LLVM  8.0.1
InstCombineSelect.cpp
Go to the documentation of this file.
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/KnownBits.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
51  SelectPatternFlavor SPF, Value *A, Value *B) {
53  assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54  return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56 
57 /// Replace a select operand based on an equality comparison with the identity
58 /// constant of a binop.
60  const TargetLibraryInfo &TLI) {
61  // The select condition must be an equality compare with a constant operand.
62  Value *X;
63  Constant *C;
64  CmpInst::Predicate Pred;
65  if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
66  return nullptr;
67 
68  bool IsEq;
69  if (ICmpInst::isEquality(Pred))
70  IsEq = Pred == ICmpInst::ICMP_EQ;
71  else if (Pred == FCmpInst::FCMP_OEQ)
72  IsEq = true;
73  else if (Pred == FCmpInst::FCMP_UNE)
74  IsEq = false;
75  else
76  return nullptr;
77 
78  // A select operand must be a binop.
79  BinaryOperator *BO;
80  if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
81  return nullptr;
82 
83  // The compare constant must be the identity constant for that binop.
84  // If this a floating-point compare with 0.0, any zero constant will do.
85  Type *Ty = BO->getType();
86  Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
87  if (IdC != C) {
88  if (!IdC || !CmpInst::isFPPredicate(Pred))
89  return nullptr;
90  if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
91  return nullptr;
92  }
93 
94  // Last, match the compare variable operand with a binop operand.
95  Value *Y;
96  if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
97  return nullptr;
98  if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
99  return nullptr;
100 
101  // +0.0 compares equal to -0.0, and so it does not behave as required for this
102  // transform. Bail out if we can not exclude that possibility.
103  if (isa<FPMathOperator>(BO))
104  if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
105  return nullptr;
106 
107  // BO = binop Y, X
108  // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
109  // =>
110  // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
111  Sel.setOperand(IsEq ? 1 : 2, Y);
112  return &Sel;
113 }
114 
115 /// This folds:
116 /// select (icmp eq (and X, C1)), TC, FC
117 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
118 /// To something like:
119 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
120 /// Or:
121 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
122 /// With some variations depending if FC is larger than TC, or the shift
123 /// isn't needed, or the bit widths don't match.
125  InstCombiner::BuilderTy &Builder) {
126  const APInt *SelTC, *SelFC;
127  if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
128  !match(Sel.getFalseValue(), m_APInt(SelFC)))
129  return nullptr;
130 
131  // If this is a vector select, we need a vector compare.
132  Type *SelType = Sel.getType();
133  if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
134  return nullptr;
135 
136  Value *V;
137  APInt AndMask;
138  bool CreateAnd = false;
139  ICmpInst::Predicate Pred = Cmp->getPredicate();
140  if (ICmpInst::isEquality(Pred)) {
141  if (!match(Cmp->getOperand(1), m_Zero()))
142  return nullptr;
143 
144  V = Cmp->getOperand(0);
145  const APInt *AndRHS;
146  if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
147  return nullptr;
148 
149  AndMask = *AndRHS;
150  } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
151  Pred, V, AndMask)) {
152  assert(ICmpInst::isEquality(Pred) && "Not equality test?");
153  if (!AndMask.isPowerOf2())
154  return nullptr;
155 
156  CreateAnd = true;
157  } else {
158  return nullptr;
159  }
160 
161  // In general, when both constants are non-zero, we would need an offset to
162  // replace the select. This would require more instructions than we started
163  // with. But there's one special-case that we handle here because it can
164  // simplify/reduce the instructions.
165  APInt TC = *SelTC;
166  APInt FC = *SelFC;
167  if (!TC.isNullValue() && !FC.isNullValue()) {
168  // If the select constants differ by exactly one bit and that's the same
169  // bit that is masked and checked by the select condition, the select can
170  // be replaced by bitwise logic to set/clear one bit of the constant result.
171  if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
172  return nullptr;
173  if (CreateAnd) {
174  // If we have to create an 'and', then we must kill the cmp to not
175  // increase the instruction count.
176  if (!Cmp->hasOneUse())
177  return nullptr;
178  V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
179  }
180  bool ExtraBitInTC = TC.ugt(FC);
181  if (Pred == ICmpInst::ICMP_EQ) {
182  // If the masked bit in V is clear, clear or set the bit in the result:
183  // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
184  // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
185  Constant *C = ConstantInt::get(SelType, TC);
186  return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
187  }
188  if (Pred == ICmpInst::ICMP_NE) {
189  // If the masked bit in V is set, set or clear the bit in the result:
190  // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
191  // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
192  Constant *C = ConstantInt::get(SelType, FC);
193  return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
194  }
195  llvm_unreachable("Only expecting equality predicates");
196  }
197 
198  // Make sure one of the select arms is a power-of-2.
199  if (!TC.isPowerOf2() && !FC.isPowerOf2())
200  return nullptr;
201 
202  // Determine which shift is needed to transform result of the 'and' into the
203  // desired result.
204  const APInt &ValC = !TC.isNullValue() ? TC : FC;
205  unsigned ValZeros = ValC.logBase2();
206  unsigned AndZeros = AndMask.logBase2();
207 
208  // Insert the 'and' instruction on the input to the truncate.
209  if (CreateAnd)
210  V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
211 
212  // If types don't match, we can still convert the select by introducing a zext
213  // or a trunc of the 'and'.
214  if (ValZeros > AndZeros) {
215  V = Builder.CreateZExtOrTrunc(V, SelType);
216  V = Builder.CreateShl(V, ValZeros - AndZeros);
217  } else if (ValZeros < AndZeros) {
218  V = Builder.CreateLShr(V, AndZeros - ValZeros);
219  V = Builder.CreateZExtOrTrunc(V, SelType);
220  } else {
221  V = Builder.CreateZExtOrTrunc(V, SelType);
222  }
223 
224  // Okay, now we know that everything is set up, we just don't know whether we
225  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
226  bool ShouldNotVal = !TC.isNullValue();
227  ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
228  if (ShouldNotVal)
229  V = Builder.CreateXor(V, ValC);
230 
231  return V;
232 }
233 
234 /// We want to turn code that looks like this:
235 /// %C = or %A, %B
236 /// %D = select %cond, %C, %A
237 /// into:
238 /// %C = select %cond, %B, 0
239 /// %D = or %A, %C
240 ///
241 /// Assuming that the specified instruction is an operand to the select, return
242 /// a bitmask indicating which operands of this instruction are foldable if they
243 /// equal the other incoming value of the select.
245  switch (I->getOpcode()) {
246  case Instruction::Add:
247  case Instruction::Mul:
248  case Instruction::And:
249  case Instruction::Or:
250  case Instruction::Xor:
251  return 3; // Can fold through either operand.
252  case Instruction::Sub: // Can only fold on the amount subtracted.
253  case Instruction::Shl: // Can only fold on the shift amount.
254  case Instruction::LShr:
255  case Instruction::AShr:
256  return 1;
257  default:
258  return 0; // Cannot fold
259  }
260 }
261 
262 /// For the same transformation as the previous function, return the identity
263 /// constant that goes into the select.
265  switch (I->getOpcode()) {
266  default: llvm_unreachable("This cannot happen!");
267  case Instruction::Add:
268  case Instruction::Sub:
269  case Instruction::Or:
270  case Instruction::Xor:
271  case Instruction::Shl:
272  case Instruction::LShr:
273  case Instruction::AShr:
275  case Instruction::And:
277  case Instruction::Mul:
278  return APInt(I->getType()->getScalarSizeInBits(), 1);
279  }
280 }
281 
282 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
283 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
284  Instruction *FI) {
285  // Don't break up min/max patterns. The hasOneUse checks below prevent that
286  // for most cases, but vector min/max with bitcasts can be transformed. If the
287  // one-use restrictions are eased for other patterns, we still don't want to
288  // obfuscate min/max.
289  if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
290  match(&SI, m_SMax(m_Value(), m_Value())) ||
291  match(&SI, m_UMin(m_Value(), m_Value())) ||
292  match(&SI, m_UMax(m_Value(), m_Value()))))
293  return nullptr;
294 
295  // If this is a cast from the same type, merge.
296  if (TI->getNumOperands() == 1 && TI->isCast()) {
297  Type *FIOpndTy = FI->getOperand(0)->getType();
298  if (TI->getOperand(0)->getType() != FIOpndTy)
299  return nullptr;
300 
301  // The select condition may be a vector. We may only change the operand
302  // type if the vector width remains the same (and matches the condition).
303  Type *CondTy = SI.getCondition()->getType();
304  if (CondTy->isVectorTy()) {
305  if (!FIOpndTy->isVectorTy())
306  return nullptr;
307  if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308  return nullptr;
309 
310  // TODO: If the backend knew how to deal with casts better, we could
311  // remove this limitation. For now, there's too much potential to create
312  // worse codegen by promoting the select ahead of size-altering casts
313  // (PR28160).
314  //
315  // Note that ValueTracking's matchSelectPattern() looks through casts
316  // without checking 'hasOneUse' when it matches min/max patterns, so this
317  // transform may end up happening anyway.
318  if (TI->getOpcode() != Instruction::BitCast &&
319  (!TI->hasOneUse() || !FI->hasOneUse()))
320  return nullptr;
321  } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322  // TODO: The one-use restrictions for a scalar select could be eased if
323  // the fold of a select in visitLoadInst() was enhanced to match a pattern
324  // that includes a cast.
325  return nullptr;
326  }
327 
328  // Fold this by inserting a select from the input values.
329  Value *NewSI =
330  Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
331  FI->getOperand(0), SI.getName() + ".v", &SI);
332  return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333  TI->getType());
334  }
335 
336  // Only handle binary operators (including two-operand getelementptr) with
337  // one-use here. As with the cast case above, it may be possible to relax the
338  // one-use constraint, but that needs be examined carefully since it may not
339  // reduce the total number of instructions.
340  if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
341  (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
342  !TI->hasOneUse() || !FI->hasOneUse())
343  return nullptr;
344 
345  // Figure out if the operations have any operands in common.
346  Value *MatchOp, *OtherOpT, *OtherOpF;
347  bool MatchIsOpZero;
348  if (TI->getOperand(0) == FI->getOperand(0)) {
349  MatchOp = TI->getOperand(0);
350  OtherOpT = TI->getOperand(1);
351  OtherOpF = FI->getOperand(1);
352  MatchIsOpZero = true;
353  } else if (TI->getOperand(1) == FI->getOperand(1)) {
354  MatchOp = TI->getOperand(1);
355  OtherOpT = TI->getOperand(0);
356  OtherOpF = FI->getOperand(0);
357  MatchIsOpZero = false;
358  } else if (!TI->isCommutative()) {
359  return nullptr;
360  } else if (TI->getOperand(0) == FI->getOperand(1)) {
361  MatchOp = TI->getOperand(0);
362  OtherOpT = TI->getOperand(1);
363  OtherOpF = FI->getOperand(0);
364  MatchIsOpZero = true;
365  } else if (TI->getOperand(1) == FI->getOperand(0)) {
366  MatchOp = TI->getOperand(1);
367  OtherOpT = TI->getOperand(0);
368  OtherOpF = FI->getOperand(1);
369  MatchIsOpZero = true;
370  } else {
371  return nullptr;
372  }
373 
374  // If the select condition is a vector, the operands of the original select's
375  // operands also must be vectors. This may not be the case for getelementptr
376  // for example.
377  if (SI.getCondition()->getType()->isVectorTy() &&
378  (!OtherOpT->getType()->isVectorTy() ||
379  !OtherOpF->getType()->isVectorTy()))
380  return nullptr;
381 
382  // If we reach here, they do have operations in common.
383  Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
384  SI.getName() + ".v", &SI);
385  Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
386  Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
387  if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
388  BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
389  NewBO->copyIRFlags(TI);
390  NewBO->andIRFlags(FI);
391  return NewBO;
392  }
393  if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
394  auto *FGEP = cast<GetElementPtrInst>(FI);
395  Type *ElementType = TGEP->getResultElementType();
396  return TGEP->isInBounds() && FGEP->isInBounds()
397  ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
398  : GetElementPtrInst::Create(ElementType, Op0, {Op1});
399  }
400  llvm_unreachable("Expected BinaryOperator or GEP");
401  return nullptr;
402 }
403 
404 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
405  if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
406  return false;
407  return C1I.isOneValue() || C1I.isAllOnesValue() ||
408  C2I.isOneValue() || C2I.isAllOnesValue();
409 }
410 
411 /// Try to fold the select into one of the operands to allow further
412 /// optimization.
413 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
414  Value *FalseVal) {
415  // See the comment above GetSelectFoldableOperands for a description of the
416  // transformation we are doing here.
417  if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
418  if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
419  if (unsigned SFO = getSelectFoldableOperands(TVI)) {
420  unsigned OpToFold = 0;
421  if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
422  OpToFold = 1;
423  } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
424  OpToFold = 2;
425  }
426 
427  if (OpToFold) {
429  Value *OOp = TVI->getOperand(2-OpToFold);
430  // Avoid creating select between 2 constants unless it's selecting
431  // between 0, 1 and -1.
432  const APInt *OOpC;
433  bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
434  if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
435  Value *C = ConstantInt::get(OOp->getType(), CI);
436  Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
437  NewSel->takeName(TVI);
438  BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
439  FalseVal, NewSel);
440  BO->copyIRFlags(TVI);
441  return BO;
442  }
443  }
444  }
445  }
446  }
447 
448  if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
449  if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
450  if (unsigned SFO = getSelectFoldableOperands(FVI)) {
451  unsigned OpToFold = 0;
452  if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
453  OpToFold = 1;
454  } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
455  OpToFold = 2;
456  }
457 
458  if (OpToFold) {
460  Value *OOp = FVI->getOperand(2-OpToFold);
461  // Avoid creating select between 2 constants unless it's selecting
462  // between 0, 1 and -1.
463  const APInt *OOpC;
464  bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
465  if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
466  Value *C = ConstantInt::get(OOp->getType(), CI);
467  Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
468  NewSel->takeName(FVI);
469  BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
470  TrueVal, NewSel);
471  BO->copyIRFlags(FVI);
472  return BO;
473  }
474  }
475  }
476  }
477  }
478 
479  return nullptr;
480 }
481 
482 /// We want to turn:
483 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
484 /// into:
485 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
486 /// Note:
487 /// Z may be 0 if lshr is missing.
488 /// Worst-case scenario is that we will replace 5 instructions with 5 different
489 /// instructions, but we got rid of select.
490 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
491  Value *TVal, Value *FVal,
492  InstCombiner::BuilderTy &Builder) {
493  if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
494  Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
495  match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
496  return nullptr;
497 
498  // The TrueVal has general form of: and %B, 1
499  Value *B;
500  if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
501  return nullptr;
502 
503  // Where %B may be optionally shifted: lshr %X, %Z.
504  Value *X, *Z;
505  const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
506  if (!HasShift)
507  X = B;
508 
509  Value *Y;
510  if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
511  return nullptr;
512 
513  // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
514  // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
515  Constant *One = ConstantInt::get(SelType, 1);
516  Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
517  Value *FullMask = Builder.CreateOr(Y, MaskB);
518  Value *MaskedX = Builder.CreateAnd(X, FullMask);
519  Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
520  return new ZExtInst(ICmpNeZero, SelType);
521 }
522 
523 /// We want to turn:
524 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
525 /// into:
526 /// (or (shl (and X, C1), C3), Y)
527 /// iff:
528 /// C1 and C2 are both powers of 2
529 /// where:
530 /// C3 = Log(C2) - Log(C1)
531 ///
532 /// This transform handles cases where:
533 /// 1. The icmp predicate is inverted
534 /// 2. The select operands are reversed
535 /// 3. The magnitude of C2 and C1 are flipped
536 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
537  Value *FalseVal,
538  InstCombiner::BuilderTy &Builder) {
539  // Only handle integer compares. Also, if this is a vector select, we need a
540  // vector compare.
541  if (!TrueVal->getType()->isIntOrIntVectorTy() ||
542  TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
543  return nullptr;
544 
545  Value *CmpLHS = IC->getOperand(0);
546  Value *CmpRHS = IC->getOperand(1);
547 
548  Value *V;
549  unsigned C1Log;
550  bool IsEqualZero;
551  bool NeedAnd = false;
552  if (IC->isEquality()) {
553  if (!match(CmpRHS, m_Zero()))
554  return nullptr;
555 
556  const APInt *C1;
557  if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
558  return nullptr;
559 
560  V = CmpLHS;
561  C1Log = C1->logBase2();
562  IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
563  } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
564  IC->getPredicate() == ICmpInst::ICMP_SGT) {
565  // We also need to recognize (icmp slt (trunc (X)), 0) and
566  // (icmp sgt (trunc (X)), -1).
567  IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
568  if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
569  (!IsEqualZero && !match(CmpRHS, m_Zero())))
570  return nullptr;
571 
572  if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
573  return nullptr;
574 
575  C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
576  NeedAnd = true;
577  } else {
578  return nullptr;
579  }
580 
581  const APInt *C2;
582  bool OrOnTrueVal = false;
583  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
584  if (!OrOnFalseVal)
585  OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
586 
587  if (!OrOnFalseVal && !OrOnTrueVal)
588  return nullptr;
589 
590  Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
591 
592  unsigned C2Log = C2->logBase2();
593 
594  bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
595  bool NeedShift = C1Log != C2Log;
596  bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
598 
599  // Make sure we don't create more instructions than we save.
600  Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
601  if ((NeedShift + NeedXor + NeedZExtTrunc) >
602  (IC->hasOneUse() + Or->hasOneUse()))
603  return nullptr;
604 
605  if (NeedAnd) {
606  // Insert the AND instruction on the input to the truncate.
608  V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
609  }
610 
611  if (C2Log > C1Log) {
612  V = Builder.CreateZExtOrTrunc(V, Y->getType());
613  V = Builder.CreateShl(V, C2Log - C1Log);
614  } else if (C1Log > C2Log) {
615  V = Builder.CreateLShr(V, C1Log - C2Log);
616  V = Builder.CreateZExtOrTrunc(V, Y->getType());
617  } else
618  V = Builder.CreateZExtOrTrunc(V, Y->getType());
619 
620  if (NeedXor)
621  V = Builder.CreateXor(V, *C2);
622 
623  return Builder.CreateOr(V, Y);
624 }
625 
626 /// Transform patterns such as: (a > b) ? a - b : 0
627 /// into: ((a > b) ? a : b) - b)
628 /// This produces a canonical max pattern that is more easily recognized by the
629 /// backend and converted into saturated subtraction instructions if those
630 /// exist.
631 /// There are 8 commuted/swapped variants of this pattern.
632 /// TODO: Also support a - UMIN(a,b) patterns.
634  const Value *TrueVal,
635  const Value *FalseVal,
636  InstCombiner::BuilderTy &Builder) {
637  ICmpInst::Predicate Pred = ICI->getPredicate();
638  if (!ICmpInst::isUnsigned(Pred))
639  return nullptr;
640 
641  // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
642  if (match(TrueVal, m_Zero())) {
643  Pred = ICmpInst::getInversePredicate(Pred);
644  std::swap(TrueVal, FalseVal);
645  }
646  if (!match(FalseVal, m_Zero()))
647  return nullptr;
648 
649  Value *A = ICI->getOperand(0);
650  Value *B = ICI->getOperand(1);
651  if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
652  // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
653  std::swap(A, B);
654  Pred = ICmpInst::getSwappedPredicate(Pred);
655  }
656 
657  assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
658  "Unexpected isUnsigned predicate!");
659 
660  // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
661  bool IsNegative = false;
662  if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
663  IsNegative = true;
664  else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
665  return nullptr;
666 
667  // If sub is used anywhere else, we wouldn't be able to eliminate it
668  // afterwards.
669  if (!TrueVal->hasOneUse())
670  return nullptr;
671 
672  // All checks passed, convert to canonical unsigned saturated subtraction
673  // form: sub(max()).
674  // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
675  Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
676  return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B);
677 }
678 
679 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
680 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
681 ///
682 /// For example, we can fold the following code sequence:
683 /// \code
684 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
685 /// %1 = icmp ne i32 %x, 0
686 /// %2 = select i1 %1, i32 %0, i32 32
687 /// \code
688 ///
689 /// into:
690 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
691 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
692  InstCombiner::BuilderTy &Builder) {
693  ICmpInst::Predicate Pred = ICI->getPredicate();
694  Value *CmpLHS = ICI->getOperand(0);
695  Value *CmpRHS = ICI->getOperand(1);
696 
697  // Check if the condition value compares a value for equality against zero.
698  if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
699  return nullptr;
700 
701  Value *Count = FalseVal;
702  Value *ValueOnZero = TrueVal;
703  if (Pred == ICmpInst::ICMP_NE)
704  std::swap(Count, ValueOnZero);
705 
706  // Skip zero extend/truncate.
707  Value *V = nullptr;
708  if (match(Count, m_ZExt(m_Value(V))) ||
709  match(Count, m_Trunc(m_Value(V))))
710  Count = V;
711 
712  // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
713  // input to the cttz/ctlz is used as LHS for the compare instruction.
714  if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
715  !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
716  return nullptr;
717 
718  IntrinsicInst *II = cast<IntrinsicInst>(Count);
719 
720  // Check if the value propagated on zero is a constant number equal to the
721  // sizeof in bits of 'Count'.
722  unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
723  if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
724  // Explicitly clear the 'undef_on_zero' flag.
725  IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
727  Builder.Insert(NewI);
728  return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
729  }
730 
731  // If the ValueOnZero is not the bitwidth, we can at least make use of the
732  // fact that the cttz/ctlz result will not be used if the input is zero, so
733  // it's okay to relax it to undef for that case.
734  if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
736 
737  return nullptr;
738 }
739 
740 /// Return true if we find and adjust an icmp+select pattern where the compare
741 /// is with a constant that can be incremented or decremented to match the
742 /// minimum or maximum idiom.
743 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
744  ICmpInst::Predicate Pred = Cmp.getPredicate();
745  Value *CmpLHS = Cmp.getOperand(0);
746  Value *CmpRHS = Cmp.getOperand(1);
747  Value *TrueVal = Sel.getTrueValue();
748  Value *FalseVal = Sel.getFalseValue();
749 
750  // We may move or edit the compare, so make sure the select is the only user.
751  const APInt *CmpC;
752  if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
753  return false;
754 
755  // These transforms only work for selects of integers or vector selects of
756  // integer vectors.
757  Type *SelTy = Sel.getType();
758  auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
759  if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
760  return false;
761 
762  Constant *AdjustedRHS;
763  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
764  AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
765  else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
766  AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
767  else
768  return false;
769 
770  // X > C ? X : C+1 --> X < C+1 ? C+1 : X
771  // X < C ? X : C-1 --> X > C-1 ? C-1 : X
772  if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
773  (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
774  ; // Nothing to do here. Values match without any sign/zero extension.
775  }
776  // Types do not match. Instead of calculating this with mixed types, promote
777  // all to the larger type. This enables scalar evolution to analyze this
778  // expression.
779  else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
780  Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
781 
782  // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
783  // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
784  // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
785  // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
786  if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
787  CmpLHS = TrueVal;
788  AdjustedRHS = SextRHS;
789  } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
790  SextRHS == TrueVal) {
791  CmpLHS = FalseVal;
792  AdjustedRHS = SextRHS;
793  } else if (Cmp.isUnsigned()) {
794  Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
795  // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
796  // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
797  // zext + signed compare cannot be changed:
798  // 0xff <s 0x00, but 0x00ff >s 0x0000
799  if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
800  CmpLHS = TrueVal;
801  AdjustedRHS = ZextRHS;
802  } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
803  ZextRHS == TrueVal) {
804  CmpLHS = FalseVal;
805  AdjustedRHS = ZextRHS;
806  } else {
807  return false;
808  }
809  } else {
810  return false;
811  }
812  } else {
813  return false;
814  }
815 
816  Pred = ICmpInst::getSwappedPredicate(Pred);
817  CmpRHS = AdjustedRHS;
818  std::swap(FalseVal, TrueVal);
819  Cmp.setPredicate(Pred);
820  Cmp.setOperand(0, CmpLHS);
821  Cmp.setOperand(1, CmpRHS);
822  Sel.setOperand(1, TrueVal);
823  Sel.setOperand(2, FalseVal);
824  Sel.swapProfMetadata();
825 
826  // Move the compare instruction right before the select instruction. Otherwise
827  // the sext/zext value may be defined after the compare instruction uses it.
828  Cmp.moveBefore(&Sel);
829 
830  return true;
831 }
832 
833 /// If this is an integer min/max (icmp + select) with a constant operand,
834 /// create the canonical icmp for the min/max operation and canonicalize the
835 /// constant to the 'false' operand of the select:
836 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
837 /// Note: if C1 != C2, this will change the icmp constant to the existing
838 /// constant operand of the select.
839 static Instruction *
840 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
841  InstCombiner::BuilderTy &Builder) {
842  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
843  return nullptr;
844 
845  // Canonicalize the compare predicate based on whether we have min or max.
846  Value *LHS, *RHS;
847  SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
849  return nullptr;
850 
851  // Is this already canonical?
852  ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
853  if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
854  Cmp.getPredicate() == CanonicalPred)
855  return nullptr;
856 
857  // Create the canonical compare and plug it into the select.
858  Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
859 
860  // If the select operands did not change, we're done.
861  if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
862  return &Sel;
863 
864  // If we are swapping the select operands, swap the metadata too.
865  assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
866  "Unexpected results from matchSelectPattern");
867  Sel.setTrueValue(LHS);
868  Sel.setFalseValue(RHS);
869  Sel.swapProfMetadata();
870  return &Sel;
871 }
872 
873 /// There are many select variants for each of ABS/NABS.
874 /// In matchSelectPattern(), there are different compare constants, compare
875 /// predicates/operands and select operands.
876 /// In isKnownNegation(), there are different formats of negated operands.
877 /// Canonicalize all these variants to 1 pattern.
878 /// This makes CSE more likely.
879 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
880  InstCombiner::BuilderTy &Builder) {
881  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
882  return nullptr;
883 
884  // Choose a sign-bit check for the compare (likely simpler for codegen).
885  // ABS: (X <s 0) ? -X : X
886  // NABS: (X <s 0) ? X : -X
887  Value *LHS, *RHS;
888  SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
889  if (SPF != SelectPatternFlavor::SPF_ABS &&
891  return nullptr;
892 
893  Value *TVal = Sel.getTrueValue();
894  Value *FVal = Sel.getFalseValue();
895  assert(isKnownNegation(TVal, FVal) &&
896  "Unexpected result from matchSelectPattern");
897 
898  // The compare may use the negated abs()/nabs() operand, or it may use
899  // negation in non-canonical form such as: sub A, B.
900  bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
901  match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
902 
903  bool CmpCanonicalized = !CmpUsesNegatedOp &&
904  match(Cmp.getOperand(1), m_ZeroInt()) &&
906  bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
907 
908  // Is this already canonical?
909  if (CmpCanonicalized && RHSCanonicalized)
910  return nullptr;
911 
912  // If RHS is used by other instructions except compare and select, don't
913  // canonicalize it to not increase the instruction count.
914  if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
915  return nullptr;
916 
917  // Create the canonical compare: icmp slt LHS 0.
918  if (!CmpCanonicalized) {
921  if (CmpUsesNegatedOp)
922  Cmp.setOperand(0, LHS);
923  }
924 
925  // Create the canonical RHS: RHS = sub (0, LHS).
926  if (!RHSCanonicalized) {
927  assert(RHS->hasOneUse() && "RHS use number is not right");
928  RHS = Builder.CreateNeg(LHS);
929  if (TVal == LHS) {
930  Sel.setFalseValue(RHS);
931  FVal = RHS;
932  } else {
933  Sel.setTrueValue(RHS);
934  TVal = RHS;
935  }
936  }
937 
938  // If the select operands do not change, we're done.
939  if (SPF == SelectPatternFlavor::SPF_NABS) {
940  if (TVal == LHS)
941  return &Sel;
942  assert(FVal == LHS && "Unexpected results from matchSelectPattern");
943  } else {
944  if (FVal == LHS)
945  return &Sel;
946  assert(TVal == LHS && "Unexpected results from matchSelectPattern");
947  }
948 
949  // We are swapping the select operands, so swap the metadata too.
950  Sel.setTrueValue(FVal);
951  Sel.setFalseValue(TVal);
952  Sel.swapProfMetadata();
953  return &Sel;
954 }
955 
956 /// Visit a SelectInst that has an ICmpInst as its first operand.
957 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
958  ICmpInst *ICI) {
959  Value *TrueVal = SI.getTrueValue();
960  Value *FalseVal = SI.getFalseValue();
961 
962  if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
963  return NewSel;
964 
965  if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
966  return NewAbs;
967 
968  bool Changed = adjustMinMax(SI, *ICI);
969 
970  if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
971  return replaceInstUsesWith(SI, V);
972 
973  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
974  ICmpInst::Predicate Pred = ICI->getPredicate();
975  Value *CmpLHS = ICI->getOperand(0);
976  Value *CmpRHS = ICI->getOperand(1);
977  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
978  if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
979  // Transform (X == C) ? X : Y -> (X == C) ? C : Y
980  SI.setOperand(1, CmpRHS);
981  Changed = true;
982  } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
983  // Transform (X != C) ? Y : X -> (X != C) ? Y : C
984  SI.setOperand(2, CmpRHS);
985  Changed = true;
986  }
987  }
988 
989  // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
990  // decomposeBitTestICmp() might help.
991  {
992  unsigned BitWidth =
993  DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
994  APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
995  Value *X;
996  const APInt *Y, *C;
997  bool TrueWhenUnset;
998  bool IsBitTest = false;
999  if (ICmpInst::isEquality(Pred) &&
1000  match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1001  match(CmpRHS, m_Zero())) {
1002  IsBitTest = true;
1003  TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1004  } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1005  X = CmpLHS;
1006  Y = &MinSignedValue;
1007  IsBitTest = true;
1008  TrueWhenUnset = false;
1009  } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1010  X = CmpLHS;
1011  Y = &MinSignedValue;
1012  IsBitTest = true;
1013  TrueWhenUnset = true;
1014  }
1015  if (IsBitTest) {
1016  Value *V = nullptr;
1017  // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1018  if (TrueWhenUnset && TrueVal == X &&
1019  match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1020  V = Builder.CreateAnd(X, ~(*Y));
1021  // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1022  else if (!TrueWhenUnset && FalseVal == X &&
1023  match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1024  V = Builder.CreateAnd(X, ~(*Y));
1025  // (X & Y) == 0 ? X ^ Y : X --> X | Y
1026  else if (TrueWhenUnset && FalseVal == X &&
1027  match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1028  V = Builder.CreateOr(X, *Y);
1029  // (X & Y) != 0 ? X : X ^ Y --> X | Y
1030  else if (!TrueWhenUnset && TrueVal == X &&
1031  match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1032  V = Builder.CreateOr(X, *Y);
1033 
1034  if (V)
1035  return replaceInstUsesWith(SI, V);
1036  }
1037  }
1038 
1039  if (Instruction *V =
1040  foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1041  return V;
1042 
1043  if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1044  return replaceInstUsesWith(SI, V);
1045 
1046  if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1047  return replaceInstUsesWith(SI, V);
1048 
1049  if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1050  return replaceInstUsesWith(SI, V);
1051 
1052  return Changed ? &SI : nullptr;
1053 }
1054 
1055 /// SI is a select whose condition is a PHI node (but the two may be in
1056 /// different blocks). See if the true/false values (V) are live in all of the
1057 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1058 ///
1059 /// X = phi [ C1, BB1], [C2, BB2]
1060 /// Y = add
1061 /// Z = select X, Y, 0
1062 ///
1063 /// because Y is not live in BB1/BB2.
1064 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1065  const SelectInst &SI) {
1066  // If the value is a non-instruction value like a constant or argument, it
1067  // can always be mapped.
1068  const Instruction *I = dyn_cast<Instruction>(V);
1069  if (!I) return true;
1070 
1071  // If V is a PHI node defined in the same block as the condition PHI, we can
1072  // map the arguments.
1073  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1074 
1075  if (const PHINode *VP = dyn_cast<PHINode>(I))
1076  if (VP->getParent() == CondPHI->getParent())
1077  return true;
1078 
1079  // Otherwise, if the PHI and select are defined in the same block and if V is
1080  // defined in a different block, then we can transform it.
1081  if (SI.getParent() == CondPHI->getParent() &&
1082  I->getParent() != CondPHI->getParent())
1083  return true;
1084 
1085  // Otherwise we have a 'hard' case and we can't tell without doing more
1086  // detailed dominator based analysis, punt.
1087  return false;
1088 }
1089 
1090 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1091 /// SPF2(SPF1(A, B), C)
1092 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1093  SelectPatternFlavor SPF1,
1094  Value *A, Value *B,
1095  Instruction &Outer,
1096  SelectPatternFlavor SPF2, Value *C) {
1097  if (Outer.getType() != Inner->getType())
1098  return nullptr;
1099 
1100  if (C == A || C == B) {
1101  // MAX(MAX(A, B), B) -> MAX(A, B)
1102  // MIN(MIN(a, b), a) -> MIN(a, b)
1103  // TODO: This could be done in instsimplify.
1104  if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1105  return replaceInstUsesWith(Outer, Inner);
1106 
1107  // MAX(MIN(a, b), a) -> a
1108  // MIN(MAX(a, b), a) -> a
1109  // TODO: This could be done in instsimplify.
1110  if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1111  (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1112  (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1113  (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1114  return replaceInstUsesWith(Outer, C);
1115  }
1116 
1117  if (SPF1 == SPF2) {
1118  const APInt *CB, *CC;
1119  if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1120  // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1121  // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1122  // TODO: This could be done in instsimplify.
1123  if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1124  (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1125  (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1126  (SPF1 == SPF_SMAX && CB->sge(*CC)))
1127  return replaceInstUsesWith(Outer, Inner);
1128 
1129  // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1130  // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1131  if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1132  (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1133  (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1134  (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1135  Outer.replaceUsesOfWith(Inner, A);
1136  return &Outer;
1137  }
1138  }
1139  }
1140 
1141  // ABS(ABS(X)) -> ABS(X)
1142  // NABS(NABS(X)) -> NABS(X)
1143  // TODO: This could be done in instsimplify.
1144  if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1145  return replaceInstUsesWith(Outer, Inner);
1146  }
1147 
1148  // ABS(NABS(X)) -> ABS(X)
1149  // NABS(ABS(X)) -> NABS(X)
1150  if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1151  (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1152  SelectInst *SI = cast<SelectInst>(Inner);
1153  Value *NewSI =
1154  Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1155  SI->getTrueValue(), SI->getName(), SI);
1156  return replaceInstUsesWith(Outer, NewSI);
1157  }
1158 
1159  auto IsFreeOrProfitableToInvert =
1160  [&](Value *V, Value *&NotV, bool &ElidesXor) {
1161  if (match(V, m_Not(m_Value(NotV)))) {
1162  // If V has at most 2 uses then we can get rid of the xor operation
1163  // entirely.
1164  ElidesXor |= !V->hasNUsesOrMore(3);
1165  return true;
1166  }
1167 
1168  if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1169  NotV = nullptr;
1170  return true;
1171  }
1172 
1173  return false;
1174  };
1175 
1176  Value *NotA, *NotB, *NotC;
1177  bool ElidesXor = false;
1178 
1179  // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1180  // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1181  // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1182  // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1183  //
1184  // This transform is performance neutral if we can elide at least one xor from
1185  // the set of three operands, since we'll be tacking on an xor at the very
1186  // end.
1187  if (SelectPatternResult::isMinOrMax(SPF1) &&
1189  IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1190  IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1191  IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1192  if (!NotA)
1193  NotA = Builder.CreateNot(A);
1194  if (!NotB)
1195  NotB = Builder.CreateNot(B);
1196  if (!NotC)
1197  NotC = Builder.CreateNot(C);
1198 
1199  Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1200  NotB);
1201  Value *NewOuter = Builder.CreateNot(
1202  createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1203  return replaceInstUsesWith(Outer, NewOuter);
1204  }
1205 
1206  return nullptr;
1207 }
1208 
1209 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1210 /// This is even legal for FP.
1211 static Instruction *foldAddSubSelect(SelectInst &SI,
1212  InstCombiner::BuilderTy &Builder) {
1213  Value *CondVal = SI.getCondition();
1214  Value *TrueVal = SI.getTrueValue();
1215  Value *FalseVal = SI.getFalseValue();
1216  auto *TI = dyn_cast<Instruction>(TrueVal);
1217  auto *FI = dyn_cast<Instruction>(FalseVal);
1218  if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1219  return nullptr;
1220 
1221  Instruction *AddOp = nullptr, *SubOp = nullptr;
1222  if ((TI->getOpcode() == Instruction::Sub &&
1223  FI->getOpcode() == Instruction::Add) ||
1224  (TI->getOpcode() == Instruction::FSub &&
1225  FI->getOpcode() == Instruction::FAdd)) {
1226  AddOp = FI;
1227  SubOp = TI;
1228  } else if ((FI->getOpcode() == Instruction::Sub &&
1229  TI->getOpcode() == Instruction::Add) ||
1230  (FI->getOpcode() == Instruction::FSub &&
1231  TI->getOpcode() == Instruction::FAdd)) {
1232  AddOp = TI;
1233  SubOp = FI;
1234  }
1235 
1236  if (AddOp) {
1237  Value *OtherAddOp = nullptr;
1238  if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1239  OtherAddOp = AddOp->getOperand(1);
1240  } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1241  OtherAddOp = AddOp->getOperand(0);
1242  }
1243 
1244  if (OtherAddOp) {
1245  // So at this point we know we have (Y -> OtherAddOp):
1246  // select C, (add X, Y), (sub X, Z)
1247  Value *NegVal; // Compute -Z
1248  if (SI.getType()->isFPOrFPVectorTy()) {
1249  NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1250  if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1251  FastMathFlags Flags = AddOp->getFastMathFlags();
1252  Flags &= SubOp->getFastMathFlags();
1253  NegInst->setFastMathFlags(Flags);
1254  }
1255  } else {
1256  NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1257  }
1258 
1259  Value *NewTrueOp = OtherAddOp;
1260  Value *NewFalseOp = NegVal;
1261  if (AddOp != TI)
1262  std::swap(NewTrueOp, NewFalseOp);
1263  Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1264  SI.getName() + ".p", &SI);
1265 
1266  if (SI.getType()->isFPOrFPVectorTy()) {
1267  Instruction *RI =
1268  BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1269 
1270  FastMathFlags Flags = AddOp->getFastMathFlags();
1271  Flags &= SubOp->getFastMathFlags();
1272  RI->setFastMathFlags(Flags);
1273  return RI;
1274  } else
1275  return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1276  }
1277  }
1278  return nullptr;
1279 }
1280 
1281 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1282  Constant *C;
1283  if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1284  !match(Sel.getFalseValue(), m_Constant(C)))
1285  return nullptr;
1286 
1287  Instruction *ExtInst;
1288  if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1289  !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1290  return nullptr;
1291 
1292  auto ExtOpcode = ExtInst->getOpcode();
1293  if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1294  return nullptr;
1295 
1296  // If we are extending from a boolean type or if we can create a select that
1297  // has the same size operands as its condition, try to narrow the select.
1298  Value *X = ExtInst->getOperand(0);
1299  Type *SmallType = X->getType();
1300  Value *Cond = Sel.getCondition();
1301  auto *Cmp = dyn_cast<CmpInst>(Cond);
1302  if (!SmallType->isIntOrIntVectorTy(1) &&
1303  (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1304  return nullptr;
1305 
1306  // If the constant is the same after truncation to the smaller type and
1307  // extension to the original type, we can narrow the select.
1308  Type *SelType = Sel.getType();
1309  Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1310  Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1311  if (ExtC == C) {
1312  Value *TruncCVal = cast<Value>(TruncC);
1313  if (ExtInst == Sel.getFalseValue())
1314  std::swap(X, TruncCVal);
1315 
1316  // select Cond, (ext X), C --> ext(select Cond, X, C')
1317  // select Cond, C, (ext X) --> ext(select Cond, C', X)
1318  Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1319  return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1320  }
1321 
1322  // If one arm of the select is the extend of the condition, replace that arm
1323  // with the extension of the appropriate known bool value.
1324  if (Cond == X) {
1325  if (ExtInst == Sel.getTrueValue()) {
1326  // select X, (sext X), C --> select X, -1, C
1327  // select X, (zext X), C --> select X, 1, C
1328  Constant *One = ConstantInt::getTrue(SmallType);
1329  Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1330  return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1331  } else {
1332  // select X, C, (sext X) --> select X, C, 0
1333  // select X, C, (zext X) --> select X, C, 0
1334  Constant *Zero = ConstantInt::getNullValue(SelType);
1335  return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1336  }
1337  }
1338 
1339  return nullptr;
1340 }
1341 
1342 /// Try to transform a vector select with a constant condition vector into a
1343 /// shuffle for easier combining with other shuffles and insert/extract.
1344 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1345  Value *CondVal = SI.getCondition();
1346  Constant *CondC;
1347  if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1348  return nullptr;
1349 
1350  unsigned NumElts = CondVal->getType()->getVectorNumElements();
1352  Mask.reserve(NumElts);
1353  Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1354  for (unsigned i = 0; i != NumElts; ++i) {
1355  Constant *Elt = CondC->getAggregateElement(i);
1356  if (!Elt)
1357  return nullptr;
1358 
1359  if (Elt->isOneValue()) {
1360  // If the select condition element is true, choose from the 1st vector.
1361  Mask.push_back(ConstantInt::get(Int32Ty, i));
1362  } else if (Elt->isNullValue()) {
1363  // If the select condition element is false, choose from the 2nd vector.
1364  Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1365  } else if (isa<UndefValue>(Elt)) {
1366  // Undef in a select condition (choose one of the operands) does not mean
1367  // the same thing as undef in a shuffle mask (any value is acceptable), so
1368  // give up.
1369  return nullptr;
1370  } else {
1371  // Bail out on a constant expression.
1372  return nullptr;
1373  }
1374  }
1375 
1376  return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1377  ConstantVector::get(Mask));
1378 }
1379 
1380 /// Reuse bitcasted operands between a compare and select:
1381 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1382 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1383 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1384  InstCombiner::BuilderTy &Builder) {
1385  Value *Cond = Sel.getCondition();
1386  Value *TVal = Sel.getTrueValue();
1387  Value *FVal = Sel.getFalseValue();
1388 
1389  CmpInst::Predicate Pred;
1390  Value *A, *B;
1391  if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1392  return nullptr;
1393 
1394  // The select condition is a compare instruction. If the select's true/false
1395  // values are already the same as the compare operands, there's nothing to do.
1396  if (TVal == A || TVal == B || FVal == A || FVal == B)
1397  return nullptr;
1398 
1399  Value *C, *D;
1400  if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1401  return nullptr;
1402 
1403  // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1404  Value *TSrc, *FSrc;
1405  if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1406  !match(FVal, m_BitCast(m_Value(FSrc))))
1407  return nullptr;
1408 
1409  // If the select true/false values are *different bitcasts* of the same source
1410  // operands, make the select operands the same as the compare operands and
1411  // cast the result. This is the canonical select form for min/max.
1412  Value *NewSel;
1413  if (TSrc == C && FSrc == D) {
1414  // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1415  // bitcast (select (cmp A, B), A, B)
1416  NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1417  } else if (TSrc == D && FSrc == C) {
1418  // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1419  // bitcast (select (cmp A, B), B, A)
1420  NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1421  } else {
1422  return nullptr;
1423  }
1424  return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1425 }
1426 
1427 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1428 /// instructions.
1429 ///
1430 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1431 /// selects between the returned value of the cmpxchg instruction its compare
1432 /// operand, the result of the select will always be equal to its false value.
1433 /// For example:
1434 ///
1435 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1436 /// %1 = extractvalue { i64, i1 } %0, 1
1437 /// %2 = extractvalue { i64, i1 } %0, 0
1438 /// %3 = select i1 %1, i64 %compare, i64 %2
1439 /// ret i64 %3
1440 ///
1441 /// The returned value of the cmpxchg instruction (%2) is the original value
1442 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1443 /// must have been equal to %compare. Thus, the result of the select is always
1444 /// equal to %2, and the code can be simplified to:
1445 ///
1446 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1447 /// %1 = extractvalue { i64, i1 } %0, 0
1448 /// ret i64 %1
1449 ///
1450 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1451  // A helper that determines if V is an extractvalue instruction whose
1452  // aggregate operand is a cmpxchg instruction and whose single index is equal
1453  // to I. If such conditions are true, the helper returns the cmpxchg
1454  // instruction; otherwise, a nullptr is returned.
1455  auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1456  auto *Extract = dyn_cast<ExtractValueInst>(V);
1457  if (!Extract)
1458  return nullptr;
1459  if (Extract->getIndices()[0] != I)
1460  return nullptr;
1461  return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1462  };
1463 
1464  // If the select has a single user, and this user is a select instruction that
1465  // we can simplify, skip the cmpxchg simplification for now.
1466  if (SI.hasOneUse())
1467  if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1468  if (Select->getCondition() == SI.getCondition())
1469  if (Select->getFalseValue() == SI.getTrueValue() ||
1470  Select->getTrueValue() == SI.getFalseValue())
1471  return nullptr;
1472 
1473  // Ensure the select condition is the returned flag of a cmpxchg instruction.
1474  auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1475  if (!CmpXchg)
1476  return nullptr;
1477 
1478  // Check the true value case: The true value of the select is the returned
1479  // value of the same cmpxchg used by the condition, and the false value is the
1480  // cmpxchg instruction's compare operand.
1481  if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1482  if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1483  SI.setTrueValue(SI.getFalseValue());
1484  return &SI;
1485  }
1486 
1487  // Check the false value case: The false value of the select is the returned
1488  // value of the same cmpxchg used by the condition, and the true value is the
1489  // cmpxchg instruction's compare operand.
1490  if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1491  if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1492  SI.setTrueValue(SI.getFalseValue());
1493  return &SI;
1494  }
1495 
1496  return nullptr;
1497 }
1498 
1499 /// Reduce a sequence of min/max with a common operand.
1500 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1501  Value *RHS,
1502  InstCombiner::BuilderTy &Builder) {
1503  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1504  // TODO: Allow FP min/max with nnan/nsz.
1505  if (!LHS->getType()->isIntOrIntVectorTy())
1506  return nullptr;
1507 
1508  // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1509  Value *A, *B, *C, *D;
1510  SelectPatternResult L = matchSelectPattern(LHS, A, B);
1511  SelectPatternResult R = matchSelectPattern(RHS, C, D);
1512  if (SPF != L.Flavor || L.Flavor != R.Flavor)
1513  return nullptr;
1514 
1515  // Look for a common operand. The use checks are different than usual because
1516  // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1517  // the select.
1518  Value *MinMaxOp = nullptr;
1519  Value *ThirdOp = nullptr;
1520  if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1521  // If the LHS is only used in this chain and the RHS is used outside of it,
1522  // reuse the RHS min/max because that will eliminate the LHS.
1523  if (D == A || C == A) {
1524  // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1525  // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1526  MinMaxOp = RHS;
1527  ThirdOp = B;
1528  } else if (D == B || C == B) {
1529  // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1530  // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1531  MinMaxOp = RHS;
1532  ThirdOp = A;
1533  }
1534  } else if (!RHS->hasNUsesOrMore(3)) {
1535  // Reuse the LHS. This will eliminate the RHS.
1536  if (D == A || D == B) {
1537  // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1538  // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1539  MinMaxOp = LHS;
1540  ThirdOp = C;
1541  } else if (C == A || C == B) {
1542  // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1543  // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1544  MinMaxOp = LHS;
1545  ThirdOp = D;
1546  }
1547  }
1548  if (!MinMaxOp || !ThirdOp)
1549  return nullptr;
1550 
1552  Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1553  return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1554 }
1555 
1556 /// Try to reduce a rotate pattern that includes a compare and select into a
1557 /// funnel shift intrinsic. Example:
1558 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
1559 /// --> call llvm.fshl.i32(a, a, b)
1560 static Instruction *foldSelectRotate(SelectInst &Sel) {
1561  // The false value of the select must be a rotate of the true value.
1562  Value *Or0, *Or1;
1563  if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
1564  return nullptr;
1565 
1566  Value *TVal = Sel.getTrueValue();
1567  Value *SA0, *SA1;
1568  if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
1569  !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
1570  return nullptr;
1571 
1572  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
1573  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
1574  if (ShiftOpcode0 == ShiftOpcode1)
1575  return nullptr;
1576 
1577  // We have one of these patterns so far:
1578  // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
1579  // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
1580  // This must be a power-of-2 rotate for a bitmasking transform to be valid.
1581  unsigned Width = Sel.getType()->getScalarSizeInBits();
1582  if (!isPowerOf2_32(Width))
1583  return nullptr;
1584 
1585  // Check the shift amounts to see if they are an opposite pair.
1586  Value *ShAmt;
1587  if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
1588  ShAmt = SA0;
1589  else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
1590  ShAmt = SA1;
1591  else
1592  return nullptr;
1593 
1594  // Finally, see if the select is filtering out a shift-by-zero.
1595  Value *Cond = Sel.getCondition();
1596  ICmpInst::Predicate Pred;
1597  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
1598  Pred != ICmpInst::ICMP_EQ)
1599  return nullptr;
1600 
1601  // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
1602  // Convert to funnel shift intrinsic.
1603  bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
1604  (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
1606  Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
1607  return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
1608 }
1609 
1611  Value *CondVal = SI.getCondition();
1612  Value *TrueVal = SI.getTrueValue();
1613  Value *FalseVal = SI.getFalseValue();
1614  Type *SelType = SI.getType();
1615 
1616  // FIXME: Remove this workaround when freeze related patches are done.
1617  // For select with undef operand which feeds into an equality comparison,
1618  // don't simplify it so loop unswitch can know the equality comparison
1619  // may have an undef operand. This is a workaround for PR31652 caused by
1620  // descrepancy about branch on undef between LoopUnswitch and GVN.
1621  if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1622  if (llvm::any_of(SI.users(), [&](User *U) {
1623  ICmpInst *CI = dyn_cast<ICmpInst>(U);
1624  if (CI && CI->isEquality())
1625  return true;
1626  return false;
1627  })) {
1628  return nullptr;
1629  }
1630  }
1631 
1632  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1633  SQ.getWithInstruction(&SI)))
1634  return replaceInstUsesWith(SI, V);
1635 
1636  if (Instruction *I = canonicalizeSelectToShuffle(SI))
1637  return I;
1638 
1639  // Canonicalize a one-use integer compare with a non-canonical predicate by
1640  // inverting the predicate and swapping the select operands. This matches a
1641  // compare canonicalization for conditional branches.
1642  // TODO: Should we do the same for FP compares?
1643  CmpInst::Predicate Pred;
1644  if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1645  !isCanonicalPredicate(Pred)) {
1646  // Swap true/false values and condition.
1647  CmpInst *Cond = cast<CmpInst>(CondVal);
1649  SI.setOperand(1, FalseVal);
1650  SI.setOperand(2, TrueVal);
1651  SI.swapProfMetadata();
1652  Worklist.Add(Cond);
1653  return &SI;
1654  }
1655 
1656  if (SelType->isIntOrIntVectorTy(1) &&
1657  TrueVal->getType() == CondVal->getType()) {
1658  if (match(TrueVal, m_One())) {
1659  // Change: A = select B, true, C --> A = or B, C
1660  return BinaryOperator::CreateOr(CondVal, FalseVal);
1661  }
1662  if (match(TrueVal, m_Zero())) {
1663  // Change: A = select B, false, C --> A = and !B, C
1664  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1665  return BinaryOperator::CreateAnd(NotCond, FalseVal);
1666  }
1667  if (match(FalseVal, m_Zero())) {
1668  // Change: A = select B, C, false --> A = and B, C
1669  return BinaryOperator::CreateAnd(CondVal, TrueVal);
1670  }
1671  if (match(FalseVal, m_One())) {
1672  // Change: A = select B, C, true --> A = or !B, C
1673  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1674  return BinaryOperator::CreateOr(NotCond, TrueVal);
1675  }
1676 
1677  // select a, a, b -> a | b
1678  // select a, b, a -> a & b
1679  if (CondVal == TrueVal)
1680  return BinaryOperator::CreateOr(CondVal, FalseVal);
1681  if (CondVal == FalseVal)
1682  return BinaryOperator::CreateAnd(CondVal, TrueVal);
1683 
1684  // select a, ~a, b -> (~a) & b
1685  // select a, b, ~a -> (~a) | b
1686  if (match(TrueVal, m_Not(m_Specific(CondVal))))
1687  return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1688  if (match(FalseVal, m_Not(m_Specific(CondVal))))
1689  return BinaryOperator::CreateOr(TrueVal, FalseVal);
1690  }
1691 
1692  // Selecting between two integer or vector splat integer constants?
1693  //
1694  // Note that we don't handle a scalar select of vectors:
1695  // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1696  // because that may need 3 instructions to splat the condition value:
1697  // extend, insertelement, shufflevector.
1698  if (SelType->isIntOrIntVectorTy() &&
1699  CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1700  // select C, 1, 0 -> zext C to int
1701  if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1702  return new ZExtInst(CondVal, SelType);
1703 
1704  // select C, -1, 0 -> sext C to int
1705  if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1706  return new SExtInst(CondVal, SelType);
1707 
1708  // select C, 0, 1 -> zext !C to int
1709  if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1710  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1711  return new ZExtInst(NotCond, SelType);
1712  }
1713 
1714  // select C, 0, -1 -> sext !C to int
1715  if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1716  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1717  return new SExtInst(NotCond, SelType);
1718  }
1719  }
1720 
1721  // See if we are selecting two values based on a comparison of the two values.
1722  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1723  if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1724  // Canonicalize to use ordered comparisons by swapping the select
1725  // operands.
1726  //
1727  // e.g.
1728  // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1729  if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1730  FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1731  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1732  Builder.setFastMathFlags(FCI->getFastMathFlags());
1733  Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1734  FCI->getName() + ".inv");
1735 
1736  return SelectInst::Create(NewCond, FalseVal, TrueVal,
1737  SI.getName() + ".p");
1738  }
1739 
1740  // NOTE: if we wanted to, this is where to detect MIN/MAX
1741  } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1742  // Canonicalize to use ordered comparisons by swapping the select
1743  // operands.
1744  //
1745  // e.g.
1746  // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1747  if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1748  FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1749  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1750  Builder.setFastMathFlags(FCI->getFastMathFlags());
1751  Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1752  FCI->getName() + ".inv");
1753 
1754  return SelectInst::Create(NewCond, FalseVal, TrueVal,
1755  SI.getName() + ".p");
1756  }
1757 
1758  // NOTE: if we wanted to, this is where to detect MIN/MAX
1759  }
1760 
1761  // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
1762  // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
1763  // also require nnan because we do not want to unintentionally change the
1764  // sign of a NaN value.
1765  Value *X = FCI->getOperand(0);
1766  FCmpInst::Predicate Pred = FCI->getPredicate();
1767  if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) {
1768  // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
1769  // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
1770  if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE &&
1771  match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) ||
1772  (X == TrueVal && Pred == FCmpInst::FCMP_OGT &&
1773  match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) {
1774  Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI);
1775  return replaceInstUsesWith(SI, Fabs);
1776  }
1777  // With nsz:
1778  // (X < +/-0.0) ? -X : X --> fabs(X)
1779  // (X <= +/-0.0) ? -X : X --> fabs(X)
1780  // (X > +/-0.0) ? X : -X --> fabs(X)
1781  // (X >= +/-0.0) ? X : -X --> fabs(X)
1782  if (FCI->hasNoSignedZeros() &&
1783  ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) &&
1784  (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) ||
1785  (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) &&
1786  (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) {
1787  Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI);
1788  return replaceInstUsesWith(SI, Fabs);
1789  }
1790  }
1791  }
1792 
1793  // See if we are selecting two values based on a comparison of the two values.
1794  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1795  if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1796  return Result;
1797 
1798  if (Instruction *Add = foldAddSubSelect(SI, Builder))
1799  return Add;
1800 
1801  // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1802  auto *TI = dyn_cast<Instruction>(TrueVal);
1803  auto *FI = dyn_cast<Instruction>(FalseVal);
1804  if (TI && FI && TI->getOpcode() == FI->getOpcode())
1805  if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1806  return IV;
1807 
1808  if (Instruction *I = foldSelectExtConst(SI))
1809  return I;
1810 
1811  // See if we can fold the select into one of our operands.
1812  if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1813  if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1814  return FoldI;
1815 
1816  Value *LHS, *RHS;
1817  Instruction::CastOps CastOp;
1818  SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1819  auto SPF = SPR.Flavor;
1820  if (SPF) {
1821  Value *LHS2, *RHS2;
1822  if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1823  if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
1824  RHS2, SI, SPF, RHS))
1825  return R;
1826  if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1827  if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
1828  RHS2, SI, SPF, LHS))
1829  return R;
1830  // TODO.
1831  // ABS(-X) -> ABS(X)
1832  }
1833 
1835  // Canonicalize so that
1836  // - type casts are outside select patterns.
1837  // - float clamp is transformed to min/max pattern
1838 
1839  bool IsCastNeeded = LHS->getType() != SelType;
1840  Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
1841  Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
1842  if (IsCastNeeded ||
1843  (LHS->getType()->isFPOrFPVectorTy() &&
1844  ((CmpLHS != LHS && CmpLHS != RHS) ||
1845  (CmpRHS != LHS && CmpRHS != RHS)))) {
1846  CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
1847 
1848  Value *Cmp;
1849  if (CmpInst::isIntPredicate(Pred)) {
1850  Cmp = Builder.CreateICmp(Pred, LHS, RHS);
1851  } else {
1852  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1853  auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1854  Builder.setFastMathFlags(FMF);
1855  Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
1856  }
1857 
1858  Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
1859  if (!IsCastNeeded)
1860  return replaceInstUsesWith(SI, NewSI);
1861 
1862  Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
1863  return replaceInstUsesWith(SI, NewCast);
1864  }
1865 
1866  // MAX(~a, ~b) -> ~MIN(a, b)
1867  // MAX(~a, C) -> ~MIN(a, ~C)
1868  // MIN(~a, ~b) -> ~MAX(a, b)
1869  // MIN(~a, C) -> ~MAX(a, ~C)
1870  auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1871  Value *A;
1872  if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
1873  !IsFreeToInvert(A, A->hasOneUse()) &&
1874  // Passing false to only consider m_Not and constants.
1875  IsFreeToInvert(Y, false)) {
1876  Value *B = Builder.CreateNot(Y);
1877  Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
1878  A, B);
1879  // Copy the profile metadata.
1880  if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
1881  cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
1882  // Swap the metadata if the operands are swapped.
1883  if (X == SI.getFalseValue() && Y == SI.getTrueValue())
1884  cast<SelectInst>(NewMinMax)->swapProfMetadata();
1885  }
1886 
1887  return BinaryOperator::CreateNot(NewMinMax);
1888  }
1889 
1890  return nullptr;
1891  };
1892 
1893  if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
1894  return I;
1895  if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
1896  return I;
1897 
1898  if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
1899  return I;
1900  }
1901  }
1902 
1903  // See if we can fold the select into a phi node if the condition is a select.
1904  if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
1905  // The true/false values have to be live in the PHI predecessor's blocks.
1906  if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1907  canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1908  if (Instruction *NV = foldOpIntoPhi(SI, PN))
1909  return NV;
1910 
1911  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1912  if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1913  // select(C, select(C, a, b), c) -> select(C, a, c)
1914  if (TrueSI->getCondition() == CondVal) {
1915  if (SI.getTrueValue() == TrueSI->getTrueValue())
1916  return nullptr;
1917  SI.setOperand(1, TrueSI->getTrueValue());
1918  return &SI;
1919  }
1920  // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1921  // We choose this as normal form to enable folding on the And and shortening
1922  // paths for the values (this helps GetUnderlyingObjects() for example).
1923  if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1924  Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
1925  SI.setOperand(0, And);
1926  SI.setOperand(1, TrueSI->getTrueValue());
1927  return &SI;
1928  }
1929  }
1930  }
1931  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1932  if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1933  // select(C, a, select(C, b, c)) -> select(C, a, c)
1934  if (FalseSI->getCondition() == CondVal) {
1935  if (SI.getFalseValue() == FalseSI->getFalseValue())
1936  return nullptr;
1937  SI.setOperand(2, FalseSI->getFalseValue());
1938  return &SI;
1939  }
1940  // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1941  if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1942  Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
1943  SI.setOperand(0, Or);
1944  SI.setOperand(2, FalseSI->getFalseValue());
1945  return &SI;
1946  }
1947  }
1948  }
1949 
1950  auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
1951  // The select might be preventing a division by 0.
1952  switch (BO->getOpcode()) {
1953  default:
1954  return true;
1955  case Instruction::SRem:
1956  case Instruction::URem:
1957  case Instruction::SDiv:
1958  case Instruction::UDiv:
1959  return false;
1960  }
1961  };
1962 
1963  // Try to simplify a binop sandwiched between 2 selects with the same
1964  // condition.
1965  // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
1966  BinaryOperator *TrueBO;
1967  if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
1968  canMergeSelectThroughBinop(TrueBO)) {
1969  if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
1970  if (TrueBOSI->getCondition() == CondVal) {
1971  TrueBO->setOperand(0, TrueBOSI->getTrueValue());
1972  Worklist.Add(TrueBO);
1973  return &SI;
1974  }
1975  }
1976  if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
1977  if (TrueBOSI->getCondition() == CondVal) {
1978  TrueBO->setOperand(1, TrueBOSI->getTrueValue());
1979  Worklist.Add(TrueBO);
1980  return &SI;
1981  }
1982  }
1983  }
1984 
1985  // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
1986  BinaryOperator *FalseBO;
1987  if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
1988  canMergeSelectThroughBinop(FalseBO)) {
1989  if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
1990  if (FalseBOSI->getCondition() == CondVal) {
1991  FalseBO->setOperand(0, FalseBOSI->getFalseValue());
1992  Worklist.Add(FalseBO);
1993  return &SI;
1994  }
1995  }
1996  if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
1997  if (FalseBOSI->getCondition() == CondVal) {
1998  FalseBO->setOperand(1, FalseBOSI->getFalseValue());
1999  Worklist.Add(FalseBO);
2000  return &SI;
2001  }
2002  }
2003  }
2004 
2005  Value *NotCond;
2006  if (match(CondVal, m_Not(m_Value(NotCond)))) {
2007  SI.setOperand(0, NotCond);
2008  SI.setOperand(1, FalseVal);
2009  SI.setOperand(2, TrueVal);
2010  SI.swapProfMetadata();
2011  return &SI;
2012  }
2013 
2014  if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2015  unsigned VWidth = VecTy->getNumElements();
2016  APInt UndefElts(VWidth, 0);
2017  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2018  if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2019  if (V != &SI)
2020  return replaceInstUsesWith(SI, V);
2021  return &SI;
2022  }
2023  }
2024 
2025  // If we can compute the condition, there's no need for a select.
2026  // Like the above fold, we are attempting to reduce compile-time cost by
2027  // putting this fold here with limitations rather than in InstSimplify.
2028  // The motivation for this call into value tracking is to take advantage of
2029  // the assumption cache, so make sure that is populated.
2030  if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2031  KnownBits Known(1);
2032  computeKnownBits(CondVal, Known, 0, &SI);
2033  if (Known.One.isOneValue())
2034  return replaceInstUsesWith(SI, TrueVal);
2035  if (Known.Zero.isOneValue())
2036  return replaceInstUsesWith(SI, FalseVal);
2037  }
2038 
2039  if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2040  return BitCastSel;
2041 
2042  // Simplify selects that test the returned flag of cmpxchg instructions.
2043  if (Instruction *Select = foldSelectCmpXchg(SI))
2044  return Select;
2045 
2046  if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2047  return Select;
2048 
2049  if (Instruction *Rot = foldSelectRotate(SI))
2050  return Rot;
2051 
2052  return nullptr;
2053 }
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
bool isFPPredicate() const
Definition: InstrTypes.h:738
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:749
uint64_t CallInst * C
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:585
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI)
Replace a select operand based on an equality comparison with the identity constant of a binop...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:71
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1949
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
static bool IsFreeToInvert(Value *V, bool WillInvertAllUses)
Return true if the specified value is free to invert (apply ~ to).
bool hasNoSignedZeros() const
Determine whether the no-signed-zeros flag is set.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:79
This instruction extracts a struct member or array element value from an aggregate value...
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:562
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:654
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:376
DiagnosticInfoOptimizationBase::Argument NV
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return an i1 value testing if Arg is not null.
Definition: IRBuilder.h:2116
Unsigned minimum.
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:1669
This class represents lattice values for constants.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:316
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1200
bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, Value *&X, APInt &Mask, bool LookThroughTrunc=true)
Decompose an icmp into the form ((X & Mask) pred 0) if possible.
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:529
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
This class represents zero extension of integer types.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Definition: Instructions.h:880
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1204
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:90
static bool isCanonicalPredicate(CmpInst::Predicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
const Value * getTrueValue() const
unsigned less or equal
Definition: InstrTypes.h:672
unsigned less than
Definition: InstrTypes.h:671
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:652
This instruction constructs a fixed permutation of two input vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond...
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:662
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1274
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1140
Metadata node.
Definition: Metadata.h:864
SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
F(f)
This class represents a sign extension of integer types.
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:660
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
void reserve(size_type N)
Definition: SmallVector.h:376
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1239
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:364
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1509
Signed maximum.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
Definition: PatternMatch.h:941
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:265
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1334
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1135
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:48
static Value * foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
Definition: PatternMatch.h:761
This class represents the LLVM &#39;select&#39; instruction.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
Definition: InstrTypes.h:745
Absolute value.
static Optional< unsigned > getOpcode(ArrayRef< VPValue *> Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:197
bool isUnsigned() const
Definition: InstrTypes.h:822
CastClass_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:653
static Constant * getSExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1651
This file implements a class to represent arbitrary precision integral constant values and operations...
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1665
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:85
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
This instruction compares its operands according to the predicate given to the constructor.
void andIRFlags(const Value *V)
Logical &#39;and&#39; of any supported wrapping, exact, and fast-math flags of V and this instruction...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:221
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:445
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1031
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:203
CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Definition: IRBuilder.cpp:734
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:385
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1020
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Value * getOperand(unsigned i) const
Definition: User.h:170
bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
void replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1182
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:335
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:304
Value * CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1957
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:62
#define P(N)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:773
bool hasNUsesOrMore(unsigned N) const
Return true if this value has N users or more.
Definition: Value.cpp:135
Value * SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:396
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
bool hasNUses(unsigned N) const
Return true if this Value has exactly N users.
Definition: Value.cpp:131
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt...
Definition: PatternMatch.h:176
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false)
Return true if the two given values are negation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:429
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:755
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1185
CastClass_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.h:2021
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
bool isOneValue() const
Determine if this is a value of 1.
Definition: APInt.h:411
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:309
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:588
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:502
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1193
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1308
This instruction compares its operands according to the predicate given to the constructor.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:646
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false)
Return the identity constant for a binary opcode.
Definition: Constants.cpp:2326
CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:74
Class to represent integer types.
Definition: DerivedTypes.h:40
const Value * getCondition() const
bool isCast() const
Definition: Instruction.h:134
C setMetadata(LLVMContext::MD_range, MDNode::get(Context, LowAndHigh))
void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
signed greater than
Definition: InstrTypes.h:673
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
Floating point maxnum.
static Value * createMinMax(InstCombiner::BuilderTy &Builder, SelectPatternFlavor SPF, Value *A, Value *B)
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:650
static Value * foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) into: (or (shl (and X...
unsigned getNumOperands() const
Definition: User.h:192
SelectPatternFlavor Flavor
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
SelectPatternFlavor
Specific patterns of select instructions we can match.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:64
Provides information about what library functions are available for the current target.
signed less than
Definition: InstrTypes.h:675
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1637
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1293
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:578
bool isCommutative() const
Return true if the instruction is commutative:
Definition: Instruction.h:478
Instruction * visitSelectInst(SelectInst &SI)
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:726
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
unsigned logBase2() const
Definition: APInt.h:1748
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a &#39;Neg&#39; as &#39;sub 0, V&#39;.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:462
bool isIntPredicate() const
Definition: InstrTypes.h:739
Class to represent vector types.
Definition: DerivedTypes.h:393
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
Class for arbitrary precision integers.
Definition: APInt.h:70
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1223
bool isPowerOf2() const
Check if this APInt&#39;s value is a power of two greater than zero.
Definition: APInt.h:464
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1309
iterator_range< user_iterator > users()
Definition: Value.h:400
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1530
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1103
const Value * getFalseValue() const
void setCondition(Value *V)
static APInt getSelectFoldableConstant(BinaryOperator *I)
For the same transformation as the previous function, return the identity constant that goes into the...
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass&#39;s ...
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1255
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:721
static cl::opt< bool > NeedAnd("extract-needand", cl::init(true), cl::Hidden, cl::desc("Require & in extract patterns"))
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match &#39;fneg X&#39; as &#39;fsub -0.0, X&#39;.
Definition: PatternMatch.h:689
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as: (a > b) ? a - b : 0 into: ((a > b) ? a : b) - b) This produces a canonica...
void setTrueValue(Value *V)
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
unsigned greater or equal
Definition: InstrTypes.h:670
static bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
bool isEquality() const
Return true if this predicate is either EQ or NE.
#define I(x, y, z)
Definition: MD5.cpp:58
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
void setFalseValue(Value *V)
Signed minimum.
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1164
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:794
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition: Type.h:185
bool isOneValue() const
Returns true if the value is one.
Definition: Constants.cpp:126
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1769
static GetElementPtrInst * CreateInBounds(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Definition: Instructions.h:914
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:545
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:649
LLVM Value Representation.
Definition: Value.h:73
This file provides internal interfaces used to implement the InstCombine.
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:355
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:220
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Definition: Instruction.cpp:87
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1124
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:160
unsigned greater than
Definition: InstrTypes.h:669
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:761
static APInt getNullValue(unsigned numBits)
Get the &#39;0&#39; value.
Definition: APInt.h:569
specific_intval m_SpecificInt(uint64_t V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:579
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:436
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:651
static Constant * get(ArrayRef< Constant *> V)
Definition: Constants.cpp:1079
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1326
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:479
BinaryOp_match< ValTy, cst_pred_ty< is_all_ones >, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a &#39;Not&#39; as &#39;xor V, -1&#39; or &#39;xor -1, V&#39;.
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:406
IntegerType * Int32Ty
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
const BasicBlock * getParent() const
Definition: Instruction.h:67
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)