LLVM  8.0.1
InlineCost.cpp
Go to the documentation of this file.
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inline cost analysis.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/InstVisitor.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Support/Debug.h"
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "inline-cost"
46 
47 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
48 
50  "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
51  cl::desc("Control the amount of inlining to perform (default = 225)"));
52 
54  "inlinehint-threshold", cl::Hidden, cl::init(325),
55  cl::desc("Threshold for inlining functions with inline hint"));
56 
57 static cl::opt<int>
58  ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
59  cl::init(45),
60  cl::desc("Threshold for inlining cold callsites"));
61 
62 // We introduce this threshold to help performance of instrumentation based
63 // PGO before we actually hook up inliner with analysis passes such as BPI and
64 // BFI.
66  "inlinecold-threshold", cl::Hidden, cl::init(45),
67  cl::desc("Threshold for inlining functions with cold attribute"));
68 
69 static cl::opt<int>
70  HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
72  cl::desc("Threshold for hot callsites "));
73 
75  "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
76  cl::desc("Threshold for locally hot callsites "));
77 
79  "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
80  cl::desc("Maxmimum block frequency, expressed as a percentage of caller's "
81  "entry frequency, for a callsite to be cold in the absence of "
82  "profile information."));
83 
85  "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
86  cl::desc("Minimum block frequency, expressed as a multiple of caller's "
87  "entry frequency, for a callsite to be hot in the absence of "
88  "profile information."));
89 
91  "inline-cost-full", cl::Hidden, cl::init(false),
92  cl::desc("Compute the full inline cost of a call site even when the cost "
93  "exceeds the threshold."));
94 
95 namespace {
96 
97 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
99  friend class InstVisitor<CallAnalyzer, bool>;
100 
101  /// The TargetTransformInfo available for this compilation.
102  const TargetTransformInfo &TTI;
103 
104  /// Getter for the cache of @llvm.assume intrinsics.
105  std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
106 
107  /// Getter for BlockFrequencyInfo
109 
110  /// Profile summary information.
111  ProfileSummaryInfo *PSI;
112 
113  /// The called function.
114  Function &F;
115 
116  // Cache the DataLayout since we use it a lot.
117  const DataLayout &DL;
118 
119  /// The OptimizationRemarkEmitter available for this compilation.
121 
122  /// The candidate callsite being analyzed. Please do not use this to do
123  /// analysis in the caller function; we want the inline cost query to be
124  /// easily cacheable. Instead, use the cover function paramHasAttr.
125  CallSite CandidateCS;
126 
127  /// Tunable parameters that control the analysis.
128  const InlineParams &Params;
129 
130  int Threshold;
131  int Cost;
132  bool ComputeFullInlineCost;
133 
134  bool IsCallerRecursive;
135  bool IsRecursiveCall;
136  bool ExposesReturnsTwice;
137  bool HasDynamicAlloca;
138  bool ContainsNoDuplicateCall;
139  bool HasReturn;
140  bool HasIndirectBr;
141  bool HasUninlineableIntrinsic;
142  bool InitsVargArgs;
143 
144  /// Number of bytes allocated statically by the callee.
145  uint64_t AllocatedSize;
146  unsigned NumInstructions, NumVectorInstructions;
147  int VectorBonus, TenPercentVectorBonus;
148  // Bonus to be applied when the callee has only one reachable basic block.
149  int SingleBBBonus;
150 
151  /// While we walk the potentially-inlined instructions, we build up and
152  /// maintain a mapping of simplified values specific to this callsite. The
153  /// idea is to propagate any special information we have about arguments to
154  /// this call through the inlinable section of the function, and account for
155  /// likely simplifications post-inlining. The most important aspect we track
156  /// is CFG altering simplifications -- when we prove a basic block dead, that
157  /// can cause dramatic shifts in the cost of inlining a function.
158  DenseMap<Value *, Constant *> SimplifiedValues;
159 
160  /// Keep track of the values which map back (through function arguments) to
161  /// allocas on the caller stack which could be simplified through SROA.
162  DenseMap<Value *, Value *> SROAArgValues;
163 
164  /// The mapping of caller Alloca values to their accumulated cost savings. If
165  /// we have to disable SROA for one of the allocas, this tells us how much
166  /// cost must be added.
167  DenseMap<Value *, int> SROAArgCosts;
168 
169  /// Keep track of values which map to a pointer base and constant offset.
171 
172  /// Keep track of dead blocks due to the constant arguments.
173  SetVector<BasicBlock *> DeadBlocks;
174 
175  /// The mapping of the blocks to their known unique successors due to the
176  /// constant arguments.
177  DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
178 
179  /// Model the elimination of repeated loads that is expected to happen
180  /// whenever we simplify away the stores that would otherwise cause them to be
181  /// loads.
182  bool EnableLoadElimination;
183  SmallPtrSet<Value *, 16> LoadAddrSet;
184  int LoadEliminationCost;
185 
186  // Custom simplification helper routines.
187  bool isAllocaDerivedArg(Value *V);
188  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
190  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
191  void disableSROA(Value *V);
192  void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
193  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
194  int InstructionCost);
195  void disableLoadElimination();
196  bool isGEPFree(GetElementPtrInst &GEP);
197  bool canFoldInboundsGEP(GetElementPtrInst &I);
198  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
199  bool simplifyCallSite(Function *F, CallSite CS);
200  template <typename Callable>
201  bool simplifyInstruction(Instruction &I, Callable Evaluate);
202  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
203 
204  /// Return true if the given argument to the function being considered for
205  /// inlining has the given attribute set either at the call site or the
206  /// function declaration. Primarily used to inspect call site specific
207  /// attributes since these can be more precise than the ones on the callee
208  /// itself.
209  bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
210 
211  /// Return true if the given value is known non null within the callee if
212  /// inlined through this particular callsite.
213  bool isKnownNonNullInCallee(Value *V);
214 
215  /// Update Threshold based on callsite properties such as callee
216  /// attributes and callee hotness for PGO builds. The Callee is explicitly
217  /// passed to support analyzing indirect calls whose target is inferred by
218  /// analysis.
219  void updateThreshold(CallSite CS, Function &Callee);
220 
221  /// Return true if size growth is allowed when inlining the callee at CS.
222  bool allowSizeGrowth(CallSite CS);
223 
224  /// Return true if \p CS is a cold callsite.
225  bool isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI);
226 
227  /// Return a higher threshold if \p CS is a hot callsite.
228  Optional<int> getHotCallSiteThreshold(CallSite CS,
229  BlockFrequencyInfo *CallerBFI);
230 
231  // Custom analysis routines.
232  InlineResult analyzeBlock(BasicBlock *BB,
233  SmallPtrSetImpl<const Value *> &EphValues);
234 
235  // Disable several entry points to the visitor so we don't accidentally use
236  // them by declaring but not defining them here.
237  void visit(Module *);
238  void visit(Module &);
239  void visit(Function *);
240  void visit(Function &);
241  void visit(BasicBlock *);
242  void visit(BasicBlock &);
243 
244  // Provide base case for our instruction visit.
245  bool visitInstruction(Instruction &I);
246 
247  // Our visit overrides.
248  bool visitAlloca(AllocaInst &I);
249  bool visitPHI(PHINode &I);
250  bool visitGetElementPtr(GetElementPtrInst &I);
251  bool visitBitCast(BitCastInst &I);
252  bool visitPtrToInt(PtrToIntInst &I);
253  bool visitIntToPtr(IntToPtrInst &I);
254  bool visitCastInst(CastInst &I);
255  bool visitUnaryInstruction(UnaryInstruction &I);
256  bool visitCmpInst(CmpInst &I);
257  bool visitSub(BinaryOperator &I);
258  bool visitBinaryOperator(BinaryOperator &I);
259  bool visitLoad(LoadInst &I);
260  bool visitStore(StoreInst &I);
261  bool visitExtractValue(ExtractValueInst &I);
262  bool visitInsertValue(InsertValueInst &I);
263  bool visitCallSite(CallSite CS);
264  bool visitReturnInst(ReturnInst &RI);
265  bool visitBranchInst(BranchInst &BI);
266  bool visitSelectInst(SelectInst &SI);
267  bool visitSwitchInst(SwitchInst &SI);
268  bool visitIndirectBrInst(IndirectBrInst &IBI);
269  bool visitResumeInst(ResumeInst &RI);
270  bool visitCleanupReturnInst(CleanupReturnInst &RI);
271  bool visitCatchReturnInst(CatchReturnInst &RI);
272  bool visitUnreachableInst(UnreachableInst &I);
273 
274 public:
275  CallAnalyzer(const TargetTransformInfo &TTI,
276  std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
279  Function &Callee, CallSite CSArg, const InlineParams &Params)
280  : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
281  PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
282  CandidateCS(CSArg), Params(Params), Threshold(Params.DefaultThreshold),
283  Cost(0), ComputeFullInlineCost(OptComputeFullInlineCost ||
284  Params.ComputeFullInlineCost || ORE),
285  IsCallerRecursive(false), IsRecursiveCall(false),
286  ExposesReturnsTwice(false), HasDynamicAlloca(false),
287  ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
288  HasUninlineableIntrinsic(false), InitsVargArgs(false), AllocatedSize(0),
289  NumInstructions(0), NumVectorInstructions(0), VectorBonus(0),
290  SingleBBBonus(0), EnableLoadElimination(true), LoadEliminationCost(0),
291  NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
292  NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
293  NumInstructionsSimplified(0), SROACostSavings(0),
294  SROACostSavingsLost(0) {}
295 
296  InlineResult analyzeCall(CallSite CS);
297 
298  int getThreshold() { return Threshold; }
299  int getCost() { return Cost; }
300 
301  // Keep a bunch of stats about the cost savings found so we can print them
302  // out when debugging.
303  unsigned NumConstantArgs;
304  unsigned NumConstantOffsetPtrArgs;
305  unsigned NumAllocaArgs;
306  unsigned NumConstantPtrCmps;
307  unsigned NumConstantPtrDiffs;
308  unsigned NumInstructionsSimplified;
309  unsigned SROACostSavings;
310  unsigned SROACostSavingsLost;
311 
312  void dump();
313 };
314 
315 } // namespace
316 
317 /// Test whether the given value is an Alloca-derived function argument.
318 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
319  return SROAArgValues.count(V);
320 }
321 
322 /// Lookup the SROA-candidate argument and cost iterator which V maps to.
323 /// Returns false if V does not map to a SROA-candidate.
324 bool CallAnalyzer::lookupSROAArgAndCost(
326  if (SROAArgValues.empty() || SROAArgCosts.empty())
327  return false;
328 
329  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
330  if (ArgIt == SROAArgValues.end())
331  return false;
332 
333  Arg = ArgIt->second;
334  CostIt = SROAArgCosts.find(Arg);
335  return CostIt != SROAArgCosts.end();
336 }
337 
338 /// Disable SROA for the candidate marked by this cost iterator.
339 ///
340 /// This marks the candidate as no longer viable for SROA, and adds the cost
341 /// savings associated with it back into the inline cost measurement.
342 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
343  // If we're no longer able to perform SROA we need to undo its cost savings
344  // and prevent subsequent analysis.
345  Cost += CostIt->second;
346  SROACostSavings -= CostIt->second;
347  SROACostSavingsLost += CostIt->second;
348  SROAArgCosts.erase(CostIt);
349  disableLoadElimination();
350 }
351 
352 /// If 'V' maps to a SROA candidate, disable SROA for it.
353 void CallAnalyzer::disableSROA(Value *V) {
354  Value *SROAArg;
356  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
357  disableSROA(CostIt);
358 }
359 
360 /// Accumulate the given cost for a particular SROA candidate.
361 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
362  int InstructionCost) {
363  CostIt->second += InstructionCost;
364  SROACostSavings += InstructionCost;
365 }
366 
367 void CallAnalyzer::disableLoadElimination() {
368  if (EnableLoadElimination) {
369  Cost += LoadEliminationCost;
370  LoadEliminationCost = 0;
371  EnableLoadElimination = false;
372  }
373 }
374 
375 /// Accumulate a constant GEP offset into an APInt if possible.
376 ///
377 /// Returns false if unable to compute the offset for any reason. Respects any
378 /// simplified values known during the analysis of this callsite.
379 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
380  unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
381  assert(IntPtrWidth == Offset.getBitWidth());
382 
383  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
384  GTI != GTE; ++GTI) {
385  ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
386  if (!OpC)
387  if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
388  OpC = dyn_cast<ConstantInt>(SimpleOp);
389  if (!OpC)
390  return false;
391  if (OpC->isZero())
392  continue;
393 
394  // Handle a struct index, which adds its field offset to the pointer.
395  if (StructType *STy = GTI.getStructTypeOrNull()) {
396  unsigned ElementIdx = OpC->getZExtValue();
397  const StructLayout *SL = DL.getStructLayout(STy);
398  Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
399  continue;
400  }
401 
402  APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
403  Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
404  }
405  return true;
406 }
407 
408 /// Use TTI to check whether a GEP is free.
409 ///
410 /// Respects any simplified values known during the analysis of this callsite.
411 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
412  SmallVector<Value *, 4> Operands;
413  Operands.push_back(GEP.getOperand(0));
414  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
415  if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
416  Operands.push_back(SimpleOp);
417  else
418  Operands.push_back(*I);
419  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
420 }
421 
422 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
423  // Check whether inlining will turn a dynamic alloca into a static
424  // alloca and handle that case.
425  if (I.isArrayAllocation()) {
426  Constant *Size = SimplifiedValues.lookup(I.getArraySize());
427  if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
428  Type *Ty = I.getAllocatedType();
429  AllocatedSize = SaturatingMultiplyAdd(
430  AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize);
431  return Base::visitAlloca(I);
432  }
433  }
434 
435  // Accumulate the allocated size.
436  if (I.isStaticAlloca()) {
437  Type *Ty = I.getAllocatedType();
438  AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize);
439  }
440 
441  // We will happily inline static alloca instructions.
442  if (I.isStaticAlloca())
443  return Base::visitAlloca(I);
444 
445  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
446  // a variety of reasons, and so we would like to not inline them into
447  // functions which don't currently have a dynamic alloca. This simply
448  // disables inlining altogether in the presence of a dynamic alloca.
449  HasDynamicAlloca = true;
450  return false;
451 }
452 
453 bool CallAnalyzer::visitPHI(PHINode &I) {
454  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
455  // though we don't want to propagate it's bonuses. The idea is to disable
456  // SROA if it *might* be used in an inappropriate manner.
457 
458  // Phi nodes are always zero-cost.
459  // FIXME: Pointer sizes may differ between different address spaces, so do we
460  // need to use correct address space in the call to getPointerSizeInBits here?
461  // Or could we skip the getPointerSizeInBits call completely? As far as I can
462  // see the ZeroOffset is used as a dummy value, so we can probably use any
463  // bit width for the ZeroOffset?
464  APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
465  bool CheckSROA = I.getType()->isPointerTy();
466 
467  // Track the constant or pointer with constant offset we've seen so far.
468  Constant *FirstC = nullptr;
469  std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
470  Value *FirstV = nullptr;
471 
472  for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
473  BasicBlock *Pred = I.getIncomingBlock(i);
474  // If the incoming block is dead, skip the incoming block.
475  if (DeadBlocks.count(Pred))
476  continue;
477  // If the parent block of phi is not the known successor of the incoming
478  // block, skip the incoming block.
479  BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
480  if (KnownSuccessor && KnownSuccessor != I.getParent())
481  continue;
482 
483  Value *V = I.getIncomingValue(i);
484  // If the incoming value is this phi itself, skip the incoming value.
485  if (&I == V)
486  continue;
487 
488  Constant *C = dyn_cast<Constant>(V);
489  if (!C)
490  C = SimplifiedValues.lookup(V);
491 
492  std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
493  if (!C && CheckSROA)
494  BaseAndOffset = ConstantOffsetPtrs.lookup(V);
495 
496  if (!C && !BaseAndOffset.first)
497  // The incoming value is neither a constant nor a pointer with constant
498  // offset, exit early.
499  return true;
500 
501  if (FirstC) {
502  if (FirstC == C)
503  // If we've seen a constant incoming value before and it is the same
504  // constant we see this time, continue checking the next incoming value.
505  continue;
506  // Otherwise early exit because we either see a different constant or saw
507  // a constant before but we have a pointer with constant offset this time.
508  return true;
509  }
510 
511  if (FirstV) {
512  // The same logic as above, but check pointer with constant offset here.
513  if (FirstBaseAndOffset == BaseAndOffset)
514  continue;
515  return true;
516  }
517 
518  if (C) {
519  // This is the 1st time we've seen a constant, record it.
520  FirstC = C;
521  continue;
522  }
523 
524  // The remaining case is that this is the 1st time we've seen a pointer with
525  // constant offset, record it.
526  FirstV = V;
527  FirstBaseAndOffset = BaseAndOffset;
528  }
529 
530  // Check if we can map phi to a constant.
531  if (FirstC) {
532  SimplifiedValues[&I] = FirstC;
533  return true;
534  }
535 
536  // Check if we can map phi to a pointer with constant offset.
537  if (FirstBaseAndOffset.first) {
538  ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
539 
540  Value *SROAArg;
542  if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt))
543  SROAArgValues[&I] = SROAArg;
544  }
545 
546  return true;
547 }
548 
549 /// Check we can fold GEPs of constant-offset call site argument pointers.
550 /// This requires target data and inbounds GEPs.
551 ///
552 /// \return true if the specified GEP can be folded.
553 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
554  // Check if we have a base + offset for the pointer.
555  std::pair<Value *, APInt> BaseAndOffset =
556  ConstantOffsetPtrs.lookup(I.getPointerOperand());
557  if (!BaseAndOffset.first)
558  return false;
559 
560  // Check if the offset of this GEP is constant, and if so accumulate it
561  // into Offset.
562  if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
563  return false;
564 
565  // Add the result as a new mapping to Base + Offset.
566  ConstantOffsetPtrs[&I] = BaseAndOffset;
567 
568  return true;
569 }
570 
571 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
572  Value *SROAArg;
574  bool SROACandidate =
575  lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);
576 
577  // Lambda to check whether a GEP's indices are all constant.
578  auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
579  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
580  if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
581  return false;
582  return true;
583  };
584 
585  if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
586  if (SROACandidate)
587  SROAArgValues[&I] = SROAArg;
588 
589  // Constant GEPs are modeled as free.
590  return true;
591  }
592 
593  // Variable GEPs will require math and will disable SROA.
594  if (SROACandidate)
595  disableSROA(CostIt);
596  return isGEPFree(I);
597 }
598 
599 /// Simplify \p I if its operands are constants and update SimplifiedValues.
600 /// \p Evaluate is a callable specific to instruction type that evaluates the
601 /// instruction when all the operands are constants.
602 template <typename Callable>
603 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
605  for (Value *Op : I.operands()) {
606  Constant *COp = dyn_cast<Constant>(Op);
607  if (!COp)
608  COp = SimplifiedValues.lookup(Op);
609  if (!COp)
610  return false;
611  COps.push_back(COp);
612  }
613  auto *C = Evaluate(COps);
614  if (!C)
615  return false;
616  SimplifiedValues[&I] = C;
617  return true;
618 }
619 
620 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
621  // Propagate constants through bitcasts.
622  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
623  return ConstantExpr::getBitCast(COps[0], I.getType());
624  }))
625  return true;
626 
627  // Track base/offsets through casts
628  std::pair<Value *, APInt> BaseAndOffset =
629  ConstantOffsetPtrs.lookup(I.getOperand(0));
630  // Casts don't change the offset, just wrap it up.
631  if (BaseAndOffset.first)
632  ConstantOffsetPtrs[&I] = BaseAndOffset;
633 
634  // Also look for SROA candidates here.
635  Value *SROAArg;
637  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
638  SROAArgValues[&I] = SROAArg;
639 
640  // Bitcasts are always zero cost.
641  return true;
642 }
643 
644 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
645  // Propagate constants through ptrtoint.
646  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
647  return ConstantExpr::getPtrToInt(COps[0], I.getType());
648  }))
649  return true;
650 
651  // Track base/offset pairs when converted to a plain integer provided the
652  // integer is large enough to represent the pointer.
653  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
654  unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
655  if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
656  std::pair<Value *, APInt> BaseAndOffset =
657  ConstantOffsetPtrs.lookup(I.getOperand(0));
658  if (BaseAndOffset.first)
659  ConstantOffsetPtrs[&I] = BaseAndOffset;
660  }
661 
662  // This is really weird. Technically, ptrtoint will disable SROA. However,
663  // unless that ptrtoint is *used* somewhere in the live basic blocks after
664  // inlining, it will be nuked, and SROA should proceed. All of the uses which
665  // would block SROA would also block SROA if applied directly to a pointer,
666  // and so we can just add the integer in here. The only places where SROA is
667  // preserved either cannot fire on an integer, or won't in-and-of themselves
668  // disable SROA (ext) w/o some later use that we would see and disable.
669  Value *SROAArg;
671  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
672  SROAArgValues[&I] = SROAArg;
673 
674  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
675 }
676 
677 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
678  // Propagate constants through ptrtoint.
679  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
680  return ConstantExpr::getIntToPtr(COps[0], I.getType());
681  }))
682  return true;
683 
684  // Track base/offset pairs when round-tripped through a pointer without
685  // modifications provided the integer is not too large.
686  Value *Op = I.getOperand(0);
687  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
688  if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
689  std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
690  if (BaseAndOffset.first)
691  ConstantOffsetPtrs[&I] = BaseAndOffset;
692  }
693 
694  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
695  Value *SROAArg;
697  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
698  SROAArgValues[&I] = SROAArg;
699 
700  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
701 }
702 
703 bool CallAnalyzer::visitCastInst(CastInst &I) {
704  // Propagate constants through ptrtoint.
705  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
706  return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
707  }))
708  return true;
709 
710  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
711  disableSROA(I.getOperand(0));
712 
713  // If this is a floating-point cast, and the target says this operation
714  // is expensive, this may eventually become a library call. Treat the cost
715  // as such.
716  switch (I.getOpcode()) {
717  case Instruction::FPTrunc:
718  case Instruction::FPExt:
719  case Instruction::UIToFP:
720  case Instruction::SIToFP:
721  case Instruction::FPToUI:
722  case Instruction::FPToSI:
723  if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
725  break;
726  default:
727  break;
728  }
729 
730  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
731 }
732 
733 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
734  Value *Operand = I.getOperand(0);
735  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
736  return ConstantFoldInstOperands(&I, COps[0], DL);
737  }))
738  return true;
739 
740  // Disable any SROA on the argument to arbitrary unary operators.
741  disableSROA(Operand);
742 
743  return false;
744 }
745 
746 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
747  return CandidateCS.paramHasAttr(A->getArgNo(), Attr);
748 }
749 
750 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
751  // Does the *call site* have the NonNull attribute set on an argument? We
752  // use the attribute on the call site to memoize any analysis done in the
753  // caller. This will also trip if the callee function has a non-null
754  // parameter attribute, but that's a less interesting case because hopefully
755  // the callee would already have been simplified based on that.
756  if (Argument *A = dyn_cast<Argument>(V))
757  if (paramHasAttr(A, Attribute::NonNull))
758  return true;
759 
760  // Is this an alloca in the caller? This is distinct from the attribute case
761  // above because attributes aren't updated within the inliner itself and we
762  // always want to catch the alloca derived case.
763  if (isAllocaDerivedArg(V))
764  // We can actually predict the result of comparisons between an
765  // alloca-derived value and null. Note that this fires regardless of
766  // SROA firing.
767  return true;
768 
769  return false;
770 }
771 
772 bool CallAnalyzer::allowSizeGrowth(CallSite CS) {
773  // If the normal destination of the invoke or the parent block of the call
774  // site is unreachable-terminated, there is little point in inlining this
775  // unless there is literally zero cost.
776  // FIXME: Note that it is possible that an unreachable-terminated block has a
777  // hot entry. For example, in below scenario inlining hot_call_X() may be
778  // beneficial :
779  // main() {
780  // hot_call_1();
781  // ...
782  // hot_call_N()
783  // exit(0);
784  // }
785  // For now, we are not handling this corner case here as it is rare in real
786  // code. In future, we should elaborate this based on BPI and BFI in more
787  // general threshold adjusting heuristics in updateThreshold().
788  Instruction *Instr = CS.getInstruction();
789  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
790  if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
791  return false;
792  } else if (isa<UnreachableInst>(Instr->getParent()->getTerminator()))
793  return false;
794 
795  return true;
796 }
797 
799  // If global profile summary is available, then callsite's coldness is
800  // determined based on that.
801  if (PSI && PSI->hasProfileSummary())
802  return PSI->isColdCallSite(CS, CallerBFI);
803 
804  // Otherwise we need BFI to be available.
805  if (!CallerBFI)
806  return false;
807 
808  // Determine if the callsite is cold relative to caller's entry. We could
809  // potentially cache the computation of scaled entry frequency, but the added
810  // complexity is not worth it unless this scaling shows up high in the
811  // profiles.
812  const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
813  auto CallSiteBB = CS.getInstruction()->getParent();
814  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
815  auto CallerEntryFreq =
816  CallerBFI->getBlockFreq(&(CS.getCaller()->getEntryBlock()));
817  return CallSiteFreq < CallerEntryFreq * ColdProb;
818 }
819 
821 CallAnalyzer::getHotCallSiteThreshold(CallSite CS,
822  BlockFrequencyInfo *CallerBFI) {
823 
824  // If global profile summary is available, then callsite's hotness is
825  // determined based on that.
826  if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(CS, CallerBFI))
827  return Params.HotCallSiteThreshold;
828 
829  // Otherwise we need BFI to be available and to have a locally hot callsite
830  // threshold.
831  if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
832  return None;
833 
834  // Determine if the callsite is hot relative to caller's entry. We could
835  // potentially cache the computation of scaled entry frequency, but the added
836  // complexity is not worth it unless this scaling shows up high in the
837  // profiles.
838  auto CallSiteBB = CS.getInstruction()->getParent();
839  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
840  auto CallerEntryFreq = CallerBFI->getEntryFreq();
841  if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
842  return Params.LocallyHotCallSiteThreshold;
843 
844  // Otherwise treat it normally.
845  return None;
846 }
847 
848 void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) {
849  // If no size growth is allowed for this inlining, set Threshold to 0.
850  if (!allowSizeGrowth(CS)) {
851  Threshold = 0;
852  return;
853  }
854 
855  Function *Caller = CS.getCaller();
856 
857  // return min(A, B) if B is valid.
858  auto MinIfValid = [](int A, Optional<int> B) {
859  return B ? std::min(A, B.getValue()) : A;
860  };
861 
862  // return max(A, B) if B is valid.
863  auto MaxIfValid = [](int A, Optional<int> B) {
864  return B ? std::max(A, B.getValue()) : A;
865  };
866 
867  // Various bonus percentages. These are multiplied by Threshold to get the
868  // bonus values.
869  // SingleBBBonus: This bonus is applied if the callee has a single reachable
870  // basic block at the given callsite context. This is speculatively applied
871  // and withdrawn if more than one basic block is seen.
872  //
873  // Vector bonuses: We want to more aggressively inline vector-dense kernels
874  // and apply this bonus based on the percentage of vector instructions. A
875  // bonus is applied if the vector instructions exceed 50% and half that amount
876  // is applied if it exceeds 10%. Note that these bonuses are some what
877  // arbitrary and evolved over time by accident as much as because they are
878  // principled bonuses.
879  // FIXME: It would be nice to base the bonus values on something more
880  // scientific.
881  //
882  // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
883  // of the last call to a static function as inlining such functions is
884  // guaranteed to reduce code size.
885  //
886  // These bonus percentages may be set to 0 based on properties of the caller
887  // and the callsite.
888  int SingleBBBonusPercent = 50;
889  int VectorBonusPercent = 150;
891 
892  // Lambda to set all the above bonus and bonus percentages to 0.
893  auto DisallowAllBonuses = [&]() {
894  SingleBBBonusPercent = 0;
895  VectorBonusPercent = 0;
896  LastCallToStaticBonus = 0;
897  };
898 
899  // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
900  // and reduce the threshold if the caller has the necessary attribute.
901  if (Caller->optForMinSize()) {
902  Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
903  // For minsize, we want to disable the single BB bonus and the vector
904  // bonuses, but not the last-call-to-static bonus. Inlining the last call to
905  // a static function will, at the minimum, eliminate the parameter setup and
906  // call/return instructions.
907  SingleBBBonusPercent = 0;
908  VectorBonusPercent = 0;
909  } else if (Caller->optForSize())
910  Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
911 
912  // Adjust the threshold based on inlinehint attribute and profile based
913  // hotness information if the caller does not have MinSize attribute.
914  if (!Caller->optForMinSize()) {
916  Threshold = MaxIfValid(Threshold, Params.HintThreshold);
917 
918  // FIXME: After switching to the new passmanager, simplify the logic below
919  // by checking only the callsite hotness/coldness as we will reliably
920  // have local profile information.
921  //
922  // Callsite hotness and coldness can be determined if sample profile is
923  // used (which adds hotness metadata to calls) or if caller's
924  // BlockFrequencyInfo is available.
925  BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
926  auto HotCallSiteThreshold = getHotCallSiteThreshold(CS, CallerBFI);
927  if (!Caller->optForSize() && HotCallSiteThreshold) {
928  LLVM_DEBUG(dbgs() << "Hot callsite.\n");
929  // FIXME: This should update the threshold only if it exceeds the
930  // current threshold, but AutoFDO + ThinLTO currently relies on this
931  // behavior to prevent inlining of hot callsites during ThinLTO
932  // compile phase.
933  Threshold = HotCallSiteThreshold.getValue();
934  } else if (isColdCallSite(CS, CallerBFI)) {
935  LLVM_DEBUG(dbgs() << "Cold callsite.\n");
936  // Do not apply bonuses for a cold callsite including the
937  // LastCallToStatic bonus. While this bonus might result in code size
938  // reduction, it can cause the size of a non-cold caller to increase
939  // preventing it from being inlined.
940  DisallowAllBonuses();
941  Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
942  } else if (PSI) {
943  // Use callee's global profile information only if we have no way of
944  // determining this via callsite information.
945  if (PSI->isFunctionEntryHot(&Callee)) {
946  LLVM_DEBUG(dbgs() << "Hot callee.\n");
947  // If callsite hotness can not be determined, we may still know
948  // that the callee is hot and treat it as a weaker hint for threshold
949  // increase.
950  Threshold = MaxIfValid(Threshold, Params.HintThreshold);
951  } else if (PSI->isFunctionEntryCold(&Callee)) {
952  LLVM_DEBUG(dbgs() << "Cold callee.\n");
953  // Do not apply bonuses for a cold callee including the
954  // LastCallToStatic bonus. While this bonus might result in code size
955  // reduction, it can cause the size of a non-cold caller to increase
956  // preventing it from being inlined.
957  DisallowAllBonuses();
958  Threshold = MinIfValid(Threshold, Params.ColdThreshold);
959  }
960  }
961  }
962 
963  // Finally, take the target-specific inlining threshold multiplier into
964  // account.
965  Threshold *= TTI.getInliningThresholdMultiplier();
966 
967  SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
968  VectorBonus = Threshold * VectorBonusPercent / 100;
969 
970  bool OnlyOneCallAndLocalLinkage =
971  F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction();
972  // If there is only one call of the function, and it has internal linkage,
973  // the cost of inlining it drops dramatically. It may seem odd to update
974  // Cost in updateThreshold, but the bonus depends on the logic in this method.
975  if (OnlyOneCallAndLocalLinkage)
976  Cost -= LastCallToStaticBonus;
977 }
978 
979 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
980  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
981  // First try to handle simplified comparisons.
982  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
983  return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
984  }))
985  return true;
986 
987  if (I.getOpcode() == Instruction::FCmp)
988  return false;
989 
990  // Otherwise look for a comparison between constant offset pointers with
991  // a common base.
992  Value *LHSBase, *RHSBase;
993  APInt LHSOffset, RHSOffset;
994  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
995  if (LHSBase) {
996  std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
997  if (RHSBase && LHSBase == RHSBase) {
998  // We have common bases, fold the icmp to a constant based on the
999  // offsets.
1000  Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1001  Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1002  if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1003  SimplifiedValues[&I] = C;
1004  ++NumConstantPtrCmps;
1005  return true;
1006  }
1007  }
1008  }
1009 
1010  // If the comparison is an equality comparison with null, we can simplify it
1011  // if we know the value (argument) can't be null
1012  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1013  isKnownNonNullInCallee(I.getOperand(0))) {
1014  bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1015  SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1017  return true;
1018  }
1019  // Finally check for SROA candidates in comparisons.
1020  Value *SROAArg;
1022  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
1023  if (isa<ConstantPointerNull>(I.getOperand(1))) {
1024  accumulateSROACost(CostIt, InlineConstants::InstrCost);
1025  return true;
1026  }
1027 
1028  disableSROA(CostIt);
1029  }
1030 
1031  return false;
1032 }
1033 
1034 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1035  // Try to handle a special case: we can fold computing the difference of two
1036  // constant-related pointers.
1037  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1038  Value *LHSBase, *RHSBase;
1039  APInt LHSOffset, RHSOffset;
1040  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1041  if (LHSBase) {
1042  std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1043  if (RHSBase && LHSBase == RHSBase) {
1044  // We have common bases, fold the subtract to a constant based on the
1045  // offsets.
1046  Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1047  Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1048  if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1049  SimplifiedValues[&I] = C;
1050  ++NumConstantPtrDiffs;
1051  return true;
1052  }
1053  }
1054  }
1055 
1056  // Otherwise, fall back to the generic logic for simplifying and handling
1057  // instructions.
1058  return Base::visitSub(I);
1059 }
1060 
1061 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1062  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1063  Constant *CLHS = dyn_cast<Constant>(LHS);
1064  if (!CLHS)
1065  CLHS = SimplifiedValues.lookup(LHS);
1066  Constant *CRHS = dyn_cast<Constant>(RHS);
1067  if (!CRHS)
1068  CRHS = SimplifiedValues.lookup(RHS);
1069 
1070  Value *SimpleV = nullptr;
1071  if (auto FI = dyn_cast<FPMathOperator>(&I))
1072  SimpleV = SimplifyFPBinOp(I.getOpcode(), CLHS ? CLHS : LHS,
1073  CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL);
1074  else
1075  SimpleV =
1076  SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1077 
1078  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1079  SimplifiedValues[&I] = C;
1080 
1081  if (SimpleV)
1082  return true;
1083 
1084  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1085  disableSROA(LHS);
1086  disableSROA(RHS);
1087 
1088  // If the instruction is floating point, and the target says this operation
1089  // is expensive, this may eventually become a library call. Treat the cost
1090  // as such.
1091  if (I.getType()->isFloatingPointTy() &&
1092  TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1094 
1095  return false;
1096 }
1097 
1098 bool CallAnalyzer::visitLoad(LoadInst &I) {
1099  Value *SROAArg;
1101  if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1102  if (I.isSimple()) {
1103  accumulateSROACost(CostIt, InlineConstants::InstrCost);
1104  return true;
1105  }
1106 
1107  disableSROA(CostIt);
1108  }
1109 
1110  // If the data is already loaded from this address and hasn't been clobbered
1111  // by any stores or calls, this load is likely to be redundant and can be
1112  // eliminated.
1113  if (EnableLoadElimination &&
1114  !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1115  LoadEliminationCost += InlineConstants::InstrCost;
1116  return true;
1117  }
1118 
1119  return false;
1120 }
1121 
1122 bool CallAnalyzer::visitStore(StoreInst &I) {
1123  Value *SROAArg;
1125  if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
1126  if (I.isSimple()) {
1127  accumulateSROACost(CostIt, InlineConstants::InstrCost);
1128  return true;
1129  }
1130 
1131  disableSROA(CostIt);
1132  }
1133 
1134  // The store can potentially clobber loads and prevent repeated loads from
1135  // being eliminated.
1136  // FIXME:
1137  // 1. We can probably keep an initial set of eliminatable loads substracted
1138  // from the cost even when we finally see a store. We just need to disable
1139  // *further* accumulation of elimination savings.
1140  // 2. We should probably at some point thread MemorySSA for the callee into
1141  // this and then use that to actually compute *really* precise savings.
1142  disableLoadElimination();
1143  return false;
1144 }
1145 
1146 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1147  // Constant folding for extract value is trivial.
1148  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1149  return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1150  }))
1151  return true;
1152 
1153  // SROA can look through these but give them a cost.
1154  return false;
1155 }
1156 
1157 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1158  // Constant folding for insert value is trivial.
1159  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1160  return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1161  /*InsertedValueOperand*/ COps[1],
1162  I.getIndices());
1163  }))
1164  return true;
1165 
1166  // SROA can look through these but give them a cost.
1167  return false;
1168 }
1169 
1170 /// Try to simplify a call site.
1171 ///
1172 /// Takes a concrete function and callsite and tries to actually simplify it by
1173 /// analyzing the arguments and call itself with instsimplify. Returns true if
1174 /// it has simplified the callsite to some other entity (a constant), making it
1175 /// free.
1176 bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
1177  // FIXME: Using the instsimplify logic directly for this is inefficient
1178  // because we have to continually rebuild the argument list even when no
1179  // simplifications can be performed. Until that is fixed with remapping
1180  // inside of instsimplify, directly constant fold calls here.
1181  if (!canConstantFoldCallTo(CS, F))
1182  return false;
1183 
1184  // Try to re-map the arguments to constants.
1185  SmallVector<Constant *, 4> ConstantArgs;
1186  ConstantArgs.reserve(CS.arg_size());
1187  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
1188  ++I) {
1189  Constant *C = dyn_cast<Constant>(*I);
1190  if (!C)
1191  C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
1192  if (!C)
1193  return false; // This argument doesn't map to a constant.
1194 
1195  ConstantArgs.push_back(C);
1196  }
1197  if (Constant *C = ConstantFoldCall(CS, F, ConstantArgs)) {
1198  SimplifiedValues[CS.getInstruction()] = C;
1199  return true;
1200  }
1201 
1202  return false;
1203 }
1204 
1205 bool CallAnalyzer::visitCallSite(CallSite CS) {
1208  // This aborts the entire analysis.
1209  ExposesReturnsTwice = true;
1210  return false;
1211  }
1212  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->cannotDuplicate())
1213  ContainsNoDuplicateCall = true;
1214 
1215  if (Function *F = CS.getCalledFunction()) {
1216  // When we have a concrete function, first try to simplify it directly.
1217  if (simplifyCallSite(F, CS))
1218  return true;
1219 
1220  // Next check if it is an intrinsic we know about.
1221  // FIXME: Lift this into part of the InstVisitor.
1222  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
1223  switch (II->getIntrinsicID()) {
1224  default:
1225  if (!CS.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
1226  disableLoadElimination();
1227  return Base::visitCallSite(CS);
1228 
1230  // This is normally lowered to 4 LLVM instructions.
1231  Cost += 3 * InlineConstants::InstrCost;
1232  return false;
1233 
1234  case Intrinsic::memset:
1235  case Intrinsic::memcpy:
1236  case Intrinsic::memmove:
1237  disableLoadElimination();
1238  // SROA can usually chew through these intrinsics, but they aren't free.
1239  return false;
1242  HasUninlineableIntrinsic = true;
1243  return false;
1244  case Intrinsic::vastart:
1245  InitsVargArgs = true;
1246  return false;
1247  }
1248  }
1249 
1250  if (F == CS.getInstruction()->getFunction()) {
1251  // This flag will fully abort the analysis, so don't bother with anything
1252  // else.
1253  IsRecursiveCall = true;
1254  return false;
1255  }
1256 
1257  if (TTI.isLoweredToCall(F)) {
1258  // We account for the average 1 instruction per call argument setup
1259  // here.
1260  Cost += CS.arg_size() * InlineConstants::InstrCost;
1261 
1262  // Everything other than inline ASM will also have a significant cost
1263  // merely from making the call.
1264  if (!isa<InlineAsm>(CS.getCalledValue()))
1266  }
1267 
1268  if (!CS.onlyReadsMemory())
1269  disableLoadElimination();
1270  return Base::visitCallSite(CS);
1271  }
1272 
1273  // Otherwise we're in a very special case -- an indirect function call. See
1274  // if we can be particularly clever about this.
1275  Value *Callee = CS.getCalledValue();
1276 
1277  // First, pay the price of the argument setup. We account for the average
1278  // 1 instruction per call argument setup here.
1279  Cost += CS.arg_size() * InlineConstants::InstrCost;
1280 
1281  // Next, check if this happens to be an indirect function call to a known
1282  // function in this inline context. If not, we've done all we can.
1283  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
1284  if (!F) {
1285  if (!CS.onlyReadsMemory())
1286  disableLoadElimination();
1287  return Base::visitCallSite(CS);
1288  }
1289 
1290  // If we have a constant that we are calling as a function, we can peer
1291  // through it and see the function target. This happens not infrequently
1292  // during devirtualization and so we want to give it a hefty bonus for
1293  // inlining, but cap that bonus in the event that inlining wouldn't pan
1294  // out. Pretend to inline the function, with a custom threshold.
1295  auto IndirectCallParams = Params;
1297  CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, CS,
1298  IndirectCallParams);
1299  if (CA.analyzeCall(CS)) {
1300  // We were able to inline the indirect call! Subtract the cost from the
1301  // threshold to get the bonus we want to apply, but don't go below zero.
1302  Cost -= std::max(0, CA.getThreshold() - CA.getCost());
1303  }
1304 
1305  if (!F->onlyReadsMemory())
1306  disableLoadElimination();
1307  return Base::visitCallSite(CS);
1308 }
1309 
1310 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
1311  // At least one return instruction will be free after inlining.
1312  bool Free = !HasReturn;
1313  HasReturn = true;
1314  return Free;
1315 }
1316 
1317 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
1318  // We model unconditional branches as essentially free -- they really
1319  // shouldn't exist at all, but handling them makes the behavior of the
1320  // inliner more regular and predictable. Interestingly, conditional branches
1321  // which will fold away are also free.
1322  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
1323  dyn_cast_or_null<ConstantInt>(
1324  SimplifiedValues.lookup(BI.getCondition()));
1325 }
1326 
1327 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
1328  bool CheckSROA = SI.getType()->isPointerTy();
1329  Value *TrueVal = SI.getTrueValue();
1330  Value *FalseVal = SI.getFalseValue();
1331 
1332  Constant *TrueC = dyn_cast<Constant>(TrueVal);
1333  if (!TrueC)
1334  TrueC = SimplifiedValues.lookup(TrueVal);
1335  Constant *FalseC = dyn_cast<Constant>(FalseVal);
1336  if (!FalseC)
1337  FalseC = SimplifiedValues.lookup(FalseVal);
1338  Constant *CondC =
1339  dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
1340 
1341  if (!CondC) {
1342  // Select C, X, X => X
1343  if (TrueC == FalseC && TrueC) {
1344  SimplifiedValues[&SI] = TrueC;
1345  return true;
1346  }
1347 
1348  if (!CheckSROA)
1349  return Base::visitSelectInst(SI);
1350 
1351  std::pair<Value *, APInt> TrueBaseAndOffset =
1352  ConstantOffsetPtrs.lookup(TrueVal);
1353  std::pair<Value *, APInt> FalseBaseAndOffset =
1354  ConstantOffsetPtrs.lookup(FalseVal);
1355  if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
1356  ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
1357 
1358  Value *SROAArg;
1360  if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt))
1361  SROAArgValues[&SI] = SROAArg;
1362  return true;
1363  }
1364 
1365  return Base::visitSelectInst(SI);
1366  }
1367 
1368  // Select condition is a constant.
1369  Value *SelectedV = CondC->isAllOnesValue()
1370  ? TrueVal
1371  : (CondC->isNullValue()) ? FalseVal : nullptr;
1372  if (!SelectedV) {
1373  // Condition is a vector constant that is not all 1s or all 0s. If all
1374  // operands are constants, ConstantExpr::getSelect() can handle the cases
1375  // such as select vectors.
1376  if (TrueC && FalseC) {
1377  if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
1378  SimplifiedValues[&SI] = C;
1379  return true;
1380  }
1381  }
1382  return Base::visitSelectInst(SI);
1383  }
1384 
1385  // Condition is either all 1s or all 0s. SI can be simplified.
1386  if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
1387  SimplifiedValues[&SI] = SelectedC;
1388  return true;
1389  }
1390 
1391  if (!CheckSROA)
1392  return true;
1393 
1394  std::pair<Value *, APInt> BaseAndOffset =
1395  ConstantOffsetPtrs.lookup(SelectedV);
1396  if (BaseAndOffset.first) {
1397  ConstantOffsetPtrs[&SI] = BaseAndOffset;
1398 
1399  Value *SROAArg;
1401  if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt))
1402  SROAArgValues[&SI] = SROAArg;
1403  }
1404 
1405  return true;
1406 }
1407 
1408 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
1409  // We model unconditional switches as free, see the comments on handling
1410  // branches.
1411  if (isa<ConstantInt>(SI.getCondition()))
1412  return true;
1413  if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
1414  if (isa<ConstantInt>(V))
1415  return true;
1416 
1417  // Assume the most general case where the switch is lowered into
1418  // either a jump table, bit test, or a balanced binary tree consisting of
1419  // case clusters without merging adjacent clusters with the same
1420  // destination. We do not consider the switches that are lowered with a mix
1421  // of jump table/bit test/binary search tree. The cost of the switch is
1422  // proportional to the size of the tree or the size of jump table range.
1423  //
1424  // NB: We convert large switches which are just used to initialize large phi
1425  // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
1426  // inlining those. It will prevent inlining in cases where the optimization
1427  // does not (yet) fire.
1428 
1429  // Maximum valid cost increased in this function.
1430  int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
1431 
1432  // Exit early for a large switch, assuming one case needs at least one
1433  // instruction.
1434  // FIXME: This is not true for a bit test, but ignore such case for now to
1435  // save compile-time.
1436  int64_t CostLowerBound =
1437  std::min((int64_t)CostUpperBound,
1438  (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost);
1439 
1440  if (CostLowerBound > Threshold && !ComputeFullInlineCost) {
1441  Cost = CostLowerBound;
1442  return false;
1443  }
1444 
1445  unsigned JumpTableSize = 0;
1446  unsigned NumCaseCluster =
1447  TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);
1448 
1449  // If suitable for a jump table, consider the cost for the table size and
1450  // branch to destination.
1451  if (JumpTableSize) {
1452  int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
1453  4 * InlineConstants::InstrCost;
1454 
1455  Cost = std::min((int64_t)CostUpperBound, JTCost + Cost);
1456  return false;
1457  }
1458 
1459  // Considering forming a binary search, we should find the number of nodes
1460  // which is same as the number of comparisons when lowered. For a given
1461  // number of clusters, n, we can define a recursive function, f(n), to find
1462  // the number of nodes in the tree. The recursion is :
1463  // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
1464  // and f(n) = n, when n <= 3.
1465  // This will lead a binary tree where the leaf should be either f(2) or f(3)
1466  // when n > 3. So, the number of comparisons from leaves should be n, while
1467  // the number of non-leaf should be :
1468  // 2^(log2(n) - 1) - 1
1469  // = 2^log2(n) * 2^-1 - 1
1470  // = n / 2 - 1.
1471  // Considering comparisons from leaf and non-leaf nodes, we can estimate the
1472  // number of comparisons in a simple closed form :
1473  // n + n / 2 - 1 = n * 3 / 2 - 1
1474  if (NumCaseCluster <= 3) {
1475  // Suppose a comparison includes one compare and one conditional branch.
1476  Cost += NumCaseCluster * 2 * InlineConstants::InstrCost;
1477  return false;
1478  }
1479 
1480  int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
1481  int64_t SwitchCost =
1482  ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
1483 
1484  Cost = std::min((int64_t)CostUpperBound, SwitchCost + Cost);
1485  return false;
1486 }
1487 
1488 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
1489  // We never want to inline functions that contain an indirectbr. This is
1490  // incorrect because all the blockaddress's (in static global initializers
1491  // for example) would be referring to the original function, and this
1492  // indirect jump would jump from the inlined copy of the function into the
1493  // original function which is extremely undefined behavior.
1494  // FIXME: This logic isn't really right; we can safely inline functions with
1495  // indirectbr's as long as no other function or global references the
1496  // blockaddress of a block within the current function.
1497  HasIndirectBr = true;
1498  return false;
1499 }
1500 
1501 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
1502  // FIXME: It's not clear that a single instruction is an accurate model for
1503  // the inline cost of a resume instruction.
1504  return false;
1505 }
1506 
1507 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
1508  // FIXME: It's not clear that a single instruction is an accurate model for
1509  // the inline cost of a cleanupret instruction.
1510  return false;
1511 }
1512 
1513 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
1514  // FIXME: It's not clear that a single instruction is an accurate model for
1515  // the inline cost of a catchret instruction.
1516  return false;
1517 }
1518 
1519 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
1520  // FIXME: It might be reasonably to discount the cost of instructions leading
1521  // to unreachable as they have the lowest possible impact on both runtime and
1522  // code size.
1523  return true; // No actual code is needed for unreachable.
1524 }
1525 
1526 bool CallAnalyzer::visitInstruction(Instruction &I) {
1527  // Some instructions are free. All of the free intrinsics can also be
1528  // handled by SROA, etc.
1529  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
1530  return true;
1531 
1532  // We found something we don't understand or can't handle. Mark any SROA-able
1533  // values in the operand list as no longer viable.
1534  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
1535  disableSROA(*OI);
1536 
1537  return false;
1538 }
1539 
1540 /// Analyze a basic block for its contribution to the inline cost.
1541 ///
1542 /// This method walks the analyzer over every instruction in the given basic
1543 /// block and accounts for their cost during inlining at this callsite. It
1544 /// aborts early if the threshold has been exceeded or an impossible to inline
1545 /// construct has been detected. It returns false if inlining is no longer
1546 /// viable, and true if inlining remains viable.
1548 CallAnalyzer::analyzeBlock(BasicBlock *BB,
1549  SmallPtrSetImpl<const Value *> &EphValues) {
1550  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1551  // FIXME: Currently, the number of instructions in a function regardless of
1552  // our ability to simplify them during inline to constants or dead code,
1553  // are actually used by the vector bonus heuristic. As long as that's true,
1554  // we have to special case debug intrinsics here to prevent differences in
1555  // inlining due to debug symbols. Eventually, the number of unsimplified
1556  // instructions shouldn't factor into the cost computation, but until then,
1557  // hack around it here.
1558  if (isa<DbgInfoIntrinsic>(I))
1559  continue;
1560 
1561  // Skip ephemeral values.
1562  if (EphValues.count(&*I))
1563  continue;
1564 
1565  ++NumInstructions;
1566  if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
1567  ++NumVectorInstructions;
1568 
1569  // If the instruction simplified to a constant, there is no cost to this
1570  // instruction. Visit the instructions using our InstVisitor to account for
1571  // all of the per-instruction logic. The visit tree returns true if we
1572  // consumed the instruction in any way, and false if the instruction's base
1573  // cost should count against inlining.
1574  if (Base::visit(&*I))
1575  ++NumInstructionsSimplified;
1576  else
1578 
1579  using namespace ore;
1580  // If the visit this instruction detected an uninlinable pattern, abort.
1581  InlineResult IR;
1582  if (IsRecursiveCall)
1583  IR = "recursive";
1584  else if (ExposesReturnsTwice)
1585  IR = "exposes returns twice";
1586  else if (HasDynamicAlloca)
1587  IR = "dynamic alloca";
1588  else if (HasIndirectBr)
1589  IR = "indirect branch";
1590  else if (HasUninlineableIntrinsic)
1591  IR = "uninlinable intrinsic";
1592  else if (InitsVargArgs)
1593  IR = "varargs";
1594  if (!IR) {
1595  if (ORE)
1596  ORE->emit([&]() {
1597  return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1598  CandidateCS.getInstruction())
1599  << NV("Callee", &F) << " has uninlinable pattern ("
1600  << NV("InlineResult", IR.message)
1601  << ") and cost is not fully computed";
1602  });
1603  return IR;
1604  }
1605 
1606  // If the caller is a recursive function then we don't want to inline
1607  // functions which allocate a lot of stack space because it would increase
1608  // the caller stack usage dramatically.
1609  if (IsCallerRecursive &&
1611  InlineResult IR = "recursive and allocates too much stack space";
1612  if (ORE)
1613  ORE->emit([&]() {
1614  return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1615  CandidateCS.getInstruction())
1616  << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
1617  << ". Cost is not fully computed";
1618  });
1619  return IR;
1620  }
1621 
1622  // Check if we've past the maximum possible threshold so we don't spin in
1623  // huge basic blocks that will never inline.
1624  if (Cost >= Threshold && !ComputeFullInlineCost)
1625  return false;
1626  }
1627 
1628  return true;
1629 }
1630 
1631 /// Compute the base pointer and cumulative constant offsets for V.
1632 ///
1633 /// This strips all constant offsets off of V, leaving it the base pointer, and
1634 /// accumulates the total constant offset applied in the returned constant. It
1635 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
1636 /// no constant offsets applied.
1637 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
1638  if (!V->getType()->isPointerTy())
1639  return nullptr;
1640 
1641  unsigned AS = V->getType()->getPointerAddressSpace();
1642  unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
1643  APInt Offset = APInt::getNullValue(IntPtrWidth);
1644 
1645  // Even though we don't look through PHI nodes, we could be called on an
1646  // instruction in an unreachable block, which may be on a cycle.
1647  SmallPtrSet<Value *, 4> Visited;
1648  Visited.insert(V);
1649  do {
1650  if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1651  if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
1652  return nullptr;
1653  V = GEP->getPointerOperand();
1654  } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1655  V = cast<Operator>(V)->getOperand(0);
1656  } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1657  if (GA->isInterposable())
1658  break;
1659  V = GA->getAliasee();
1660  } else {
1661  break;
1662  }
1663  assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1664  } while (Visited.insert(V).second);
1665 
1666  Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
1667  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
1668 }
1669 
1670 /// Find dead blocks due to deleted CFG edges during inlining.
1671 ///
1672 /// If we know the successor of the current block, \p CurrBB, has to be \p
1673 /// NextBB, the other successors of \p CurrBB are dead if these successors have
1674 /// no live incoming CFG edges. If one block is found to be dead, we can
1675 /// continue growing the dead block list by checking the successors of the dead
1676 /// blocks to see if all their incoming edges are dead or not.
1677 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
1678  auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
1679  // A CFG edge is dead if the predecessor is dead or the predessor has a
1680  // known successor which is not the one under exam.
1681  return (DeadBlocks.count(Pred) ||
1682  (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
1683  };
1684 
1685  auto IsNewlyDead = [&](BasicBlock *BB) {
1686  // If all the edges to a block are dead, the block is also dead.
1687  return (!DeadBlocks.count(BB) &&
1689  [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
1690  };
1691 
1692  for (BasicBlock *Succ : successors(CurrBB)) {
1693  if (Succ == NextBB || !IsNewlyDead(Succ))
1694  continue;
1696  NewDead.push_back(Succ);
1697  while (!NewDead.empty()) {
1698  BasicBlock *Dead = NewDead.pop_back_val();
1699  if (DeadBlocks.insert(Dead))
1700  // Continue growing the dead block lists.
1701  for (BasicBlock *S : successors(Dead))
1702  if (IsNewlyDead(S))
1703  NewDead.push_back(S);
1704  }
1705  }
1706 }
1707 
1708 /// Analyze a call site for potential inlining.
1709 ///
1710 /// Returns true if inlining this call is viable, and false if it is not
1711 /// viable. It computes the cost and adjusts the threshold based on numerous
1712 /// factors and heuristics. If this method returns false but the computed cost
1713 /// is below the computed threshold, then inlining was forcibly disabled by
1714 /// some artifact of the routine.
1715 InlineResult CallAnalyzer::analyzeCall(CallSite CS) {
1716  ++NumCallsAnalyzed;
1717 
1718  // Perform some tweaks to the cost and threshold based on the direct
1719  // callsite information.
1720 
1721  // We want to more aggressively inline vector-dense kernels, so up the
1722  // threshold, and we'll lower it if the % of vector instructions gets too
1723  // low. Note that these bonuses are some what arbitrary and evolved over time
1724  // by accident as much as because they are principled bonuses.
1725  //
1726  // FIXME: It would be nice to remove all such bonuses. At least it would be
1727  // nice to base the bonus values on something more scientific.
1728  assert(NumInstructions == 0);
1729  assert(NumVectorInstructions == 0);
1730 
1731  // Update the threshold based on callsite properties
1732  updateThreshold(CS, F);
1733 
1734  // While Threshold depends on commandline options that can take negative
1735  // values, we want to enforce the invariant that the computed threshold and
1736  // bonuses are non-negative.
1737  assert(Threshold >= 0);
1738  assert(SingleBBBonus >= 0);
1739  assert(VectorBonus >= 0);
1740 
1741  // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1742  // this Threshold any time, and cost cannot decrease, we can stop processing
1743  // the rest of the function body.
1744  Threshold += (SingleBBBonus + VectorBonus);
1745 
1746  // Give out bonuses for the callsite, as the instructions setting them up
1747  // will be gone after inlining.
1748  Cost -= getCallsiteCost(CS, DL);
1749 
1750  // If this function uses the coldcc calling convention, prefer not to inline
1751  // it.
1752  if (F.getCallingConv() == CallingConv::Cold)
1754 
1755  // Check if we're done. This can happen due to bonuses and penalties.
1756  if (Cost >= Threshold && !ComputeFullInlineCost)
1757  return "high cost";
1758 
1759  if (F.empty())
1760  return true;
1761 
1762  Function *Caller = CS.getInstruction()->getFunction();
1763  // Check if the caller function is recursive itself.
1764  for (User *U : Caller->users()) {
1765  CallSite Site(U);
1766  if (!Site)
1767  continue;
1768  Instruction *I = Site.getInstruction();
1769  if (I->getFunction() == Caller) {
1770  IsCallerRecursive = true;
1771  break;
1772  }
1773  }
1774 
1775  // Populate our simplified values by mapping from function arguments to call
1776  // arguments with known important simplifications.
1777  CallSite::arg_iterator CAI = CS.arg_begin();
1778  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1779  FAI != FAE; ++FAI, ++CAI) {
1780  assert(CAI != CS.arg_end());
1781  if (Constant *C = dyn_cast<Constant>(CAI))
1782  SimplifiedValues[&*FAI] = C;
1783 
1784  Value *PtrArg = *CAI;
1785  if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1786  ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
1787 
1788  // We can SROA any pointer arguments derived from alloca instructions.
1789  if (isa<AllocaInst>(PtrArg)) {
1790  SROAArgValues[&*FAI] = PtrArg;
1791  SROAArgCosts[PtrArg] = 0;
1792  }
1793  }
1794  }
1795  NumConstantArgs = SimplifiedValues.size();
1796  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1797  NumAllocaArgs = SROAArgValues.size();
1798 
1799  // FIXME: If a caller has multiple calls to a callee, we end up recomputing
1800  // the ephemeral values multiple times (and they're completely determined by
1801  // the callee, so this is purely duplicate work).
1803  CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
1804 
1805  // The worklist of live basic blocks in the callee *after* inlining. We avoid
1806  // adding basic blocks of the callee which can be proven to be dead for this
1807  // particular call site in order to get more accurate cost estimates. This
1808  // requires a somewhat heavyweight iteration pattern: we need to walk the
1809  // basic blocks in a breadth-first order as we insert live successors. To
1810  // accomplish this, prioritizing for small iterations because we exit after
1811  // crossing our threshold, we use a small-size optimized SetVector.
1814  BBSetVector;
1815  BBSetVector BBWorklist;
1816  BBWorklist.insert(&F.getEntryBlock());
1817  bool SingleBB = true;
1818  // Note that we *must not* cache the size, this loop grows the worklist.
1819  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1820  // Bail out the moment we cross the threshold. This means we'll under-count
1821  // the cost, but only when undercounting doesn't matter.
1822  if (Cost >= Threshold && !ComputeFullInlineCost)
1823  break;
1824 
1825  BasicBlock *BB = BBWorklist[Idx];
1826  if (BB->empty())
1827  continue;
1828 
1829  // Disallow inlining a blockaddress. A blockaddress only has defined
1830  // behavior for an indirect branch in the same function, and we do not
1831  // currently support inlining indirect branches. But, the inliner may not
1832  // see an indirect branch that ends up being dead code at a particular call
1833  // site. If the blockaddress escapes the function, e.g., via a global
1834  // variable, inlining may lead to an invalid cross-function reference.
1835  if (BB->hasAddressTaken())
1836  return "blockaddress";
1837 
1838  // Analyze the cost of this block. If we blow through the threshold, this
1839  // returns false, and we can bail on out.
1840  InlineResult IR = analyzeBlock(BB, EphValues);
1841  if (!IR)
1842  return IR;
1843 
1844  Instruction *TI = BB->getTerminator();
1845 
1846  // Add in the live successors by first checking whether we have terminator
1847  // that may be simplified based on the values simplified by this call.
1848  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1849  if (BI->isConditional()) {
1850  Value *Cond = BI->getCondition();
1851  if (ConstantInt *SimpleCond =
1852  dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1853  BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
1854  BBWorklist.insert(NextBB);
1855  KnownSuccessors[BB] = NextBB;
1856  findDeadBlocks(BB, NextBB);
1857  continue;
1858  }
1859  }
1860  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1861  Value *Cond = SI->getCondition();
1862  if (ConstantInt *SimpleCond =
1863  dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1864  BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
1865  BBWorklist.insert(NextBB);
1866  KnownSuccessors[BB] = NextBB;
1867  findDeadBlocks(BB, NextBB);
1868  continue;
1869  }
1870  }
1871 
1872  // If we're unable to select a particular successor, just count all of
1873  // them.
1874  for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1875  ++TIdx)
1876  BBWorklist.insert(TI->getSuccessor(TIdx));
1877 
1878  // If we had any successors at this point, than post-inlining is likely to
1879  // have them as well. Note that we assume any basic blocks which existed
1880  // due to branches or switches which folded above will also fold after
1881  // inlining.
1882  if (SingleBB && TI->getNumSuccessors() > 1) {
1883  // Take off the bonus we applied to the threshold.
1884  Threshold -= SingleBBBonus;
1885  SingleBB = false;
1886  }
1887  }
1888 
1889  bool OnlyOneCallAndLocalLinkage =
1890  F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction();
1891  // If this is a noduplicate call, we can still inline as long as
1892  // inlining this would cause the removal of the caller (so the instruction
1893  // is not actually duplicated, just moved).
1894  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1895  return "noduplicate";
1896 
1897  // Loops generally act a lot like calls in that they act like barriers to
1898  // movement, require a certain amount of setup, etc. So when optimising for
1899  // size, we penalise any call sites that perform loops. We do this after all
1900  // other costs here, so will likely only be dealing with relatively small
1901  // functions (and hence DT and LI will hopefully be cheap).
1902  if (Caller->optForMinSize()) {
1903  DominatorTree DT(F);
1904  LoopInfo LI(DT);
1905  int NumLoops = 0;
1906  for (Loop *L : LI) {
1907  // Ignore loops that will not be executed
1908  if (DeadBlocks.count(L->getHeader()))
1909  continue;
1910  NumLoops++;
1911  }
1912  Cost += NumLoops * InlineConstants::CallPenalty;
1913  }
1914 
1915  // We applied the maximum possible vector bonus at the beginning. Now,
1916  // subtract the excess bonus, if any, from the Threshold before
1917  // comparing against Cost.
1918  if (NumVectorInstructions <= NumInstructions / 10)
1919  Threshold -= VectorBonus;
1920  else if (NumVectorInstructions <= NumInstructions / 2)
1921  Threshold -= VectorBonus/2;
1922 
1923  return Cost < std::max(1, Threshold);
1924 }
1925 
1926 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1927 /// Dump stats about this call's analysis.
1929 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n"
1930  DEBUG_PRINT_STAT(NumConstantArgs);
1931  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1932  DEBUG_PRINT_STAT(NumAllocaArgs);
1933  DEBUG_PRINT_STAT(NumConstantPtrCmps);
1934  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1935  DEBUG_PRINT_STAT(NumInstructionsSimplified);
1936  DEBUG_PRINT_STAT(NumInstructions);
1937  DEBUG_PRINT_STAT(SROACostSavings);
1938  DEBUG_PRINT_STAT(SROACostSavingsLost);
1939  DEBUG_PRINT_STAT(LoadEliminationCost);
1940  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1941  DEBUG_PRINT_STAT(Cost);
1942  DEBUG_PRINT_STAT(Threshold);
1943 #undef DEBUG_PRINT_STAT
1944 }
1945 #endif
1946 
1947 /// Test that there are no attribute conflicts between Caller and Callee
1948 /// that prevent inlining.
1950  Function *Callee,
1951  TargetTransformInfo &TTI) {
1952  return TTI.areInlineCompatible(Caller, Callee) &&
1953  AttributeFuncs::areInlineCompatible(*Caller, *Callee);
1954 }
1955 
1957  int Cost = 0;
1958  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
1959  if (CS.isByValArgument(I)) {
1960  // We approximate the number of loads and stores needed by dividing the
1961  // size of the byval type by the target's pointer size.
1962  PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
1963  unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
1964  unsigned AS = PTy->getAddressSpace();
1965  unsigned PointerSize = DL.getPointerSizeInBits(AS);
1966  // Ceiling division.
1967  unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
1968 
1969  // If it generates more than 8 stores it is likely to be expanded as an
1970  // inline memcpy so we take that as an upper bound. Otherwise we assume
1971  // one load and one store per word copied.
1972  // FIXME: The maxStoresPerMemcpy setting from the target should be used
1973  // here instead of a magic number of 8, but it's not available via
1974  // DataLayout.
1975  NumStores = std::min(NumStores, 8U);
1976 
1977  Cost += 2 * NumStores * InlineConstants::InstrCost;
1978  } else {
1979  // For non-byval arguments subtract off one instruction per call
1980  // argument.
1982  }
1983  }
1984  // The call instruction also disappears after inlining.
1985  Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
1986  return Cost;
1987 }
1988 
1990  CallSite CS, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
1991  std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
1994  return getInlineCost(CS, CS.getCalledFunction(), Params, CalleeTTI,
1995  GetAssumptionCache, GetBFI, PSI, ORE);
1996 }
1997 
1999  CallSite CS, Function *Callee, const InlineParams &Params,
2000  TargetTransformInfo &CalleeTTI,
2001  std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2004 
2005  // Cannot inline indirect calls.
2006  if (!Callee)
2007  return llvm::InlineCost::getNever("indirect call");
2008 
2009  // Never inline calls with byval arguments that does not have the alloca
2010  // address space. Since byval arguments can be replaced with a copy to an
2011  // alloca, the inlined code would need to be adjusted to handle that the
2012  // argument is in the alloca address space (so it is a little bit complicated
2013  // to solve).
2014  unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2015  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I)
2016  if (CS.isByValArgument(I)) {
2017  PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
2018  if (PTy->getAddressSpace() != AllocaAS)
2019  return llvm::InlineCost::getNever("byval arguments without alloca"
2020  " address space");
2021  }
2022 
2023  // Calls to functions with always-inline attributes should be inlined
2024  // whenever possible.
2026  if (isInlineViable(*Callee))
2027  return llvm::InlineCost::getAlways("always inline attribute");
2028  return llvm::InlineCost::getNever("inapplicable always inline attribute");
2029  }
2030 
2031  // Never inline functions with conflicting attributes (unless callee has
2032  // always-inline attribute).
2033  Function *Caller = CS.getCaller();
2034  if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
2035  return llvm::InlineCost::getNever("conflicting attributes");
2036 
2037  // Don't inline this call if the caller has the optnone attribute.
2039  return llvm::InlineCost::getNever("optnone attribute");
2040 
2041  // Don't inline a function that treats null pointer as valid into a caller
2042  // that does not have this attribute.
2043  if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2044  return llvm::InlineCost::getNever("nullptr definitions incompatible");
2045 
2046  // Don't inline functions which can be interposed at link-time.
2047  if (Callee->isInterposable())
2048  return llvm::InlineCost::getNever("interposable");
2049 
2050  // Don't inline functions marked noinline.
2051  if (Callee->hasFnAttribute(Attribute::NoInline))
2052  return llvm::InlineCost::getNever("noinline function attribute");
2053 
2054  // Don't inline call sites marked noinline.
2055  if (CS.isNoInline())
2056  return llvm::InlineCost::getNever("noinline call site attribute");
2057 
2058  LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
2059  << "... (caller:" << Caller->getName() << ")\n");
2060 
2061  CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee, CS,
2062  Params);
2063  InlineResult ShouldInline = CA.analyzeCall(CS);
2064 
2065  LLVM_DEBUG(CA.dump());
2066 
2067  // Check if there was a reason to force inlining or no inlining.
2068  if (!ShouldInline && CA.getCost() < CA.getThreshold())
2069  return InlineCost::getNever(ShouldInline.message);
2070  if (ShouldInline && CA.getCost() >= CA.getThreshold())
2071  return InlineCost::getAlways("empty function");
2072 
2073  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2074 }
2075 
2077  bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2078  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2079  // Disallow inlining of functions which contain indirect branches or
2080  // blockaddresses.
2081  if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken())
2082  return false;
2083 
2084  for (auto &II : *BI) {
2085  CallSite CS(&II);
2086  if (!CS)
2087  continue;
2088 
2089  // Disallow recursive calls.
2090  if (&F == CS.getCalledFunction())
2091  return false;
2092 
2093  // Disallow calls which expose returns-twice to a function not previously
2094  // attributed as such.
2095  if (!ReturnsTwice && CS.isCall() &&
2096  cast<CallInst>(CS.getInstruction())->canReturnTwice())
2097  return false;
2098 
2099  if (CS.getCalledFunction())
2100  switch (CS.getCalledFunction()->getIntrinsicID()) {
2101  default:
2102  break;
2103  // Disallow inlining of @llvm.icall.branch.funnel because current
2104  // backend can't separate call targets from call arguments.
2106  // Disallow inlining functions that call @llvm.localescape. Doing this
2107  // correctly would require major changes to the inliner.
2109  // Disallow inlining of functions that initialize VarArgs with va_start.
2111  return false;
2112  }
2113  }
2114  }
2115 
2116  return true;
2117 }
2118 
2119 // APIs to create InlineParams based on command line flags and/or other
2120 // parameters.
2121 
2123  InlineParams Params;
2124 
2125  // This field is the threshold to use for a callee by default. This is
2126  // derived from one or more of:
2127  // * optimization or size-optimization levels,
2128  // * a value passed to createFunctionInliningPass function, or
2129  // * the -inline-threshold flag.
2130  // If the -inline-threshold flag is explicitly specified, that is used
2131  // irrespective of anything else.
2132  if (InlineThreshold.getNumOccurrences() > 0)
2134  else
2135  Params.DefaultThreshold = Threshold;
2136 
2137  // Set the HintThreshold knob from the -inlinehint-threshold.
2138  Params.HintThreshold = HintThreshold;
2139 
2140  // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2141  Params.HotCallSiteThreshold = HotCallSiteThreshold;
2142 
2143  // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2144  // populate LocallyHotCallSiteThreshold. Later, we populate
2145  // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2146  // we know that optimization level is O3 (in the getInlineParams variant that
2147  // takes the opt and size levels).
2148  // FIXME: Remove this check (and make the assignment unconditional) after
2149  // addressing size regression issues at O2.
2150  if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2152 
2153  // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
2155 
2156  // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2157  // -inlinehint-threshold commandline option is not explicitly given. If that
2158  // option is present, then its value applies even for callees with size and
2159  // minsize attributes.
2160  // If the -inline-threshold is not specified, set the ColdThreshold from the
2161  // -inlinecold-threshold even if it is not explicitly passed. If
2162  // -inline-threshold is specified, then -inlinecold-threshold needs to be
2163  // explicitly specified to set the ColdThreshold knob
2164  if (InlineThreshold.getNumOccurrences() == 0) {
2167  Params.ColdThreshold = ColdThreshold;
2168  } else if (ColdThreshold.getNumOccurrences() > 0) {
2169  Params.ColdThreshold = ColdThreshold;
2170  }
2171  return Params;
2172 }
2173 
2176 }
2177 
2178 // Compute the default threshold for inlining based on the opt level and the
2179 // size opt level.
2180 static int computeThresholdFromOptLevels(unsigned OptLevel,
2181  unsigned SizeOptLevel) {
2182  if (OptLevel > 2)
2184  if (SizeOptLevel == 1) // -Os
2186  if (SizeOptLevel == 2) // -Oz
2188  return InlineThreshold;
2189 }
2190 
2191 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2192  auto Params =
2193  getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2194  // At O3, use the value of -locally-hot-callsite-threshold option to populate
2195  // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2196  // when it is specified explicitly.
2197  if (OptLevel > 2)
2199  return Params;
2200 }
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value *> &EphValues)
Collect a loop&#39;s ephemeral values (those used only by an assume or similar intrinsics in the loop)...
Definition: CodeMetrics.cpp:72
bool onlyReadsMemory() const
Determine if the function does not access or only reads memory.
Definition: Function.h:468
uint64_t CallInst * C
Return a value (possibly void), from a function.
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:213
unsigned getNumCases() const
Return the number of &#39;cases&#39; in this switch instruction, excluding the default case.
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:585
Thresholds to tune inline cost analysis.
Definition: InlineCost.h:154
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
bool isSimple() const
Definition: Instructions.h:277
bool empty() const
Definition: Function.h:662
bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
Definition: Constants.cpp:100
unsigned getIndexSizeInBits(unsigned AS) const
Size in bits of index used for address calculation in getelementptr.
Definition: DataLayout.h:373
bool hasLocalLinkage() const
Definition: GlobalValue.h:436
Diagnostic information for missed-optimization remarks.
This instruction extracts a struct member or array element value from an aggregate value...
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Base class for instruction visitors.
Definition: InstVisitor.h:81
DiagnosticInfoOptimizationBase::Argument NV
unsigned arg_size() const
Definition: CallSite.h:219
This class represents lattice values for constants.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:316
Optional< int > OptSizeThreshold
Threshold to use when the caller is optimized for size.
Definition: InlineCost.h:165
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
BasicBlock * getSuccessor(unsigned Idx) const
Return the specified successor. This instruction must be a terminator.
iterator end()
Definition: Function.h:658
static int computeThresholdFromOptLevels(unsigned OptLevel, unsigned SizeOptLevel)
static cl::opt< int > LocallyHotCallSiteThreshold("locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, cl::desc("Threshold for locally hot callsites "))
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:588
Analysis providing profile information.
const int OptMinSizeThreshold
Use when minsize (-Oz) is specified.
Definition: InlineCost.h:38
const int ColdccPenalty
Definition: InlineCost.h:48
Value * getCondition() const
gep_type_iterator gep_type_end(const User *GEP)
const Value * getTrueValue() const
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:117
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1760
A cache of @llvm.assume calls within a function.
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
bool isInterposable() const
Return true if this global&#39;s definition can be substituted with an arbitrary definition at link time...
Definition: GlobalValue.h:420
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:321
unsigned second
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1186
static void dump(StringRef Title, SpillInfo const &Spills)
Definition: CoroFrame.cpp:299
BasicBlock * getSuccessor(unsigned i) const
arg_iterator arg_end()
Definition: Function.h:680
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:363
STATISTIC(NumFunctions, "Total number of functions")
F(f)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
block Block Frequency true
An instruction for reading from memory.
Definition: Instructions.h:168
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2, bool OnlyIfReduced=false)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1956
Hexagon Common GEP
Value * getCondition() const
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2249
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
void reserve(size_type N)
Definition: SmallVector.h:376
op_iterator op_begin()
Definition: User.h:230
std::enable_if< std::is_unsigned< T >::value, T >::type SaturatingAdd(T X, T Y, bool *ResultOverflowed=nullptr)
Add two unsigned integers, X and Y, of type T.
Definition: MathExtras.h:776
Represents the cost of inlining a function.
Definition: InlineCost.h:64
bool isFunctionEntryCold(const Function *F)
Returns true if F has cold function entry.
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1509
bool isNoInline() const
Return true if the call should not be inlined.
Definition: CallSite.h:438
bool areInlineCompatible(const Function &Caller, const Function &Callee)
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
bool isHotCallSite(const CallSite &CS, BlockFrequencyInfo *BFI)
Returns true if CallSite CS is considered hot.
bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
Definition: CallSite.h:454
Value * SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FP BinaryOperator, fold the result or return null.
unsigned getAllocaAddrSpace() const
Definition: DataLayout.h:258
ArrayRef< unsigned > getIndices() const
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:529
static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI)
Return true if the block containing the call site has a BlockFrequency of less than ColdCCRelFreq% of...
Definition: GlobalOpt.cpp:2147
This class represents the LLVM &#39;select&#39; instruction.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:646
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
Optional< int > HintThreshold
Threshold to use for callees with inline hint.
Definition: InlineCost.h:159
Class to represent struct types.
Definition: DerivedTypes.h:201
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
bool isInlineViable(Function &Callee)
Minimal filter to detect invalid constructs for inlining.
IterTy arg_end() const
Definition: CallSite.h:575
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
InstrTy * getInstruction() const
Definition: CallSite.h:92
#define LLVM_DUMP_METHOD
Definition: Compiler.h:74
#define DEBUG_PRINT_STAT(x)
This class represents a cast from a pointer to an integer.
ValTy * getCalledValue() const
Return the pointer to function that is being called.
Definition: CallSite.h:100
bool empty() const
Definition: BasicBlock.h:280
OtherOps getOpcode() const
Get the opcode casted to the right type.
Definition: InstrTypes.h:716
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:85
static cl::opt< int > ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining functions with cold attribute"))
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:606
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:142
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:884
static Constant * getSelect(Constant *C, Constant *V1, Constant *V2, Type *OnlyIfReducedTy=nullptr)
Select constant expr.
Definition: Constants.cpp:1978
This class represents a no-op cast from one type to another.
op_iterator idx_begin()
Definition: Instructions.h:979
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the call or the callee has the given attribute.
Definition: CallSite.h:377
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:138
const int LastCallToStaticBonus
Definition: InlineCost.h:47
An instruction for storing to memory.
Definition: Instructions.h:321
static cl::opt< int > HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), cl::ZeroOrMore, cl::desc("Threshold for hot callsites "))
iterator begin()
Definition: Function.h:656
static InlineCost getAlways(const char *Reason)
Definition: InlineCost.h:92
const int CallPenalty
Definition: InlineCost.h:46
InlineResult is basically true or false.
Definition: InlineCost.h:136
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
amdgpu Simplify well known AMD library false Value * Callee
unsigned getNumSuccessors() const
Return the number of successors that this instruction has.
Value * getOperand(unsigned i) const
Definition: User.h:170
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:211
Class to represent pointers.
Definition: DerivedTypes.h:467
bool isCall() const
Return true if a CallInst is enclosed.
Definition: CallSite.h:87
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1773
bool hasProfileSummary()
Returns true if profile summary is available.
const BasicBlock & getEntryBlock() const
Definition: Function.h:640
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:854
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:750
static Constant * getInsertValue(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2171
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ParseOptionalThreadLocal := /*empty.
const int IndirectCallThreshold
Definition: InlineCost.h:45
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
Conditional or Unconditional Branch instruction.
This function has undefined behavior.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
Resume the propagation of an exception.
bool hasFnAttr(Attribute::AttrKind Kind) const
Return true if this function has the given attribute.
Definition: CallSite.h:362
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
Indirect Branch Instruction.
const int OptAggressiveThreshold
Use when -O3 is specified.
Definition: InlineCost.h:41
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
Expected to fold away in lowering.
bool isUnordered() const
Definition: Instructions.h:279
op_iterator op_end()
Definition: User.h:232
Optional< int > OptMinSizeThreshold
Threshold to use when the caller is optimized for minsize.
Definition: InlineCost.h:168
bool optForSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:598
op_range operands()
Definition: User.h:238
Value * getPointerOperand()
Definition: Instructions.h:285
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:495
arg_iterator arg_begin()
Definition: Function.h:671
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced=false)
get* - Return some common constants without having to specify the full Instruction::OPCODE identifier...
Definition: Constants.cpp:2053
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
Definition: DataLayout.cpp:662
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:60
This class represents a cast from an integer to a pointer.
const Value * getCondition() const
bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap. ...
Optional< int > LocallyHotCallSiteThreshold
Threshold to use when the callsite is considered hot relative to function entry.
Definition: InlineCost.h:175
const Value * getArraySize() const
Get the number of elements allocated.
Definition: Instructions.h:93
static cl::opt< int > ColdCallSiteRelFreq("cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::desc("Maxmimum block frequency, expressed as a percentage of caller's " "entry frequency, for a callsite to be cold in the absence of " "profile information."))
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
Definition: Instructions.h:106
InlineCost getInlineCost(CallSite CS, const InlineParams &Params, TargetTransformInfo &CalleeTTI, std::function< AssumptionCache &(Function &)> &GetAssumptionCache, Optional< function_ref< BlockFrequencyInfo &(Function &)>> GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE=nullptr)
Get an InlineCost object representing the cost of inlining this callsite.
std::enable_if< std::is_unsigned< T >::value, T >::type SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed=nullptr)
Multiply two unsigned integers, X and Y, and add the unsigned integer, A to the product.
Definition: MathExtras.h:839
static bool functionsHaveCompatibleAttributes(Function *Caller, Function *Callee, TargetTransformInfo &TTI)
Test that there are no attribute conflicts between Caller and Callee that prevent inlining...
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:392
static cl::opt< int > ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining cold callsites"))
Iterator for intrusive lists based on ilist_node.
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file. ...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
ValTy * getArgument(unsigned ArgNo) const
Definition: CallSite.h:186
iterator end()
Definition: BasicBlock.h:271
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
InlineParams getInlineParams()
Generate the parameters to tune the inline cost analysis based only on the commandline options...
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:213
IterTy arg_begin() const
Definition: CallSite.h:571
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
static cl::opt< int > HotCallSiteRelFreq("hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, cl::desc("Minimum block frequency, expressed as a multiple of caller's " "entry frequency, for a callsite to be hot in the absence of " "profile information."))
static cl::opt< bool > OptComputeFullInlineCost("inline-cost-full", cl::Hidden, cl::init(false), cl::desc("Compute the full inline cost of a call site even when the cost " "exceeds the threshold."))
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
#define DEBUG_TYPE
Definition: InlineCost.cpp:45
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
bool isConditional() const
pred_range predecessors(BasicBlock *BB)
Definition: CFG.h:125
Optional< int > ColdThreshold
Threshold to use for cold callees.
Definition: InlineCost.h:162
static cl::opt< int > HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), cl::desc("Threshold for inlining functions with inline hint"))
unsigned getNumIncomingValues() const
Return the number of incoming edges.
CaseIt findCaseValue(const ConstantInt *C)
Search all of the case values for the specified constant.
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:578
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:194
BlockFrequency getBlockFreq(const BasicBlock *BB) const
getblockFreq - Return block frequency.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
Class for arbitrary precision integers.
Definition: APInt.h:70
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition: Argument.h:48
iterator_range< user_iterator > users()
Definition: Value.h:400
static cl::opt< unsigned > Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), cl::init(100), cl::Hidden)
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1530
const Value * getFalseValue() const
amdgpu Simplify well known AMD library false Value Value * Arg
uint64_t getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:568
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:436
static cl::opt< int > InlineThreshold("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, cl::desc("Control the amount of inlining to perform (default = 225)"))
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:721
FunTy * getCaller() const
Return the caller function for this call site.
Definition: CallSite.h:267
static InlineCost getNever(const char *Reason)
Definition: InlineCost.h:95
bool isFunctionEntryHot(const Function *F)
Returns true if F has hot function entry.
const char * message
Definition: InlineCost.h:137
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:551
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
int getCallsiteCost(CallSite CS, const DataLayout &DL)
Return the cost associated with a callsite, including parameter passing and the call/return instructi...
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
static Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1747
#define I(x, y, z)
Definition: MD5.cpp:58
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
bool optForMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:595
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:193
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant *> Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands...
bool isUnconditional() const
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:171
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:211
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
Definition: CallSite.h:598
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
bool isColdCallSite(const CallSite &CS, BlockFrequencyInfo *BFI)
Returns true if Callsite CS is considered cold.
Multiway switch.
Value * SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
const unsigned TotalAllocaSizeRecursiveCaller
Do not inline functions which allocate this many bytes on the stack when the caller is recursive...
Definition: InlineCost.h:51
bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
ArrayRef< unsigned > getIndices() const
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
bool isEquality() const
This is just a convenience that dispatches to the subclasses.
A vector that has set insertion semantics.
Definition: SetVector.h:41
succ_range successors(Instruction *I)
Definition: CFG.h:264
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:41
Optional< int > ColdCallSiteThreshold
Threshold to use when the callsite is considered cold.
Definition: InlineCost.h:178
bool canConstantFoldCallTo(ImmutableCallSite CS, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function...
static const Function * getParent(const Value *V)
Invoke instruction.
print Print MemDeps of function
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
static Constant * getExtractValue(Constant *Agg, ArrayRef< unsigned > Idxs, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2195
This pass exposes codegen information to IR-level passes.
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size...
const int OptSizeThreshold
Use when optsize (-Os) is specified.
Definition: InlineCost.h:35
bool nullPointerIsDefined() const
Check if null pointer dereferencing is considered undefined behavior for the function.
Definition: Function.cpp:1431
static APInt getNullValue(unsigned numBits)
Get the &#39;0&#39; value.
Definition: APInt.h:569
bool isSimple() const
Definition: Instructions.h:402
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Constant * ConstantFoldCall(ImmutableCallSite CS, Function *F, ArrayRef< Constant *> Operands, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
Value * getPointerOperand()
Definition: Instructions.h:413
The cost of a &#39;div&#39; instruction on x86.
The optimization diagnostic interface.
Statically lint checks LLVM IR
Definition: Lint.cpp:193
Type * getElementType() const
Definition: DerivedTypes.h:486
Optional< int > HotCallSiteThreshold
Threshold to use when the callsite is considered hot.
Definition: InlineCost.h:171
int DefaultThreshold
The default threshold to start with for a callee.
Definition: InlineCost.h:156
static InlineCost get(int Cost, int Threshold)
Definition: InlineCost.h:87
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
This instruction inserts a struct field of array element value into an aggregate value.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results...
Definition: Attributes.h:70
gep_type_iterator gep_type_begin(const User *GEP)