LLVM  8.0.1
MipsInstrInfo.cpp
Go to the documentation of this file.
1 //===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Mips implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsInstrInfo.h"
17 #include "MipsSubtarget.h"
18 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/MC/MCInstrDesc.h"
30 #include <cassert>
31 
32 using namespace llvm;
33 
34 #define GET_INSTRINFO_CTOR_DTOR
35 #include "MipsGenInstrInfo.inc"
36 
37 // Pin the vtable to this file.
38 void MipsInstrInfo::anchor() {}
39 
40 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
41  : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
42  Subtarget(STI), UncondBrOpc(UncondBr) {}
43 
45  if (STI.inMips16Mode())
46  return createMips16InstrInfo(STI);
47 
48  return createMipsSEInstrInfo(STI);
49 }
50 
52  return op.isImm() && op.getImm() == 0;
53 }
54 
55 /// insertNoop - If data hazard condition is found insert the target nop
56 /// instruction.
57 // FIXME: This appears to be dead code.
58 void MipsInstrInfo::
60 {
61  DebugLoc DL;
62  BuildMI(MBB, MI, DL, get(Mips::NOP));
63 }
64 
67  MachineMemOperand::Flags Flags) const {
68  MachineFunction &MF = *MBB.getParent();
69  MachineFrameInfo &MFI = MF.getFrameInfo();
70  unsigned Align = MFI.getObjectAlignment(FI);
71 
73  Flags, MFI.getObjectSize(FI), Align);
74 }
75 
76 //===----------------------------------------------------------------------===//
77 // Branch Analysis
78 //===----------------------------------------------------------------------===//
79 
80 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
81  MachineBasicBlock *&BB,
82  SmallVectorImpl<MachineOperand> &Cond) const {
83  assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
84  int NumOp = Inst->getNumExplicitOperands();
85 
86  // for both int and fp branches, the last explicit operand is the
87  // MBB.
88  BB = Inst->getOperand(NumOp-1).getMBB();
90 
91  for (int i = 0; i < NumOp-1; i++)
92  Cond.push_back(Inst->getOperand(i));
93 }
94 
96  MachineBasicBlock *&TBB,
97  MachineBasicBlock *&FBB,
99  bool AllowModify) const {
100  SmallVector<MachineInstr*, 2> BranchInstrs;
101  BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
102 
103  return (BT == BT_None) || (BT == BT_Indirect);
104 }
105 
106 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
107  const DebugLoc &DL,
108  ArrayRef<MachineOperand> Cond) const {
109  unsigned Opc = Cond[0].getImm();
110  const MCInstrDesc &MCID = get(Opc);
111  MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
112 
113  for (unsigned i = 1; i < Cond.size(); ++i) {
114  assert((Cond[i].isImm() || Cond[i].isReg()) &&
115  "Cannot copy operand for conditional branch!");
116  MIB.add(Cond[i]);
117  }
118  MIB.addMBB(TBB);
119 }
120 
122  MachineBasicBlock *TBB,
123  MachineBasicBlock *FBB,
125  const DebugLoc &DL,
126  int *BytesAdded) const {
127  // Shouldn't be a fall through.
128  assert(TBB && "insertBranch must not be told to insert a fallthrough");
129  assert(!BytesAdded && "code size not handled");
130 
131  // # of condition operands:
132  // Unconditional branches: 0
133  // Floating point branches: 1 (opc)
134  // Int BranchZero: 2 (opc, reg)
135  // Int Branch: 3 (opc, reg0, reg1)
136  assert((Cond.size() <= 3) &&
137  "# of Mips branch conditions must be <= 3!");
138 
139  // Two-way Conditional branch.
140  if (FBB) {
141  BuildCondBr(MBB, TBB, DL, Cond);
142  BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
143  return 2;
144  }
145 
146  // One way branch.
147  // Unconditional branch.
148  if (Cond.empty())
149  BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
150  else // Conditional branch.
151  BuildCondBr(MBB, TBB, DL, Cond);
152  return 1;
153 }
154 
156  int *BytesRemoved) const {
157  assert(!BytesRemoved && "code size not handled");
158 
159  MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
160  unsigned removed = 0;
161 
162  // Up to 2 branches are removed.
163  // Note that indirect branches are not removed.
164  while (I != REnd && removed < 2) {
165  // Skip past debug instructions.
166  if (I->isDebugInstr()) {
167  ++I;
168  continue;
169  }
170  if (!getAnalyzableBrOpc(I->getOpcode()))
171  break;
172  // Remove the branch.
173  I->eraseFromParent();
174  I = MBB.rbegin();
175  ++removed;
176  }
177 
178  return removed;
179 }
180 
181 /// reverseBranchCondition - Return the inverse opcode of the
182 /// specified Branch instruction.
184  SmallVectorImpl<MachineOperand> &Cond) const {
185  assert( (Cond.size() && Cond.size() <= 3) &&
186  "Invalid Mips branch condition!");
187  Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
188  return false;
189 }
190 
193  SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
194  SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
195  MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
196 
197  // Skip all the debug instructions.
198  while (I != REnd && I->isDebugInstr())
199  ++I;
200 
201  if (I == REnd || !isUnpredicatedTerminator(*I)) {
202  // This block ends with no branches (it just falls through to its succ).
203  // Leave TBB/FBB null.
204  TBB = FBB = nullptr;
205  return BT_NoBranch;
206  }
207 
208  MachineInstr *LastInst = &*I;
209  unsigned LastOpc = LastInst->getOpcode();
210  BranchInstrs.push_back(LastInst);
211 
212  // Not an analyzable branch (e.g., indirect jump).
213  if (!getAnalyzableBrOpc(LastOpc))
214  return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
215 
216  // Get the second to last instruction in the block.
217  unsigned SecondLastOpc = 0;
218  MachineInstr *SecondLastInst = nullptr;
219 
220  // Skip past any debug instruction to see if the second last actual
221  // is a branch.
222  ++I;
223  while (I != REnd && I->isDebugInstr())
224  ++I;
225 
226  if (I != REnd) {
227  SecondLastInst = &*I;
228  SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());
229 
230  // Not an analyzable branch (must be an indirect jump).
231  if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc)
232  return BT_None;
233  }
234 
235  // If there is only one terminator instruction, process it.
236  if (!SecondLastOpc) {
237  // Unconditional branch.
238  if (LastInst->isUnconditionalBranch()) {
239  TBB = LastInst->getOperand(0).getMBB();
240  return BT_Uncond;
241  }
242 
243  // Conditional branch
244  AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
245  return BT_Cond;
246  }
247 
248  // If we reached here, there are two branches.
249  // If there are three terminators, we don't know what sort of block this is.
250  if (++I != REnd && isUnpredicatedTerminator(*I))
251  return BT_None;
252 
253  BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);
254 
255  // If second to last instruction is an unconditional branch,
256  // analyze it and remove the last instruction.
257  if (SecondLastInst->isUnconditionalBranch()) {
258  // Return if the last instruction cannot be removed.
259  if (!AllowModify)
260  return BT_None;
261 
262  TBB = SecondLastInst->getOperand(0).getMBB();
263  LastInst->eraseFromParent();
264  BranchInstrs.pop_back();
265  return BT_Uncond;
266  }
267 
268  // Conditional branch followed by an unconditional branch.
269  // The last one must be unconditional.
270  if (!LastInst->isUnconditionalBranch())
271  return BT_None;
272 
273  AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
274  FBB = LastInst->getOperand(0).getMBB();
275 
276  return BT_CondUncond;
277 }
278 
279 bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const {
280  switch (BranchOpc) {
281  case Mips::B:
282  case Mips::BAL:
283  case Mips::BAL_BR:
284  case Mips::BAL_BR_MM:
285  case Mips::BC1F:
286  case Mips::BC1FL:
287  case Mips::BC1T:
288  case Mips::BC1TL:
289  case Mips::BEQ: case Mips::BEQ64:
290  case Mips::BEQL:
291  case Mips::BGEZ: case Mips::BGEZ64:
292  case Mips::BGEZL:
293  case Mips::BGEZAL:
294  case Mips::BGEZALL:
295  case Mips::BGTZ: case Mips::BGTZ64:
296  case Mips::BGTZL:
297  case Mips::BLEZ: case Mips::BLEZ64:
298  case Mips::BLEZL:
299  case Mips::BLTZ: case Mips::BLTZ64:
300  case Mips::BLTZL:
301  case Mips::BLTZAL:
302  case Mips::BLTZALL:
303  case Mips::BNE: case Mips::BNE64:
304  case Mips::BNEL:
305  return isInt<18>(BrOffset);
306 
307  // microMIPSr3 branches
308  case Mips::B_MM:
309  case Mips::BC1F_MM:
310  case Mips::BC1T_MM:
311  case Mips::BEQ_MM:
312  case Mips::BGEZ_MM:
313  case Mips::BGEZAL_MM:
314  case Mips::BGTZ_MM:
315  case Mips::BLEZ_MM:
316  case Mips::BLTZ_MM:
317  case Mips::BLTZAL_MM:
318  case Mips::BNE_MM:
319  case Mips::BEQZC_MM:
320  case Mips::BNEZC_MM:
321  return isInt<17>(BrOffset);
322 
323  // microMIPSR3 short branches.
324  case Mips::B16_MM:
325  return isInt<11>(BrOffset);
326 
327  case Mips::BEQZ16_MM:
328  case Mips::BNEZ16_MM:
329  return isInt<8>(BrOffset);
330 
331  // MIPSR6 branches.
332  case Mips::BALC:
333  case Mips::BC:
334  return isInt<28>(BrOffset);
335 
336  case Mips::BC1EQZ:
337  case Mips::BC1NEZ:
338  case Mips::BC2EQZ:
339  case Mips::BC2NEZ:
340  case Mips::BEQC: case Mips::BEQC64:
341  case Mips::BNEC: case Mips::BNEC64:
342  case Mips::BGEC: case Mips::BGEC64:
343  case Mips::BGEUC: case Mips::BGEUC64:
344  case Mips::BGEZC: case Mips::BGEZC64:
345  case Mips::BGTZC: case Mips::BGTZC64:
346  case Mips::BLEZC: case Mips::BLEZC64:
347  case Mips::BLTC: case Mips::BLTC64:
348  case Mips::BLTUC: case Mips::BLTUC64:
349  case Mips::BLTZC: case Mips::BLTZC64:
350  case Mips::BNVC:
351  case Mips::BOVC:
352  case Mips::BGEZALC:
353  case Mips::BEQZALC:
354  case Mips::BGTZALC:
355  case Mips::BLEZALC:
356  case Mips::BLTZALC:
357  case Mips::BNEZALC:
358  return isInt<18>(BrOffset);
359 
360  case Mips::BEQZC: case Mips::BEQZC64:
361  case Mips::BNEZC: case Mips::BNEZC64:
362  return isInt<23>(BrOffset);
363 
364  // microMIPSR6 branches
365  case Mips::BC16_MMR6:
366  return isInt<11>(BrOffset);
367 
368  case Mips::BEQZC16_MMR6:
369  case Mips::BNEZC16_MMR6:
370  return isInt<8>(BrOffset);
371 
372  case Mips::BALC_MMR6:
373  case Mips::BC_MMR6:
374  return isInt<27>(BrOffset);
375 
376  case Mips::BC1EQZC_MMR6:
377  case Mips::BC1NEZC_MMR6:
378  case Mips::BC2EQZC_MMR6:
379  case Mips::BC2NEZC_MMR6:
380  case Mips::BGEZALC_MMR6:
381  case Mips::BEQZALC_MMR6:
382  case Mips::BGTZALC_MMR6:
383  case Mips::BLEZALC_MMR6:
384  case Mips::BLTZALC_MMR6:
385  case Mips::BNEZALC_MMR6:
386  case Mips::BNVC_MMR6:
387  case Mips::BOVC_MMR6:
388  return isInt<17>(BrOffset);
389 
390  case Mips::BEQC_MMR6:
391  case Mips::BNEC_MMR6:
392  case Mips::BGEC_MMR6:
393  case Mips::BGEUC_MMR6:
394  case Mips::BGEZC_MMR6:
395  case Mips::BGTZC_MMR6:
396  case Mips::BLEZC_MMR6:
397  case Mips::BLTC_MMR6:
398  case Mips::BLTUC_MMR6:
399  case Mips::BLTZC_MMR6:
400  return isInt<18>(BrOffset);
401 
402  case Mips::BEQZC_MMR6:
403  case Mips::BNEZC_MMR6:
404  return isInt<23>(BrOffset);
405 
406  // DSP branches.
407  case Mips::BPOSGE32:
408  return isInt<18>(BrOffset);
409  case Mips::BPOSGE32_MM:
410  case Mips::BPOSGE32C_MMR3:
411  return isInt<17>(BrOffset);
412 
413  // cnMIPS branches.
414  case Mips::BBIT0:
415  case Mips::BBIT032:
416  case Mips::BBIT1:
417  case Mips::BBIT132:
418  return isInt<18>(BrOffset);
419 
420  // MSA branches.
421  case Mips::BZ_B:
422  case Mips::BZ_H:
423  case Mips::BZ_W:
424  case Mips::BZ_D:
425  case Mips::BZ_V:
426  case Mips::BNZ_B:
427  case Mips::BNZ_H:
428  case Mips::BNZ_W:
429  case Mips::BNZ_D:
430  case Mips::BNZ_V:
431  return isInt<18>(BrOffset);
432  }
433 
434  llvm_unreachable("Unknown branch instruction!");
435 }
436 
437 
438 /// Return the corresponding compact (no delay slot) form of a branch.
440  const MachineBasicBlock::iterator I) const {
441  unsigned Opcode = I->getOpcode();
442  bool canUseShortMicroMipsCTI = false;
443 
444  if (Subtarget.inMicroMipsMode()) {
445  switch (Opcode) {
446  case Mips::BNE:
447  case Mips::BNE_MM:
448  case Mips::BEQ:
449  case Mips::BEQ_MM:
450  // microMIPS has NE,EQ branches that do not have delay slots provided one
451  // of the operands is zero.
452  if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg())
453  canUseShortMicroMipsCTI = true;
454  break;
455  // For microMIPS the PseudoReturn and PseudoIndirectBranch are always
456  // expanded to JR_MM, so they can be replaced with JRC16_MM.
457  case Mips::JR:
458  case Mips::PseudoReturn:
459  case Mips::PseudoIndirectBranch:
460  canUseShortMicroMipsCTI = true;
461  break;
462  }
463  }
464 
465  // MIPSR6 forbids both operands being the zero register.
466  if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) &&
467  (I->getOperand(0).isReg() &&
468  (I->getOperand(0).getReg() == Mips::ZERO ||
469  I->getOperand(0).getReg() == Mips::ZERO_64)) &&
470  (I->getOperand(1).isReg() &&
471  (I->getOperand(1).getReg() == Mips::ZERO ||
472  I->getOperand(1).getReg() == Mips::ZERO_64)))
473  return 0;
474 
475  if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) {
476  switch (Opcode) {
477  case Mips::B:
478  return Mips::BC;
479  case Mips::BAL:
480  return Mips::BALC;
481  case Mips::BEQ:
482  case Mips::BEQ_MM:
483  if (canUseShortMicroMipsCTI)
484  return Mips::BEQZC_MM;
485  else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
486  return 0;
487  return Mips::BEQC;
488  case Mips::BNE:
489  case Mips::BNE_MM:
490  if (canUseShortMicroMipsCTI)
491  return Mips::BNEZC_MM;
492  else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
493  return 0;
494  return Mips::BNEC;
495  case Mips::BGE:
496  if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
497  return 0;
498  return Mips::BGEC;
499  case Mips::BGEU:
500  if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
501  return 0;
502  return Mips::BGEUC;
503  case Mips::BGEZ:
504  return Mips::BGEZC;
505  case Mips::BGTZ:
506  return Mips::BGTZC;
507  case Mips::BLEZ:
508  return Mips::BLEZC;
509  case Mips::BLT:
510  if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
511  return 0;
512  return Mips::BLTC;
513  case Mips::BLTU:
514  if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
515  return 0;
516  return Mips::BLTUC;
517  case Mips::BLTZ:
518  return Mips::BLTZC;
519  case Mips::BEQ64:
520  if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
521  return 0;
522  return Mips::BEQC64;
523  case Mips::BNE64:
524  if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
525  return 0;
526  return Mips::BNEC64;
527  case Mips::BGTZ64:
528  return Mips::BGTZC64;
529  case Mips::BGEZ64:
530  return Mips::BGEZC64;
531  case Mips::BLTZ64:
532  return Mips::BLTZC64;
533  case Mips::BLEZ64:
534  return Mips::BLEZC64;
535  // For MIPSR6, the instruction 'jic' can be used for these cases. Some
536  // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'.
537  case Mips::JR:
538  case Mips::PseudoIndirectBranchR6:
539  case Mips::PseudoReturn:
540  case Mips::TAILCALLR6REG:
541  if (canUseShortMicroMipsCTI)
542  return Mips::JRC16_MM;
543  return Mips::JIC;
544  case Mips::JALRPseudo:
545  return Mips::JIALC;
546  case Mips::JR64:
547  case Mips::PseudoIndirectBranch64R6:
548  case Mips::PseudoReturn64:
549  case Mips::TAILCALL64R6REG:
550  return Mips::JIC64;
551  case Mips::JALR64Pseudo:
552  return Mips::JIALC64;
553  default:
554  return 0;
555  }
556  }
557 
558  return 0;
559 }
560 
561 /// Predicate for distingushing between control transfer instructions and all
562 /// other instructions for handling forbidden slots. Consider inline assembly
563 /// as unsafe as well.
565  if (MI.isInlineAsm())
566  return false;
567 
568  return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0;
569 }
570 
571 /// Predicate for distingushing instructions that have forbidden slots.
573  return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0;
574 }
575 
576 /// Return the number of bytes of code the specified instruction may be.
578  switch (MI.getOpcode()) {
579  default:
580  return MI.getDesc().getSize();
581  case TargetOpcode::INLINEASM: { // Inline Asm: Variable size.
582  const MachineFunction *MF = MI.getParent()->getParent();
583  const char *AsmStr = MI.getOperand(0).getSymbolName();
584  return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
585  }
586  case Mips::CONSTPOOL_ENTRY:
587  // If this machine instr is a constant pool entry, its size is recorded as
588  // operand #2.
589  return MI.getOperand(2).getImm();
590  }
591 }
592 
597 
598  // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest
599  // Pick the zero form of the branch for readable assembly and for greater
600  // branch distance in non-microMIPS mode.
601  // Additional MIPSR6 does not permit the use of register $zero for compact
602  // branches.
603  // FIXME: Certain atomic sequences on mips64 generate 32bit references to
604  // Mips::ZERO, which is incorrect. This test should be updated to use
605  // Subtarget.getABI().GetZeroReg() when those atomic sequences and others
606  // are fixed.
607  int ZeroOperandPosition = -1;
608  bool BranchWithZeroOperand = false;
609  if (I->isBranch() && !I->isPseudo()) {
610  auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo();
611  ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI);
612  BranchWithZeroOperand = ZeroOperandPosition != -1;
613  }
614 
615  if (BranchWithZeroOperand) {
616  switch (NewOpc) {
617  case Mips::BEQC:
618  NewOpc = Mips::BEQZC;
619  break;
620  case Mips::BNEC:
621  NewOpc = Mips::BNEZC;
622  break;
623  case Mips::BGEC:
624  NewOpc = Mips::BGEZC;
625  break;
626  case Mips::BLTC:
627  NewOpc = Mips::BLTZC;
628  break;
629  case Mips::BEQC64:
630  NewOpc = Mips::BEQZC64;
631  break;
632  case Mips::BNEC64:
633  NewOpc = Mips::BNEZC64;
634  break;
635  }
636  }
637 
638  MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));
639 
640  // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an
641  // immediate 0 as an operand and requires the removal of it's implicit-def %ra
642  // implicit operand as copying the implicit operations of the instructio we're
643  // looking at will give us the correct flags.
644  if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 ||
645  NewOpc == Mips::JIALC64) {
646 
647  if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64)
648  MIB->RemoveOperand(0);
649 
650  for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
651  MIB.add(I->getOperand(J));
652  }
653 
654  MIB.addImm(0);
655 
656  // If I has an MCSymbol operand (used by asm printer, to emit R_MIPS_JALR),
657  // add it to the new instruction.
658  for (unsigned J = I->getDesc().getNumOperands(), E = I->getNumOperands();
659  J < E; ++J) {
660  const MachineOperand &MO = I->getOperand(J);
661  if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR))
663  }
664 
665 
666  } else {
667  for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
668  if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J)
669  continue;
670 
671  MIB.add(I->getOperand(J));
672  }
673  }
674 
675  MIB.copyImplicitOps(*I);
676  MIB.cloneMemRefs(*I);
677  return MIB;
678 }
679 
681  unsigned &SrcOpIdx2) const {
682  assert(!MI.isBundle() &&
683  "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
684 
685  const MCInstrDesc &MCID = MI.getDesc();
686  if (!MCID.isCommutable())
687  return false;
688 
689  switch (MI.getOpcode()) {
690  case Mips::DPADD_U_H:
691  case Mips::DPADD_U_W:
692  case Mips::DPADD_U_D:
693  case Mips::DPADD_S_H:
694  case Mips::DPADD_S_W:
695  case Mips::DPADD_S_D:
696  // The first operand is both input and output, so it should not commute
697  if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3))
698  return false;
699 
700  if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
701  return false;
702  return true;
703  }
704  return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
705 }
706 
707 // ins, ext, dext*, dins have the following constraints:
708 // X <= pos < Y
709 // X < size <= Y
710 // X < pos+size <= Y
711 //
712 // dinsm and dinsu have the following constraints:
713 // X <= pos < Y
714 // X <= size <= Y
715 // X < pos+size <= Y
716 //
717 // The callee of verifyInsExtInstruction however gives the bounds of
718 // dins[um] like the other (d)ins (d)ext(um) instructions, so that this
719 // function doesn't have to vary it's behaviour based on the instruction
720 // being checked.
721 static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo,
722  const int64_t PosLow, const int64_t PosHigh,
723  const int64_t SizeLow,
724  const int64_t SizeHigh,
725  const int64_t BothLow,
726  const int64_t BothHigh) {
727  MachineOperand MOPos = MI.getOperand(2);
728  if (!MOPos.isImm()) {
729  ErrInfo = "Position is not an immediate!";
730  return false;
731  }
732  int64_t Pos = MOPos.getImm();
733  if (!((PosLow <= Pos) && (Pos < PosHigh))) {
734  ErrInfo = "Position operand is out of range!";
735  return false;
736  }
737 
738  MachineOperand MOSize = MI.getOperand(3);
739  if (!MOSize.isImm()) {
740  ErrInfo = "Size operand is not an immediate!";
741  return false;
742  }
743  int64_t Size = MOSize.getImm();
744  if (!((SizeLow < Size) && (Size <= SizeHigh))) {
745  ErrInfo = "Size operand is out of range!";
746  return false;
747  }
748 
749  if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) {
750  ErrInfo = "Position + Size is out of range!";
751  return false;
752  }
753 
754  return true;
755 }
756 
757 // Perform target specific instruction verification.
759  StringRef &ErrInfo) const {
760  // Verify that ins and ext instructions are well formed.
761  switch (MI.getOpcode()) {
762  case Mips::EXT:
763  case Mips::EXT_MM:
764  case Mips::INS:
765  case Mips::INS_MM:
766  case Mips::DINS:
767  return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32);
768  case Mips::DINSM:
769  // The ISA spec has a subtle difference between dinsm and dextm
770  // in that it says:
771  // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64.
772  // To make the bounds checks similar, the range 1 < size <= 64 is checked
773  // for 'dinsm'.
774  return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64);
775  case Mips::DINSU:
776  // The ISA spec has a subtle difference between dinsu and dextu in that
777  // the size range of dinsu is specified as 1 <= size <= 32 whereas size
778  // for dextu is 0 < size <= 32. The range checked for dinsu here is
779  // 0 < size <= 32, which is equivalent and similar to dextu.
780  return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
781  case Mips::DEXT:
782  return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63);
783  case Mips::DEXTM:
784  return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64);
785  case Mips::DEXTU:
786  return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
787  case Mips::TAILCALLREG:
788  case Mips::PseudoIndirectBranch:
789  case Mips::JR:
790  case Mips::JR64:
791  case Mips::JALR:
792  case Mips::JALR64:
793  case Mips::JALRPseudo:
795  return true;
796 
797  ErrInfo = "invalid instruction when using jump guards!";
798  return false;
799  default:
800  return true;
801  }
802 
803  return true;
804 }
805 
806 std::pair<unsigned, unsigned>
808  return std::make_pair(TF, 0u);
809 }
810 
813  using namespace MipsII;
814 
815  static const std::pair<unsigned, const char*> Flags[] = {
816  {MO_GOT, "mips-got"},
817  {MO_GOT_CALL, "mips-got-call"},
818  {MO_GPREL, "mips-gprel"},
819  {MO_ABS_HI, "mips-abs-hi"},
820  {MO_ABS_LO, "mips-abs-lo"},
821  {MO_TLSGD, "mips-tlsgd"},
822  {MO_TLSLDM, "mips-tlsldm"},
823  {MO_DTPREL_HI, "mips-dtprel-hi"},
824  {MO_DTPREL_LO, "mips-dtprel-lo"},
825  {MO_GOTTPREL, "mips-gottprel"},
826  {MO_TPREL_HI, "mips-tprel-hi"},
827  {MO_TPREL_LO, "mips-tprel-lo"},
828  {MO_GPOFF_HI, "mips-gpoff-hi"},
829  {MO_GPOFF_LO, "mips-gpoff-lo"},
830  {MO_GOT_DISP, "mips-got-disp"},
831  {MO_GOT_PAGE, "mips-got-page"},
832  {MO_GOT_OFST, "mips-got-ofst"},
833  {MO_HIGHER, "mips-higher"},
834  {MO_HIGHEST, "mips-highest"},
835  {MO_GOT_HI16, "mips-got-hi16"},
836  {MO_GOT_LO16, "mips-got-lo16"},
837  {MO_CALL_HI16, "mips-call-hi16"},
838  {MO_CALL_LO16, "mips-call-lo16"},
839  {MO_JALR, "mips-jalr"}
840  };
841  return makeArrayRef(Flags);
842 }
static bool isReg(const MCInst &MI, unsigned OpNo)
unsigned getTargetFlags() const
unsigned getInstSizeInBytes(const MachineInstr &MI) const override
Return the number of bytes of code the specified instruction may be.
const MachineInstrBuilder & add(const MachineOperand &MO) const
bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const override
Determine if the branch target is in range.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
MachineBasicBlock * getMBB() const
This class represents lattice values for constants.
Definition: AllocatorList.h:24
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
Branch Analysis.
MO_TLSLDM - Represents the offset into the global offset table at which.
Definition: MipsBaseInfo.h:63
bool inMips16Mode() const
MO_HIGHER/HIGHEST - Represents the highest or higher half word of a 64-bit symbol address...
Definition: MipsBaseInfo.h:85
MO_GOT_HI16/LO16, MO_CALL_HI16/LO16 - Relocations used for large GOTs.
Definition: MipsBaseInfo.h:89
MO_TLSGD - Represents the offset into the global offset table at which.
Definition: MipsBaseInfo.h:58
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:164
bool isInlineAsm() const
constexpr bool isInt< 8 >(int64_t x)
Definition: MathExtras.h:303
bool SafeInForbiddenSlot(const MachineInstr &MI) const
Predicate to determine if an instruction can go in a forbidden slot.
MachineMemOperand * GetMemOperand(MachineBasicBlock &MBB, int FI, MachineMemOperand::Flags Flags) const
unsigned const TargetRegisterInfo * TRI
A debug info location.
Definition: DebugLoc.h:34
virtual unsigned getOppositeBranchOpc(unsigned Opc) const =0
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
reverseBranchCondition - Return the inverse opcode of the specified Branch instruction.
bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override
Perform target specific instruction verification.
bool HasForbiddenSlot(const MachineInstr &MI) const
Predicate to determine if an instruction has a forbidden slot.
#define op(i)
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override
Insert nop instruction when hazard condition is found.
static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo, const int64_t PosLow, const int64_t PosHigh, const int64_t SizeLow, const int64_t SizeHigh, const int64_t BothLow, const int64_t BothHigh)
A description of a memory reference used in the backend.
MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBrOpc)
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
bool inMicroMipsMode() const
bool useIndirectJumpsHazard() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
void eraseFromParent()
Unlink &#39;this&#39; from the containing basic block and delete it.
const MipsSubtarget & Subtarget
Definition: MipsInstrInfo.h:46
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
bool hasMips32r6() const
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted...
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
const char * getSymbolName() const
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, unsigned base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
INLINEASM - Represents an inline asm block.
Definition: ISDOpcodes.h:667
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:406
bool isIndirectBranch(QueryType Type=AnyInBundle) const
Return true if this is an indirect branch, such as a branch through a register.
Definition: MachineInstr.h:663
bool isBundle() const
MO_GOT - This flag indicates that a symbol operand represents the address of the GOT entry for the sy...
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
reverse_iterator rend()
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
reverse_iterator rbegin()
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
unsigned getObjectAlignment(int ObjectIdx) const
Return the alignment of the specified stack object.
MO_GOT_CALL - Represents the offset into the global offset table at which the address of a call site ...
Definition: MipsBaseInfo.h:44
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
const MipsInstrInfo * createMips16InstrInfo(const MipsSubtarget &STI)
Create MipsInstrInfo objects.
MachineInstrBuilder genInstrWithNewOpc(unsigned NewOpc, MachineBasicBlock::iterator I) const
Create an instruction which has the same operands and memory operands as MI but has a new opcode...
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
unsigned getEquivalentCompactForm(const MachineBasicBlock::iterator I) const
Determine the opcode of a non-delay slot form for a branch if one exists.
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
bool isZeroImm(const MachineOperand &op) const
size_t size() const
Definition: SmallVector.h:53
bool isMCSymbol() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const MipsABIInfo & getABI() const
unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
MO_GOTTPREL - Represents the offset from the thread pointer (Initial.
Definition: MipsBaseInfo.h:69
bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const override
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
HasForbiddenSlot - Instruction has a forbidden slot.
Definition: MipsBaseInfo.h:126
IsCTI - Instruction is a Control Transfer Instruction.
Definition: MipsBaseInfo.h:124
int64_t getImm() const
virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction...
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
bool isUnconditionalBranch(QueryType Type=AnyInBundle) const
Return true if this is a branch which always transfers control flow to some other block...
Definition: MachineInstr.h:679
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:478
Flags
Flags values. These may be or&#39;d together.
MO_TPREL_HI/LO - Represents the hi and low part of the offset from.
Definition: MipsBaseInfo.h:73
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
static MachineOperand CreateImm(int64_t Val)
#define I(x, y, z)
Definition: MD5.cpp:58
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MipsInstrInfo * createMipsSEInstrInfo(const MipsSubtarget &STI)
uint32_t Size
Definition: Profile.cpp:47
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
unsigned GetZeroReg() const
Definition: MipsABIInfo.cpp:94
bool isReg() const
isReg - Tests if this is a MO_Register operand.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
MCSymbol * getMCSymbol() const
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
void RemoveOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with...
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
static const MipsInstrInfo * create(MipsSubtarget &STI)
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
unsigned getSize() const
Return the number of bytes in the encoding of this instruction, or zero if the encoding size cannot b...
Definition: MCInstrDesc.h:581
Helper operand used to generate R_MIPS_JALR.
Definition: MipsBaseInfo.h:95