LLVM  8.0.1
InterleavedAccessPass.cpp
Go to the documentation of this file.
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Interleaved Access pass, which identifies
11 // interleaved memory accesses and transforms them into target specific
12 // intrinsics.
13 //
14 // An interleaved load reads data from memory into several vectors, with
15 // DE-interleaving the data on a factor. An interleaved store writes several
16 // vectors to memory with RE-interleaving the data on a factor.
17 //
18 // As interleaved accesses are difficult to identified in CodeGen (mainly
19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
20 // IR), we identify and transform them to intrinsics in this pass so the
21 // intrinsics can be easily matched into target specific instructions later in
22 // CodeGen.
23 //
24 // E.g. An interleaved load (Factor = 2):
25 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
26 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
27 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
28 //
29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
30 // intrinsic in ARM backend.
31 //
32 // In X86, this can be further optimized into a set of target
33 // specific loads followed by an optimized sequence of shuffles.
34 //
35 // E.g. An interleaved store (Factor = 3):
36 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
37 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
38 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 //
40 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
41 // intrinsic in ARM backend.
42 //
43 // Similarly, a set of interleaved stores can be transformed into an optimized
44 // sequence of shuffles followed by a set of target specific stores for X86.
45 //
46 //===----------------------------------------------------------------------===//
47 
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Debug.h"
69 #include <cassert>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "interleaved-access"
75 
77  "lower-interleaved-accesses",
78  cl::desc("Enable lowering interleaved accesses to intrinsics"),
79  cl::init(true), cl::Hidden);
80 
81 namespace {
82 
83 class InterleavedAccess : public FunctionPass {
84 public:
85  static char ID;
86 
87  InterleavedAccess() : FunctionPass(ID) {
89  }
90 
91  StringRef getPassName() const override { return "Interleaved Access Pass"; }
92 
93  bool runOnFunction(Function &F) override;
94 
95  void getAnalysisUsage(AnalysisUsage &AU) const override {
98  }
99 
100 private:
101  DominatorTree *DT = nullptr;
102  const TargetLowering *TLI = nullptr;
103 
104  /// The maximum supported interleave factor.
105  unsigned MaxFactor;
106 
107  /// Transform an interleaved load into target specific intrinsics.
108  bool lowerInterleavedLoad(LoadInst *LI,
109  SmallVector<Instruction *, 32> &DeadInsts);
110 
111  /// Transform an interleaved store into target specific intrinsics.
112  bool lowerInterleavedStore(StoreInst *SI,
113  SmallVector<Instruction *, 32> &DeadInsts);
114 
115  /// Returns true if the uses of an interleaved load by the
116  /// extractelement instructions in \p Extracts can be replaced by uses of the
117  /// shufflevector instructions in \p Shuffles instead. If so, the necessary
118  /// replacements are also performed.
119  bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
121 };
122 
123 } // end anonymous namespace.
124 
125 char InterleavedAccess::ID = 0;
126 
127 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
128  "Lower interleaved memory accesses to target specific intrinsics", false,
129  false)
131 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
132  "Lower interleaved memory accesses to target specific intrinsics", false,
133  false)
134 
136  return new InterleavedAccess();
137 }
138 
139 /// Check if the mask is a DE-interleave mask of the given factor
140 /// \p Factor like:
141 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
142 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
143  unsigned &Index) {
144  // Check all potential start indices from 0 to (Factor - 1).
145  for (Index = 0; Index < Factor; Index++) {
146  unsigned i = 0;
147 
148  // Check that elements are in ascending order by Factor. Ignore undef
149  // elements.
150  for (; i < Mask.size(); i++)
151  if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
152  break;
153 
154  if (i == Mask.size())
155  return true;
156  }
157 
158  return false;
159 }
160 
161 /// Check if the mask is a DE-interleave mask for an interleaved load.
162 ///
163 /// E.g. DE-interleave masks (Factor = 2) could be:
164 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
165 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
166 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
167  unsigned &Index, unsigned MaxFactor) {
168  if (Mask.size() < 2)
169  return false;
170 
171  // Check potential Factors.
172  for (Factor = 2; Factor <= MaxFactor; Factor++)
173  if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
174  return true;
175 
176  return false;
177 }
178 
179 /// Check if the mask can be used in an interleaved store.
180 //
181 /// It checks for a more general pattern than the RE-interleave mask.
182 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
183 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
184 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
185 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
186 ///
187 /// The particular case of an RE-interleave mask is:
188 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
189 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
190 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
191  unsigned MaxFactor, unsigned OpNumElts) {
192  unsigned NumElts = Mask.size();
193  if (NumElts < 4)
194  return false;
195 
196  // Check potential Factors.
197  for (Factor = 2; Factor <= MaxFactor; Factor++) {
198  if (NumElts % Factor)
199  continue;
200 
201  unsigned LaneLen = NumElts / Factor;
202  if (!isPowerOf2_32(LaneLen))
203  continue;
204 
205  // Check whether each element matches the general interleaved rule.
206  // Ignore undef elements, as long as the defined elements match the rule.
207  // Outer loop processes all factors (x, y, z in the above example)
208  unsigned I = 0, J;
209  for (; I < Factor; I++) {
210  unsigned SavedLaneValue;
211  unsigned SavedNoUndefs = 0;
212 
213  // Inner loop processes consecutive accesses (x, x+1... in the example)
214  for (J = 0; J < LaneLen - 1; J++) {
215  // Lane computes x's position in the Mask
216  unsigned Lane = J * Factor + I;
217  unsigned NextLane = Lane + Factor;
218  int LaneValue = Mask[Lane];
219  int NextLaneValue = Mask[NextLane];
220 
221  // If both are defined, values must be sequential
222  if (LaneValue >= 0 && NextLaneValue >= 0 &&
223  LaneValue + 1 != NextLaneValue)
224  break;
225 
226  // If the next value is undef, save the current one as reference
227  if (LaneValue >= 0 && NextLaneValue < 0) {
228  SavedLaneValue = LaneValue;
229  SavedNoUndefs = 1;
230  }
231 
232  // Undefs are allowed, but defined elements must still be consecutive:
233  // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
234  // Verify this by storing the last non-undef followed by an undef
235  // Check that following non-undef masks are incremented with the
236  // corresponding distance.
237  if (SavedNoUndefs > 0 && LaneValue < 0) {
238  SavedNoUndefs++;
239  if (NextLaneValue >= 0 &&
240  SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
241  break;
242  }
243  }
244 
245  if (J < LaneLen - 1)
246  break;
247 
248  int StartMask = 0;
249  if (Mask[I] >= 0) {
250  // Check that the start of the I range (J=0) is greater than 0
251  StartMask = Mask[I];
252  } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
253  // StartMask defined by the last value in lane
254  StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
255  } else if (SavedNoUndefs > 0) {
256  // StartMask defined by some non-zero value in the j loop
257  StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
258  }
259  // else StartMask remains set to 0, i.e. all elements are undefs
260 
261  if (StartMask < 0)
262  break;
263  // We must stay within the vectors; This case can happen with undefs.
264  if (StartMask + LaneLen > OpNumElts*2)
265  break;
266  }
267 
268  // Found an interleaved mask of current factor.
269  if (I == Factor)
270  return true;
271  }
272 
273  return false;
274 }
275 
276 bool InterleavedAccess::lowerInterleavedLoad(
277  LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
278  if (!LI->isSimple())
279  return false;
280 
283 
284  // Check if all users of this load are shufflevectors. If we encounter any
285  // users that are extractelement instructions, we save them to later check if
286  // they can be modifed to extract from one of the shufflevectors instead of
287  // the load.
288  for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
289  auto *Extract = dyn_cast<ExtractElementInst>(*UI);
290  if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
291  Extracts.push_back(Extract);
292  continue;
293  }
295  if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
296  return false;
297 
298  Shuffles.push_back(SVI);
299  }
300 
301  if (Shuffles.empty())
302  return false;
303 
304  unsigned Factor, Index;
305 
306  // Check if the first shufflevector is DE-interleave shuffle.
307  if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
308  MaxFactor))
309  return false;
310 
311  // Holds the corresponding index for each DE-interleave shuffle.
312  SmallVector<unsigned, 4> Indices;
313  Indices.push_back(Index);
314 
315  Type *VecTy = Shuffles[0]->getType();
316 
317  // Check if other shufflevectors are also DE-interleaved of the same type
318  // and factor as the first shufflevector.
319  for (unsigned i = 1; i < Shuffles.size(); i++) {
320  if (Shuffles[i]->getType() != VecTy)
321  return false;
322 
323  if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
324  Index))
325  return false;
326 
327  Indices.push_back(Index);
328  }
329 
330  // Try and modify users of the load that are extractelement instructions to
331  // use the shufflevector instructions instead of the load.
332  if (!tryReplaceExtracts(Extracts, Shuffles))
333  return false;
334 
335  LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
336 
337  // Try to create target specific intrinsics to replace the load and shuffles.
338  if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
339  return false;
340 
341  for (auto SVI : Shuffles)
342  DeadInsts.push_back(SVI);
343 
344  DeadInsts.push_back(LI);
345  return true;
346 }
347 
348 bool InterleavedAccess::tryReplaceExtracts(
351  // If there aren't any extractelement instructions to modify, there's nothing
352  // to do.
353  if (Extracts.empty())
354  return true;
355 
356  // Maps extractelement instructions to vector-index pairs. The extractlement
357  // instructions will be modified to use the new vector and index operands.
359 
360  for (auto *Extract : Extracts) {
361  // The vector index that is extracted.
362  auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
363  auto Index = IndexOperand->getSExtValue();
364 
365  // Look for a suitable shufflevector instruction. The goal is to modify the
366  // extractelement instruction (which uses an interleaved load) to use one
367  // of the shufflevector instructions instead of the load.
368  for (auto *Shuffle : Shuffles) {
369  // If the shufflevector instruction doesn't dominate the extract, we
370  // can't create a use of it.
371  if (!DT->dominates(Shuffle, Extract))
372  continue;
373 
374  // Inspect the indices of the shufflevector instruction. If the shuffle
375  // selects the same index that is extracted, we can modify the
376  // extractelement instruction.
377  SmallVector<int, 4> Indices;
378  Shuffle->getShuffleMask(Indices);
379  for (unsigned I = 0; I < Indices.size(); ++I)
380  if (Indices[I] == Index) {
381  assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
382  "Vector operations do not match");
383  ReplacementMap[Extract] = std::make_pair(Shuffle, I);
384  break;
385  }
386 
387  // If we found a suitable shufflevector instruction, stop looking.
388  if (ReplacementMap.count(Extract))
389  break;
390  }
391 
392  // If we did not find a suitable shufflevector instruction, the
393  // extractelement instruction cannot be modified, so we must give up.
394  if (!ReplacementMap.count(Extract))
395  return false;
396  }
397 
398  // Finally, perform the replacements.
399  IRBuilder<> Builder(Extracts[0]->getContext());
400  for (auto &Replacement : ReplacementMap) {
401  auto *Extract = Replacement.first;
402  auto *Vector = Replacement.second.first;
403  auto Index = Replacement.second.second;
404  Builder.SetInsertPoint(Extract);
405  Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
406  Extract->eraseFromParent();
407  }
408 
409  return true;
410 }
411 
412 bool InterleavedAccess::lowerInterleavedStore(
414  if (!SI->isSimple())
415  return false;
416 
418  if (!SVI || !SVI->hasOneUse())
419  return false;
420 
421  // Check if the shufflevector is RE-interleave shuffle.
422  unsigned Factor;
423  unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
424  if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
425  return false;
426 
427  LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
428 
429  // Try to create target specific intrinsics to replace the store and shuffle.
430  if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
431  return false;
432 
433  // Already have a new target specific interleaved store. Erase the old store.
434  DeadInsts.push_back(SI);
435  DeadInsts.push_back(SVI);
436  return true;
437 }
438 
440  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
441  if (!TPC || !LowerInterleavedAccesses)
442  return false;
443 
444  LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
445 
446  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
447  auto &TM = TPC->getTM<TargetMachine>();
448  TLI = TM.getSubtargetImpl(F)->getTargetLowering();
449  MaxFactor = TLI->getMaxSupportedInterleaveFactor();
450 
451  // Holds dead instructions that will be erased later.
453  bool Changed = false;
454 
455  for (auto &I : instructions(F)) {
456  if (LoadInst *LI = dyn_cast<LoadInst>(&I))
457  Changed |= lowerInterleavedLoad(LI, DeadInsts);
458 
459  if (StoreInst *SI = dyn_cast<StoreInst>(&I))
460  Changed |= lowerInterleavedStore(SI, DeadInsts);
461  }
462 
463  for (auto I : DeadInsts)
464  I->eraseFromParent();
465 
466  return Changed;
467 }
Value * getValueOperand()
Definition: Instructions.h:410
bool isSimple() const
Definition: Instructions.h:277
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
This class represents lattice values for constants.
Definition: AllocatorList.h:24
INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, "Lower interleaved memory accesses to target specific intrinsics", false, false) INITIALIZE_PASS_END(InterleavedAccess
static cl::opt< bool > LowerInterleavedAccesses("lower-interleaved-accesses", cl::desc("Enable lowering interleaved accesses to intrinsics"), cl::init(true), cl::Hidden)
This instruction constructs a fixed permutation of two input vectors.
F(f)
An instruction for reading from memory.
Definition: Instructions.h:168
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
#define DEBUG_TYPE
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
An instruction for storing to memory.
Definition: Instructions.h:321
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
static bool isReInterleaveMask(ArrayRef< int > Mask, unsigned &Factor, unsigned MaxFactor, unsigned OpNumElts)
Check if the mask can be used in an interleaved store.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:127
Value * getOperand(unsigned i) const
Definition: User.h:170
static bool runOnFunction(Function &F, bool PostInlining)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:429
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
FunctionPass * createInterleavedAccessPass()
InterleavedAccess Pass - This pass identifies and matches interleaved memory accesses to target speci...
Represent the analysis usage information of a pass.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2041
size_t size() const
Definition: SmallVector.h:53
static wasm::ValType getType(const TargetRegisterClass *RC)
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
void initializeInterleavedAccessPass(PassRegistry &)
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
static void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:462
Lower interleaved memory accesses to target specific intrinsics
static bool isDeInterleaveMask(ArrayRef< int > Mask, unsigned &Factor, unsigned &Index, unsigned MaxFactor)
Check if the mask is a DE-interleave mask for an interleaved load.
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
#define I(x, y, z)
Definition: MD5.cpp:58
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
This instruction extracts a single (scalar) element from a VectorType value.
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:171
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:376
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
inst_range instructions(Function *F)
Definition: InstIterator.h:134
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:260
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
bool isSimple() const
Definition: Instructions.h:402
#define LLVM_DEBUG(X)
Definition: Debug.h:123
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
This file describes how to lower LLVM code to machine code.
user_iterator user_end()
Definition: Value.h:384