LLVM  8.0.1
TargetTransformInfoImpl.h
Go to the documentation of this file.
1 //===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file provides helpers for the implementation of
11 /// a TargetTransformInfo-conforming class.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16 #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
17 
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/Type.h"
27 
28 namespace llvm {
29 
30 /// Base class for use as a mix-in that aids implementing
31 /// a TargetTransformInfo-compatible class.
33 protected:
35 
36  const DataLayout &DL;
37 
38  explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
39 
40 public:
41  // Provide value semantics. MSVC requires that we spell all of these out.
43  : DL(Arg.DL) {}
45 
46  const DataLayout &getDataLayout() const { return DL; }
47 
48  unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
49  switch (Opcode) {
50  default:
51  // By default, just classify everything as 'basic'.
52  return TTI::TCC_Basic;
53 
54  case Instruction::GetElementPtr:
55  llvm_unreachable("Use getGEPCost for GEP operations!");
56 
57  case Instruction::BitCast:
58  assert(OpTy && "Cast instructions must provide the operand type");
59  if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
60  // Identity and pointer-to-pointer casts are free.
61  return TTI::TCC_Free;
62 
63  // Otherwise, the default basic cost is used.
64  return TTI::TCC_Basic;
65 
66  case Instruction::FDiv:
67  case Instruction::FRem:
68  case Instruction::SDiv:
69  case Instruction::SRem:
70  case Instruction::UDiv:
71  case Instruction::URem:
72  return TTI::TCC_Expensive;
73 
74  case Instruction::IntToPtr: {
75  // An inttoptr cast is free so long as the input is a legal integer type
76  // which doesn't contain values outside the range of a pointer.
77  unsigned OpSize = OpTy->getScalarSizeInBits();
78  if (DL.isLegalInteger(OpSize) &&
79  OpSize <= DL.getPointerTypeSizeInBits(Ty))
80  return TTI::TCC_Free;
81 
82  // Otherwise it's not a no-op.
83  return TTI::TCC_Basic;
84  }
85  case Instruction::PtrToInt: {
86  // A ptrtoint cast is free so long as the result is large enough to store
87  // the pointer, and a legal integer type.
88  unsigned DestSize = Ty->getScalarSizeInBits();
89  if (DL.isLegalInteger(DestSize) &&
90  DestSize >= DL.getPointerTypeSizeInBits(OpTy))
91  return TTI::TCC_Free;
92 
93  // Otherwise it's not a no-op.
94  return TTI::TCC_Basic;
95  }
96  case Instruction::Trunc:
97  // trunc to a native type is free (assuming the target has compare and
98  // shift-right of the same width).
99  if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
100  return TTI::TCC_Free;
101 
102  return TTI::TCC_Basic;
103  }
104  }
105 
106  int getGEPCost(Type *PointeeType, const Value *Ptr,
107  ArrayRef<const Value *> Operands) {
108  // In the basic model, we just assume that all-constant GEPs will be folded
109  // into their uses via addressing modes.
110  for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
111  if (!isa<Constant>(Operands[Idx]))
112  return TTI::TCC_Basic;
113 
114  return TTI::TCC_Free;
115  }
116 
118  unsigned &JTSize) {
119  JTSize = 0;
120  return SI.getNumCases();
121  }
122 
123  int getExtCost(const Instruction *I, const Value *Src) {
124  return TTI::TCC_Basic;
125  }
126 
127  unsigned getCallCost(FunctionType *FTy, int NumArgs) {
128  assert(FTy && "FunctionType must be provided to this routine.");
129 
130  // The target-independent implementation just measures the size of the
131  // function by approximating that each argument will take on average one
132  // instruction to prepare.
133 
134  if (NumArgs < 0)
135  // Set the argument number to the number of explicit arguments in the
136  // function.
137  NumArgs = FTy->getNumParams();
138 
139  return TTI::TCC_Basic * (NumArgs + 1);
140  }
141 
142  unsigned getInliningThresholdMultiplier() { return 1; }
143 
144  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
145  ArrayRef<Type *> ParamTys) {
146  switch (IID) {
147  default:
148  // Intrinsics rarely (if ever) have normal argument setup constraints.
149  // Model them as having a basic instruction cost.
150  // FIXME: This is wrong for libc intrinsics.
151  return TTI::TCC_Basic;
152 
154  case Intrinsic::assume:
174  case Intrinsic::coro_end:
180  // These intrinsics don't actually represent code after lowering.
181  return TTI::TCC_Free;
182  }
183  }
184 
185  bool hasBranchDivergence() { return false; }
186 
187  bool isSourceOfDivergence(const Value *V) { return false; }
188 
189  bool isAlwaysUniform(const Value *V) { return false; }
190 
191  unsigned getFlatAddressSpace () {
192  return -1;
193  }
194 
195  bool isLoweredToCall(const Function *F) {
196  assert(F && "A concrete function must be provided to this routine.");
197 
198  // FIXME: These should almost certainly not be handled here, and instead
199  // handled with the help of TLI or the target itself. This was largely
200  // ported from existing analysis heuristics here so that such refactorings
201  // can take place in the future.
202 
203  if (F->isIntrinsic())
204  return false;
205 
206  if (F->hasLocalLinkage() || !F->hasName())
207  return true;
208 
209  StringRef Name = F->getName();
210 
211  // These will all likely lower to a single selection DAG node.
212  if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
213  Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
214  Name == "fmin" || Name == "fminf" || Name == "fminl" ||
215  Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
216  Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
217  Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
218  return false;
219 
220  // These are all likely to be optimized into something smaller.
221  if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
222  Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
223  Name == "floorf" || Name == "ceil" || Name == "round" ||
224  Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
225  Name == "llabs")
226  return false;
227 
228  return true;
229  }
230 
233 
234  bool isLegalAddImmediate(int64_t Imm) { return false; }
235 
236  bool isLegalICmpImmediate(int64_t Imm) { return false; }
237 
238  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
239  bool HasBaseReg, int64_t Scale,
240  unsigned AddrSpace, Instruction *I = nullptr) {
241  // Guess that only reg and reg+reg addressing is allowed. This heuristic is
242  // taken from the implementation of LSR.
243  return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
244  }
245 
247  return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
248  C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
249  std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
250  C2.ScaleCost, C2.ImmCost, C2.SetupCost);
251  }
252 
253  bool canMacroFuseCmp() { return false; }
254 
255  bool shouldFavorPostInc() const { return false; }
256 
257  bool isLegalMaskedStore(Type *DataType) { return false; }
258 
259  bool isLegalMaskedLoad(Type *DataType) { return false; }
260 
261  bool isLegalMaskedScatter(Type *DataType) { return false; }
262 
263  bool isLegalMaskedGather(Type *DataType) { return false; }
264 
265  bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
266 
267  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
268 
269  bool prefersVectorizedAddressing() { return true; }
270 
271  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
272  bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
273  // Guess that all legal addressing mode are free.
274  if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
275  Scale, AddrSpace))
276  return 0;
277  return -1;
278  }
279 
280  bool LSRWithInstrQueries() { return false; }
281 
282  bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
283 
284  bool isProfitableToHoist(Instruction *I) { return true; }
285 
286  bool useAA() { return false; }
287 
288  bool isTypeLegal(Type *Ty) { return false; }
289 
290  unsigned getJumpBufAlignment() { return 0; }
291 
292  unsigned getJumpBufSize() { return 0; }
293 
294  bool shouldBuildLookupTables() { return true; }
296 
297  bool useColdCCForColdCall(Function &F) { return false; }
298 
299  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
300  return 0;
301  }
302 
304  unsigned VF) { return 0; }
305 
307 
308  bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
309 
311  bool IsZeroCmp) const {
312  return nullptr;
313  }
314 
315  bool enableInterleavedAccessVectorization() { return false; }
316 
318 
319  bool isFPVectorizationPotentiallyUnsafe() { return false; }
320 
322  unsigned BitWidth,
323  unsigned AddressSpace,
324  unsigned Alignment,
325  bool *Fast) { return false; }
326 
327  TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
328  return TTI::PSK_Software;
329  }
330 
331  bool haveFastSqrt(Type *Ty) { return false; }
332 
333  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
334 
336 
337  int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
338  Type *Ty) {
339  return 0;
340  }
341 
342  unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
343 
344  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
345  Type *Ty) {
346  return TTI::TCC_Free;
347  }
348 
349  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
350  Type *Ty) {
351  return TTI::TCC_Free;
352  }
353 
354  unsigned getNumberOfRegisters(bool Vector) { return 8; }
355 
356  unsigned getRegisterBitWidth(bool Vector) const { return 32; }
357 
358  unsigned getMinVectorRegisterBitWidth() { return 128; }
359 
360  bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
361 
362  unsigned getMinimumVF(unsigned ElemWidth) const { return 0; }
363 
364  bool
366  bool &AllowPromotionWithoutCommonHeader) {
367  AllowPromotionWithoutCommonHeader = false;
368  return false;
369  }
370 
371  unsigned getCacheLineSize() { return 0; }
372 
374  switch (Level) {
378  return llvm::Optional<unsigned>();
379  }
380 
381  llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
382  }
383 
386  switch (Level) {
390  return llvm::Optional<unsigned>();
391  }
392 
393  llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
394  }
395 
396  unsigned getPrefetchDistance() { return 0; }
397 
398  unsigned getMinPrefetchStride() { return 1; }
399 
400  unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
401 
402  unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
403 
404  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
405  TTI::OperandValueKind Opd1Info,
406  TTI::OperandValueKind Opd2Info,
407  TTI::OperandValueProperties Opd1PropInfo,
408  TTI::OperandValueProperties Opd2PropInfo,
410  return 1;
411  }
412 
414  Type *SubTp) {
415  return 1;
416  }
417 
418  unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
419  const Instruction *I) { return 1; }
420 
421  unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
422  VectorType *VecTy, unsigned Index) {
423  return 1;
424  }
425 
426  unsigned getCFInstrCost(unsigned Opcode) { return 1; }
427 
428  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
429  const Instruction *I) {
430  return 1;
431  }
432 
433  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
434  return 1;
435  }
436 
437  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
438  unsigned AddressSpace, const Instruction *I) {
439  return 1;
440  }
441 
442  unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
443  unsigned AddressSpace) {
444  return 1;
445  }
446 
447  unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
448  bool VariableMask,
449  unsigned Alignment) {
450  return 1;
451  }
452 
453  unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
454  unsigned Factor,
455  ArrayRef<unsigned> Indices,
456  unsigned Alignment, unsigned AddressSpace,
457  bool UseMaskForCond = false,
458  bool UseMaskForGaps = false) {
459  return 1;
460  }
461 
464  unsigned ScalarizationCostPassed) {
465  return 1;
466  }
468  ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
469  return 1;
470  }
471 
472  unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
473  return 1;
474  }
475 
476  unsigned getNumberOfParts(Type *Tp) { return 0; }
477 
479  const SCEV *) {
480  return 0;
481  }
482 
483  unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
484 
485  unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
486 
487  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
488 
490  return false;
491  }
492 
494  // Note for overrides: You must ensure for all element unordered-atomic
495  // memory intrinsics that all power-of-2 element sizes up to, and
496  // including, the return value of this method have a corresponding
497  // runtime lib call. These runtime lib call definitions can be found
498  // in RuntimeLibcalls.h
499  return 0;
500  }
501 
503  Type *ExpectedType) {
504  return nullptr;
505  }
506 
508  unsigned SrcAlign, unsigned DestAlign) const {
509  return Type::getInt8Ty(Context);
510  }
511 
514  unsigned RemainingBytes,
515  unsigned SrcAlign,
516  unsigned DestAlign) const {
517  for (unsigned i = 0; i != RemainingBytes; ++i)
518  OpsOut.push_back(Type::getInt8Ty(Context));
519  }
520 
521  bool areInlineCompatible(const Function *Caller,
522  const Function *Callee) const {
523  return (Caller->getFnAttribute("target-cpu") ==
524  Callee->getFnAttribute("target-cpu")) &&
525  (Caller->getFnAttribute("target-features") ==
526  Callee->getFnAttribute("target-features"));
527  }
528 
529  bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
531  return (Caller->getFnAttribute("target-cpu") ==
532  Callee->getFnAttribute("target-cpu")) &&
533  (Caller->getFnAttribute("target-features") ==
534  Callee->getFnAttribute("target-features"));
535  }
536 
538  const DataLayout &DL) const {
539  return false;
540  }
541 
543  const DataLayout &DL) const {
544  return false;
545  }
546 
547  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
548 
549  bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
550 
551  bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
552 
553  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
554  unsigned Alignment,
555  unsigned AddrSpace) const {
556  return true;
557  }
558 
559  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
560  unsigned Alignment,
561  unsigned AddrSpace) const {
562  return true;
563  }
564 
565  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
566  unsigned ChainSizeInBytes,
567  VectorType *VecTy) const {
568  return VF;
569  }
570 
571  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
572  unsigned ChainSizeInBytes,
573  VectorType *VecTy) const {
574  return VF;
575  }
576 
577  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
578  TTI::ReductionFlags Flags) const {
579  return false;
580  }
581 
582  bool shouldExpandReduction(const IntrinsicInst *II) const {
583  return true;
584  }
585 
586 protected:
587  // Obtain the minimum required size to hold the value (without the sign)
588  // In case of a vector it returns the min required size for one element.
589  unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
590  if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
591  const auto* VectorValue = cast<Constant>(Val);
592 
593  // In case of a vector need to pick the max between the min
594  // required size for each element
595  auto *VT = cast<VectorType>(Val->getType());
596 
597  // Assume unsigned elements
598  isSigned = false;
599 
600  // The max required size is the total vector width divided by num
601  // of elements in the vector
602  unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
603 
604  unsigned MinRequiredSize = 0;
605  for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
606  if (auto* IntElement =
607  dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
608  bool signedElement = IntElement->getValue().isNegative();
609  // Get the element min required size.
610  unsigned ElementMinRequiredSize =
611  IntElement->getValue().getMinSignedBits() - 1;
612  // In case one element is signed then all the vector is signed.
613  isSigned |= signedElement;
614  // Save the max required bit size between all the elements.
615  MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
616  }
617  else {
618  // not an int constant element
619  return MaxRequiredSize;
620  }
621  }
622  return MinRequiredSize;
623  }
624 
625  if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
626  isSigned = CI->getValue().isNegative();
627  return CI->getValue().getMinSignedBits() - 1;
628  }
629 
630  if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
631  isSigned = true;
632  return Cast->getSrcTy()->getScalarSizeInBits() - 1;
633  }
634 
635  if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
636  isSigned = false;
637  return Cast->getSrcTy()->getScalarSizeInBits();
638  }
639 
640  isSigned = false;
641  return Val->getType()->getScalarSizeInBits();
642  }
643 
644  bool isStridedAccess(const SCEV *Ptr) {
645  return Ptr && isa<SCEVAddRecExpr>(Ptr);
646  }
647 
649  const SCEV *Ptr) {
650  if (!isStridedAccess(Ptr))
651  return nullptr;
652  const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
653  return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
654  }
655 
657  int64_t MergeDistance) {
658  const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
659  if (!Step)
660  return false;
661  APInt StrideVal = Step->getAPInt();
662  if (StrideVal.getBitWidth() > 64)
663  return false;
664  // FIXME: Need to take absolute value for negative stride case.
665  return StrideVal.getSExtValue() < MergeDistance;
666  }
667 };
668 
669 /// CRTP base class for use as a mix-in that aids implementing
670 /// a TargetTransformInfo-compatible class.
671 template <typename T>
673 private:
675 
676 protected:
677  explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
678 
679 public:
680  using BaseT::getCallCost;
681 
682  unsigned getCallCost(const Function *F, int NumArgs) {
683  assert(F && "A concrete function must be provided to this routine.");
684 
685  if (NumArgs < 0)
686  // Set the argument number to the number of explicit arguments in the
687  // function.
688  NumArgs = F->arg_size();
689 
690  if (Intrinsic::ID IID = F->getIntrinsicID()) {
691  FunctionType *FTy = F->getFunctionType();
692  SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
693  return static_cast<T *>(this)
694  ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
695  }
696 
697  if (!static_cast<T *>(this)->isLoweredToCall(F))
698  return TTI::TCC_Basic; // Give a basic cost if it will be lowered
699  // directly.
700 
701  return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
702  }
703 
705  // Simply delegate to generic handling of the call.
706  // FIXME: We should use instsimplify or something else to catch calls which
707  // will constant fold with these arguments.
708  return static_cast<T *>(this)->getCallCost(F, Arguments.size());
709  }
710 
711  using BaseT::getGEPCost;
712 
713  int getGEPCost(Type *PointeeType, const Value *Ptr,
714  ArrayRef<const Value *> Operands) {
715  const GlobalValue *BaseGV = nullptr;
716  if (Ptr != nullptr) {
717  // TODO: will remove this when pointers have an opaque type.
719  PointeeType &&
720  "explicit pointee type doesn't match operand's pointee type");
721  BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
722  }
723  bool HasBaseReg = (BaseGV == nullptr);
724 
725  auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
726  APInt BaseOffset(PtrSizeBits, 0);
727  int64_t Scale = 0;
728 
729  auto GTI = gep_type_begin(PointeeType, Operands);
730  Type *TargetType = nullptr;
731 
732  // Handle the case where the GEP instruction has a single operand,
733  // the basis, therefore TargetType is a nullptr.
734  if (Operands.empty())
735  return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
736 
737  for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
738  TargetType = GTI.getIndexedType();
739  // We assume that the cost of Scalar GEP with constant index and the
740  // cost of Vector GEP with splat constant index are the same.
741  const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
742  if (!ConstIdx)
743  if (auto Splat = getSplatValue(*I))
744  ConstIdx = dyn_cast<ConstantInt>(Splat);
745  if (StructType *STy = GTI.getStructTypeOrNull()) {
746  // For structures the index is always splat or scalar constant
747  assert(ConstIdx && "Unexpected GEP index");
748  uint64_t Field = ConstIdx->getZExtValue();
749  BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
750  } else {
751  int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
752  if (ConstIdx) {
753  BaseOffset +=
754  ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
755  } else {
756  // Needs scale register.
757  if (Scale != 0)
758  // No addressing mode takes two scale registers.
759  return TTI::TCC_Basic;
760  Scale = ElementSize;
761  }
762  }
763  }
764 
765  // Assumes the address space is 0 when Ptr is nullptr.
766  unsigned AS =
767  (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
768 
769  if (static_cast<T *>(this)->isLegalAddressingMode(
770  TargetType, const_cast<GlobalValue *>(BaseGV),
771  BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
772  return TTI::TCC_Free;
773  return TTI::TCC_Basic;
774  }
775 
776  using BaseT::getIntrinsicCost;
777 
778  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
780  // Delegate to the generic intrinsic handling code. This mostly provides an
781  // opportunity for targets to (for example) special case the cost of
782  // certain intrinsics based on constants used as arguments.
783  SmallVector<Type *, 8> ParamTys;
784  ParamTys.reserve(Arguments.size());
785  for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
786  ParamTys.push_back(Arguments[Idx]->getType());
787  return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
788  }
789 
790  unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
791  if (isa<PHINode>(U))
792  return TTI::TCC_Free; // Model all PHI nodes as free.
793 
794  // Static alloca doesn't generate target instructions.
795  if (auto *A = dyn_cast<AllocaInst>(U))
796  if (A->isStaticAlloca())
797  return TTI::TCC_Free;
798 
799  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
800  return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
801  GEP->getPointerOperand(),
802  Operands.drop_front());
803  }
804 
805  if (auto CS = ImmutableCallSite(U)) {
806  const Function *F = CS.getCalledFunction();
807  if (!F) {
808  // Just use the called value type.
809  Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
810  return static_cast<T *>(this)
811  ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
812  }
813 
814  SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
815  return static_cast<T *>(this)->getCallCost(F, Arguments);
816  }
817 
818  if (const CastInst *CI = dyn_cast<CastInst>(U)) {
819  // Result of a cmp instruction is often extended (to be used by other
820  // cmp instructions, logical or return instructions). These are usually
821  // nop on most sane targets.
822  if (isa<CmpInst>(CI->getOperand(0)))
823  return TTI::TCC_Free;
824  if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
825  return static_cast<T *>(this)->getExtCost(CI, Operands.back());
826  }
827 
828  return static_cast<T *>(this)->getOperationCost(
829  Operator::getOpcode(U), U->getType(),
830  U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
831  }
832 
835  I->value_op_end());
836  if (getUserCost(I, Operands) == TTI::TCC_Free)
837  return 0;
838 
839  if (isa<LoadInst>(I))
840  return 4;
841 
842  Type *DstTy = I->getType();
843 
844  // Usually an intrinsic is a simple instruction.
845  // A real function call is much slower.
846  if (auto *CI = dyn_cast<CallInst>(I)) {
847  const Function *F = CI->getCalledFunction();
848  if (!F || static_cast<T *>(this)->isLoweredToCall(F))
849  return 40;
850  // Some intrinsics return a value and a flag, we use the value type
851  // to decide its latency.
852  if (StructType* StructTy = dyn_cast<StructType>(DstTy))
853  DstTy = StructTy->getElementType(0);
854  // Fall through to simple instructions.
855  }
856 
857  if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
858  DstTy = VectorTy->getElementType();
859  if (DstTy->isFloatingPointTy())
860  return 3;
861 
862  return 1;
863  }
864 };
865 }
866 
867 #endif
uint64_t CallInst * C
unsigned getNumCases() const
Return the number of &#39;cases&#39; in this switch instruction, excluding the default case.
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:199
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class...
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee, SmallPtrSetImpl< Argument *> &Args) const
bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, int64_t MergeDistance)
bool hasLocalLinkage() const
Definition: GlobalValue.h:436
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef< Type *> Tys, FastMathFlags FMF, unsigned ScalarizationCostPassed)
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
LLVMContext & Context
const T & back() const
back - Get the last element.
Definition: ArrayRef.h:158
SI Whole Quad Mode
unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, unsigned Alignment)
This class represents lattice values for constants.
Definition: AllocatorList.h:24
unsigned minRequiredElementSize(const Value *Val, bool &isSigned)
void getUnrollingPreferences(Loop *, ScalarEvolution &, TTI::UnrollingPreferences &)
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index)
iterator begin() const
Definition: ArrayRef.h:137
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
unsigned getCostOfKeepingLiveOverCall(ArrayRef< Type *> Tys)
const Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:588
value_op_iterator value_op_begin()
Definition: User.h:256
The main scalar evolution driver.
MemIndexedMode
The type of load/store indexing.
unsigned getCallCost(const Function *F, int NumArgs)
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo, ArrayRef< const Value *> Args)
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy)
value_op_iterator value_op_end()
Definition: User.h:259
F(f)
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
param_iterator param_end() const
Definition: DerivedTypes.h:129
An instruction for reading from memory.
Definition: Instructions.h:168
Hexagon Common GEP
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace, const Instruction *I)
void reserve(size_type N)
Definition: SmallVector.h:376
unsigned getIntImmCost(const APInt &Imm, Type *Ty)
int getExtCost(const Instruction *I, const Value *Src)
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1509
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const
bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const
CRTP base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class...
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info)
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
amdgpu Simplify well known AMD library false Value Value const Twine & Name
Type * getPointerElementType() const
Definition: Type.h:376
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:646
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
Class to represent struct types.
Definition: DerivedTypes.h:201
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
unsigned getArithmeticReductionCost(unsigned, Type *, bool)
const APInt & getAPInt() const
bool isLegalToVectorizeLoad(LoadInst *LI) const
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAlign, unsigned DestAlign) const
bool isTruncateFree(Type *Ty1, Type *Ty2)
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
bool enableAggressiveInterleaving(bool LoopHasReductions)
Class to represent function types.
Definition: DerivedTypes.h:103
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1575
llvm::Optional< unsigned > getCacheSize(TargetTransformInfo::CacheLevel Level)
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
This node represents a polynomial recurrence on the trip count of the specified loop.
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type *> &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const
PopcntSupportKind
Flags indicating the kind of support for population count.
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:884
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:138
An instruction for storing to memory.
Definition: Instructions.h:321
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index)
Value * getOperand(unsigned i) const
Definition: User.h:170
Analysis containing CSE Info
Definition: CSEInfo.cpp:21
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:304
bool isLegalToVectorizeStore(StoreInst *SI) const
unsigned getMinimumVF(unsigned ElemWidth) const
If not nullptr, enable inline expansion of memcmp.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index, Type *SubTp)
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type *> Tys)
bool hasName() const
Definition: Value.h:251
Flags describing the kind of vector reduction.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I)
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef< const Value *> Arguments)
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
This is an important base class in LLVM.
Definition: Constant.h:42
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:139
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty)
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace)
Expected to fold away in lowering.
AMDGPU Lower Kernel Arguments
unsigned getUserCost(const User *U, ArrayRef< const Value *> Operands)
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr)
param_iterator param_begin() const
Definition: DerivedTypes.h:128
const TTI::MemCmpExpansionOptions * enableMemCmpExpansion(bool IsZeroCmp) const
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize)
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond=false, bool UseMaskForGaps=false)
size_t arg_size() const
Definition: Function.h:698
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:529
unsigned getCallCost(FunctionType *FTy, int NumArgs)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const SCEVConstant * getConstantStrideStep(ScalarEvolution *SE, const SCEV *Ptr)
OperandValueProperties
Additional properties of an operand&#39;s values.
int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty)
unsigned getNumOperands() const
Definition: User.h:192
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract)
TargetTransformInfoImplBase(const DataLayout &DL)
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
AddressSpace
Definition: NVPTXBaseInfo.h:22
iterator end() const
Definition: ArrayRef.h:138
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU...
Definition: DataLayout.h:243
Type * getReturnType() const
Definition: DerivedTypes.h:124
bool useReductionIntrinsic(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast)
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:194
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader)
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:164
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace)
Class to represent vector types.
Definition: DerivedTypes.h:393
Class for arbitrary precision integers.
Definition: APInt.h:70
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
unsigned getMinMaxReductionCost(Type *, Type *, bool, bool)
amdgpu Simplify well known AMD library false Value Value * Arg
uint64_t getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:568
bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2)
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:436
unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace)
unsigned getCFInstrCost(unsigned Opcode)
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:551
This class represents an analyzed expression in the program.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:188
Parameters that control the generic loop unrolling transformation.
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
Establish a view to a call site for examination.
Definition: CallSite.h:711
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned getOperandsScalarizationOverhead(ArrayRef< const Value *> Args, unsigned VF)
int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value *> Operands)
bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *, const SCEV *)
const unsigned Kind
Multiway switch.
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
The cost of a typical &#39;add&#39; instruction.
LLVM Value Representation.
Definition: Value.h:73
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty)
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:41
bool shouldExpandReduction(const IntrinsicInst *II) const
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.h:331
bool shouldMaximizeVectorBandwidth(bool OptSize) const
const DataLayout & getDataLayout() const
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:160
OperandValueKind
Additional information about an operand&#39;s possible values.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
This pass exposes codegen information to IR-level passes.
llvm::Optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level)
CacheLevel
The possible cache levels.
unsigned getRegisterBitWidth(bool Vector) const
Information about a load/store intrinsic defined by the target.
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef< Type *> ParamTys)
The cost of a &#39;div&#39; instruction on x86.
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value *> Operands)
unsigned getCallCost(const Function *F, ArrayRef< const Value *> Arguments)
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
bool hasDivRemOp(Type *DataType, bool IsSigned)
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit)
Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType)
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
This class represents a constant integer value.
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef< Value *> Args, FastMathFlags FMF, unsigned VF)
ShuffleKind
The various kinds of shuffle patterns for vector queries.
gep_type_iterator gep_type_begin(const User *GEP)