LLVM  8.0.1
LanaiMemAluCombiner.cpp
Go to the documentation of this file.
1 //===-- LanaiMemAluCombiner.cpp - Pass to combine memory & ALU operations -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // Simple pass to combine memory and ALU operations
10 //
11 // The Lanai ISA supports instructions where a load/store modifies the base
12 // register used in the load/store operation. This pass finds suitable
13 // load/store and ALU instructions and combines them into one instruction.
14 //
15 // For example,
16 // ld [ %r6 -- ], %r12
17 // is a supported instruction that is not currently generated by the instruction
18 // selection pass of this backend. This pass generates these instructions by
19 // merging
20 // add %r6, -4, %r6
21 // followed by
22 // ld [ %r6 ], %r12
23 // in the same machine basic block into one machine instruction.
24 //===----------------------------------------------------------------------===//
25 
26 #include "Lanai.h"
27 #include "LanaiTargetMachine.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/Statistic.h"
35 using namespace llvm;
36 
37 #define GET_INSTRMAP_INFO
38 #include "LanaiGenInstrInfo.inc"
39 
40 #define DEBUG_TYPE "lanai-mem-alu-combiner"
41 
42 STATISTIC(NumLdStAluCombined, "Number of memory and ALU instructions combined");
43 
45  "disable-lanai-mem-alu-combiner", llvm::cl::init(false),
46  llvm::cl::desc("Do not combine ALU and memory operators"),
48 
49 namespace llvm {
51 } // namespace llvm
52 
53 namespace {
54 typedef MachineBasicBlock::iterator MbbIterator;
55 typedef MachineFunction::iterator MfIterator;
56 
57 class LanaiMemAluCombiner : public MachineFunctionPass {
58 public:
59  static char ID;
60  explicit LanaiMemAluCombiner() : MachineFunctionPass(ID) {
62  }
63 
64  StringRef getPassName() const override {
65  return "Lanai load / store optimization pass";
66  }
67 
68  bool runOnMachineFunction(MachineFunction &F) override;
69 
70  MachineFunctionProperties getRequiredProperties() const override {
73  }
74 
75 private:
76  MbbIterator findClosestSuitableAluInstr(MachineBasicBlock *BB,
77  const MbbIterator &MemInstr,
78  bool Decrement);
79  void insertMergedInstruction(MachineBasicBlock *BB,
80  const MbbIterator &MemInstr,
81  const MbbIterator &AluInstr, bool Before);
82  bool combineMemAluInBasicBlock(MachineBasicBlock *BB);
83 
84  // Target machine description which we query for register names, data
85  // layout, etc.
86  const TargetInstrInfo *TII;
87 };
88 } // namespace
89 
91 
92 INITIALIZE_PASS(LanaiMemAluCombiner, DEBUG_TYPE,
93  "Lanai memory ALU combiner pass", false, false)
94 
95 namespace {
96 bool isSpls(uint16_t Opcode) { return Lanai::splsIdempotent(Opcode) == Opcode; }
97 
98 // Determine the opcode for the merged instruction created by considering the
99 // old memory operation's opcode and whether the merged opcode will have an
100 // immediate offset.
101 unsigned mergedOpcode(unsigned OldOpcode, bool ImmediateOffset) {
102  switch (OldOpcode) {
103  case Lanai::LDW_RI:
104  case Lanai::LDW_RR:
105  if (ImmediateOffset)
106  return Lanai::LDW_RI;
107  return Lanai::LDW_RR;
108  case Lanai::LDHs_RI:
109  case Lanai::LDHs_RR:
110  if (ImmediateOffset)
111  return Lanai::LDHs_RI;
112  return Lanai::LDHs_RR;
113  case Lanai::LDHz_RI:
114  case Lanai::LDHz_RR:
115  if (ImmediateOffset)
116  return Lanai::LDHz_RI;
117  return Lanai::LDHz_RR;
118  case Lanai::LDBs_RI:
119  case Lanai::LDBs_RR:
120  if (ImmediateOffset)
121  return Lanai::LDBs_RI;
122  return Lanai::LDBs_RR;
123  case Lanai::LDBz_RI:
124  case Lanai::LDBz_RR:
125  if (ImmediateOffset)
126  return Lanai::LDBz_RI;
127  return Lanai::LDBz_RR;
128  case Lanai::SW_RI:
129  case Lanai::SW_RR:
130  if (ImmediateOffset)
131  return Lanai::SW_RI;
132  return Lanai::SW_RR;
133  case Lanai::STB_RI:
134  case Lanai::STB_RR:
135  if (ImmediateOffset)
136  return Lanai::STB_RI;
137  return Lanai::STB_RR;
138  case Lanai::STH_RI:
139  case Lanai::STH_RR:
140  if (ImmediateOffset)
141  return Lanai::STH_RI;
142  return Lanai::STH_RR;
143  default:
144  return 0;
145  }
146 }
147 
148 // Check if the machine instruction has non-volatile memory operands of the type
149 // supported for combining with ALU instructions.
150 bool isNonVolatileMemoryOp(const MachineInstr &MI) {
151  if (!MI.hasOneMemOperand())
152  return false;
153 
154  // Determine if the machine instruction is a supported memory operation by
155  // testing if the computed merge opcode is a valid memory operation opcode.
156  if (mergedOpcode(MI.getOpcode(), false) == 0)
157  return false;
158 
159  const MachineMemOperand *MemOperand = *MI.memoperands_begin();
160 
161  // Don't move volatile memory accesses
162  if (MemOperand->isVolatile())
163  return false;
164 
165  return true;
166 }
167 
168 // Test to see if two machine operands are of the same type. This test is less
169 // strict than the MachineOperand::isIdenticalTo function.
170 bool isSameOperand(const MachineOperand &Op1, const MachineOperand &Op2) {
171  if (Op1.getType() != Op2.getType())
172  return false;
173 
174  switch (Op1.getType()) {
176  return Op1.getReg() == Op2.getReg();
178  return Op1.getImm() == Op2.getImm();
179  default:
180  return false;
181  }
182 }
183 
184 bool isZeroOperand(const MachineOperand &Op) {
185  return ((Op.isReg() && Op.getReg() == Lanai::R0) ||
186  (Op.isImm() && Op.getImm() == 0));
187 }
188 
189 // Determines whether a register is used by an instruction.
190 bool InstrUsesReg(const MbbIterator &Instr, const MachineOperand *Reg) {
191  for (MachineInstr::const_mop_iterator Mop = Instr->operands_begin();
192  Mop != Instr->operands_end(); ++Mop) {
193  if (isSameOperand(*Mop, *Reg))
194  return true;
195  }
196  return false;
197 }
198 
199 // Converts between machine opcode and AluCode.
200 // Flag using/modifying ALU operations should not be considered for merging and
201 // are omitted from this list.
202 LPAC::AluCode mergedAluCode(unsigned AluOpcode) {
203  switch (AluOpcode) {
204  case Lanai::ADD_I_LO:
205  case Lanai::ADD_R:
206  return LPAC::ADD;
207  case Lanai::SUB_I_LO:
208  case Lanai::SUB_R:
209  return LPAC::SUB;
210  case Lanai::AND_I_LO:
211  case Lanai::AND_R:
212  return LPAC::AND;
213  case Lanai::OR_I_LO:
214  case Lanai::OR_R:
215  return LPAC::OR;
216  case Lanai::XOR_I_LO:
217  case Lanai::XOR_R:
218  return LPAC::XOR;
219  case Lanai::SHL_R:
220  return LPAC::SHL;
221  case Lanai::SRL_R:
222  return LPAC::SRL;
223  case Lanai::SRA_R:
224  return LPAC::SRA;
225  case Lanai::SA_I:
226  case Lanai::SL_I:
227  default:
228  return LPAC::UNKNOWN;
229  }
230 }
231 
232 // Insert a new combined memory and ALU operation instruction.
233 //
234 // This function builds a new machine instruction using the MachineInstrBuilder
235 // class and inserts it before the memory instruction.
236 void LanaiMemAluCombiner::insertMergedInstruction(MachineBasicBlock *BB,
237  const MbbIterator &MemInstr,
238  const MbbIterator &AluInstr,
239  bool Before) {
240  // Insert new combined load/store + alu operation
241  MachineOperand Dest = MemInstr->getOperand(0);
242  MachineOperand Base = MemInstr->getOperand(1);
243  MachineOperand MemOffset = MemInstr->getOperand(2);
244  MachineOperand AluOffset = AluInstr->getOperand(2);
245 
246  // Abort if ALU offset is not a register or immediate
247  assert((AluOffset.isReg() || AluOffset.isImm()) &&
248  "Unsupported operand type in merge");
249 
250  // Determined merged instructions opcode and ALU code
251  LPAC::AluCode AluOpcode = mergedAluCode(AluInstr->getOpcode());
252  unsigned NewOpc = mergedOpcode(MemInstr->getOpcode(), AluOffset.isImm());
253 
254  assert(AluOpcode != LPAC::UNKNOWN && "Unknown ALU code in merging");
255  assert(NewOpc != 0 && "Unknown merged node opcode");
256 
257  // Build and insert new machine instruction
258  MachineInstrBuilder InstrBuilder =
259  BuildMI(*BB, MemInstr, MemInstr->getDebugLoc(), TII->get(NewOpc));
260  InstrBuilder.addReg(Dest.getReg(), getDefRegState(true));
261  InstrBuilder.addReg(Base.getReg(), getKillRegState(true));
262 
263  // Add offset to machine instruction
264  if (AluOffset.isReg())
265  InstrBuilder.addReg(AluOffset.getReg());
266  else if (AluOffset.isImm())
267  InstrBuilder.addImm(AluOffset.getImm());
268  else
269  llvm_unreachable("Unsupported ld/st ALU merge.");
270 
271  // Create a pre-op if the ALU operation preceded the memory operation or the
272  // MemOffset is non-zero (i.e. the memory value should be adjusted before
273  // accessing it), else create a post-op.
274  if (Before || !isZeroOperand(MemOffset))
275  InstrBuilder.addImm(LPAC::makePreOp(AluOpcode));
276  else
277  InstrBuilder.addImm(LPAC::makePostOp(AluOpcode));
278 
279  // Transfer memory operands.
280  InstrBuilder.setMemRefs(MemInstr->memoperands());
281 }
282 
283 // Function determines if ALU operation (in alu_iter) can be combined with
284 // a load/store with base and offset.
285 bool isSuitableAluInstr(bool IsSpls, const MbbIterator &AluIter,
286  const MachineOperand &Base,
287  const MachineOperand &Offset) {
288  // ALU operations have 3 operands
289  if (AluIter->getNumOperands() != 3)
290  return false;
291 
292  MachineOperand &Dest = AluIter->getOperand(0);
293  MachineOperand &Op1 = AluIter->getOperand(1);
294  MachineOperand &Op2 = AluIter->getOperand(2);
295 
296  // Only match instructions using the base register as destination and with the
297  // base and first operand equal
298  if (!isSameOperand(Dest, Base) || !isSameOperand(Dest, Op1))
299  return false;
300 
301  if (Op2.isImm()) {
302  // It is not a match if the 2nd operand in the ALU operation is an
303  // immediate but the ALU operation is not an addition.
304  if (AluIter->getOpcode() != Lanai::ADD_I_LO)
305  return false;
306 
307  if (Offset.isReg() && Offset.getReg() == Lanai::R0)
308  return true;
309 
310  if (Offset.isImm() &&
311  ((Offset.getImm() == 0 &&
312  // Check that the Op2 would fit in the immediate field of the
313  // memory operation.
314  ((IsSpls && isInt<10>(Op2.getImm())) ||
315  (!IsSpls && isInt<16>(Op2.getImm())))) ||
316  Offset.getImm() == Op2.getImm()))
317  return true;
318  } else if (Op2.isReg()) {
319  // The Offset and 2nd operand are both registers and equal
320  if (Offset.isReg() && Op2.getReg() == Offset.getReg())
321  return true;
322  } else
323  // Only consider operations with register or immediate values
324  return false;
325 
326  return false;
327 }
328 
329 MbbIterator LanaiMemAluCombiner::findClosestSuitableAluInstr(
330  MachineBasicBlock *BB, const MbbIterator &MemInstr, const bool Decrement) {
331  MachineOperand *Base = &MemInstr->getOperand(1);
332  MachineOperand *Offset = &MemInstr->getOperand(2);
333  bool IsSpls = isSpls(MemInstr->getOpcode());
334 
335  MbbIterator First = MemInstr;
336  MbbIterator Last = Decrement ? BB->begin() : BB->end();
337 
338  while (First != Last) {
339  Decrement ? --First : ++First;
340 
341  if (First == Last)
342  break;
343 
344  // Skip over debug instructions
345  if (First->isDebugInstr())
346  continue;
347 
348  if (isSuitableAluInstr(IsSpls, First, *Base, *Offset)) {
349  return First;
350  }
351 
352  // Usage of the base or offset register is not a form suitable for merging.
353  if (First != Last) {
354  if (InstrUsesReg(First, Base))
355  break;
356  if (Offset->isReg() && InstrUsesReg(First, Offset))
357  break;
358  }
359  }
360 
361  return MemInstr;
362 }
363 
364 bool LanaiMemAluCombiner::combineMemAluInBasicBlock(MachineBasicBlock *BB) {
365  bool Modified = false;
366 
367  MbbIterator MBBIter = BB->begin(), End = BB->end();
368  while (MBBIter != End) {
369  bool IsMemOp = isNonVolatileMemoryOp(*MBBIter);
370 
371  if (IsMemOp) {
372  MachineOperand AluOperand = MBBIter->getOperand(3);
373  unsigned int DestReg = MBBIter->getOperand(0).getReg(),
374  BaseReg = MBBIter->getOperand(1).getReg();
375  assert(AluOperand.isImm() && "Unexpected memory operator type");
376  LPAC::AluCode AluOpcode = static_cast<LPAC::AluCode>(AluOperand.getImm());
377 
378  // Skip memory operations that already modify the base register or if
379  // the destination and base register are the same
380  if (!LPAC::modifiesOp(AluOpcode) && DestReg != BaseReg) {
381  for (int Inc = 0; Inc <= 1; ++Inc) {
382  MbbIterator AluIter =
383  findClosestSuitableAluInstr(BB, MBBIter, Inc == 0);
384  if (AluIter != MBBIter) {
385  insertMergedInstruction(BB, MBBIter, AluIter, Inc == 0);
386 
387  ++NumLdStAluCombined;
388  Modified = true;
389 
390  // Erase the matching ALU instruction
391  BB->erase(AluIter);
392  // Erase old load/store instruction
393  BB->erase(MBBIter++);
394  break;
395  }
396  }
397  }
398  }
399  if (MBBIter == End)
400  break;
401  ++MBBIter;
402  }
403 
404  return Modified;
405 }
406 
407 // Driver function that iterates over the machine basic building blocks of a
408 // machine function
409 bool LanaiMemAluCombiner::runOnMachineFunction(MachineFunction &MF) {
411  return false;
412 
413  TII = MF.getSubtarget<LanaiSubtarget>().getInstrInfo();
414  bool Modified = false;
415  for (MfIterator MFI = MF.begin(); MFI != MF.end(); ++MFI) {
416  Modified |= combineMemAluInBasicBlock(&*MFI);
417  }
418  return Modified;
419 }
420 } // namespace
421 
423  return new LanaiMemAluCombiner();
424 }
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand *> MMOs) const
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
This class represents lattice values for constants.
Definition: AllocatorList.h:24
static bool modifiesOp(unsigned AluOp)
Definition: LanaiAluCode.h:73
void initializeLanaiMemAluCombinerPass(PassRegistry &)
unsigned getReg() const
getReg - Returns the register number.
unsigned Reg
constexpr bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:306
STATISTIC(NumFunctions, "Total number of functions")
F(f)
INITIALIZE_PASS(LanaiMemAluCombiner, DEBUG_TYPE, "Lanai memory ALU combiner pass", false, false) namespace
FunctionPass * createLanaiMemAluCombinerPass()
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static unsigned makePostOp(unsigned AluOp)
Definition: LanaiAluCode.h:68
A description of a memory reference used in the backend.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
static llvm::cl::opt< bool > DisableMemAluCombiner("disable-lanai-mem-alu-combiner", llvm::cl::init(false), llvm::cl::desc("Do not combine ALU and memory operators"), llvm::cl::Hidden)
unsigned getKillRegState(bool B)
TargetInstrInfo - Interface to description of machine instruction set.
unsigned getDefRegState(bool B)
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
This file declares the machine register scavenger class.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
Definition: MachineInstr.h:549
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Iterator for intrusive lists based on ilist_node.
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:534
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
static unsigned makePreOp(unsigned AluOp)
Definition: LanaiAluCode.h:63
MachineFunctionProperties & set(Property P)
#define DEBUG_TYPE
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:39
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
Properties which a MachineFunction may have at a given point in time.