184  return Val.getAddrOfPtr1();
185 
186  return Val.template get<VecTy *>()->begin();
187  }
188 
190  if (Val.template is<EltTy>())
191  return begin() + (Val.isNull() ? 0 : 1);
192 
193  return Val.template get<VecTy *>()->end();
194  }
195 
197  return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
198  }
199 
200  const_iterator end() const {
201  return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
202  }
203 
206 
208  return const_reverse_iterator(end());
209  }
210 
212  return const_reverse_iterator(begin());
213  }
214 
215  EltTy operator[](unsigned i) const {
216  assert(!Val.isNull() && "can't index into an empty vector");
217  if (EltTy V = Val.template dyn_cast<EltTy>()) {
218  assert(i == 0 && "tinyvector index out of range");
219  return V;
220  }
221 
222  assert(i < Val.template get<VecTy*>()->size() &&
223  "tinyvector index out of range");
224  return (*Val.template get<VecTy*>())[i];
225  }
226 
227  EltTy front() const {
228  assert(!empty() && "vector empty");
229  if (EltTy V = Val.template dyn_cast<EltTy>())
230  return V;
231  return Val.template get<VecTy*>()->front();
232  }
233 
234  EltTy back() const {
235  assert(!empty() && "vector empty");
236  if (EltTy V = Val.template dyn_cast<EltTy>())
237  return V;
238  return Val.template get<VecTy*>()->back();
239  }
240 
241  void push_back(EltTy NewVal) {
242  assert(NewVal && "Can't add a null value");
243 
244  // If we have nothing, add something.
245  if (Val.isNull()) {
246  Val = NewVal;
247  return;
248  }
249 
250  // If we have a single value, convert to a vector.
251  if (EltTy V = Val.template dyn_cast<EltTy>()) {
252  Val = new VecTy();
253  Val.template get<VecTy*>()->push_back(V);
254  }
255 
256  // Add the new value, we know we have a vector.
257  Val.template get<VecTy*>()->push_back(NewVal);
258  }
259 
260  void pop_back() {
261  // If we have a single value, convert to empty.
262  if (Val.template is<EltTy>())
263  Val = (EltTy)nullptr;
264  else if (VecTy *Vec = Val.template get<VecTy*>())
265  Vec->pop_back();
266  }
267 
268  void clear() {
269  // If we have a single value, convert to empty.
270  if (Val.template is<EltTy>()) {
271  Val = (EltTy)nullptr;
272  } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
273  // If we have a vector form, just clear it.
274  Vec->clear();
275  }
276  // Otherwise, we're already empty.
277  }
278 
280  assert(I >= begin() && "Iterator to erase is out of bounds.");
281  assert(I < end() && "Erasing at past-the-end iterator.");
282 
283  // If we have a single value, convert to empty.
284  if (Val.template is<EltTy>()) {
285  if (I == begin())
286  Val = (EltTy)nullptr;
287  } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
288  // multiple items in a vector; just do the erase, there is no
289  // benefit to collapsing back to a pointer
290  return Vec->erase(I);
291  }
292  return end();
293  }
294 
296  assert(S >= begin() && "Range to erase is out of bounds.");
297  assert(S <= E && "Trying to erase invalid range.");
298  assert(E <= end() && "Trying to erase past the end.");
299 
300  if (Val.template is<EltTy>()) {
301  if (S == begin() && S != E)
302  Val = (EltTy)nullptr;
303  } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
304  return Vec->erase(S, E);
305  }
306  return end();
307  }
308 
309  iterator insert(iterator I, const EltTy &Elt) {
310  assert(I >= this->begin() && "Insertion iterator is out of bounds.");
311  assert(I <= this->end() && "Inserting past the end of the vector.");
312  if (I == end()) {
313  push_back(Elt);
314  return std::prev(end());
315  }
316  assert(!Val.isNull() && "Null value with non-end insert iterator.");
317  if (EltTy V = Val.template dyn_cast<EltTy>()) {
318  assert(I == begin());
319  Val = Elt;
320  push_back(V);
321  return begin();
322  }
323 
324  return Val.template get<VecTy*>()->insert(I, Elt);
325  }
326 
327  template<typename ItTy>
329  assert(I >= this->begin() && "Insertion iterator is out of bounds.");
330  assert(I <= this->end() && "Inserting past the end of the vector.");
331  if (From == To)
332  return I;
333 
334  // If we have a single value, convert to a vector.
335  ptrdiff_t Offset = I - begin();
336  if (Val.isNull()) {
337  if (std::next(From) == To) {
338  Val = *From;
339  return begin();
340  }
341 
342  Val = new VecTy();
343  } else if (EltTy V = Val.template dyn_cast<EltTy>()) {
344  Val = new VecTy();
345  Val.template get<VecTy*>()->push_back(V);
346  }
347  return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
348  }
349 };
350 
351 } // end namespace llvm
352 
353 #endif // LLVM_ADT_TINYPTRVECTOR_H
This class represents lattice values for constants.
Definition: AllocatorList.h:24
EltTy front() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
TinyPtrVector(const TinyPtrVector &RHS)
Definition: TinyPtrVector.h:48
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Definition: TinyPtrVector.h:31
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Definition: PointerUnion.h:114
const_reverse_iterator rbegin() const
iterator erase(iterator I)
PT1 const * getAddrOfPtr1() const
If the union is set to the first pointer type get an address pointing to it.
Definition: PointerUnion.h:150
TinyPtrVector & operator=(const TinyPtrVector &RHS)
Definition: TinyPtrVector.h:53
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
reverse_iterator rbegin()
TinyPtrVector()=default
std::reverse_iterator< iterator > reverse_iterator
TinyPtrVector(ArrayRef< EltTy > Elts)
Constructor from an ArrayRef.
iterator insert(iterator I, const EltTy &Elt)
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:291
void push_back(EltTy NewVal)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
bool empty() const
EltTy back() const
TinyPtrVector(TinyPtrVector &&RHS)
Definition: TinyPtrVector.h:81
BlockVerifier::State From
TinyPtrVector(size_t Count, EltTy Value)
TinyPtrVector & operator=(TinyPtrVector &&RHS)
Definition: TinyPtrVector.h:85
const_reverse_iterator rend() const
const_iterator begin() const
const_iterator end() const
typename VecTy::value_type value_type
Definition: TinyPtrVector.h:34
EltTy operator[](unsigned i) const
TinyPtrVector(std::initializer_list< EltTy > IL)
SmallVector< EltTy, 4 > VecTy
Definition: TinyPtrVector.h:33
#define I(x, y, z)
Definition: MD5.cpp:58
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
reverse_iterator rend()
LLVM Value Representation.
Definition: Value.h:73
std::reverse_iterator< const_iterator > const_reverse_iterator
iterator erase(iterator S, iterator E)
unsigned size() const
iterator insert(iterator I, ItTy From, ItTy To)