LLVM  8.0.1
VPlan.h
Go to the documentation of this file.
1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file contains the declarations of the Vectorization Plan base classes:
12 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
13 /// VPBlockBase, together implementing a Hierarchical CFG;
14 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
15 /// treated as proper graphs for generic algorithms;
16 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
17 /// within VPBasicBlocks;
18 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
19 /// instruction;
20 /// 5. The VPlan class holding a candidate for vectorization;
21 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
22 /// These are documented in docs/VectorizationPlan.rst.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28 
29 #include "VPlanLoopInfo.h"
30 #include "VPlanValue.h"
31 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/GraphTraits.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/ilist.h"
40 #include "llvm/ADT/ilist_node.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <map>
47 #include <string>
48 
49 namespace llvm {
50 
51 class LoopVectorizationLegality;
52 class LoopVectorizationCostModel;
53 class BasicBlock;
54 class DominatorTree;
55 class InnerLoopVectorizer;
56 template <class T> class InterleaveGroup;
57 class LoopInfo;
58 class raw_ostream;
59 class Value;
60 class VPBasicBlock;
61 class VPRegionBlock;
62 class VPlan;
63 class VPlanSlp;
64 
65 /// A range of powers-of-2 vectorization factors with fixed start and
66 /// adjustable end. The range includes start and excludes end, e.g.,:
67 /// [1, 9) = {1, 2, 4, 8}
68 struct VFRange {
69  // A power of 2.
70  const unsigned Start;
71 
72  // Need not be a power of 2. If End <= Start range is empty.
73  unsigned End;
74 };
75 
76 using VPlanPtr = std::unique_ptr<VPlan>;
77 
78 /// In what follows, the term "input IR" refers to code that is fed into the
79 /// vectorizer whereas the term "output IR" refers to code that is generated by
80 /// the vectorizer.
81 
82 /// VPIteration represents a single point in the iteration space of the output
83 /// (vectorized and/or unrolled) IR loop.
84 struct VPIteration {
85  /// in [0..UF)
86  unsigned Part;
87 
88  /// in [0..VF)
89  unsigned Lane;
90 };
91 
92 /// This is a helper struct for maintaining vectorization state. It's used for
93 /// mapping values from the original loop to their corresponding values in
94 /// the new loop. Two mappings are maintained: one for vectorized values and
95 /// one for scalarized values. Vectorized values are represented with UF
96 /// vector values in the new loop, and scalarized values are represented with
97 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
98 /// vectorization factors, respectively.
99 ///
100 /// Entries can be added to either map with setVectorValue and setScalarValue,
101 /// which assert that an entry was not already added before. If an entry is to
102 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
103 /// currently needed to modify the mapped values during "fix-up" operations that
104 /// occur once the first phase of widening is complete. These operations include
105 /// type truncation and the second phase of recurrence widening.
106 ///
107 /// Entries from either map can be retrieved using the getVectorValue and
108 /// getScalarValue functions, which assert that the desired value exists.
110  friend struct VPTransformState;
111 
112 private:
113  /// The unroll factor. Each entry in the vector map contains UF vector values.
114  unsigned UF;
115 
116  /// The vectorization factor. Each entry in the scalar map contains UF x VF
117  /// scalar values.
118  unsigned VF;
119 
120  /// The vector and scalar map storage. We use std::map and not DenseMap
121  /// because insertions to DenseMap invalidate its iterators.
124  std::map<Value *, VectorParts> VectorMapStorage;
125  std::map<Value *, ScalarParts> ScalarMapStorage;
126 
127 public:
128  /// Construct an empty map with the given unroll and vectorization factors.
129  VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
130 
131  /// \return True if the map has any vector entry for \p Key.
132  bool hasAnyVectorValue(Value *Key) const {
133  return VectorMapStorage.count(Key);
134  }
135 
136  /// \return True if the map has a vector entry for \p Key and \p Part.
137  bool hasVectorValue(Value *Key, unsigned Part) const {
138  assert(Part < UF && "Queried Vector Part is too large.");
139  if (!hasAnyVectorValue(Key))
140  return false;
141  const VectorParts &Entry = VectorMapStorage.find(Key)->second;
142  assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
143  return Entry[Part] != nullptr;
144  }
145 
146  /// \return True if the map has any scalar entry for \p Key.
147  bool hasAnyScalarValue(Value *Key) const {
148  return ScalarMapStorage.count(Key);
149  }
150 
151  /// \return True if the map has a scalar entry for \p Key and \p Instance.
152  bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
153  assert(Instance.Part < UF && "Queried Scalar Part is too large.");
154  assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
155  if (!hasAnyScalarValue(Key))
156  return false;
157  const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
158  assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
159  assert(Entry[Instance.Part].size() == VF &&
160  "ScalarParts has wrong dimensions.");
161  return Entry[Instance.Part][Instance.Lane] != nullptr;
162  }
163 
164  /// Retrieve the existing vector value that corresponds to \p Key and
165  /// \p Part.
166  Value *getVectorValue(Value *Key, unsigned Part) {
167  assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
168  return VectorMapStorage[Key][Part];
169  }
170 
171  /// Retrieve the existing scalar value that corresponds to \p Key and
172  /// \p Instance.
173  Value *getScalarValue(Value *Key, const VPIteration &Instance) {
174  assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
175  return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
176  }
177 
178  /// Set a vector value associated with \p Key and \p Part. Assumes such a
179  /// value is not already set. If it is, use resetVectorValue() instead.
180  void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
181  assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
182  if (!VectorMapStorage.count(Key)) {
183  VectorParts Entry(UF);
184  VectorMapStorage[Key] = Entry;
185  }
186  VectorMapStorage[Key][Part] = Vector;
187  }
188 
189  /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
190  /// value is not already set.
191  void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
192  assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
193  if (!ScalarMapStorage.count(Key)) {
194  ScalarParts Entry(UF);
195  // TODO: Consider storing uniform values only per-part, as they occupy
196  // lane 0 only, keeping the other VF-1 redundant entries null.
197  for (unsigned Part = 0; Part < UF; ++Part)
198  Entry[Part].resize(VF, nullptr);
199  ScalarMapStorage[Key] = Entry;
200  }
201  ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
202  }
203 
204  /// Reset the vector value associated with \p Key for the given \p Part.
205  /// This function can be used to update values that have already been
206  /// vectorized. This is the case for "fix-up" operations including type
207  /// truncation and the second phase of recurrence vectorization.
208  void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
209  assert(hasVectorValue(Key, Part) && "Vector value not set for part");
210  VectorMapStorage[Key][Part] = Vector;
211  }
212 
213  /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
214  /// This function can be used to update values that have already been
215  /// scalarized. This is the case for "fix-up" operations including scalar phi
216  /// nodes for scalarized and predicated instructions.
217  void resetScalarValue(Value *Key, const VPIteration &Instance,
218  Value *Scalar) {
219  assert(hasScalarValue(Key, Instance) &&
220  "Scalar value not set for part and lane");
221  ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
222  }
223 };
224 
225 /// This class is used to enable the VPlan to invoke a method of ILV. This is
226 /// needed until the method is refactored out of ILV and becomes reusable.
227 struct VPCallback {
228  virtual ~VPCallback() {}
229  virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
230 };
231 
232 /// VPTransformState holds information passed down when "executing" a VPlan,
233 /// needed for generating the output IR.
235  VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
237  InnerLoopVectorizer *ILV, VPCallback &Callback)
238  : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
239  ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
240 
241  /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
242  unsigned VF;
243  unsigned UF;
244 
245  /// Hold the indices to generate specific scalar instructions. Null indicates
246  /// that all instances are to be generated, using either scalar or vector
247  /// instructions.
249 
250  struct DataState {
251  /// A type for vectorized values in the new loop. Each value from the
252  /// original loop, when vectorized, is represented by UF vector values in
253  /// the new unrolled loop, where UF is the unroll factor.
255 
257  } Data;
258 
259  /// Get the generated Value for a given VPValue and a given Part. Note that
260  /// as some Defs are still created by ILV and managed in its ValueMap, this
261  /// method will delegate the call to ILV in such cases in order to provide
262  /// callers a consistent API.
263  /// \see set.
264  Value *get(VPValue *Def, unsigned Part) {
265  // If Values have been set for this Def return the one relevant for \p Part.
266  if (Data.PerPartOutput.count(Def))
267  return Data.PerPartOutput[Def][Part];
268  // Def is managed by ILV: bring the Values from ValueMap.
269  return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
270  }
271 
272  /// Set the generated Value for a given VPValue and a given Part.
273  void set(VPValue *Def, Value *V, unsigned Part) {
274  if (!Data.PerPartOutput.count(Def)) {
275  DataState::PerPartValuesTy Entry(UF);
276  Data.PerPartOutput[Def] = Entry;
277  }
278  Data.PerPartOutput[Def][Part] = V;
279  }
280 
281  /// Hold state information used when constructing the CFG of the output IR,
282  /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
283  struct CFGState {
284  /// The previous VPBasicBlock visited. Initially set to null.
285  VPBasicBlock *PrevVPBB = nullptr;
286 
287  /// The previous IR BasicBlock created or used. Initially set to the new
288  /// header BasicBlock.
289  BasicBlock *PrevBB = nullptr;
290 
291  /// The last IR BasicBlock in the output IR. Set to the new latch
292  /// BasicBlock, used for placing the newly created BasicBlocks.
293  BasicBlock *LastBB = nullptr;
294 
295  /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
296  /// of replication, maps the BasicBlock of the last replica created.
298 
299  /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
300  /// up at the end of vector code generation.
302 
303  CFGState() = default;
304  } CFG;
305 
306  /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
308 
309  /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
311 
312  /// Hold a reference to the IRBuilder used to generate output IR code.
314 
315  /// Hold a reference to the Value state information used when generating the
316  /// Values of the output IR.
318 
319  /// Hold a reference to a mapping between VPValues in VPlan and original
320  /// Values they correspond to.
322 
323  /// Hold the trip count of the scalar loop.
324  Value *TripCount = nullptr;
325 
326  /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
328 
330 };
331 
332 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
333 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
334 class VPBlockBase {
335  friend class VPBlockUtils;
336 
337 private:
338  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
339 
340  /// An optional name for the block.
341  std::string Name;
342 
343  /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
344  /// it is a topmost VPBlockBase.
345  VPRegionBlock *Parent = nullptr;
346 
347  /// List of predecessor blocks.
348  SmallVector<VPBlockBase *, 1> Predecessors;
349 
350  /// List of successor blocks.
352 
353  /// Successor selector, null for zero or single successor blocks.
354  VPValue *CondBit = nullptr;
355 
356  /// Add \p Successor as the last successor to this block.
357  void appendSuccessor(VPBlockBase *Successor) {
358  assert(Successor && "Cannot add nullptr successor!");
359  Successors.push_back(Successor);
360  }
361 
362  /// Add \p Predecessor as the last predecessor to this block.
363  void appendPredecessor(VPBlockBase *Predecessor) {
364  assert(Predecessor && "Cannot add nullptr predecessor!");
365  Predecessors.push_back(Predecessor);
366  }
367 
368  /// Remove \p Predecessor from the predecessors of this block.
369  void removePredecessor(VPBlockBase *Predecessor) {
370  auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
371  assert(Pos && "Predecessor does not exist");
372  Predecessors.erase(Pos);
373  }
374 
375  /// Remove \p Successor from the successors of this block.
376  void removeSuccessor(VPBlockBase *Successor) {
377  auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
378  assert(Pos && "Successor does not exist");
379  Successors.erase(Pos);
380  }
381 
382 protected:
383  VPBlockBase(const unsigned char SC, const std::string &N)
384  : SubclassID(SC), Name(N) {}
385 
386 public:
387  /// An enumeration for keeping track of the concrete subclass of VPBlockBase
388  /// that are actually instantiated. Values of this enumeration are kept in the
389  /// SubclassID field of the VPBlockBase objects. They are used for concrete
390  /// type identification.
391  using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
392 
394 
395  virtual ~VPBlockBase() = default;
396 
397  const std::string &getName() const { return Name; }
398 
399  void setName(const Twine &newName) { Name = newName.str(); }
400 
401  /// \return an ID for the concrete type of this object.
402  /// This is used to implement the classof checks. This should not be used
403  /// for any other purpose, as the values may change as LLVM evolves.
404  unsigned getVPBlockID() const { return SubclassID; }
405 
406  VPRegionBlock *getParent() { return Parent; }
407  const VPRegionBlock *getParent() const { return Parent; }
408 
409  void setParent(VPRegionBlock *P) { Parent = P; }
410 
411  /// \return the VPBasicBlock that is the entry of this VPBlockBase,
412  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
413  /// VPBlockBase is a VPBasicBlock, it is returned.
414  const VPBasicBlock *getEntryBasicBlock() const;
415  VPBasicBlock *getEntryBasicBlock();
416 
417  /// \return the VPBasicBlock that is the exit of this VPBlockBase,
418  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
419  /// VPBlockBase is a VPBasicBlock, it is returned.
420  const VPBasicBlock *getExitBasicBlock() const;
421  VPBasicBlock *getExitBasicBlock();
422 
423  const VPBlocksTy &getSuccessors() const { return Successors; }
424  VPBlocksTy &getSuccessors() { return Successors; }
425 
426  const VPBlocksTy &getPredecessors() const { return Predecessors; }
427  VPBlocksTy &getPredecessors() { return Predecessors; }
428 
429  /// \return the successor of this VPBlockBase if it has a single successor.
430  /// Otherwise return a null pointer.
432  return (Successors.size() == 1 ? *Successors.begin() : nullptr);
433  }
434 
435  /// \return the predecessor of this VPBlockBase if it has a single
436  /// predecessor. Otherwise return a null pointer.
438  return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
439  }
440 
441  size_t getNumSuccessors() const { return Successors.size(); }
442  size_t getNumPredecessors() const { return Predecessors.size(); }
443 
444  /// An Enclosing Block of a block B is any block containing B, including B
445  /// itself. \return the closest enclosing block starting from "this", which
446  /// has successors. \return the root enclosing block if all enclosing blocks
447  /// have no successors.
448  VPBlockBase *getEnclosingBlockWithSuccessors();
449 
450  /// \return the closest enclosing block starting from "this", which has
451  /// predecessors. \return the root enclosing block if all enclosing blocks
452  /// have no predecessors.
453  VPBlockBase *getEnclosingBlockWithPredecessors();
454 
455  /// \return the successors either attached directly to this VPBlockBase or, if
456  /// this VPBlockBase is the exit block of a VPRegionBlock and has no
457  /// successors of its own, search recursively for the first enclosing
458  /// VPRegionBlock that has successors and return them. If no such
459  /// VPRegionBlock exists, return the (empty) successors of the topmost
460  /// VPBlockBase reached.
462  return getEnclosingBlockWithSuccessors()->getSuccessors();
463  }
464 
465  /// \return the hierarchical successor of this VPBlockBase if it has a single
466  /// hierarchical successor. Otherwise return a null pointer.
468  return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
469  }
470 
471  /// \return the predecessors either attached directly to this VPBlockBase or,
472  /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
473  /// predecessors of its own, search recursively for the first enclosing
474  /// VPRegionBlock that has predecessors and return them. If no such
475  /// VPRegionBlock exists, return the (empty) predecessors of the topmost
476  /// VPBlockBase reached.
478  return getEnclosingBlockWithPredecessors()->getPredecessors();
479  }
480 
481  /// \return the hierarchical predecessor of this VPBlockBase if it has a
482  /// single hierarchical predecessor. Otherwise return a null pointer.
484  return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
485  }
486 
487  /// \return the condition bit selecting the successor.
488  VPValue *getCondBit() { return CondBit; }
489 
490  const VPValue *getCondBit() const { return CondBit; }
491 
492  void setCondBit(VPValue *CV) { CondBit = CV; }
493 
494  /// Set a given VPBlockBase \p Successor as the single successor of this
495  /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
496  /// This VPBlockBase must have no successors.
497  void setOneSuccessor(VPBlockBase *Successor) {
498  assert(Successors.empty() && "Setting one successor when others exist.");
499  appendSuccessor(Successor);
500  }
501 
502  /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
503  /// successors of this VPBlockBase. \p Condition is set as the successor
504  /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
505  /// IfFalse. This VPBlockBase must have no successors.
506  void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
507  VPValue *Condition) {
508  assert(Successors.empty() && "Setting two successors when others exist.");
509  assert(Condition && "Setting two successors without condition!");
510  CondBit = Condition;
511  appendSuccessor(IfTrue);
512  appendSuccessor(IfFalse);
513  }
514 
515  /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
516  /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
517  /// as successor of any VPBasicBlock in \p NewPreds.
519  assert(Predecessors.empty() && "Block predecessors already set.");
520  for (auto *Pred : NewPreds)
521  appendPredecessor(Pred);
522  }
523 
524  /// The method which generates the output IR that correspond to this
525  /// VPBlockBase, thereby "executing" the VPlan.
526  virtual void execute(struct VPTransformState *State) = 0;
527 
528  /// Delete all blocks reachable from a given VPBlockBase, inclusive.
529  static void deleteCFG(VPBlockBase *Entry);
530 
531  void printAsOperand(raw_ostream &OS, bool PrintType) const {
532  OS << getName();
533  }
534 
535  void print(raw_ostream &OS) const {
536  // TODO: Only printing VPBB name for now since we only have dot printing
537  // support for VPInstructions/Recipes.
538  printAsOperand(OS, false);
539  }
540 
541  /// Return true if it is legal to hoist instructions into this block.
543  // There are currently no constraints that prevent an instruction to be
544  // hoisted into a VPBlockBase.
545  return true;
546  }
547 };
548 
549 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
550 /// instructions.
551 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
552  friend VPBasicBlock;
553 
554 private:
555  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
556 
557  /// Each VPRecipe belongs to a single VPBasicBlock.
558  VPBasicBlock *Parent = nullptr;
559 
560 public:
561  /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
562  /// that is actually instantiated. Values of this enumeration are kept in the
563  /// SubclassID field of the VPRecipeBase objects. They are used for concrete
564  /// type identification.
565  using VPRecipeTy = enum {
566  VPBlendSC,
567  VPBranchOnMaskSC,
568  VPInstructionSC,
569  VPInterleaveSC,
570  VPPredInstPHISC,
571  VPReplicateSC,
572  VPWidenIntOrFpInductionSC,
573  VPWidenMemoryInstructionSC,
574  VPWidenPHISC,
575  VPWidenSC,
576  };
577 
578  VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
579  virtual ~VPRecipeBase() = default;
580 
581  /// \return an ID for the concrete type of this object.
582  /// This is used to implement the classof checks. This should not be used
583  /// for any other purpose, as the values may change as LLVM evolves.
584  unsigned getVPRecipeID() const { return SubclassID; }
585 
586  /// \return the VPBasicBlock which this VPRecipe belongs to.
587  VPBasicBlock *getParent() { return Parent; }
588  const VPBasicBlock *getParent() const { return Parent; }
589 
590  /// The method which generates the output IR instructions that correspond to
591  /// this VPRecipe, thereby "executing" the VPlan.
592  virtual void execute(struct VPTransformState &State) = 0;
593 
594  /// Each recipe prints itself.
595  virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
596 
597  /// Insert an unlinked recipe into a basic block immediately before
598  /// the specified recipe.
599  void insertBefore(VPRecipeBase *InsertPos);
600 
601  /// This method unlinks 'this' from the containing basic block and deletes it.
602  ///
603  /// \returns an iterator pointing to the element after the erased one
604  iplist<VPRecipeBase>::iterator eraseFromParent();
605 };
606 
607 /// This is a concrete Recipe that models a single VPlan-level instruction.
608 /// While as any Recipe it may generate a sequence of IR instructions when
609 /// executed, these instructions would always form a single-def expression as
610 /// the VPInstruction is also a single def-use vertex.
611 class VPInstruction : public VPUser, public VPRecipeBase {
612  friend class VPlanHCFGTransforms;
613  friend class VPlanSlp;
614 
615 public:
616  /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
617  enum {
618  Not = Instruction::OtherOpsEnd + 1,
622  };
623 
624 private:
625  typedef unsigned char OpcodeTy;
626  OpcodeTy Opcode;
627 
628  /// Utility method serving execute(): generates a single instance of the
629  /// modeled instruction.
630  void generateInstruction(VPTransformState &State, unsigned Part);
631 
632 protected:
634  return cast_or_null<Instruction>(getUnderlyingValue());
635  }
636 
637  void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
638 
639 public:
640  VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
641  : VPUser(VPValue::VPInstructionSC, Operands),
642  VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
643 
644  VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
645  : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
646 
647  /// Method to support type inquiry through isa, cast, and dyn_cast.
648  static inline bool classof(const VPValue *V) {
649  return V->getVPValueID() == VPValue::VPInstructionSC;
650  }
651 
652  VPInstruction *clone() const {
653  SmallVector<VPValue *, 2> Operands(operands());
654  return new VPInstruction(Opcode, Operands);
655  }
656 
657  /// Method to support type inquiry through isa, cast, and dyn_cast.
658  static inline bool classof(const VPRecipeBase *R) {
659  return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
660  }
661 
662  unsigned getOpcode() const { return Opcode; }
663 
664  /// Generate the instruction.
665  /// TODO: We currently execute only per-part unless a specific instance is
666  /// provided.
667  void execute(VPTransformState &State) override;
668 
669  /// Print the Recipe.
670  void print(raw_ostream &O, const Twine &Indent) const override;
671 
672  /// Print the VPInstruction.
673  void print(raw_ostream &O) const;
674 
675  /// Return true if this instruction may modify memory.
676  bool mayWriteToMemory() const {
677  // TODO: we can use attributes of the called function to rule out memory
678  // modifications.
679  return Opcode == Instruction::Store || Opcode == Instruction::Call ||
680  Opcode == Instruction::Invoke || Opcode == SLPStore;
681  }
682 };
683 
684 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
685 /// Instruction in its ingredients independently, in order. This recipe covers
686 /// most of the traditional vectorization cases where each ingredient transforms
687 /// into a vectorized version of itself.
688 class VPWidenRecipe : public VPRecipeBase {
689 private:
690  /// Hold the ingredients by pointing to their original BasicBlock location.
691  BasicBlock::iterator Begin;
693 
694 public:
696  End = I->getIterator();
697  Begin = End++;
698  }
699 
700  ~VPWidenRecipe() override = default;
701 
702  /// Method to support type inquiry through isa, cast, and dyn_cast.
703  static inline bool classof(const VPRecipeBase *V) {
704  return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
705  }
706 
707  /// Produce widened copies of all Ingredients.
708  void execute(VPTransformState &State) override;
709 
710  /// Augment the recipe to include Instr, if it lies at its End.
712  if (End != Instr->getIterator())
713  return false;
714  End++;
715  return true;
716  }
717 
718  /// Print the recipe.
719  void print(raw_ostream &O, const Twine &Indent) const override;
720 };
721 
722 /// A recipe for handling phi nodes of integer and floating-point inductions,
723 /// producing their vector and scalar values.
725 private:
726  PHINode *IV;
727  TruncInst *Trunc;
728 
729 public:
731  : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
732  ~VPWidenIntOrFpInductionRecipe() override = default;
733 
734  /// Method to support type inquiry through isa, cast, and dyn_cast.
735  static inline bool classof(const VPRecipeBase *V) {
736  return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
737  }
738 
739  /// Generate the vectorized and scalarized versions of the phi node as
740  /// needed by their users.
741  void execute(VPTransformState &State) override;
742 
743  /// Print the recipe.
744  void print(raw_ostream &O, const Twine &Indent) const override;
745 };
746 
747 /// A recipe for handling all phi nodes except for integer and FP inductions.
749 private:
750  PHINode *Phi;
751 
752 public:
753  VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
754  ~VPWidenPHIRecipe() override = default;
755 
756  /// Method to support type inquiry through isa, cast, and dyn_cast.
757  static inline bool classof(const VPRecipeBase *V) {
758  return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
759  }
760 
761  /// Generate the phi/select nodes.
762  void execute(VPTransformState &State) override;
763 
764  /// Print the recipe.
765  void print(raw_ostream &O, const Twine &Indent) const override;
766 };
767 
768 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
769 /// instructions.
770 class VPBlendRecipe : public VPRecipeBase {
771 private:
772  PHINode *Phi;
773 
774  /// The blend operation is a User of a mask, if not null.
775  std::unique_ptr<VPUser> User;
776 
777 public:
779  : VPRecipeBase(VPBlendSC), Phi(Phi) {
780  assert((Phi->getNumIncomingValues() == 1 ||
781  Phi->getNumIncomingValues() == Masks.size()) &&
782  "Expected the same number of incoming values and masks");
783  if (!Masks.empty())
784  User.reset(new VPUser(Masks));
785  }
786 
787  /// Method to support type inquiry through isa, cast, and dyn_cast.
788  static inline bool classof(const VPRecipeBase *V) {
789  return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
790  }
791 
792  /// Generate the phi/select nodes.
793  void execute(VPTransformState &State) override;
794 
795  /// Print the recipe.
796  void print(raw_ostream &O, const Twine &Indent) const override;
797 };
798 
799 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
800 /// or stores into one wide load/store and shuffles.
802 private:
804  std::unique_ptr<VPUser> User;
805 
806 public:
808  : VPRecipeBase(VPInterleaveSC), IG(IG) {
809  if (Mask) // Create a VPInstruction to register as a user of the mask.
810  User.reset(new VPUser({Mask}));
811  }
812  ~VPInterleaveRecipe() override = default;
813 
814  /// Method to support type inquiry through isa, cast, and dyn_cast.
815  static inline bool classof(const VPRecipeBase *V) {
816  return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
817  }
818 
819  /// Generate the wide load or store, and shuffles.
820  void execute(VPTransformState &State) override;
821 
822  /// Print the recipe.
823  void print(raw_ostream &O, const Twine &Indent) const override;
824 
826 };
827 
828 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
829 /// copies of the original scalar type, one per lane, instead of producing a
830 /// single copy of widened type for all lanes. If the instruction is known to be
831 /// uniform only one copy, per lane zero, will be generated.
833 private:
834  /// The instruction being replicated.
835  Instruction *Ingredient;
836 
837  /// Indicator if only a single replica per lane is needed.
838  bool IsUniform;
839 
840  /// Indicator if the replicas are also predicated.
841  bool IsPredicated;
842 
843  /// Indicator if the scalar values should also be packed into a vector.
844  bool AlsoPack;
845 
846 public:
847  VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
848  : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
849  IsPredicated(IsPredicated) {
850  // Retain the previous behavior of predicateInstructions(), where an
851  // insert-element of a predicated instruction got hoisted into the
852  // predicated basic block iff it was its only user. This is achieved by
853  // having predicated instructions also pack their values into a vector by
854  // default unless they have a replicated user which uses their scalar value.
855  AlsoPack = IsPredicated && !I->use_empty();
856  }
857 
858  ~VPReplicateRecipe() override = default;
859 
860  /// Method to support type inquiry through isa, cast, and dyn_cast.
861  static inline bool classof(const VPRecipeBase *V) {
862  return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
863  }
864 
865  /// Generate replicas of the desired Ingredient. Replicas will be generated
866  /// for all parts and lanes unless a specific part and lane are specified in
867  /// the \p State.
868  void execute(VPTransformState &State) override;
869 
870  void setAlsoPack(bool Pack) { AlsoPack = Pack; }
871 
872  /// Print the recipe.
873  void print(raw_ostream &O, const Twine &Indent) const override;
874 };
875 
876 /// A recipe for generating conditional branches on the bits of a mask.
878 private:
879  std::unique_ptr<VPUser> User;
880 
881 public:
882  VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
883  if (BlockInMask) // nullptr means all-one mask.
884  User.reset(new VPUser({BlockInMask}));
885  }
886 
887  /// Method to support type inquiry through isa, cast, and dyn_cast.
888  static inline bool classof(const VPRecipeBase *V) {
889  return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
890  }
891 
892  /// Generate the extraction of the appropriate bit from the block mask and the
893  /// conditional branch.
894  void execute(VPTransformState &State) override;
895 
896  /// Print the recipe.
897  void print(raw_ostream &O, const Twine &Indent) const override {
898  O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
899  if (User)
900  O << *User->getOperand(0);
901  else
902  O << " All-One";
903  O << "\\l\"";
904  }
905 };
906 
907 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
908 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
909 /// order to merge values that are set under such a branch and feed their uses.
910 /// The phi nodes can be scalar or vector depending on the users of the value.
911 /// This recipe works in concert with VPBranchOnMaskRecipe.
913 private:
914  Instruction *PredInst;
915 
916 public:
917  /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
918  /// nodes after merging back from a Branch-on-Mask.
920  : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
921  ~VPPredInstPHIRecipe() override = default;
922 
923  /// Method to support type inquiry through isa, cast, and dyn_cast.
924  static inline bool classof(const VPRecipeBase *V) {
925  return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
926  }
927 
928  /// Generates phi nodes for live-outs as needed to retain SSA form.
929  void execute(VPTransformState &State) override;
930 
931  /// Print the recipe.
932  void print(raw_ostream &O, const Twine &Indent) const override;
933 };
934 
935 /// A Recipe for widening load/store operations.
936 /// TODO: We currently execute only per-part unless a specific instance is
937 /// provided.
939 private:
940  Instruction &Instr;
941  std::unique_ptr<VPUser> User;
942 
943 public:
945  : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
946  if (Mask) // Create a VPInstruction to register as a user of the mask.
947  User.reset(new VPUser({Mask}));
948  }
949 
950  /// Method to support type inquiry through isa, cast, and dyn_cast.
951  static inline bool classof(const VPRecipeBase *V) {
952  return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
953  }
954 
955  /// Generate the wide load/store.
956  void execute(VPTransformState &State) override;
957 
958  /// Print the recipe.
959  void print(raw_ostream &O, const Twine &Indent) const override;
960 };
961 
962 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
963 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
964 /// output IR instructions.
965 class VPBasicBlock : public VPBlockBase {
966 public:
968 
969 private:
970  /// The VPRecipes held in the order of output instructions to generate.
971  RecipeListTy Recipes;
972 
973 public:
974  VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
975  : VPBlockBase(VPBasicBlockSC, Name.str()) {
976  if (Recipe)
977  appendRecipe(Recipe);
978  }
979 
980  ~VPBasicBlock() override { Recipes.clear(); }
981 
982  /// Instruction iterators...
987 
988  //===--------------------------------------------------------------------===//
989  /// Recipe iterator methods
990  ///
991  inline iterator begin() { return Recipes.begin(); }
992  inline const_iterator begin() const { return Recipes.begin(); }
993  inline iterator end() { return Recipes.end(); }
994  inline const_iterator end() const { return Recipes.end(); }
995 
996  inline reverse_iterator rbegin() { return Recipes.rbegin(); }
997  inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
998  inline reverse_iterator rend() { return Recipes.rend(); }
999  inline const_reverse_iterator rend() const { return Recipes.rend(); }
1000 
1001  inline size_t size() const { return Recipes.size(); }
1002  inline bool empty() const { return Recipes.empty(); }
1003  inline const VPRecipeBase &front() const { return Recipes.front(); }
1004  inline VPRecipeBase &front() { return Recipes.front(); }
1005  inline const VPRecipeBase &back() const { return Recipes.back(); }
1006  inline VPRecipeBase &back() { return Recipes.back(); }
1007 
1008  /// Returns a reference to the list of recipes.
1009  RecipeListTy &getRecipeList() { return Recipes; }
1010 
1011  /// Returns a pointer to a member of the recipe list.
1013  return &VPBasicBlock::Recipes;
1014  }
1015 
1016  /// Method to support type inquiry through isa, cast, and dyn_cast.
1017  static inline bool classof(const VPBlockBase *V) {
1018  return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1019  }
1020 
1021  void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1022  assert(Recipe && "No recipe to append.");
1023  assert(!Recipe->Parent && "Recipe already in VPlan");
1024  Recipe->Parent = this;
1025  Recipes.insert(InsertPt, Recipe);
1026  }
1027 
1028  /// Augment the existing recipes of a VPBasicBlock with an additional
1029  /// \p Recipe as the last recipe.
1030  void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1031 
1032  /// The method which generates the output IR instructions that correspond to
1033  /// this VPBasicBlock, thereby "executing" the VPlan.
1034  void execute(struct VPTransformState *State) override;
1035 
1036 private:
1037  /// Create an IR BasicBlock to hold the output instructions generated by this
1038  /// VPBasicBlock, and return it. Update the CFGState accordingly.
1039  BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1040 };
1041 
1042 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1043 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1044 /// A VPRegionBlock may indicate that its contents are to be replicated several
1045 /// times. This is designed to support predicated scalarization, in which a
1046 /// scalar if-then code structure needs to be generated VF * UF times. Having
1047 /// this replication indicator helps to keep a single model for multiple
1048 /// candidate VF's. The actual replication takes place only once the desired VF
1049 /// and UF have been determined.
1050 class VPRegionBlock : public VPBlockBase {
1051 private:
1052  /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1053  VPBlockBase *Entry;
1054 
1055  /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1056  VPBlockBase *Exit;
1057 
1058  /// An indicator whether this region is to generate multiple replicated
1059  /// instances of output IR corresponding to its VPBlockBases.
1060  bool IsReplicator;
1061 
1062 public:
1064  const std::string &Name = "", bool IsReplicator = false)
1065  : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1066  IsReplicator(IsReplicator) {
1067  assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1068  assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1069  Entry->setParent(this);
1070  Exit->setParent(this);
1071  }
1072  VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1073  : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1074  IsReplicator(IsReplicator) {}
1075 
1076  ~VPRegionBlock() override {
1077  if (Entry)
1078  deleteCFG(Entry);
1079  }
1080 
1081  /// Method to support type inquiry through isa, cast, and dyn_cast.
1082  static inline bool classof(const VPBlockBase *V) {
1083  return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1084  }
1085 
1086  const VPBlockBase *getEntry() const { return Entry; }
1087  VPBlockBase *getEntry() { return Entry; }
1088 
1089  /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1090  /// EntryBlock must have no predecessors.
1091  void setEntry(VPBlockBase *EntryBlock) {
1092  assert(EntryBlock->getPredecessors().empty() &&
1093  "Entry block cannot have predecessors.");
1094  Entry = EntryBlock;
1095  EntryBlock->setParent(this);
1096  }
1097 
1098  // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1099  // specific interface of llvm::Function, instead of using
1100  // GraphTraints::getEntryNode. We should add a new template parameter to
1101  // DominatorTreeBase representing the Graph type.
1102  VPBlockBase &front() const { return *Entry; }
1103 
1104  const VPBlockBase *getExit() const { return Exit; }
1105  VPBlockBase *getExit() { return Exit; }
1106 
1107  /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1108  /// ExitBlock must have no successors.
1109  void setExit(VPBlockBase *ExitBlock) {
1110  assert(ExitBlock->getSuccessors().empty() &&
1111  "Exit block cannot have successors.");
1112  Exit = ExitBlock;
1113  ExitBlock->setParent(this);
1114  }
1115 
1116  /// An indicator whether this region is to generate multiple replicated
1117  /// instances of output IR corresponding to its VPBlockBases.
1118  bool isReplicator() const { return IsReplicator; }
1119 
1120  /// The method which generates the output IR instructions that correspond to
1121  /// this VPRegionBlock, thereby "executing" the VPlan.
1122  void execute(struct VPTransformState *State) override;
1123 };
1124 
1125 /// VPlan models a candidate for vectorization, encoding various decisions take
1126 /// to produce efficient output IR, including which branches, basic-blocks and
1127 /// output IR instructions to generate, and their cost. VPlan holds a
1128 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1129 /// VPBlock.
1130 class VPlan {
1131  friend class VPlanPrinter;
1132 
1133 private:
1134  /// Hold the single entry to the Hierarchical CFG of the VPlan.
1135  VPBlockBase *Entry;
1136 
1137  /// Holds the VFs applicable to this VPlan.
1139 
1140  /// Holds the name of the VPlan, for printing.
1141  std::string Name;
1142 
1143  /// Holds all the external definitions created for this VPlan.
1144  // TODO: Introduce a specific representation for external definitions in
1145  // VPlan. External definitions must be immutable and hold a pointer to its
1146  // underlying IR that will be used to implement its structural comparison
1147  // (operators '==' and '<').
1148  SmallPtrSet<VPValue *, 16> VPExternalDefs;
1149 
1150  /// Represents the backedge taken count of the original loop, for folding
1151  /// the tail.
1152  VPValue *BackedgeTakenCount = nullptr;
1153 
1154  /// Holds a mapping between Values and their corresponding VPValue inside
1155  /// VPlan.
1156  Value2VPValueTy Value2VPValue;
1157 
1158  /// Holds the VPLoopInfo analysis for this VPlan.
1159  VPLoopInfo VPLInfo;
1160 
1161  /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1163 
1164 public:
1165  VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1166 
1168  if (Entry)
1169  VPBlockBase::deleteCFG(Entry);
1170  for (auto &MapEntry : Value2VPValue)
1171  if (MapEntry.second != BackedgeTakenCount)
1172  delete MapEntry.second;
1173  if (BackedgeTakenCount)
1174  delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
1175  for (VPValue *Def : VPExternalDefs)
1176  delete Def;
1177  for (VPValue *CBV : VPCBVs)
1178  delete CBV;
1179  }
1180 
1181  /// Generate the IR code for this VPlan.
1182  void execute(struct VPTransformState *State);
1183 
1184  VPBlockBase *getEntry() { return Entry; }
1185  const VPBlockBase *getEntry() const { return Entry; }
1186 
1187  VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1188 
1189  /// The backedge taken count of the original loop.
1191  if (!BackedgeTakenCount)
1192  BackedgeTakenCount = new VPValue();
1193  return BackedgeTakenCount;
1194  }
1195 
1196  void addVF(unsigned VF) { VFs.insert(VF); }
1197 
1198  bool hasVF(unsigned VF) { return VFs.count(VF); }
1199 
1200  const std::string &getName() const { return Name; }
1201 
1202  void setName(const Twine &newName) { Name = newName.str(); }
1203 
1204  /// Add \p VPVal to the pool of external definitions if it's not already
1205  /// in the pool.
1206  void addExternalDef(VPValue *VPVal) {
1207  VPExternalDefs.insert(VPVal);
1208  }
1209 
1210  /// Add \p CBV to the vector of condition bit values.
1211  void addCBV(VPValue *CBV) {
1212  VPCBVs.push_back(CBV);
1213  }
1214 
1215  void addVPValue(Value *V) {
1216  assert(V && "Trying to add a null Value to VPlan");
1217  assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1218  Value2VPValue[V] = new VPValue();
1219  }
1220 
1222  assert(V && "Trying to get the VPValue of a null Value");
1223  assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1224  return Value2VPValue[V];
1225  }
1226 
1227  /// Return the VPLoopInfo analysis for this VPlan.
1228  VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1229  const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1230 
1231 private:
1232  /// Add to the given dominator tree the header block and every new basic block
1233  /// that was created between it and the latch block, inclusive.
1234  static void updateDominatorTree(DominatorTree *DT,
1235  BasicBlock *LoopPreHeaderBB,
1236  BasicBlock *LoopLatchBB);
1237 };
1238 
1239 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1240 /// indented and follows the dot format.
1242  friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1243  friend inline raw_ostream &operator<<(raw_ostream &OS,
1244  const struct VPlanIngredient &I);
1245 
1246 private:
1247  raw_ostream &OS;
1248  VPlan &Plan;
1249  unsigned Depth;
1250  unsigned TabWidth = 2;
1251  std::string Indent;
1252  unsigned BID = 0;
1254 
1255  VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1256 
1257  /// Handle indentation.
1258  void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1259 
1260  /// Print a given \p Block of the Plan.
1261  void dumpBlock(const VPBlockBase *Block);
1262 
1263  /// Print the information related to the CFG edges going out of a given
1264  /// \p Block, followed by printing the successor blocks themselves.
1265  void dumpEdges(const VPBlockBase *Block);
1266 
1267  /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1268  /// its successor blocks.
1269  void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1270 
1271  /// Print a given \p Region of the Plan.
1272  void dumpRegion(const VPRegionBlock *Region);
1273 
1274  unsigned getOrCreateBID(const VPBlockBase *Block) {
1275  return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1276  }
1277 
1278  const Twine getOrCreateName(const VPBlockBase *Block);
1279 
1280  const Twine getUID(const VPBlockBase *Block);
1281 
1282  /// Print the information related to a CFG edge between two VPBlockBases.
1283  void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1284  const Twine &Label);
1285 
1286  void dump();
1287 
1288  static void printAsIngredient(raw_ostream &O, Value *V);
1289 };
1290 
1293 
1294  VPlanIngredient(Value *V) : V(V) {}
1295 };
1296 
1298  VPlanPrinter::printAsIngredient(OS, I.V);
1299  return OS;
1300 }
1301 
1303  VPlanPrinter Printer(OS, Plan);
1304  Printer.dump();
1305  return OS;
1306 }
1307 
1308 //===----------------------------------------------------------------------===//
1309 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
1310 //===----------------------------------------------------------------------===//
1311 
1312 // The following set of template specializations implement GraphTraits to treat
1313 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1314 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1315 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1316 // successors/predecessors but not to the blocks inside the region.
1317 
1318 template <> struct GraphTraits<VPBlockBase *> {
1321 
1322  static NodeRef getEntryNode(NodeRef N) { return N; }
1323 
1325  return N->getSuccessors().begin();
1326  }
1327 
1329  return N->getSuccessors().end();
1330  }
1331 };
1332 
1333 template <> struct GraphTraits<const VPBlockBase *> {
1334  using NodeRef = const VPBlockBase *;
1336 
1337  static NodeRef getEntryNode(NodeRef N) { return N; }
1338 
1340  return N->getSuccessors().begin();
1341  }
1342 
1344  return N->getSuccessors().end();
1345  }
1346 };
1347 
1348 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1349 // of successors for the inverse traversal.
1350 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1353 
1355 
1357  return N->getPredecessors().begin();
1358  }
1359 
1361  return N->getPredecessors().end();
1362  }
1363 };
1364 
1365 // The following set of template specializations implement GraphTraits to
1366 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1367 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1368 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1369 // there won't be automatic recursion into other VPBlockBases that turn to be
1370 // VPRegionBlocks.
1371 
1372 template <>
1376 
1377  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1378 
1380  return nodes_iterator::begin(N->getEntry());
1381  }
1382 
1384  // df_iterator::end() returns an empty iterator so the node used doesn't
1385  // matter.
1386  return nodes_iterator::end(N);
1387  }
1388 };
1389 
1390 template <>
1393  using GraphRef = const VPRegionBlock *;
1395 
1396  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1397 
1399  return nodes_iterator::begin(N->getEntry());
1400  }
1401 
1403  // df_iterator::end() returns an empty iterator so the node used doesn't
1404  // matter.
1405  return nodes_iterator::end(N);
1406  }
1407 };
1408 
1409 template <>
1414 
1416  return N.Graph->getExit();
1417  }
1418 
1420  return nodes_iterator::begin(N->getExit());
1421  }
1422 
1424  // df_iterator::end() returns an empty iterator so the node used doesn't
1425  // matter.
1426  return nodes_iterator::end(N);
1427  }
1428 };
1429 
1430 //===----------------------------------------------------------------------===//
1431 // VPlan Utilities
1432 //===----------------------------------------------------------------------===//
1433 
1434 /// Class that provides utilities for VPBlockBases in VPlan.
1436 public:
1437  VPBlockUtils() = delete;
1438 
1439  /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1440  /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1441  /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1442  /// has more than one successor, its conditional bit is propagated to \p
1443  /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1444  static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1445  assert(NewBlock->getSuccessors().empty() &&
1446  "Can't insert new block with successors.");
1447  // TODO: move successors from BlockPtr to NewBlock when this functionality
1448  // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1449  // already has successors.
1450  BlockPtr->setOneSuccessor(NewBlock);
1451  NewBlock->setPredecessors({BlockPtr});
1452  NewBlock->setParent(BlockPtr->getParent());
1453  }
1454 
1455  /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1456  /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1457  /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1458  /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1459  /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1460  /// must have neither successors nor predecessors.
1461  static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1462  VPValue *Condition, VPBlockBase *BlockPtr) {
1463  assert(IfTrue->getSuccessors().empty() &&
1464  "Can't insert IfTrue with successors.");
1465  assert(IfFalse->getSuccessors().empty() &&
1466  "Can't insert IfFalse with successors.");
1467  BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1468  IfTrue->setPredecessors({BlockPtr});
1469  IfFalse->setPredecessors({BlockPtr});
1470  IfTrue->setParent(BlockPtr->getParent());
1471  IfFalse->setParent(BlockPtr->getParent());
1472  }
1473 
1474  /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1475  /// the successors of \p From and \p From to the predecessors of \p To. Both
1476  /// VPBlockBases must have the same parent, which can be null. Both
1477  /// VPBlockBases can be already connected to other VPBlockBases.
1479  assert((From->getParent() == To->getParent()) &&
1480  "Can't connect two block with different parents");
1481  assert(From->getNumSuccessors() < 2 &&
1482  "Blocks can't have more than two successors.");
1483  From->appendSuccessor(To);
1484  To->appendPredecessor(From);
1485  }
1486 
1487  /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1488  /// from the successors of \p From and \p From from the predecessors of \p To.
1490  assert(To && "Successor to disconnect is null.");
1491  From->removeSuccessor(To);
1492  To->removePredecessor(From);
1493  }
1494 };
1495 
1497 private:
1499  InterleaveGroupMap;
1500 
1501  /// Type for mapping of instruction based interleave groups to VPInstruction
1502  /// interleave groups
1505 
1506  /// Recursively \p Region and populate VPlan based interleave groups based on
1507  /// \p IAI.
1508  void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
1509  InterleavedAccessInfo &IAI);
1510  /// Recursively traverse \p Block and populate VPlan based interleave groups
1511  /// based on \p IAI.
1512  void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1513  InterleavedAccessInfo &IAI);
1514 
1515 public:
1517 
1520  // Avoid releasing a pointer twice.
1521  for (auto &I : InterleaveGroupMap)
1522  DelSet.insert(I.second);
1523  for (auto *Ptr : DelSet)
1524  delete Ptr;
1525  }
1526 
1527  /// Get the interleave group that \p Instr belongs to.
1528  ///
1529  /// \returns nullptr if doesn't have such group.
1530  InterleaveGroup<VPInstruction> *
1532  if (InterleaveGroupMap.count(Instr))
1533  return InterleaveGroupMap.find(Instr)->second;
1534  return nullptr;
1535  }
1536 };
1537 
1538 /// Class that maps (parts of) an existing VPlan to trees of combined
1539 /// VPInstructions.
1540 class VPlanSlp {
1541 private:
1542  enum class OpMode { Failed, Load, Opcode };
1543 
1544  /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
1545  /// DenseMap keys.
1546  struct BundleDenseMapInfo {
1547  static SmallVector<VPValue *, 4> getEmptyKey() {
1548  return {reinterpret_cast<VPValue *>(-1)};
1549  }
1550 
1551  static SmallVector<VPValue *, 4> getTombstoneKey() {
1552  return {reinterpret_cast<VPValue *>(-2)};
1553  }
1554 
1555  static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
1556  return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1557  }
1558 
1559  static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
1560  const SmallVector<VPValue *, 4> &RHS) {
1561  return LHS == RHS;
1562  }
1563  };
1564 
1565  /// Mapping of values in the original VPlan to a combined VPInstruction.
1566  DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
1567  BundleToCombined;
1568 
1570 
1571  /// Basic block to operate on. For now, only instructions in a single BB are
1572  /// considered.
1573  const VPBasicBlock &BB;
1574 
1575  /// Indicates whether we managed to combine all visited instructions or not.
1576  bool CompletelySLP = true;
1577 
1578  /// Width of the widest combined bundle in bits.
1579  unsigned WidestBundleBits = 0;
1580 
1581  using MultiNodeOpTy =
1582  typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
1583 
1584  // Input operand bundles for the current multi node. Each multi node operand
1585  // bundle contains values not matching the multi node's opcode. They will
1586  // be reordered in reorderMultiNodeOps, once we completed building a
1587  // multi node.
1588  SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
1589 
1590  /// Indicates whether we are building a multi node currently.
1591  bool MultiNodeActive = false;
1592 
1593  /// Check if we can vectorize Operands together.
1594  bool areVectorizable(ArrayRef<VPValue *> Operands) const;
1595 
1596  /// Add combined instruction \p New for the bundle \p Operands.
1597  void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
1598 
1599  /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
1600  VPInstruction *markFailed();
1601 
1602  /// Reorder operands in the multi node to maximize sequential memory access
1603  /// and commutative operations.
1604  SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
1605 
1606  /// Choose the best candidate to use for the lane after \p Last. The set of
1607  /// candidates to choose from are values with an opcode matching \p Last's
1608  /// or loads consecutive to \p Last.
1609  std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
1610  SmallPtrSetImpl<VPValue *> &Candidates,
1612 
1613  /// Print bundle \p Values to dbgs().
1614  void dumpBundle(ArrayRef<VPValue *> Values);
1615 
1616 public:
1617  VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
1618 
1620  for (auto &KV : BundleToCombined)
1621  delete KV.second;
1622  }
1623 
1624  /// Tries to build an SLP tree rooted at \p Operands and returns a
1625  /// VPInstruction combining \p Operands, if they can be combined.
1626  VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
1627 
1628  /// Return the width of the widest combined bundle in bits.
1629  unsigned getWidestBundleBits() const { return WidestBundleBits; }
1630 
1631  /// Return true if all visited instruction can be combined.
1632  bool isCompletelySLP() const { return CompletelySLP; }
1633 };
1634 } // end namespace llvm
1635 
1636 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
const std::string & getName() const
Definition: VPlan.h:397
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlan.h:307
VPWidenRecipe(Instruction *I)
Definition: VPlan.h:695
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
const VPRegionBlock * getParent() const
Definition: VPlan.h:407
bool appendInstruction(Instruction *Instr)
Augment the recipe to include Instr, if it lies at its End.
Definition: VPlan.h:711
static NodeRef getEntryNode(Inverse< GraphRef > N)
Definition: VPlan.h:1415
void setAlsoPack(bool Pack)
Definition: VPlan.h:870
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:703
enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy
An enumeration for keeping track of the concrete subclass of VPBlockBase that are actually instantiat...
Definition: VPlan.h:391
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:250
VectorizerValueMap(unsigned UF, unsigned VF)
Construct an empty map with the given unroll and vectorization factors.
Definition: VPlan.h:129
~VPBasicBlock() override
Definition: VPlan.h:980
SI Whole Quad Mode
SmallVectorImpl< VPBlockBase * >::const_iterator ChildIteratorType
Definition: VPlan.h:1335
This class represents lattice values for constants.
Definition: AllocatorList.h:24
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
Various leaf nodes.
Definition: ISDOpcodes.h:60
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, const std::string &Name="", bool IsReplicator=false)
Definition: VPlan.h:1063
const_reverse_iterator rbegin() const
Definition: VPlan.h:997
static NodeRef getEntryNode(GraphRef N)
Definition: VPlan.h:1377
Optional< VPIteration > Instance
Hold the indices to generate specific scalar instructions.
Definition: VPlan.h:248
VPRegionBlock * getParent()
Definition: VPlan.h:406
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:1130
VPInstruction(unsigned Opcode, ArrayRef< VPValue *> Operands)
Definition: VPlan.h:640
DenseMap< VPValue *, PerPartValuesTy > PerPartOutput
Definition: VPlan.h:256
Value * getScalarValue(Value *Key, const VPIteration &Instance)
Retrieve the existing scalar value that corresponds to Key and Instance.
Definition: VPlan.h:173
void setEntry(VPBlockBase *EntryBlock)
Set EntryBlock as the entry VPBlockBase of this VPRegionBlock.
Definition: VPlan.h:1091
VPlanIngredient(Value *V)
Definition: VPlan.h:1294
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:1050
enum { VPBlendSC, VPBranchOnMaskSC, VPInstructionSC, VPInterleaveSC, VPPredInstPHISC, VPReplicateSC, VPWidenIntOrFpInductionSC, VPWidenMemoryInstructionSC, VPWidenPHISC, VPWidenSC, } VPRecipeTy
An enumeration for keeping track of the concrete subclass of VPRecipeBase that is actually instantiat...
Definition: VPlan.h:576
IRBuilder & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlan.h:313
VPRecipeBase & back()
Definition: VPlan.h:1006
This is a helper struct for maintaining vectorization state.
Definition: VPlan.h:109
bool mayWriteToMemory() const
Return true if this instruction may modify memory.
Definition: VPlan.h:676
A Recipe for widening load/store operations.
Definition: VPlan.h:938
Instruction * getUnderlyingInstr()
Definition: VPlan.h:633
void print(raw_ostream &O, const Twine &Indent) const override
Print the recipe.
Definition: VPlan.h:897
bool hasAnyScalarValue(Value *Key) const
Definition: VPlan.h:147
void addExternalDef(VPValue *VPVal)
Add VPVal to the pool of external definitions if it&#39;s not already in the pool.
Definition: VPlan.h:1206
VPBlockBase * getSingleSuccessor() const
Definition: VPlan.h:431
void addVPValue(Value *V)
Definition: VPlan.h:1215
print alias Alias Set Printer
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:735
VPRecipeBase & front()
Definition: VPlan.h:1004
VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB)
Definition: VPlan.h:1617
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:551
unsigned getVPRecipeID() const
Definition: VPlan.h:584
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
VPValue * getVPValue(Value *V)
Definition: VPlan.h:1221
bool hasAnyVectorValue(Value *Key) const
Definition: VPlan.h:132
reverse_iterator rend()
Definition: VPlan.h:998
static bool classof(const VPRecipeBase *R)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:658
unsigned VF
The chosen Vectorization and Unroll Factors of the loop being vectorized.
Definition: VPlan.h:242
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition: VPlan.h:912
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:461
amdgpu Simplify well known AMD library false Value Value const Twine & Name
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
virtual ~VPCallback()
Definition: VPlan.h:228
VPBlockBase * getEntry()
Definition: VPlan.h:1087
size_t size() const
Definition: VPlan.h:1001
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlan.h:1444
bool hasVectorValue(Value *Key, unsigned Part) const
Definition: VPlan.h:137
VPBlocksTy & getSuccessors()
Definition: VPlan.h:424
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
VectorizerValueMap & ValueMap
Hold a reference to the Value state information used when generating the Values of the output IR...
Definition: VPlan.h:317
static StringRef getName(Value *V)
A recipe for handling all phi nodes except for integer and FP inductions.
Definition: VPlan.h:748
~VPRegionBlock() override
Definition: VPlan.h:1076
void setName(const Twine &newName)
Definition: VPlan.h:399
DominatorTree * DT
Hold a pointer to Dominator Tree to register new basic blocks in the loop.
Definition: VPlan.h:310
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition: VPlan.h:1021
const std::string & getName() const
Definition: VPlan.h:1200
VPBlocksTy & getPredecessors()
Definition: VPlan.h:427
static RecipeListTy VPBasicBlock::* getSublistAccess(VPRecipeBase *)
Returns a pointer to a member of the recipe list.
Definition: VPlan.h:1012
static ChildIteratorType child_end(NodeRef N)
Definition: VPlan.h:1360
void setName(const Twine &newName)
Definition: VPlan.h:1202
VPWidenPHIRecipe(PHINode *Phi)
Definition: VPlan.h:753
static ChildIteratorType child_begin(NodeRef N)
Definition: VPlan.h:1339
Key
PAL metadata keys.
VPBlockBase * getSinglePredecessor() const
Definition: VPlan.h:437
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:388
unsigned End
Definition: VPlan.h:73
static bool isEqual(const Function &Caller, const Function &Callee)
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlan.h:1241
static ChildIteratorType child_end(NodeRef N)
Definition: VPlan.h:1343
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:1118
InterleaveGroup< VPInstruction > * getInterleaveGroup(VPInstruction *Instr) const
Get the interleave group that Instr belongs to.
Definition: VPlan.h:1531
static nodes_iterator nodes_begin(GraphRef N)
Definition: VPlan.h:1398
static NodeRef getEntryNode(GraphRef N)
Definition: VPlan.h:1396
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:757
This class is used to enable the VPlan to invoke a method of ILV.
Definition: VPlan.h:227
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:27
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
const VPBlockBase * getExit() const
Definition: VPlan.h:1104
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlan.h:234
VPBlockBase * getSingleHierarchicalSuccessor()
Definition: VPlan.h:467
VPBlockBase * getSingleHierarchicalPredecessor()
Definition: VPlan.h:483
unsigned getVPBlockID() const
Definition: VPlan.h:404
static bool classof(const VPValue *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:648
unsigned getVPValueID() const
Definition: VPlanValue.h:87
VPInstruction(unsigned Opcode, std::initializer_list< VPValue *> Operands)
Definition: VPlan.h:644
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
This class represents a truncation of integer types.
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:991
void resetScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar)
Reset the scalar value associated with Key for Part and Lane.
Definition: VPlan.h:217
bool isLegalToHoistInto()
Return true if it is legal to hoist instructions into this block.
Definition: VPlan.h:542
SmallVectorImpl< VPBlockBase * >::iterator ChildIteratorType
Definition: VPlan.h:1320
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe...
Definition: VPlan.h:1030
const VPBlocksTy & getHierarchicalPredecessors()
Definition: VPlan.h:477
#define P(N)
static nodes_iterator nodes_end(GraphRef N)
Definition: VPlan.h:1423
bool isCompletelySLP() const
Return true if all visited instruction can be combined.
Definition: VPlan.h:1632
This class augments VPValue with operands which provide the inverse def-use edges from VPValue&#39;s user...
Definition: VPlanValue.h:132
An ilist node that can access its parent list.
Definition: ilist_node.h:257
typename VPBlockBase *::UnknownGraphTypeError NodeRef
Definition: GraphTraits.h:79
void setOneSuccessor(VPBlockBase *Successor)
Set a given VPBlockBase Successor as the single successor of this VPBlockBase.
Definition: VPlan.h:497
VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
Definition: VPlan.h:944
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:951
static ChildIteratorType child_begin(NodeRef N)
Definition: VPlan.h:1356
VPBlendRecipe(PHINode *Phi, ArrayRef< VPValue *> Masks)
Definition: VPlan.h:778
void setExit(VPBlockBase *ExitBlock)
Set ExitBlock as the exit VPBlockBase of this VPRegionBlock.
Definition: VPlan.h:1109
This file defines VPLoopInfo analysis and VPLoop class.
reverse_iterator rbegin()
Definition: VPlan.h:996
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
const VPValue * getCondBit() const
Definition: VPlan.h:490
SmallVector< Value *, 2 > PerPartValuesTy
A type for vectorized values in the new loop.
Definition: VPlan.h:254
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
bool hasScalarValue(Value *Key, const VPIteration &Instance) const
Definition: VPlan.h:152
VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc=nullptr)
Definition: VPlan.h:730
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlan.h:297
const unsigned Start
Definition: VPlan.h:70
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
size_t getNumPredecessors() const
Definition: VPlan.h:442
static NodeRef getEntryNode(NodeRef N)
Definition: VPlan.h:1322
void addCBV(VPValue *CBV)
Add CBV to the vector of condition bit values.
Definition: VPlan.h:1211
VPInstruction * clone() const
Definition: VPlan.h:652
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:76
static ChildIteratorType child_end(NodeRef N)
Definition: VPlan.h:1328
Class that maps (parts of) an existing VPlan to trees of combined VPInstructions. ...
Definition: VPlan.h:1540
void printAsOperand(raw_ostream &OS, bool PrintType) const
Definition: VPlan.h:531
Hold state information used when constructing the CFG of the output IR, traversing the VPBasicBlocks ...
Definition: VPlan.h:283
size_t getNumSuccessors() const
Definition: VPlan.h:441
VPCallback & Callback
Definition: VPlan.h:329
VPBlockBase * setEntry(VPBlockBase *Block)
Definition: VPlan.h:1187
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
bool hasVF(unsigned VF)
Definition: VPlan.h:1198
self_iterator getIterator()
Definition: ilist_node.h:82
VPValue2ValueTy VPValue2Value
Hold a reference to a mapping between VPValues in VPlan and original Values they correspond to...
Definition: VPlan.h:321
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:181
void setUnderlyingInstr(Instruction *I)
Definition: VPlan.h:637
SmallVector< VPBasicBlock *, 8 > VPBBsToFix
Vector of VPBasicBlocks whose terminator instruction needs to be fixed up at the end of vector code g...
Definition: VPlan.h:301
static bool classof(const VPBlockBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:1017
VPBlockBase & front() const
Definition: VPlan.h:1102
SmallVectorImpl< VPBlockBase * >::iterator ChildIteratorType
Definition: VPlan.h:1352
iterator erase(const_iterator CI)
Definition: SmallVector.h:445
static void connectBlocks(VPBlockBase *From, VPBlockBase *To)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:1478
size_t size() const
Definition: SmallVector.h:53
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1207
void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar)
Set a scalar value associated with Key and Instance.
Definition: VPlan.h:191
An intrusive list with ownership and callbacks specified/controlled by ilist_traits, only with API safe for polymorphic types.
Definition: ilist.h:390
static nodes_iterator nodes_end(GraphRef N)
Definition: VPlan.h:1402
static void deleteCFG(VPBlockBase *Entry)
Delete all blocks reachable from a given VPBlockBase, inclusive.
Definition: VPlan.cpp:105
void setPredecessors(ArrayRef< VPBlockBase *> NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:518
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:965
VPBlockBase(const unsigned char SC, const std::string &N)
Definition: VPlan.h:383
const_iterator begin() const
Definition: VPlan.h:992
unsigned Lane
in [0..VF)
Definition: VPlan.h:89
const VPRecipeBase & back() const
Definition: VPlan.h:1005
Iterator for intrusive lists based on ilist_node.
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPValue *Condition)
Set two given VPBlockBases IfTrue and IfFalse to be the two successors of this VPBlockBase.
Definition: VPlan.h:506
See the file comment.
Definition: ValueMap.h:86
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
const GraphType & Graph
Definition: GraphTraits.h:97
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPValue *Condition, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
Definition: VPlan.h:1461
BlockVerifier::State From
A range of powers-of-2 vectorization factors with fixed start and adjustable end. ...
Definition: VPlan.h:68
const VPRecipeBase & front() const
Definition: VPlan.h:1003
VPLoopInfo & getVPLoopInfo()
Return the VPLoopInfo analysis for this VPlan.
Definition: VPlan.h:1228
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:334
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition: Error.h:148
static NodeRef getEntryNode(Inverse< NodeRef > B)
Definition: VPlan.h:1354
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated=false)
Definition: VPlan.h:847
Class that provides utilities for VPBlockBases in VPlan.
Definition: VPlan.h:1435
static NodeRef getEntryNode(NodeRef N)
Definition: VPlan.h:1337
CHAIN = SC CHAIN, Imm128 - System call.
static bool classof(const VPBlockBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:1082
const InterleaveGroup< Instruction > * getInterleaveGroup()
Definition: VPlan.h:825
void setCondBit(VPValue *CV)
Definition: VPlan.h:492
const VPBlocksTy & getSuccessors() const
Definition: VPlan.h:423
unsigned getNumIncomingValues() const
Return the number of incoming edges.
const VPBlockBase * getEntry() const
Definition: VPlan.h:1086
void addVF(unsigned VF)
Definition: VPlan.h:1196
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition: VPlan.h:801
VPValue * getCondBit()
Definition: VPlan.h:488
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
Definition: VPlan.h:1190
void resetVectorValue(Value *Key, unsigned Part, Value *Vector)
Reset the vector value associated with Key for the given Part.
Definition: VPlan.h:208
VPBlockBase * getExit()
Definition: VPlan.h:1105
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition: Hashing.h:479
InnerLoopVectorizer * ILV
Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
Definition: VPlan.h:327
VPRegionBlock(const std::string &Name="", bool IsReplicator=false)
Definition: VPlan.h:1072
const VPBasicBlock * getParent() const
Definition: VPlan.h:588
bool empty() const
Definition: VPlan.h:1002
void print(raw_ostream &OS) const
Definition: VPlan.h:535
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
iterator insert(iterator where, pointer New)
Definition: ilist.h:228
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:426
Flatten the CFG
static nodes_iterator nodes_begin(GraphRef N)
Definition: VPlan.h:1419
Value * getVectorValue(Value *Key, unsigned Part)
Retrieve the existing vector value that corresponds to Key and Part.
Definition: VPlan.h:166
void clear()
Definition: ilist.h:309
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition: VPlan.h:832
VPBlockBase * getEntry()
Definition: VPlan.h:1184
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:888
VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilder<> &Builder, VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV, VPCallback &Callback)
Definition: VPlan.h:235
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:924
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
VPRecipeBase(const unsigned char SC)
Definition: VPlan.h:578
VPPredInstPHIRecipe(Instruction *PredInst)
Construct a VPPredInstPHIRecipe given PredInst whose value needs a phi nodes after merging back from ...
Definition: VPlan.h:919
const VPBlockBase * getEntry() const
Definition: VPlan.h:1185
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:861
VPlan(VPBlockBase *Entry=nullptr)
Definition: VPlan.h:1165
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector and ...
Definition: VPlan.h:724
unsigned getOpcode() const
Definition: VPlan.h:662
const_iterator end() const
Definition: VPlan.h:994
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:2039
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:171
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:18
void setVectorValue(Value *Key, unsigned Part, Value *Vector)
Set a vector value associated with Key and Part.
Definition: VPlan.h:180
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:788
Definition: JSON.cpp:598
iterator end()
Definition: VPlan.h:993
VPBasicBlock * getParent()
Definition: VPlan.h:587
VPWidenRecipe is a recipe for producing a copy of vector type for each Instruction in its ingredients...
Definition: VPlan.h:688
aarch64 promote const
This file contains the declarations of the entities induced by Vectorization Plans, e.g.
LLVM Value Representation.
Definition: Value.h:73
A recipe for generating conditional branches on the bits of a mask.
Definition: VPlan.h:877
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
static ChildIteratorType child_begin(NodeRef N)
Definition: VPlan.h:1324
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition: VPlan.h:770
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlan.h:84
static nodes_iterator nodes_end(GraphRef N)
Definition: VPlan.h:1383
static bool classof(const VPRecipeBase *V)
Method to support type inquiry through isa, cast, and dyn_cast.
Definition: VPlan.h:815
unsigned getWidestBundleBits() const
Return the width of the widest combined bundle in bits.
Definition: VPlan.h:1629
unsigned Part
in [0..UF)
Definition: VPlan.h:86
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:611
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition: VPlan.h:1009
VPBranchOnMaskRecipe(VPValue *BlockInMask)
Definition: VPlan.h:882
bool use_empty() const
Definition: Value.h:323
const_reverse_iterator rend() const
Definition: VPlan.h:999
static nodes_iterator nodes_begin(GraphRef N)
Definition: VPlan.h:1379
VPBasicBlock(const Twine &Name="", VPRecipeBase *Recipe=nullptr)
Definition: VPlan.h:974
void setParent(VPRegionBlock *P)
Definition: VPlan.h:409
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:1489
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
VPInterleaveRecipe(const InterleaveGroup< Instruction > *IG, VPValue *Mask)
Definition: VPlan.h:807
const VPLoopInfo & getVPLoopInfo() const
Definition: VPlan.h:1229
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:165