LLVM  8.0.1
InstCombineCompares.cpp
Go to the documentation of this file.
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41  const APInt &In2, bool IsSigned = false) {
42  bool Overflow;
43  if (IsSigned)
44  Result = In1.sadd_ov(In2, Overflow);
45  else
46  Result = In1.uadd_ov(In2, Overflow);
47 
48  return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54  const APInt &In2, bool IsSigned = false) {
55  bool Overflow;
56  if (IsSigned)
57  Result = In1.ssub_ov(In2, Overflow);
58  else
59  Result = In1.usub_ov(In2, Overflow);
60 
61  return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67  for (auto *U : I.users())
68  if (isa<BranchInst>(U))
69  return true;
70  return false;
71 }
72 
73 /// Given an exploded icmp instruction, return true if the comparison only
74 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
75 /// result of the comparison is true when the input value is signed.
76 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
77  bool &TrueIfSigned) {
78  switch (Pred) {
79  case ICmpInst::ICMP_SLT: // True if LHS s< 0
80  TrueIfSigned = true;
81  return RHS.isNullValue();
82  case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
83  TrueIfSigned = true;
84  return RHS.isAllOnesValue();
85  case ICmpInst::ICMP_SGT: // True if LHS s> -1
86  TrueIfSigned = false;
87  return RHS.isAllOnesValue();
88  case ICmpInst::ICMP_UGT:
89  // True if LHS u> RHS and RHS == high-bit-mask - 1
90  TrueIfSigned = true;
91  return RHS.isMaxSignedValue();
92  case ICmpInst::ICMP_UGE:
93  // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
94  TrueIfSigned = true;
95  return RHS.isSignMask();
96  default:
97  return false;
98  }
99 }
100 
101 /// Returns true if the exploded icmp can be expressed as a signed comparison
102 /// to zero and updates the predicate accordingly.
103 /// The signedness of the comparison is preserved.
104 /// TODO: Refactor with decomposeBitTestICmp()?
105 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
106  if (!ICmpInst::isSigned(Pred))
107  return false;
108 
109  if (C.isNullValue())
110  return ICmpInst::isRelational(Pred);
111 
112  if (C.isOneValue()) {
113  if (Pred == ICmpInst::ICMP_SLT) {
114  Pred = ICmpInst::ICMP_SLE;
115  return true;
116  }
117  } else if (C.isAllOnesValue()) {
118  if (Pred == ICmpInst::ICMP_SGT) {
119  Pred = ICmpInst::ICMP_SGE;
120  return true;
121  }
122  }
123 
124  return false;
125 }
126 
127 /// Given a signed integer type and a set of known zero and one bits, compute
128 /// the maximum and minimum values that could have the specified known zero and
129 /// known one bits, returning them in Min/Max.
130 /// TODO: Move to method on KnownBits struct?
132  APInt &Min, APInt &Max) {
133  assert(Known.getBitWidth() == Min.getBitWidth() &&
134  Known.getBitWidth() == Max.getBitWidth() &&
135  "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
136  APInt UnknownBits = ~(Known.Zero|Known.One);
137 
138  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
139  // bit if it is unknown.
140  Min = Known.One;
141  Max = Known.One|UnknownBits;
142 
143  if (UnknownBits.isNegative()) { // Sign bit is unknown
144  Min.setSignBit();
145  Max.clearSignBit();
146  }
147 }
148 
149 /// Given an unsigned integer type and a set of known zero and one bits, compute
150 /// the maximum and minimum values that could have the specified known zero and
151 /// known one bits, returning them in Min/Max.
152 /// TODO: Move to method on KnownBits struct?
154  APInt &Min, APInt &Max) {
155  assert(Known.getBitWidth() == Min.getBitWidth() &&
156  Known.getBitWidth() == Max.getBitWidth() &&
157  "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
158  APInt UnknownBits = ~(Known.Zero|Known.One);
159 
160  // The minimum value is when the unknown bits are all zeros.
161  Min = Known.One;
162  // The maximum value is when the unknown bits are all ones.
163  Max = Known.One|UnknownBits;
164 }
165 
166 /// This is called when we see this pattern:
167 /// cmp pred (load (gep GV, ...)), cmpcst
168 /// where GV is a global variable with a constant initializer. Try to simplify
169 /// this into some simple computation that does not need the load. For example
170 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
171 ///
172 /// If AndCst is non-null, then the loaded value is masked with that constant
173 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
174 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
175  GlobalVariable *GV,
176  CmpInst &ICI,
177  ConstantInt *AndCst) {
178  Constant *Init = GV->getInitializer();
179  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
180  return nullptr;
181 
182  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
183  // Don't blow up on huge arrays.
184  if (ArrayElementCount > MaxArraySizeForCombine)
185  return nullptr;
186 
187  // There are many forms of this optimization we can handle, for now, just do
188  // the simple index into a single-dimensional array.
189  //
190  // Require: GEP GV, 0, i {{, constant indices}}
191  if (GEP->getNumOperands() < 3 ||
192  !isa<ConstantInt>(GEP->getOperand(1)) ||
193  !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
194  isa<Constant>(GEP->getOperand(2)))
195  return nullptr;
196 
197  // Check that indices after the variable are constants and in-range for the
198  // type they index. Collect the indices. This is typically for arrays of
199  // structs.
200  SmallVector<unsigned, 4> LaterIndices;
201 
202  Type *EltTy = Init->getType()->getArrayElementType();
203  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
204  ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
205  if (!Idx) return nullptr; // Variable index.
206 
207  uint64_t IdxVal = Idx->getZExtValue();
208  if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
209 
210  if (StructType *STy = dyn_cast<StructType>(EltTy))
211  EltTy = STy->getElementType(IdxVal);
212  else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
213  if (IdxVal >= ATy->getNumElements()) return nullptr;
214  EltTy = ATy->getElementType();
215  } else {
216  return nullptr; // Unknown type.
217  }
218 
219  LaterIndices.push_back(IdxVal);
220  }
221 
222  enum { Overdefined = -3, Undefined = -2 };
223 
224  // Variables for our state machines.
225 
226  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
227  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
228  // and 87 is the second (and last) index. FirstTrueElement is -2 when
229  // undefined, otherwise set to the first true element. SecondTrueElement is
230  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
231  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
232 
233  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
234  // form "i != 47 & i != 87". Same state transitions as for true elements.
235  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
236 
237  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
238  /// define a state machine that triggers for ranges of values that the index
239  /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
240  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
241  /// index in the range (inclusive). We use -2 for undefined here because we
242  /// use relative comparisons and don't want 0-1 to match -1.
243  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
244 
245  // MagicBitvector - This is a magic bitvector where we set a bit if the
246  // comparison is true for element 'i'. If there are 64 elements or less in
247  // the array, this will fully represent all the comparison results.
248  uint64_t MagicBitvector = 0;
249 
250  // Scan the array and see if one of our patterns matches.
251  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
252  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
253  Constant *Elt = Init->getAggregateElement(i);
254  if (!Elt) return nullptr;
255 
256  // If this is indexing an array of structures, get the structure element.
257  if (!LaterIndices.empty())
258  Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
259 
260  // If the element is masked, handle it.
261  if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
262 
263  // Find out if the comparison would be true or false for the i'th element.
265  CompareRHS, DL, &TLI);
266  // If the result is undef for this element, ignore it.
267  if (isa<UndefValue>(C)) {
268  // Extend range state machines to cover this element in case there is an
269  // undef in the middle of the range.
270  if (TrueRangeEnd == (int)i-1)
271  TrueRangeEnd = i;
272  if (FalseRangeEnd == (int)i-1)
273  FalseRangeEnd = i;
274  continue;
275  }
276 
277  // If we can't compute the result for any of the elements, we have to give
278  // up evaluating the entire conditional.
279  if (!isa<ConstantInt>(C)) return nullptr;
280 
281  // Otherwise, we know if the comparison is true or false for this element,
282  // update our state machines.
283  bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
284 
285  // State machine for single/double/range index comparison.
286  if (IsTrueForElt) {
287  // Update the TrueElement state machine.
288  if (FirstTrueElement == Undefined)
289  FirstTrueElement = TrueRangeEnd = i; // First true element.
290  else {
291  // Update double-compare state machine.
292  if (SecondTrueElement == Undefined)
293  SecondTrueElement = i;
294  else
295  SecondTrueElement = Overdefined;
296 
297  // Update range state machine.
298  if (TrueRangeEnd == (int)i-1)
299  TrueRangeEnd = i;
300  else
301  TrueRangeEnd = Overdefined;
302  }
303  } else {
304  // Update the FalseElement state machine.
305  if (FirstFalseElement == Undefined)
306  FirstFalseElement = FalseRangeEnd = i; // First false element.
307  else {
308  // Update double-compare state machine.
309  if (SecondFalseElement == Undefined)
310  SecondFalseElement = i;
311  else
312  SecondFalseElement = Overdefined;
313 
314  // Update range state machine.
315  if (FalseRangeEnd == (int)i-1)
316  FalseRangeEnd = i;
317  else
318  FalseRangeEnd = Overdefined;
319  }
320  }
321 
322  // If this element is in range, update our magic bitvector.
323  if (i < 64 && IsTrueForElt)
324  MagicBitvector |= 1ULL << i;
325 
326  // If all of our states become overdefined, bail out early. Since the
327  // predicate is expensive, only check it every 8 elements. This is only
328  // really useful for really huge arrays.
329  if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
330  SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
331  FalseRangeEnd == Overdefined)
332  return nullptr;
333  }
334 
335  // Now that we've scanned the entire array, emit our new comparison(s). We
336  // order the state machines in complexity of the generated code.
337  Value *Idx = GEP->getOperand(2);
338 
339  // If the index is larger than the pointer size of the target, truncate the
340  // index down like the GEP would do implicitly. We don't have to do this for
341  // an inbounds GEP because the index can't be out of range.
342  if (!GEP->isInBounds()) {
343  Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
344  unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
345  if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
346  Idx = Builder.CreateTrunc(Idx, IntPtrTy);
347  }
348 
349  // If the comparison is only true for one or two elements, emit direct
350  // comparisons.
351  if (SecondTrueElement != Overdefined) {
352  // None true -> false.
353  if (FirstTrueElement == Undefined)
354  return replaceInstUsesWith(ICI, Builder.getFalse());
355 
356  Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
357 
358  // True for one element -> 'i == 47'.
359  if (SecondTrueElement == Undefined)
360  return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
361 
362  // True for two elements -> 'i == 47 | i == 72'.
363  Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
364  Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
365  Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
366  return BinaryOperator::CreateOr(C1, C2);
367  }
368 
369  // If the comparison is only false for one or two elements, emit direct
370  // comparisons.
371  if (SecondFalseElement != Overdefined) {
372  // None false -> true.
373  if (FirstFalseElement == Undefined)
374  return replaceInstUsesWith(ICI, Builder.getTrue());
375 
376  Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
377 
378  // False for one element -> 'i != 47'.
379  if (SecondFalseElement == Undefined)
380  return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
381 
382  // False for two elements -> 'i != 47 & i != 72'.
383  Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
384  Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
385  Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
386  return BinaryOperator::CreateAnd(C1, C2);
387  }
388 
389  // If the comparison can be replaced with a range comparison for the elements
390  // where it is true, emit the range check.
391  if (TrueRangeEnd != Overdefined) {
392  assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
393 
394  // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
395  if (FirstTrueElement) {
396  Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
397  Idx = Builder.CreateAdd(Idx, Offs);
398  }
399 
400  Value *End = ConstantInt::get(Idx->getType(),
401  TrueRangeEnd-FirstTrueElement+1);
402  return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
403  }
404 
405  // False range check.
406  if (FalseRangeEnd != Overdefined) {
407  assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
408  // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
409  if (FirstFalseElement) {
410  Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
411  Idx = Builder.CreateAdd(Idx, Offs);
412  }
413 
414  Value *End = ConstantInt::get(Idx->getType(),
415  FalseRangeEnd-FirstFalseElement);
416  return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
417  }
418 
419  // If a magic bitvector captures the entire comparison state
420  // of this load, replace it with computation that does:
421  // ((magic_cst >> i) & 1) != 0
422  {
423  Type *Ty = nullptr;
424 
425  // Look for an appropriate type:
426  // - The type of Idx if the magic fits
427  // - The smallest fitting legal type
428  if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
429  Ty = Idx->getType();
430  else
431  Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
432 
433  if (Ty) {
434  Value *V = Builder.CreateIntCast(Idx, Ty, false);
435  V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
436  V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
437  return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
438  }
439  }
440 
441  return nullptr;
442 }
443 
444 /// Return a value that can be used to compare the *offset* implied by a GEP to
445 /// zero. For example, if we have &A[i], we want to return 'i' for
446 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
447 /// are involved. The above expression would also be legal to codegen as
448 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
449 /// This latter form is less amenable to optimization though, and we are allowed
450 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
451 ///
452 /// If we can't emit an optimized form for this expression, this returns null.
453 ///
455  const DataLayout &DL) {
457 
458  // Check to see if this gep only has a single variable index. If so, and if
459  // any constant indices are a multiple of its scale, then we can compute this
460  // in terms of the scale of the variable index. For example, if the GEP
461  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
462  // because the expression will cross zero at the same point.
463  unsigned i, e = GEP->getNumOperands();
464  int64_t Offset = 0;
465  for (i = 1; i != e; ++i, ++GTI) {
466  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
467  // Compute the aggregate offset of constant indices.
468  if (CI->isZero()) continue;
469 
470  // Handle a struct index, which adds its field offset to the pointer.
471  if (StructType *STy = GTI.getStructTypeOrNull()) {
472  Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
473  } else {
474  uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
475  Offset += Size*CI->getSExtValue();
476  }
477  } else {
478  // Found our variable index.
479  break;
480  }
481  }
482 
483  // If there are no variable indices, we must have a constant offset, just
484  // evaluate it the general way.
485  if (i == e) return nullptr;
486 
487  Value *VariableIdx = GEP->getOperand(i);
488  // Determine the scale factor of the variable element. For example, this is
489  // 4 if the variable index is into an array of i32.
490  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
491 
492  // Verify that there are no other variable indices. If so, emit the hard way.
493  for (++i, ++GTI; i != e; ++i, ++GTI) {
494  ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
495  if (!CI) return nullptr;
496 
497  // Compute the aggregate offset of constant indices.
498  if (CI->isZero()) continue;
499 
500  // Handle a struct index, which adds its field offset to the pointer.
501  if (StructType *STy = GTI.getStructTypeOrNull()) {
502  Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
503  } else {
504  uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
505  Offset += Size*CI->getSExtValue();
506  }
507  }
508 
509  // Okay, we know we have a single variable index, which must be a
510  // pointer/array/vector index. If there is no offset, life is simple, return
511  // the index.
512  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
513  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
514  if (Offset == 0) {
515  // Cast to intptrty in case a truncation occurs. If an extension is needed,
516  // we don't need to bother extending: the extension won't affect where the
517  // computation crosses zero.
518  if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
519  VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
520  }
521  return VariableIdx;
522  }
523 
524  // Otherwise, there is an index. The computation we will do will be modulo
525  // the pointer size.
526  Offset = SignExtend64(Offset, IntPtrWidth);
527  VariableScale = SignExtend64(VariableScale, IntPtrWidth);
528 
529  // To do this transformation, any constant index must be a multiple of the
530  // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
531  // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
532  // multiple of the variable scale.
533  int64_t NewOffs = Offset / (int64_t)VariableScale;
534  if (Offset != NewOffs*(int64_t)VariableScale)
535  return nullptr;
536 
537  // Okay, we can do this evaluation. Start by converting the index to intptr.
538  if (VariableIdx->getType() != IntPtrTy)
539  VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
540  true /*Signed*/);
541  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
542  return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
543 }
544 
545 /// Returns true if we can rewrite Start as a GEP with pointer Base
546 /// and some integer offset. The nodes that need to be re-written
547 /// for this transformation will be added to Explored.
548 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
549  const DataLayout &DL,
550  SetVector<Value *> &Explored) {
551  SmallVector<Value *, 16> WorkList(1, Start);
552  Explored.insert(Base);
553 
554  // The following traversal gives us an order which can be used
555  // when doing the final transformation. Since in the final
556  // transformation we create the PHI replacement instructions first,
557  // we don't have to get them in any particular order.
558  //
559  // However, for other instructions we will have to traverse the
560  // operands of an instruction first, which means that we have to
561  // do a post-order traversal.
562  while (!WorkList.empty()) {
564 
565  while (!WorkList.empty()) {
566  if (Explored.size() >= 100)
567  return false;
568 
569  Value *V = WorkList.back();
570 
571  if (Explored.count(V) != 0) {
572  WorkList.pop_back();
573  continue;
574  }
575 
576  if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
577  !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
578  // We've found some value that we can't explore which is different from
579  // the base. Therefore we can't do this transformation.
580  return false;
581 
582  if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
583  auto *CI = dyn_cast<CastInst>(V);
584  if (!CI->isNoopCast(DL))
585  return false;
586 
587  if (Explored.count(CI->getOperand(0)) == 0)
588  WorkList.push_back(CI->getOperand(0));
589  }
590 
591  if (auto *GEP = dyn_cast<GEPOperator>(V)) {
592  // We're limiting the GEP to having one index. This will preserve
593  // the original pointer type. We could handle more cases in the
594  // future.
595  if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
596  GEP->getType() != Start->getType())
597  return false;
598 
599  if (Explored.count(GEP->getOperand(0)) == 0)
600  WorkList.push_back(GEP->getOperand(0));
601  }
602 
603  if (WorkList.back() == V) {
604  WorkList.pop_back();
605  // We've finished visiting this node, mark it as such.
606  Explored.insert(V);
607  }
608 
609  if (auto *PN = dyn_cast<PHINode>(V)) {
610  // We cannot transform PHIs on unsplittable basic blocks.
611  if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
612  return false;
613  Explored.insert(PN);
614  PHIs.insert(PN);
615  }
616  }
617 
618  // Explore the PHI nodes further.
619  for (auto *PN : PHIs)
620  for (Value *Op : PN->incoming_values())
621  if (Explored.count(Op) == 0)
622  WorkList.push_back(Op);
623  }
624 
625  // Make sure that we can do this. Since we can't insert GEPs in a basic
626  // block before a PHI node, we can't easily do this transformation if
627  // we have PHI node users of transformed instructions.
628  for (Value *Val : Explored) {
629  for (Value *Use : Val->uses()) {
630 
631  auto *PHI = dyn_cast<PHINode>(Use);
632  auto *Inst = dyn_cast<Instruction>(Val);
633 
634  if (Inst == Base || Inst == PHI || !Inst || !PHI ||
635  Explored.count(PHI) == 0)
636  continue;
637 
638  if (PHI->getParent() == Inst->getParent())
639  return false;
640  }
641  }
642  return true;
643 }
644 
645 // Sets the appropriate insert point on Builder where we can add
646 // a replacement Instruction for V (if that is possible).
647 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
648  bool Before = true) {
649  if (auto *PHI = dyn_cast<PHINode>(V)) {
650  Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
651  return;
652  }
653  if (auto *I = dyn_cast<Instruction>(V)) {
654  if (!Before)
655  I = &*std::next(I->getIterator());
656  Builder.SetInsertPoint(I);
657  return;
658  }
659  if (auto *A = dyn_cast<Argument>(V)) {
660  // Set the insertion point in the entry block.
661  BasicBlock &Entry = A->getParent()->getEntryBlock();
662  Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
663  return;
664  }
665  // Otherwise, this is a constant and we don't need to set a new
666  // insertion point.
667  assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
668 }
669 
670 /// Returns a re-written value of Start as an indexed GEP using Base as a
671 /// pointer.
673  const DataLayout &DL,
674  SetVector<Value *> &Explored) {
675  // Perform all the substitutions. This is a bit tricky because we can
676  // have cycles in our use-def chains.
677  // 1. Create the PHI nodes without any incoming values.
678  // 2. Create all the other values.
679  // 3. Add the edges for the PHI nodes.
680  // 4. Emit GEPs to get the original pointers.
681  // 5. Remove the original instructions.
682  Type *IndexType = IntegerType::get(
683  Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
684 
686  NewInsts[Base] = ConstantInt::getNullValue(IndexType);
687 
688  // Create the new PHI nodes, without adding any incoming values.
689  for (Value *Val : Explored) {
690  if (Val == Base)
691  continue;
692  // Create empty phi nodes. This avoids cyclic dependencies when creating
693  // the remaining instructions.
694  if (auto *PHI = dyn_cast<PHINode>(Val))
695  NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
696  PHI->getName() + ".idx", PHI);
697  }
698  IRBuilder<> Builder(Base->getContext());
699 
700  // Create all the other instructions.
701  for (Value *Val : Explored) {
702 
703  if (NewInsts.find(Val) != NewInsts.end())
704  continue;
705 
706  if (auto *CI = dyn_cast<CastInst>(Val)) {
707  NewInsts[CI] = NewInsts[CI->getOperand(0)];
708  continue;
709  }
710  if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
711  Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
712  : GEP->getOperand(1);
713  setInsertionPoint(Builder, GEP);
714  // Indices might need to be sign extended. GEPs will magically do
715  // this, but we need to do it ourselves here.
716  if (Index->getType()->getScalarSizeInBits() !=
717  NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
718  Index = Builder.CreateSExtOrTrunc(
719  Index, NewInsts[GEP->getOperand(0)]->getType(),
720  GEP->getOperand(0)->getName() + ".sext");
721  }
722 
723  auto *Op = NewInsts[GEP->getOperand(0)];
724  if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
725  NewInsts[GEP] = Index;
726  else
727  NewInsts[GEP] = Builder.CreateNSWAdd(
728  Op, Index, GEP->getOperand(0)->getName() + ".add");
729  continue;
730  }
731  if (isa<PHINode>(Val))
732  continue;
733 
734  llvm_unreachable("Unexpected instruction type");
735  }
736 
737  // Add the incoming values to the PHI nodes.
738  for (Value *Val : Explored) {
739  if (Val == Base)
740  continue;
741  // All the instructions have been created, we can now add edges to the
742  // phi nodes.
743  if (auto *PHI = dyn_cast<PHINode>(Val)) {
744  PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
745  for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
746  Value *NewIncoming = PHI->getIncomingValue(I);
747 
748  if (NewInsts.find(NewIncoming) != NewInsts.end())
749  NewIncoming = NewInsts[NewIncoming];
750 
751  NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
752  }
753  }
754  }
755 
756  for (Value *Val : Explored) {
757  if (Val == Base)
758  continue;
759 
760  // Depending on the type, for external users we have to emit
761  // a GEP or a GEP + ptrtoint.
762  setInsertionPoint(Builder, Val, false);
763 
764  // If required, create an inttoptr instruction for Base.
765  Value *NewBase = Base;
766  if (!Base->getType()->isPointerTy())
767  NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
768  Start->getName() + "to.ptr");
769 
770  Value *GEP = Builder.CreateInBoundsGEP(
771  Start->getType()->getPointerElementType(), NewBase,
772  makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
773 
774  if (!Val->getType()->isPointerTy()) {
775  Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
776  Val->getName() + ".conv");
777  GEP = Cast;
778  }
779  Val->replaceAllUsesWith(GEP);
780  }
781 
782  return NewInsts[Start];
783 }
784 
785 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
786 /// the input Value as a constant indexed GEP. Returns a pair containing
787 /// the GEPs Pointer and Index.
788 static std::pair<Value *, Value *>
790  Type *IndexType = IntegerType::get(V->getContext(),
792 
794  while (true) {
795  if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
796  // We accept only inbouds GEPs here to exclude the possibility of
797  // overflow.
798  if (!GEP->isInBounds())
799  break;
800  if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
801  GEP->getType() == V->getType()) {
802  V = GEP->getOperand(0);
803  Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
804  Index = ConstantExpr::getAdd(
805  Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
806  continue;
807  }
808  break;
809  }
810  if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
811  if (!CI->isNoopCast(DL))
812  break;
813  V = CI->getOperand(0);
814  continue;
815  }
816  if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
817  if (!CI->isNoopCast(DL))
818  break;
819  V = CI->getOperand(0);
820  continue;
821  }
822  break;
823  }
824  return {V, Index};
825 }
826 
827 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
828 /// We can look through PHIs, GEPs and casts in order to determine a common base
829 /// between GEPLHS and RHS.
831  ICmpInst::Predicate Cond,
832  const DataLayout &DL) {
833  if (!GEPLHS->hasAllConstantIndices())
834  return nullptr;
835 
836  // Make sure the pointers have the same type.
837  if (GEPLHS->getType() != RHS->getType())
838  return nullptr;
839 
840  Value *PtrBase, *Index;
841  std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
842 
843  // The set of nodes that will take part in this transformation.
844  SetVector<Value *> Nodes;
845 
846  if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
847  return nullptr;
848 
849  // We know we can re-write this as
850  // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
851  // Since we've only looked through inbouds GEPs we know that we
852  // can't have overflow on either side. We can therefore re-write
853  // this as:
854  // OFFSET1 cmp OFFSET2
855  Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
856 
857  // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
858  // GEP having PtrBase as the pointer base, and has returned in NewRHS the
859  // offset. Since Index is the offset of LHS to the base pointer, we will now
860  // compare the offsets instead of comparing the pointers.
861  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
862 }
863 
864 /// Fold comparisons between a GEP instruction and something else. At this point
865 /// we know that the GEP is on the LHS of the comparison.
866 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
867  ICmpInst::Predicate Cond,
868  Instruction &I) {
869  // Don't transform signed compares of GEPs into index compares. Even if the
870  // GEP is inbounds, the final add of the base pointer can have signed overflow
871  // and would change the result of the icmp.
872  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
873  // the maximum signed value for the pointer type.
874  if (ICmpInst::isSigned(Cond))
875  return nullptr;
876 
877  // Look through bitcasts and addrspacecasts. We do not however want to remove
878  // 0 GEPs.
879  if (!isa<GetElementPtrInst>(RHS))
880  RHS = RHS->stripPointerCasts();
881 
882  Value *PtrBase = GEPLHS->getOperand(0);
883  if (PtrBase == RHS && GEPLHS->isInBounds()) {
884  // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
885  // This transformation (ignoring the base and scales) is valid because we
886  // know pointers can't overflow since the gep is inbounds. See if we can
887  // output an optimized form.
888  Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
889 
890  // If not, synthesize the offset the hard way.
891  if (!Offset)
892  Offset = EmitGEPOffset(GEPLHS);
893  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
894  Constant::getNullValue(Offset->getType()));
895  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
896  // If the base pointers are different, but the indices are the same, just
897  // compare the base pointer.
898  if (PtrBase != GEPRHS->getOperand(0)) {
899  bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
900  IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
901  GEPRHS->getOperand(0)->getType();
902  if (IndicesTheSame)
903  for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
904  if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
905  IndicesTheSame = false;
906  break;
907  }
908 
909  // If all indices are the same, just compare the base pointers.
910  Type *BaseType = GEPLHS->getOperand(0)->getType();
911  if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
912  return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
913 
914  // If we're comparing GEPs with two base pointers that only differ in type
915  // and both GEPs have only constant indices or just one use, then fold
916  // the compare with the adjusted indices.
917  if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
918  (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
919  (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
920  PtrBase->stripPointerCasts() ==
921  GEPRHS->getOperand(0)->stripPointerCasts()) {
922  Value *LOffset = EmitGEPOffset(GEPLHS);
923  Value *ROffset = EmitGEPOffset(GEPRHS);
924 
925  // If we looked through an addrspacecast between different sized address
926  // spaces, the LHS and RHS pointers are different sized
927  // integers. Truncate to the smaller one.
928  Type *LHSIndexTy = LOffset->getType();
929  Type *RHSIndexTy = ROffset->getType();
930  if (LHSIndexTy != RHSIndexTy) {
931  if (LHSIndexTy->getPrimitiveSizeInBits() <
932  RHSIndexTy->getPrimitiveSizeInBits()) {
933  ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
934  } else
935  LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
936  }
937 
938  Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
939  LOffset, ROffset);
940  return replaceInstUsesWith(I, Cmp);
941  }
942 
943  // Otherwise, the base pointers are different and the indices are
944  // different. Try convert this to an indexed compare by looking through
945  // PHIs/casts.
946  return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
947  }
948 
949  // If one of the GEPs has all zero indices, recurse.
950  if (GEPLHS->hasAllZeroIndices())
951  return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
953 
954  // If the other GEP has all zero indices, recurse.
955  if (GEPRHS->hasAllZeroIndices())
956  return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
957 
958  bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
959  if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
960  // If the GEPs only differ by one index, compare it.
961  unsigned NumDifferences = 0; // Keep track of # differences.
962  unsigned DiffOperand = 0; // The operand that differs.
963  for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
964  if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
965  if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
966  GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
967  // Irreconcilable differences.
968  NumDifferences = 2;
969  break;
970  } else {
971  if (NumDifferences++) break;
972  DiffOperand = i;
973  }
974  }
975 
976  if (NumDifferences == 0) // SAME GEP?
977  return replaceInstUsesWith(I, // No comparison is needed here.
979 
980  else if (NumDifferences == 1 && GEPsInBounds) {
981  Value *LHSV = GEPLHS->getOperand(DiffOperand);
982  Value *RHSV = GEPRHS->getOperand(DiffOperand);
983  // Make sure we do a signed comparison here.
984  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
985  }
986  }
987 
988  // Only lower this if the icmp is the only user of the GEP or if we expect
989  // the result to fold to a constant!
990  if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
991  (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
992  // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
993  Value *L = EmitGEPOffset(GEPLHS);
994  Value *R = EmitGEPOffset(GEPRHS);
995  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
996  }
997  }
998 
999  // Try convert this to an indexed compare by looking through PHIs/casts as a
1000  // last resort.
1001  return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1002 }
1003 
1004 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1005  const AllocaInst *Alloca,
1006  const Value *Other) {
1007  assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1008 
1009  // It would be tempting to fold away comparisons between allocas and any
1010  // pointer not based on that alloca (e.g. an argument). However, even
1011  // though such pointers cannot alias, they can still compare equal.
1012  //
1013  // But LLVM doesn't specify where allocas get their memory, so if the alloca
1014  // doesn't escape we can argue that it's impossible to guess its value, and we
1015  // can therefore act as if any such guesses are wrong.
1016  //
1017  // The code below checks that the alloca doesn't escape, and that it's only
1018  // used in a comparison once (the current instruction). The
1019  // single-comparison-use condition ensures that we're trivially folding all
1020  // comparisons against the alloca consistently, and avoids the risk of
1021  // erroneously folding a comparison of the pointer with itself.
1022 
1023  unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1024 
1026  for (const Use &U : Alloca->uses()) {
1027  if (Worklist.size() >= MaxIter)
1028  return nullptr;
1029  Worklist.push_back(&U);
1030  }
1031 
1032  unsigned NumCmps = 0;
1033  while (!Worklist.empty()) {
1034  assert(Worklist.size() <= MaxIter);
1035  const Use *U = Worklist.pop_back_val();
1036  const Value *V = U->getUser();
1037  --MaxIter;
1038 
1039  if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1040  isa<SelectInst>(V)) {
1041  // Track the uses.
1042  } else if (isa<LoadInst>(V)) {
1043  // Loading from the pointer doesn't escape it.
1044  continue;
1045  } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1046  // Storing *to* the pointer is fine, but storing the pointer escapes it.
1047  if (SI->getValueOperand() == U->get())
1048  return nullptr;
1049  continue;
1050  } else if (isa<ICmpInst>(V)) {
1051  if (NumCmps++)
1052  return nullptr; // Found more than one cmp.
1053  continue;
1054  } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1055  switch (Intrin->getIntrinsicID()) {
1056  // These intrinsics don't escape or compare the pointer. Memset is safe
1057  // because we don't allow ptrtoint. Memcpy and memmove are safe because
1058  // we don't allow stores, so src cannot point to V.
1061  continue;
1062  default:
1063  return nullptr;
1064  }
1065  } else {
1066  return nullptr;
1067  }
1068  for (const Use &U : V->uses()) {
1069  if (Worklist.size() >= MaxIter)
1070  return nullptr;
1071  Worklist.push_back(&U);
1072  }
1073  }
1074 
1075  Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1076  return replaceInstUsesWith(
1077  ICI,
1079 }
1080 
1081 /// Fold "icmp pred (X+C), X".
1082 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1083  ICmpInst::Predicate Pred) {
1084  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1085  // so the values can never be equal. Similarly for all other "or equals"
1086  // operators.
1087  assert(!!C && "C should not be zero!");
1088 
1089  // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1090  // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1091  // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1092  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1093  Constant *R = ConstantInt::get(X->getType(),
1094  APInt::getMaxValue(C.getBitWidth()) - C);
1095  return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1096  }
1097 
1098  // (X+1) >u X --> X <u (0-1) --> X != 255
1099  // (X+2) >u X --> X <u (0-2) --> X <u 254
1100  // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1101  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1102  return new ICmpInst(ICmpInst::ICMP_ULT, X,
1103  ConstantInt::get(X->getType(), -C));
1104 
1106 
1107  // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1108  // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1109  // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1110  // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1111  // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1112  // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1113  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1114  return new ICmpInst(ICmpInst::ICMP_SGT, X,
1115  ConstantInt::get(X->getType(), SMax - C));
1116 
1117  // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1118  // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1119  // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1120  // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1121  // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1122  // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1123 
1124  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1125  return new ICmpInst(ICmpInst::ICMP_SLT, X,
1126  ConstantInt::get(X->getType(), SMax - (C - 1)));
1127 }
1128 
1129 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1130 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1131 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1132 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1133  const APInt &AP1,
1134  const APInt &AP2) {
1135  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1136 
1137  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1138  if (I.getPredicate() == I.ICMP_NE)
1139  Pred = CmpInst::getInversePredicate(Pred);
1140  return new ICmpInst(Pred, LHS, RHS);
1141  };
1142 
1143  // Don't bother doing any work for cases which InstSimplify handles.
1144  if (AP2.isNullValue())
1145  return nullptr;
1146 
1147  bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1148  if (IsAShr) {
1149  if (AP2.isAllOnesValue())
1150  return nullptr;
1151  if (AP2.isNegative() != AP1.isNegative())
1152  return nullptr;
1153  if (AP2.sgt(AP1))
1154  return nullptr;
1155  }
1156 
1157  if (!AP1)
1158  // 'A' must be large enough to shift out the highest set bit.
1159  return getICmp(I.ICMP_UGT, A,
1160  ConstantInt::get(A->getType(), AP2.logBase2()));
1161 
1162  if (AP1 == AP2)
1163  return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1164 
1165  int Shift;
1166  if (IsAShr && AP1.isNegative())
1167  Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1168  else
1169  Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1170 
1171  if (Shift > 0) {
1172  if (IsAShr && AP1 == AP2.ashr(Shift)) {
1173  // There are multiple solutions if we are comparing against -1 and the LHS
1174  // of the ashr is not a power of two.
1175  if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1176  return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1177  return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1178  } else if (AP1 == AP2.lshr(Shift)) {
1179  return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1180  }
1181  }
1182 
1183  // Shifting const2 will never be equal to const1.
1184  // FIXME: This should always be handled by InstSimplify?
1185  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1186  return replaceInstUsesWith(I, TorF);
1187 }
1188 
1189 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1190 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1191 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1192  const APInt &AP1,
1193  const APInt &AP2) {
1194  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1195 
1196  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1197  if (I.getPredicate() == I.ICMP_NE)
1198  Pred = CmpInst::getInversePredicate(Pred);
1199  return new ICmpInst(Pred, LHS, RHS);
1200  };
1201 
1202  // Don't bother doing any work for cases which InstSimplify handles.
1203  if (AP2.isNullValue())
1204  return nullptr;
1205 
1206  unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1207 
1208  if (!AP1 && AP2TrailingZeros != 0)
1209  return getICmp(
1210  I.ICMP_UGE, A,
1211  ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1212 
1213  if (AP1 == AP2)
1214  return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1215 
1216  // Get the distance between the lowest bits that are set.
1217  int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1218 
1219  if (Shift > 0 && AP2.shl(Shift) == AP1)
1220  return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1221 
1222  // Shifting const2 will never be equal to const1.
1223  // FIXME: This should always be handled by InstSimplify?
1224  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1225  return replaceInstUsesWith(I, TorF);
1226 }
1227 
1228 /// The caller has matched a pattern of the form:
1229 /// I = icmp ugt (add (add A, B), CI2), CI1
1230 /// If this is of the form:
1231 /// sum = a + b
1232 /// if (sum+128 >u 255)
1233 /// Then replace it with llvm.sadd.with.overflow.i8.
1234 ///
1236  ConstantInt *CI2, ConstantInt *CI1,
1237  InstCombiner &IC) {
1238  // The transformation we're trying to do here is to transform this into an
1239  // llvm.sadd.with.overflow. To do this, we have to replace the original add
1240  // with a narrower add, and discard the add-with-constant that is part of the
1241  // range check (if we can't eliminate it, this isn't profitable).
1242 
1243  // In order to eliminate the add-with-constant, the compare can be its only
1244  // use.
1245  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1246  if (!AddWithCst->hasOneUse())
1247  return nullptr;
1248 
1249  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1250  if (!CI2->getValue().isPowerOf2())
1251  return nullptr;
1252  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1253  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1254  return nullptr;
1255 
1256  // The width of the new add formed is 1 more than the bias.
1257  ++NewWidth;
1258 
1259  // Check to see that CI1 is an all-ones value with NewWidth bits.
1260  if (CI1->getBitWidth() == NewWidth ||
1261  CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1262  return nullptr;
1263 
1264  // This is only really a signed overflow check if the inputs have been
1265  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1266  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1267  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1268  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1269  IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1270  return nullptr;
1271 
1272  // In order to replace the original add with a narrower
1273  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1274  // and truncates that discard the high bits of the add. Verify that this is
1275  // the case.
1276  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1277  for (User *U : OrigAdd->users()) {
1278  if (U == AddWithCst)
1279  continue;
1280 
1281  // Only accept truncates for now. We would really like a nice recursive
1282  // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1283  // chain to see which bits of a value are actually demanded. If the
1284  // original add had another add which was then immediately truncated, we
1285  // could still do the transformation.
1286  TruncInst *TI = dyn_cast<TruncInst>(U);
1287  if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1288  return nullptr;
1289  }
1290 
1291  // If the pattern matches, truncate the inputs to the narrower type and
1292  // use the sadd_with_overflow intrinsic to efficiently compute both the
1293  // result and the overflow bit.
1294  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1297 
1298  InstCombiner::BuilderTy &Builder = IC.Builder;
1299 
1300  // Put the new code above the original add, in case there are any uses of the
1301  // add between the add and the compare.
1302  Builder.SetInsertPoint(OrigAdd);
1303 
1304  Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1305  Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1306  CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1307  Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1308  Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1309 
1310  // The inner add was the result of the narrow add, zero extended to the
1311  // wider type. Replace it with the result computed by the intrinsic.
1312  IC.replaceInstUsesWith(*OrigAdd, ZExt);
1313 
1314  // The original icmp gets replaced with the overflow value.
1315  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1316 }
1317 
1318 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1319 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1320  CmpInst::Predicate Pred = Cmp.getPredicate();
1321  Value *X = Cmp.getOperand(0);
1322 
1323  if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) {
1324  Value *A, *B;
1325  SelectPatternResult SPR = matchSelectPattern(X, A, B);
1326  if (SPR.Flavor == SPF_SMIN) {
1327  if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1328  return new ICmpInst(Pred, B, Cmp.getOperand(1));
1329  if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1330  return new ICmpInst(Pred, A, Cmp.getOperand(1));
1331  }
1332  }
1333  return nullptr;
1334 }
1335 
1336 /// Fold icmp Pred X, C.
1337 /// TODO: This code structure does not make sense. The saturating add fold
1338 /// should be moved to some other helper and extended as noted below (it is also
1339 /// possible that code has been made unnecessary - do we canonicalize IR to
1340 /// overflow/saturating intrinsics or not?).
1341 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1342  // Match the following pattern, which is a common idiom when writing
1343  // overflow-safe integer arithmetic functions. The source performs an addition
1344  // in wider type and explicitly checks for overflow using comparisons against
1345  // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1346  //
1347  // TODO: This could probably be generalized to handle other overflow-safe
1348  // operations if we worked out the formulas to compute the appropriate magic
1349  // constants.
1350  //
1351  // sum = a + b
1352  // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1353  CmpInst::Predicate Pred = Cmp.getPredicate();
1354  Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1355  Value *A, *B;
1356  ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1357  if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1358  match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1359  if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1360  return Res;
1361 
1362  return nullptr;
1363 }
1364 
1365 /// Canonicalize icmp instructions based on dominating conditions.
1366 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1367  // This is a cheap/incomplete check for dominance - just match a single
1368  // predecessor with a conditional branch.
1369  BasicBlock *CmpBB = Cmp.getParent();
1370  BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1371  if (!DomBB)
1372  return nullptr;
1373 
1374  Value *DomCond;
1375  BasicBlock *TrueBB, *FalseBB;
1376  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1377  return nullptr;
1378 
1379  assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1380  "Predecessor block does not point to successor?");
1381 
1382  // The branch should get simplified. Don't bother simplifying this condition.
1383  if (TrueBB == FalseBB)
1384  return nullptr;
1385 
1386  // Try to simplify this compare to T/F based on the dominating condition.
1387  Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1388  if (Imp)
1389  return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1390 
1391  CmpInst::Predicate Pred = Cmp.getPredicate();
1392  Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1393  ICmpInst::Predicate DomPred;
1394  const APInt *C, *DomC;
1395  if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1396  match(Y, m_APInt(C))) {
1397  // We have 2 compares of a variable with constants. Calculate the constant
1398  // ranges of those compares to see if we can transform the 2nd compare:
1399  // DomBB:
1400  // DomCond = icmp DomPred X, DomC
1401  // br DomCond, CmpBB, FalseBB
1402  // CmpBB:
1403  // Cmp = icmp Pred X, C
1405  ConstantRange DominatingCR =
1406  (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1408  CmpInst::getInversePredicate(DomPred), *DomC);
1409  ConstantRange Intersection = DominatingCR.intersectWith(CR);
1410  ConstantRange Difference = DominatingCR.difference(CR);
1411  if (Intersection.isEmptySet())
1412  return replaceInstUsesWith(Cmp, Builder.getFalse());
1413  if (Difference.isEmptySet())
1414  return replaceInstUsesWith(Cmp, Builder.getTrue());
1415 
1416  // Canonicalizing a sign bit comparison that gets used in a branch,
1417  // pessimizes codegen by generating branch on zero instruction instead
1418  // of a test and branch. So we avoid canonicalizing in such situations
1419  // because test and branch instruction has better branch displacement
1420  // than compare and branch instruction.
1421  bool UnusedBit;
1422  bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1423  if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1424  return nullptr;
1425 
1426  if (const APInt *EqC = Intersection.getSingleElement())
1427  return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1428  if (const APInt *NeC = Difference.getSingleElement())
1429  return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1430  }
1431 
1432  return nullptr;
1433 }
1434 
1435 /// Fold icmp (trunc X, Y), C.
1436 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1437  TruncInst *Trunc,
1438  const APInt &C) {
1439  ICmpInst::Predicate Pred = Cmp.getPredicate();
1440  Value *X = Trunc->getOperand(0);
1441  if (C.isOneValue() && C.getBitWidth() > 1) {
1442  // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1443  Value *V = nullptr;
1444  if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1445  return new ICmpInst(ICmpInst::ICMP_SLT, V,
1446  ConstantInt::get(V->getType(), 1));
1447  }
1448 
1449  if (Cmp.isEquality() && Trunc->hasOneUse()) {
1450  // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1451  // of the high bits truncated out of x are known.
1452  unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1453  SrcBits = X->getType()->getScalarSizeInBits();
1454  KnownBits Known = computeKnownBits(X, 0, &Cmp);
1455 
1456  // If all the high bits are known, we can do this xform.
1457  if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1458  // Pull in the high bits from known-ones set.
1459  APInt NewRHS = C.zext(SrcBits);
1460  NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1461  return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1462  }
1463  }
1464 
1465  return nullptr;
1466 }
1467 
1468 /// Fold icmp (xor X, Y), C.
1469 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1470  BinaryOperator *Xor,
1471  const APInt &C) {
1472  Value *X = Xor->getOperand(0);
1473  Value *Y = Xor->getOperand(1);
1474  const APInt *XorC;
1475  if (!match(Y, m_APInt(XorC)))
1476  return nullptr;
1477 
1478  // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1479  // fold the xor.
1480  ICmpInst::Predicate Pred = Cmp.getPredicate();
1481  bool TrueIfSigned = false;
1482  if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1483 
1484  // If the sign bit of the XorCst is not set, there is no change to
1485  // the operation, just stop using the Xor.
1486  if (!XorC->isNegative()) {
1487  Cmp.setOperand(0, X);
1488  Worklist.Add(Xor);
1489  return &Cmp;
1490  }
1491 
1492  // Emit the opposite comparison.
1493  if (TrueIfSigned)
1494  return new ICmpInst(ICmpInst::ICMP_SGT, X,
1496  else
1497  return new ICmpInst(ICmpInst::ICMP_SLT, X,
1499  }
1500 
1501  if (Xor->hasOneUse()) {
1502  // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1503  if (!Cmp.isEquality() && XorC->isSignMask()) {
1504  Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1505  : Cmp.getSignedPredicate();
1506  return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1507  }
1508 
1509  // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1510  if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1511  Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1512  : Cmp.getSignedPredicate();
1513  Pred = Cmp.getSwappedPredicate(Pred);
1514  return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1515  }
1516  }
1517 
1518  // Mask constant magic can eliminate an 'xor' with unsigned compares.
1519  if (Pred == ICmpInst::ICMP_UGT) {
1520  // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1521  if (*XorC == ~C && (C + 1).isPowerOf2())
1522  return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1523  // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1524  if (*XorC == C && (C + 1).isPowerOf2())
1525  return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1526  }
1527  if (Pred == ICmpInst::ICMP_ULT) {
1528  // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1529  if (*XorC == -C && C.isPowerOf2())
1530  return new ICmpInst(ICmpInst::ICMP_UGT, X,
1531  ConstantInt::get(X->getType(), ~C));
1532  // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1533  if (*XorC == C && (-C).isPowerOf2())
1534  return new ICmpInst(ICmpInst::ICMP_UGT, X,
1535  ConstantInt::get(X->getType(), ~C));
1536  }
1537  return nullptr;
1538 }
1539 
1540 /// Fold icmp (and (sh X, Y), C2), C1.
1541 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1542  const APInt &C1, const APInt &C2) {
1543  BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1544  if (!Shift || !Shift->isShift())
1545  return nullptr;
1546 
1547  // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1548  // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1549  // code produced by the clang front-end, for bitfield access.
1550  // This seemingly simple opportunity to fold away a shift turns out to be
1551  // rather complicated. See PR17827 for details.
1552  unsigned ShiftOpcode = Shift->getOpcode();
1553  bool IsShl = ShiftOpcode == Instruction::Shl;
1554  const APInt *C3;
1555  if (match(Shift->getOperand(1), m_APInt(C3))) {
1556  bool CanFold = false;
1557  if (ShiftOpcode == Instruction::Shl) {
1558  // For a left shift, we can fold if the comparison is not signed. We can
1559  // also fold a signed comparison if the mask value and comparison value
1560  // are not negative. These constraints may not be obvious, but we can
1561  // prove that they are correct using an SMT solver.
1562  if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
1563  CanFold = true;
1564  } else {
1565  bool IsAshr = ShiftOpcode == Instruction::AShr;
1566  // For a logical right shift, we can fold if the comparison is not signed.
1567  // We can also fold a signed comparison if the shifted mask value and the
1568  // shifted comparison value are not negative. These constraints may not be
1569  // obvious, but we can prove that they are correct using an SMT solver.
1570  // For an arithmetic shift right we can do the same, if we ensure
1571  // the And doesn't use any bits being shifted in. Normally these would
1572  // be turned into lshr by SimplifyDemandedBits, but not if there is an
1573  // additional user.
1574  if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
1575  if (!Cmp.isSigned() ||
1576  (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
1577  CanFold = true;
1578  }
1579  }
1580 
1581  if (CanFold) {
1582  APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3);
1583  APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
1584  // Check to see if we are shifting out any of the bits being compared.
1585  if (SameAsC1 != C1) {
1586  // If we shifted bits out, the fold is not going to work out. As a
1587  // special case, check to see if this means that the result is always
1588  // true or false now.
1589  if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1590  return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1591  if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1592  return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1593  } else {
1594  Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1595  APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3);
1596  And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
1597  And->setOperand(0, Shift->getOperand(0));
1598  Worklist.Add(Shift); // Shift is dead.
1599  return &Cmp;
1600  }
1601  }
1602  }
1603 
1604  // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1605  // preferable because it allows the C2 << Y expression to be hoisted out of a
1606  // loop if Y is invariant and X is not.
1607  if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1608  !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1609  // Compute C2 << Y.
1610  Value *NewShift =
1611  IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1612  : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1613 
1614  // Compute X & (C2 << Y).
1615  Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1616  Cmp.setOperand(0, NewAnd);
1617  return &Cmp;
1618  }
1619 
1620  return nullptr;
1621 }
1622 
1623 /// Fold icmp (and X, C2), C1.
1624 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1625  BinaryOperator *And,
1626  const APInt &C1) {
1627  // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1628  // TODO: We canonicalize to the longer form for scalars because we have
1629  // better analysis/folds for icmp, and codegen may be better with icmp.
1630  if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() &&
1631  C1.isNullValue() && match(And->getOperand(1), m_One()))
1632  return new TruncInst(And->getOperand(0), Cmp.getType());
1633 
1634  const APInt *C2;
1635  if (!match(And->getOperand(1), m_APInt(C2)))
1636  return nullptr;
1637 
1638  if (!And->hasOneUse())
1639  return nullptr;
1640 
1641  // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1642  // the input width without changing the value produced, eliminate the cast:
1643  //
1644  // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1645  //
1646  // We can do this transformation if the constants do not have their sign bits
1647  // set or if it is an equality comparison. Extending a relational comparison
1648  // when we're checking the sign bit would not work.
1649  Value *W;
1650  if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1651  (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1652  // TODO: Is this a good transform for vectors? Wider types may reduce
1653  // throughput. Should this transform be limited (even for scalars) by using
1654  // shouldChangeType()?
1655  if (!Cmp.getType()->isVectorTy()) {
1656  Type *WideType = W->getType();
1657  unsigned WideScalarBits = WideType->getScalarSizeInBits();
1658  Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1659  Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1660  Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1661  return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1662  }
1663  }
1664 
1665  if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1666  return I;
1667 
1668  // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1669  // (icmp pred (and A, (or (shl 1, B), 1), 0))
1670  //
1671  // iff pred isn't signed
1672  if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1673  match(And->getOperand(1), m_One())) {
1674  Constant *One = cast<Constant>(And->getOperand(1));
1675  Value *Or = And->getOperand(0);
1676  Value *A, *B, *LShr;
1677  if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1678  match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1679  unsigned UsesRemoved = 0;
1680  if (And->hasOneUse())
1681  ++UsesRemoved;
1682  if (Or->hasOneUse())
1683  ++UsesRemoved;
1684  if (LShr->hasOneUse())
1685  ++UsesRemoved;
1686 
1687  // Compute A & ((1 << B) | 1)
1688  Value *NewOr = nullptr;
1689  if (auto *C = dyn_cast<Constant>(B)) {
1690  if (UsesRemoved >= 1)
1691  NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1692  } else {
1693  if (UsesRemoved >= 3)
1694  NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1695  /*HasNUW=*/true),
1696  One, Or->getName());
1697  }
1698  if (NewOr) {
1699  Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1700  Cmp.setOperand(0, NewAnd);
1701  return &Cmp;
1702  }
1703  }
1704  }
1705 
1706  return nullptr;
1707 }
1708 
1709 /// Fold icmp (and X, Y), C.
1710 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1711  BinaryOperator *And,
1712  const APInt &C) {
1713  if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1714  return I;
1715 
1716  // TODO: These all require that Y is constant too, so refactor with the above.
1717 
1718  // Try to optimize things like "A[i] & 42 == 0" to index computations.
1719  Value *X = And->getOperand(0);
1720  Value *Y = And->getOperand(1);
1721  if (auto *LI = dyn_cast<LoadInst>(X))
1722  if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1723  if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1724  if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1725  !LI->isVolatile() && isa<ConstantInt>(Y)) {
1726  ConstantInt *C2 = cast<ConstantInt>(Y);
1727  if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1728  return Res;
1729  }
1730 
1731  if (!Cmp.isEquality())
1732  return nullptr;
1733 
1734  // X & -C == -C -> X > u ~C
1735  // X & -C != -C -> X <= u ~C
1736  // iff C is a power of 2
1737  if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1738  auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1740  return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1741  }
1742 
1743  // (X & C2) == 0 -> (trunc X) >= 0
1744  // (X & C2) != 0 -> (trunc X) < 0
1745  // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1746  const APInt *C2;
1747  if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1748  int32_t ExactLogBase2 = C2->exactLogBase2();
1749  if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1750  Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1751  if (And->getType()->isVectorTy())
1752  NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1753  Value *Trunc = Builder.CreateTrunc(X, NTy);
1754  auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1756  return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1757  }
1758  }
1759 
1760  return nullptr;
1761 }
1762 
1763 /// Fold icmp (or X, Y), C.
1764 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1765  const APInt &C) {
1766  ICmpInst::Predicate Pred = Cmp.getPredicate();
1767  if (C.isOneValue()) {
1768  // icmp slt signum(V) 1 --> icmp slt V, 1
1769  Value *V = nullptr;
1770  if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1771  return new ICmpInst(ICmpInst::ICMP_SLT, V,
1772  ConstantInt::get(V->getType(), 1));
1773  }
1774 
1775  // X | C == C --> X <=u C
1776  // X | C != C --> X >u C
1777  // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1778  if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) &&
1779  (C + 1).isPowerOf2()) {
1781  return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1));
1782  }
1783 
1784  if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1785  return nullptr;
1786 
1787  Value *P, *Q;
1788  if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1789  // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1790  // -> and (icmp eq P, null), (icmp eq Q, null).
1791  Value *CmpP =
1792  Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1793  Value *CmpQ =
1794  Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1795  auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1796  return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1797  }
1798 
1799  // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1800  // a shorter form that has more potential to be folded even further.
1801  Value *X1, *X2, *X3, *X4;
1802  if (match(Or->getOperand(0), m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1803  match(Or->getOperand(1), m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1804  // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1805  // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1806  Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1807  Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1808  auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1809  return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1810  }
1811 
1812  return nullptr;
1813 }
1814 
1815 /// Fold icmp (mul X, Y), C.
1816 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1817  BinaryOperator *Mul,
1818  const APInt &C) {
1819  const APInt *MulC;
1820  if (!match(Mul->getOperand(1), m_APInt(MulC)))
1821  return nullptr;
1822 
1823  // If this is a test of the sign bit and the multiply is sign-preserving with
1824  // a constant operand, use the multiply LHS operand instead.
1825  ICmpInst::Predicate Pred = Cmp.getPredicate();
1826  if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1827  if (MulC->isNegative())
1828  Pred = ICmpInst::getSwappedPredicate(Pred);
1829  return new ICmpInst(Pred, Mul->getOperand(0),
1831  }
1832 
1833  return nullptr;
1834 }
1835 
1836 /// Fold icmp (shl 1, Y), C.
1838  const APInt &C) {
1839  Value *Y;
1840  if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1841  return nullptr;
1842 
1843  Type *ShiftType = Shl->getType();
1844  unsigned TypeBits = C.getBitWidth();
1845  bool CIsPowerOf2 = C.isPowerOf2();
1846  ICmpInst::Predicate Pred = Cmp.getPredicate();
1847  if (Cmp.isUnsigned()) {
1848  // (1 << Y) pred C -> Y pred Log2(C)
1849  if (!CIsPowerOf2) {
1850  // (1 << Y) < 30 -> Y <= 4
1851  // (1 << Y) <= 30 -> Y <= 4
1852  // (1 << Y) >= 30 -> Y > 4
1853  // (1 << Y) > 30 -> Y > 4
1854  if (Pred == ICmpInst::ICMP_ULT)
1855  Pred = ICmpInst::ICMP_ULE;
1856  else if (Pred == ICmpInst::ICMP_UGE)
1857  Pred = ICmpInst::ICMP_UGT;
1858  }
1859 
1860  // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1861  // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
1862  unsigned CLog2 = C.logBase2();
1863  if (CLog2 == TypeBits - 1) {
1864  if (Pred == ICmpInst::ICMP_UGE)
1865  Pred = ICmpInst::ICMP_EQ;
1866  else if (Pred == ICmpInst::ICMP_ULT)
1867  Pred = ICmpInst::ICMP_NE;
1868  }
1869  return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1870  } else if (Cmp.isSigned()) {
1871  Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1872  if (C.isAllOnesValue()) {
1873  // (1 << Y) <= -1 -> Y == 31
1874  if (Pred == ICmpInst::ICMP_SLE)
1875  return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1876 
1877  // (1 << Y) > -1 -> Y != 31
1878  if (Pred == ICmpInst::ICMP_SGT)
1879  return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1880  } else if (!C) {
1881  // (1 << Y) < 0 -> Y == 31
1882  // (1 << Y) <= 0 -> Y == 31
1883  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1884  return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1885 
1886  // (1 << Y) >= 0 -> Y != 31
1887  // (1 << Y) > 0 -> Y != 31
1888  if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1889  return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1890  }
1891  } else if (Cmp.isEquality() && CIsPowerOf2) {
1892  return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
1893  }
1894 
1895  return nullptr;
1896 }
1897 
1898 /// Fold icmp (shl X, Y), C.
1899 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1900  BinaryOperator *Shl,
1901  const APInt &C) {
1902  const APInt *ShiftVal;
1903  if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1904  return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
1905 
1906  const APInt *ShiftAmt;
1907  if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
1908  return foldICmpShlOne(Cmp, Shl, C);
1909 
1910  // Check that the shift amount is in range. If not, don't perform undefined
1911  // shifts. When the shift is visited, it will be simplified.
1912  unsigned TypeBits = C.getBitWidth();
1913  if (ShiftAmt->uge(TypeBits))
1914  return nullptr;
1915 
1916  ICmpInst::Predicate Pred = Cmp.getPredicate();
1917  Value *X = Shl->getOperand(0);
1918  Type *ShType = Shl->getType();
1919 
1920  // NSW guarantees that we are only shifting out sign bits from the high bits,
1921  // so we can ASHR the compare constant without needing a mask and eliminate
1922  // the shift.
1923  if (Shl->hasNoSignedWrap()) {
1924  if (Pred == ICmpInst::ICMP_SGT) {
1925  // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
1926  APInt ShiftedC = C.ashr(*ShiftAmt);
1927  return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1928  }
1929  if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1930  C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
1931  APInt ShiftedC = C.ashr(*ShiftAmt);
1932  return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1933  }
1934  if (Pred == ICmpInst::ICMP_SLT) {
1935  // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
1936  // (X << S) <=s C is equiv to X <=s (C >> S) for all C
1937  // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
1938  // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
1939  assert(!C.isMinSignedValue() && "Unexpected icmp slt");
1940  APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
1941  return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1942  }
1943  // If this is a signed comparison to 0 and the shift is sign preserving,
1944  // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1945  // do that if we're sure to not continue on in this function.
1946  if (isSignTest(Pred, C))
1947  return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
1948  }
1949 
1950  // NUW guarantees that we are only shifting out zero bits from the high bits,
1951  // so we can LSHR the compare constant without needing a mask and eliminate
1952  // the shift.
1953  if (Shl->hasNoUnsignedWrap()) {
1954  if (Pred == ICmpInst::ICMP_UGT) {
1955  // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
1956  APInt ShiftedC = C.lshr(*ShiftAmt);
1957  return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1958  }
1959  if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
1960  C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
1961  APInt ShiftedC = C.lshr(*ShiftAmt);
1962  return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1963  }
1964  if (Pred == ICmpInst::ICMP_ULT) {
1965  // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
1966  // (X << S) <=u C is equiv to X <=u (C >> S) for all C
1967  // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
1968  // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
1969  assert(C.ugt(0) && "ult 0 should have been eliminated");
1970  APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
1971  return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
1972  }
1973  }
1974 
1975  if (Cmp.isEquality() && Shl->hasOneUse()) {
1976  // Strength-reduce the shift into an 'and'.
1978  ShType,
1979  APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
1980  Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
1981  Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
1982  return new ICmpInst(Pred, And, LShrC);
1983  }
1984 
1985  // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1986  bool TrueIfSigned = false;
1987  if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
1988  // (X << 31) <s 0 --> (X & 1) != 0
1990  ShType,
1991  APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
1992  Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
1993  return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1994  And, Constant::getNullValue(ShType));
1995  }
1996 
1997  // Transform (icmp pred iM (shl iM %v, N), C)
1998  // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
1999  // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2000  // This enables us to get rid of the shift in favor of a trunc that may be
2001  // free on the target. It has the additional benefit of comparing to a
2002  // smaller constant that may be more target-friendly.
2003  unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2004  if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2005  DL.isLegalInteger(TypeBits - Amt)) {
2006  Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2007  if (ShType->isVectorTy())
2008  TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2009  Constant *NewC =
2010  ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2011  return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2012  }
2013 
2014  return nullptr;
2015 }
2016 
2017 /// Fold icmp ({al}shr X, Y), C.
2018 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2019  BinaryOperator *Shr,
2020  const APInt &C) {
2021  // An exact shr only shifts out zero bits, so:
2022  // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2023  Value *X = Shr->getOperand(0);
2024  CmpInst::Predicate Pred = Cmp.getPredicate();
2025  if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2026  C.isNullValue())
2027  return new ICmpInst(Pred, X, Cmp.getOperand(1));
2028 
2029  const APInt *ShiftVal;
2030  if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2031  return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2032 
2033  const APInt *ShiftAmt;
2034  if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2035  return nullptr;
2036 
2037  // Check that the shift amount is in range. If not, don't perform undefined
2038  // shifts. When the shift is visited it will be simplified.
2039  unsigned TypeBits = C.getBitWidth();
2040  unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2041  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2042  return nullptr;
2043 
2044  bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2045  bool IsExact = Shr->isExact();
2046  Type *ShrTy = Shr->getType();
2047  // TODO: If we could guarantee that InstSimplify would handle all of the
2048  // constant-value-based preconditions in the folds below, then we could assert
2049  // those conditions rather than checking them. This is difficult because of
2050  // undef/poison (PR34838).
2051  if (IsAShr) {
2052  if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2053  // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2054  // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2055  APInt ShiftedC = C.shl(ShAmtVal);
2056  if (ShiftedC.ashr(ShAmtVal) == C)
2057  return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2058  }
2059  if (Pred == CmpInst::ICMP_SGT) {
2060  // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2061  APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2062  if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2063  (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2064  return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2065  }
2066  } else {
2067  if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2068  // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2069  // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2070  APInt ShiftedC = C.shl(ShAmtVal);
2071  if (ShiftedC.lshr(ShAmtVal) == C)
2072  return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2073  }
2074  if (Pred == CmpInst::ICMP_UGT) {
2075  // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2076  APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2077  if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2078  return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2079  }
2080  }
2081 
2082  if (!Cmp.isEquality())
2083  return nullptr;
2084 
2085  // Handle equality comparisons of shift-by-constant.
2086 
2087  // If the comparison constant changes with the shift, the comparison cannot
2088  // succeed (bits of the comparison constant cannot match the shifted value).
2089  // This should be known by InstSimplify and already be folded to true/false.
2090  assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2091  (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2092  "Expected icmp+shr simplify did not occur.");
2093 
2094  // If the bits shifted out are known zero, compare the unshifted value:
2095  // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2096  if (Shr->isExact())
2097  return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2098 
2099  if (Shr->hasOneUse()) {
2100  // Canonicalize the shift into an 'and':
2101  // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2102  APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2103  Constant *Mask = ConstantInt::get(ShrTy, Val);
2104  Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2105  return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2106  }
2107 
2108  return nullptr;
2109 }
2110 
2111 /// Fold icmp (udiv X, Y), C.
2112 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2113  BinaryOperator *UDiv,
2114  const APInt &C) {
2115  const APInt *C2;
2116  if (!match(UDiv->getOperand(0), m_APInt(C2)))
2117  return nullptr;
2118 
2119  assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2120 
2121  // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2122  Value *Y = UDiv->getOperand(1);
2123  if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2124  assert(!C.isMaxValue() &&
2125  "icmp ugt X, UINT_MAX should have been simplified already.");
2126  return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2127  ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2128  }
2129 
2130  // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2131  if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2132  assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2133  return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2134  ConstantInt::get(Y->getType(), C2->udiv(C)));
2135  }
2136 
2137  return nullptr;
2138 }
2139 
2140 /// Fold icmp ({su}div X, Y), C.
2141 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2142  BinaryOperator *Div,
2143  const APInt &C) {
2144  // Fold: icmp pred ([us]div X, C2), C -> range test
2145  // Fold this div into the comparison, producing a range check.
2146  // Determine, based on the divide type, what the range is being
2147  // checked. If there is an overflow on the low or high side, remember
2148  // it, otherwise compute the range [low, hi) bounding the new value.
2149  // See: InsertRangeTest above for the kinds of replacements possible.
2150  const APInt *C2;
2151  if (!match(Div->getOperand(1), m_APInt(C2)))
2152  return nullptr;
2153 
2154  // FIXME: If the operand types don't match the type of the divide
2155  // then don't attempt this transform. The code below doesn't have the
2156  // logic to deal with a signed divide and an unsigned compare (and
2157  // vice versa). This is because (x /s C2) <s C produces different
2158  // results than (x /s C2) <u C or (x /u C2) <s C or even
2159  // (x /u C2) <u C. Simply casting the operands and result won't
2160  // work. :( The if statement below tests that condition and bails
2161  // if it finds it.
2162  bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2163  if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2164  return nullptr;
2165 
2166  // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2167  // INT_MIN will also fail if the divisor is 1. Although folds of all these
2168  // division-by-constant cases should be present, we can not assert that they
2169  // have happened before we reach this icmp instruction.
2170  if (C2->isNullValue() || C2->isOneValue() ||
2171  (DivIsSigned && C2->isAllOnesValue()))
2172  return nullptr;
2173 
2174  // Compute Prod = C * C2. We are essentially solving an equation of
2175  // form X / C2 = C. We solve for X by multiplying C2 and C.
2176  // By solving for X, we can turn this into a range check instead of computing
2177  // a divide.
2178  APInt Prod = C * *C2;
2179 
2180  // Determine if the product overflows by seeing if the product is not equal to
2181  // the divide. Make sure we do the same kind of divide as in the LHS
2182  // instruction that we're folding.
2183  bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2184 
2185  ICmpInst::Predicate Pred = Cmp.getPredicate();
2186 
2187  // If the division is known to be exact, then there is no remainder from the
2188  // divide, so the covered range size is unit, otherwise it is the divisor.
2189  APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2190 
2191  // Figure out the interval that is being checked. For example, a comparison
2192  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2193  // Compute this interval based on the constants involved and the signedness of
2194  // the compare/divide. This computes a half-open interval, keeping track of
2195  // whether either value in the interval overflows. After analysis each
2196  // overflow variable is set to 0 if it's corresponding bound variable is valid
2197  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2198  int LoOverflow = 0, HiOverflow = 0;
2199  APInt LoBound, HiBound;
2200 
2201  if (!DivIsSigned) { // udiv
2202  // e.g. X/5 op 3 --> [15, 20)
2203  LoBound = Prod;
2204  HiOverflow = LoOverflow = ProdOV;
2205  if (!HiOverflow) {
2206  // If this is not an exact divide, then many values in the range collapse
2207  // to the same result value.
2208  HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2209  }
2210  } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2211  if (C.isNullValue()) { // (X / pos) op 0
2212  // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2213  LoBound = -(RangeSize - 1);
2214  HiBound = RangeSize;
2215  } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2216  LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2217  HiOverflow = LoOverflow = ProdOV;
2218  if (!HiOverflow)
2219  HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2220  } else { // (X / pos) op neg
2221  // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2222  HiBound = Prod + 1;
2223  LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2224  if (!LoOverflow) {
2225  APInt DivNeg = -RangeSize;
2226  LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2227  }
2228  }
2229  } else if (C2->isNegative()) { // Divisor is < 0.
2230  if (Div->isExact())
2231  RangeSize.negate();
2232  if (C.isNullValue()) { // (X / neg) op 0
2233  // e.g. X/-5 op 0 --> [-4, 5)
2234  LoBound = RangeSize + 1;
2235  HiBound = -RangeSize;
2236  if (HiBound == *C2) { // -INTMIN = INTMIN
2237  HiOverflow = 1; // [INTMIN+1, overflow)
2238  HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2239  }
2240  } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2241  // e.g. X/-5 op 3 --> [-19, -14)
2242  HiBound = Prod + 1;
2243  HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2244  if (!LoOverflow)
2245  LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2246  } else { // (X / neg) op neg
2247  LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2248  LoOverflow = HiOverflow = ProdOV;
2249  if (!HiOverflow)
2250  HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2251  }
2252 
2253  // Dividing by a negative swaps the condition. LT <-> GT
2254  Pred = ICmpInst::getSwappedPredicate(Pred);
2255  }
2256 
2257  Value *X = Div->getOperand(0);
2258  switch (Pred) {
2259  default: llvm_unreachable("Unhandled icmp opcode!");
2260  case ICmpInst::ICMP_EQ:
2261  if (LoOverflow && HiOverflow)
2262  return replaceInstUsesWith(Cmp, Builder.getFalse());
2263  if (HiOverflow)
2264  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2265  ICmpInst::ICMP_UGE, X,
2266  ConstantInt::get(Div->getType(), LoBound));
2267  if (LoOverflow)
2268  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2269  ICmpInst::ICMP_ULT, X,
2270  ConstantInt::get(Div->getType(), HiBound));
2271  return replaceInstUsesWith(
2272  Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2273  case ICmpInst::ICMP_NE:
2274  if (LoOverflow && HiOverflow)
2275  return replaceInstUsesWith(Cmp, Builder.getTrue());
2276  if (HiOverflow)
2277  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2278  ICmpInst::ICMP_ULT, X,
2279  ConstantInt::get(Div->getType(), LoBound));
2280  if (LoOverflow)
2281  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2282  ICmpInst::ICMP_UGE, X,
2283  ConstantInt::get(Div->getType(), HiBound));
2284  return replaceInstUsesWith(Cmp,
2285  insertRangeTest(X, LoBound, HiBound,
2286  DivIsSigned, false));
2287  case ICmpInst::ICMP_ULT:
2288  case ICmpInst::ICMP_SLT:
2289  if (LoOverflow == +1) // Low bound is greater than input range.
2290  return replaceInstUsesWith(Cmp, Builder.getTrue());
2291  if (LoOverflow == -1) // Low bound is less than input range.
2292  return replaceInstUsesWith(Cmp, Builder.getFalse());
2293  return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2294  case ICmpInst::ICMP_UGT:
2295  case ICmpInst::ICMP_SGT:
2296  if (HiOverflow == +1) // High bound greater than input range.
2297  return replaceInstUsesWith(Cmp, Builder.getFalse());
2298  if (HiOverflow == -1) // High bound less than input range.
2299  return replaceInstUsesWith(Cmp, Builder.getTrue());
2300  if (Pred == ICmpInst::ICMP_UGT)
2301  return new ICmpInst(ICmpInst::ICMP_UGE, X,
2302  ConstantInt::get(Div->getType(), HiBound));
2303  return new ICmpInst(ICmpInst::ICMP_SGE, X,
2304  ConstantInt::get(Div->getType(), HiBound));
2305  }
2306 
2307  return nullptr;
2308 }
2309 
2310 /// Fold icmp (sub X, Y), C.
2311 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2312  BinaryOperator *Sub,
2313  const APInt &C) {
2314  Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2315  ICmpInst::Predicate Pred = Cmp.getPredicate();
2316 
2317  // The following transforms are only worth it if the only user of the subtract
2318  // is the icmp.
2319  if (!Sub->hasOneUse())
2320  return nullptr;
2321 
2322  if (Sub->hasNoSignedWrap()) {
2323  // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2324  if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2325  return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2326 
2327  // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2328  if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2329  return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2330 
2331  // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2332  if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2333  return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2334 
2335  // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2336  if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2337  return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2338  }
2339 
2340  const APInt *C2;
2341  if (!match(X, m_APInt(C2)))
2342  return nullptr;
2343 
2344  // C2 - Y <u C -> (Y | (C - 1)) == C2
2345  // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2346  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2347  (*C2 & (C - 1)) == (C - 1))
2348  return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2349 
2350  // C2 - Y >u C -> (Y | C) != C2
2351  // iff C2 & C == C and C + 1 is a power of 2
2352  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2353  return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2354 
2355  return nullptr;
2356 }
2357 
2358 /// Fold icmp (add X, Y), C.
2359 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2361  const APInt &C) {
2362  Value *Y = Add->getOperand(1);
2363  const APInt *C2;
2364  if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2365  return nullptr;
2366 
2367  // Fold icmp pred (add X, C2), C.
2368  Value *X = Add->getOperand(0);
2369  Type *Ty = Add->getType();
2370  CmpInst::Predicate Pred = Cmp.getPredicate();
2371 
2372  if (!Add->hasOneUse())
2373  return nullptr;
2374 
2375  // If the add does not wrap, we can always adjust the compare by subtracting
2376  // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2377  // are canonicalized to SGT/SLT/UGT/ULT.
2378  if ((Add->hasNoSignedWrap() &&
2379  (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2380  (Add->hasNoUnsignedWrap() &&
2381  (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2382  bool Overflow;
2383  APInt NewC =
2384  Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2385  // If there is overflow, the result must be true or false.
2386  // TODO: Can we assert there is no overflow because InstSimplify always
2387  // handles those cases?
2388  if (!Overflow)
2389  // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2390  return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2391  }
2392 
2393  auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2394  const APInt &Upper = CR.getUpper();
2395  const APInt &Lower = CR.getLower();
2396  if (Cmp.isSigned()) {
2397  if (Lower.isSignMask())
2398  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2399  if (Upper.isSignMask())
2400  return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2401  } else {
2402  if (Lower.isMinValue())
2403  return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2404  if (Upper.isMinValue())
2405  return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2406  }
2407 
2408  // X+C <u C2 -> (X & -C2) == C
2409  // iff C & (C2-1) == 0
2410  // C2 is a power of 2
2411  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2412  return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2413  ConstantExpr::getNeg(cast<Constant>(Y)));
2414 
2415  // X+C >u C2 -> (X & ~C2) != C
2416  // iff C & C2 == 0
2417  // C2+1 is a power of 2
2418  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2419  return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2420  ConstantExpr::getNeg(cast<Constant>(Y)));
2421 
2422  return nullptr;
2423 }
2424 
2425 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2426  Value *&RHS, ConstantInt *&Less,
2427  ConstantInt *&Equal,
2428  ConstantInt *&Greater) {
2429  // TODO: Generalize this to work with other comparison idioms or ensure
2430  // they get canonicalized into this form.
2431 
2432  // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32
2433  // Greater), where Equal, Less and Greater are placeholders for any three
2434  // constants.
2435  ICmpInst::Predicate PredA, PredB;
2436  if (match(SI->getTrueValue(), m_ConstantInt(Equal)) &&
2437  match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) &&
2438  PredA == ICmpInst::ICMP_EQ &&
2439  match(SI->getFalseValue(),
2440  m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)),
2441  m_ConstantInt(Less), m_ConstantInt(Greater))) &&
2442  PredB == ICmpInst::ICMP_SLT) {
2443  return true;
2444  }
2445  return false;
2446 }
2447 
2448 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2449  SelectInst *Select,
2450  ConstantInt *C) {
2451 
2452  assert(C && "Cmp RHS should be a constant int!");
2453  // If we're testing a constant value against the result of a three way
2454  // comparison, the result can be expressed directly in terms of the
2455  // original values being compared. Note: We could possibly be more
2456  // aggressive here and remove the hasOneUse test. The original select is
2457  // really likely to simplify or sink when we remove a test of the result.
2458  Value *OrigLHS, *OrigRHS;
2459  ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2460  if (Cmp.hasOneUse() &&
2461  matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2462  C3GreaterThan)) {
2463  assert(C1LessThan && C2Equal && C3GreaterThan);
2464 
2465  bool TrueWhenLessThan =
2466  ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2467  ->isAllOnesValue();
2468  bool TrueWhenEqual =
2469  ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2470  ->isAllOnesValue();
2471  bool TrueWhenGreaterThan =
2472  ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2473  ->isAllOnesValue();
2474 
2475  // This generates the new instruction that will replace the original Cmp
2476  // Instruction. Instead of enumerating the various combinations when
2477  // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2478  // false, we rely on chaining of ORs and future passes of InstCombine to
2479  // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2480 
2481  // When none of the three constants satisfy the predicate for the RHS (C),
2482  // the entire original Cmp can be simplified to a false.
2483  Value *Cond = Builder.getFalse();
2484  if (TrueWhenLessThan)
2485  Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS));
2486  if (TrueWhenEqual)
2487  Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS));
2488  if (TrueWhenGreaterThan)
2489  Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS));
2490 
2491  return replaceInstUsesWith(Cmp, Cond);
2492  }
2493  return nullptr;
2494 }
2495 
2496 Instruction *InstCombiner::foldICmpBitCastConstant(ICmpInst &Cmp,
2498  const APInt &C) {
2499  // Folding: icmp <pred> iN X, C
2500  // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2501  // and C is a splat of a K-bit pattern
2502  // and SC is a constant vector = <C', C', C', ..., C'>
2503  // Into:
2504  // %E = extractelement <M x iK> %vec, i32 C'
2505  // icmp <pred> iK %E, trunc(C)
2506  if (!Bitcast->getType()->isIntegerTy() ||
2507  !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2508  return nullptr;
2509 
2510  Value *BCIOp = Bitcast->getOperand(0);
2511  Value *Vec = nullptr; // 1st vector arg of the shufflevector
2512  Constant *Mask = nullptr; // Mask arg of the shufflevector
2513  if (match(BCIOp,
2514  m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2515  // Check whether every element of Mask is the same constant
2516  if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2517  auto *VecTy = cast<VectorType>(BCIOp->getType());
2518  auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2519  auto Pred = Cmp.getPredicate();
2520  if (C.isSplat(EltTy->getBitWidth())) {
2521  // Fold the icmp based on the value of C
2522  // If C is M copies of an iK sized bit pattern,
2523  // then:
2524  // => %E = extractelement <N x iK> %vec, i32 Elem
2525  // icmp <pred> iK %SplatVal, <pattern>
2526  Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2527  Value *NewC = ConstantInt::get(EltTy, C.trunc(EltTy->getBitWidth()));
2528  return new ICmpInst(Pred, Extract, NewC);
2529  }
2530  }
2531  }
2532  return nullptr;
2533 }
2534 
2535 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2536 /// where X is some kind of instruction.
2537 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2538  const APInt *C;
2539  if (!match(Cmp.getOperand(1), m_APInt(C)))
2540  return nullptr;
2541 
2542  if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2543  switch (BO->getOpcode()) {
2544  case Instruction::Xor:
2545  if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2546  return I;
2547  break;
2548  case Instruction::And:
2549  if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2550  return I;
2551  break;
2552  case Instruction::Or:
2553  if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2554  return I;
2555  break;
2556  case Instruction::Mul:
2557  if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2558  return I;
2559  break;
2560  case Instruction::Shl:
2561  if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2562  return I;
2563  break;
2564  case Instruction::LShr:
2565  case Instruction::AShr:
2566  if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2567  return I;
2568  break;
2569  case Instruction::UDiv:
2570  if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2571  return I;
2573  case Instruction::SDiv:
2574  if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2575  return I;
2576  break;
2577  case Instruction::Sub:
2578  if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2579  return I;
2580  break;
2581  case Instruction::Add:
2582  if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2583  return I;
2584  break;
2585  default:
2586  break;
2587  }
2588  // TODO: These folds could be refactored to be part of the above calls.
2589  if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2590  return I;
2591  }
2592 
2593  // Match against CmpInst LHS being instructions other than binary operators.
2594 
2595  if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2596  // For now, we only support constant integers while folding the
2597  // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2598  // similar to the cases handled by binary ops above.
2599  if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2600  if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2601  return I;
2602  }
2603 
2604  if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2605  if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2606  return I;
2607  }
2608 
2609  if (auto *BCI = dyn_cast<BitCastInst>(Cmp.getOperand(0))) {
2610  if (Instruction *I = foldICmpBitCastConstant(Cmp, BCI, *C))
2611  return I;
2612  }
2613 
2614  if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, *C))
2615  return I;
2616 
2617  return nullptr;
2618 }
2619 
2620 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2621 /// icmp eq/ne BO, C.
2622 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2623  BinaryOperator *BO,
2624  const APInt &C) {
2625  // TODO: Some of these folds could work with arbitrary constants, but this
2626  // function is limited to scalar and vector splat constants.
2627  if (!Cmp.isEquality())
2628  return nullptr;
2629 
2630  ICmpInst::Predicate Pred = Cmp.getPredicate();
2631  bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2632  Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2633  Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2634 
2635  switch (BO->getOpcode()) {
2636  case Instruction::SRem:
2637  // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2638  if (C.isNullValue() && BO->hasOneUse()) {
2639  const APInt *BOC;
2640  if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2641  Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2642  return new ICmpInst(Pred, NewRem,
2644  }
2645  }
2646  break;
2647  case Instruction::Add: {
2648  // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2649  const APInt *BOC;
2650  if (match(BOp1, m_APInt(BOC))) {
2651  if (BO->hasOneUse()) {
2652  Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
2653  return new ICmpInst(Pred, BOp0, SubC);
2654  }
2655  } else if (C.isNullValue()) {
2656  // Replace ((add A, B) != 0) with (A != -B) if A or B is
2657  // efficiently invertible, or if the add has just this one use.
2658  if (Value *NegVal = dyn_castNegVal(BOp1))
2659  return new ICmpInst(Pred, BOp0, NegVal);
2660  if (Value *NegVal = dyn_castNegVal(BOp0))
2661  return new ICmpInst(Pred, NegVal, BOp1);
2662  if (BO->hasOneUse()) {
2663  Value *Neg = Builder.CreateNeg(BOp1);
2664  Neg->takeName(BO);
2665  return new ICmpInst(Pred, BOp0, Neg);
2666  }
2667  }
2668  break;
2669  }
2670  case Instruction::Xor:
2671  if (BO->hasOneUse()) {
2672  if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2673  // For the xor case, we can xor two constants together, eliminating
2674  // the explicit xor.
2675  return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2676  } else if (C.isNullValue()) {
2677  // Replace ((xor A, B) != 0) with (A != B)
2678  return new ICmpInst(Pred, BOp0, BOp1);
2679  }
2680  }
2681  break;
2682  case Instruction::Sub:
2683  if (BO->hasOneUse()) {
2684  const APInt *BOC;
2685  if (match(BOp0, m_APInt(BOC))) {
2686  // Replace ((sub BOC, B) != C) with (B != BOC-C).
2687  Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
2688  return new ICmpInst(Pred, BOp1, SubC);
2689  } else if (C.isNullValue()) {
2690  // Replace ((sub A, B) != 0) with (A != B).
2691  return new ICmpInst(Pred, BOp0, BOp1);
2692  }
2693  }
2694  break;
2695  case Instruction::Or: {
2696  const APInt *BOC;
2697  if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2698  // Comparing if all bits outside of a constant mask are set?
2699  // Replace (X | C) == -1 with (X & ~C) == ~C.
2700  // This removes the -1 constant.
2701  Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2702  Value *And = Builder.CreateAnd(BOp0, NotBOC);
2703  return new ICmpInst(Pred, And, NotBOC);
2704  }
2705  break;
2706  }
2707  case Instruction::And: {
2708  const APInt *BOC;
2709  if (match(BOp1, m_APInt(BOC))) {
2710  // If we have ((X & C) == C), turn it into ((X & C) != 0).
2711  if (C == *BOC && C.isPowerOf2())
2712  return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2713  BO, Constant::getNullValue(RHS->getType()));
2714 
2715  // Don't perform the following transforms if the AND has multiple uses
2716  if (!BO->hasOneUse())
2717  break;
2718 
2719  // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
2720  if (BOC->isSignMask()) {
2721  Constant *Zero = Constant::getNullValue(BOp0->getType());
2722  auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2723  return new ICmpInst(NewPred, BOp0, Zero);
2724  }
2725 
2726  // ((X & ~7) == 0) --> X < 8
2727  if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) {
2728  Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
2729  auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2730  return new ICmpInst(NewPred, BOp0, NegBOC);
2731  }
2732  }
2733  break;
2734  }
2735  case Instruction::Mul:
2736  if (C.isNullValue() && BO->hasNoSignedWrap()) {
2737  const APInt *BOC;
2738  if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2739  // The trivial case (mul X, 0) is handled by InstSimplify.
2740  // General case : (mul X, C) != 0 iff X != 0
2741  // (mul X, C) == 0 iff X == 0
2742  return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
2743  }
2744  }
2745  break;
2746  case Instruction::UDiv:
2747  if (C.isNullValue()) {
2748  // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2749  auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2750  return new ICmpInst(NewPred, BOp1, BOp0);
2751  }
2752  break;
2753  default:
2754  break;
2755  }
2756  return nullptr;
2757 }
2758 
2759 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2760 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2761  const APInt &C) {
2763  if (!II || !Cmp.isEquality())
2764  return nullptr;
2765 
2766  // Handle icmp {eq|ne} <intrinsic>, Constant.
2767  Type *Ty = II->getType();
2768  unsigned BitWidth = C.getBitWidth();
2769  switch (II->getIntrinsicID()) {
2770  case Intrinsic::bswap:
2771  Worklist.Add(II);
2772  Cmp.setOperand(0, II->getArgOperand(0));
2773  Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap()));
2774  return &Cmp;
2775 
2776  case Intrinsic::ctlz:
2777  case Intrinsic::cttz: {
2778  // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
2779  if (C == BitWidth) {
2780  Worklist.Add(II);
2781  Cmp.setOperand(0, II->getArgOperand(0));
2783  return &Cmp;
2784  }
2785 
2786  // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
2787  // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
2788  // Limit to one use to ensure we don't increase instruction count.
2789  unsigned Num = C.getLimitedValue(BitWidth);
2790  if (Num != BitWidth && II->hasOneUse()) {
2791  bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
2792  APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
2793  : APInt::getHighBitsSet(BitWidth, Num + 1);
2794  APInt Mask2 = IsTrailing
2795  ? APInt::getOneBitSet(BitWidth, Num)
2796  : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
2797  Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1));
2798  Cmp.setOperand(1, ConstantInt::get(Ty, Mask2));
2799  Worklist.Add(II);
2800  return &Cmp;
2801  }
2802  break;
2803  }
2804 
2805  case Intrinsic::ctpop: {
2806  // popcount(A) == 0 -> A == 0 and likewise for !=
2807  // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
2808  bool IsZero = C.isNullValue();
2809  if (IsZero || C == BitWidth) {
2810  Worklist.Add(II);
2811  Cmp.setOperand(0, II->getArgOperand(0));
2812  auto *NewOp =
2814  Cmp.setOperand(1, NewOp);
2815  return &Cmp;
2816  }
2817  break;
2818  }
2819  default:
2820  break;
2821  }
2822 
2823  return nullptr;
2824 }
2825 
2826 /// Handle icmp with constant (but not simple integer constant) RHS.
2827 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2828  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2829  Constant *RHSC = dyn_cast<Constant>(Op1);
2830  Instruction *LHSI = dyn_cast<Instruction>(Op0);
2831  if (!RHSC || !LHSI)
2832  return nullptr;
2833 
2834  switch (LHSI->getOpcode()) {
2835  case Instruction::GetElementPtr:
2836  // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2837  if (RHSC->isNullValue() &&
2838  cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2839  return new ICmpInst(
2840  I.getPredicate(), LHSI->getOperand(0),
2841  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2842  break;
2843  case Instruction::PHI:
2844  // Only fold icmp into the PHI if the phi and icmp are in the same
2845  // block. If in the same block, we're encouraging jump threading. If
2846  // not, we are just pessimizing the code by making an i1 phi.
2847  if (LHSI->getParent() == I.getParent())
2848  if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
2849  return NV;
2850  break;
2851  case Instruction::Select: {
2852  // If either operand of the select is a constant, we can fold the
2853  // comparison into the select arms, which will cause one to be
2854  // constant folded and the select turned into a bitwise or.
2855  Value *Op1 = nullptr, *Op2 = nullptr;
2856  ConstantInt *CI = nullptr;
2857  if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2858  Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2859  CI = dyn_cast<ConstantInt>(Op1);
2860  }
2861  if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2862  Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2863  CI = dyn_cast<ConstantInt>(Op2);
2864  }
2865 
2866  // We only want to perform this transformation if it will not lead to
2867  // additional code. This is true if either both sides of the select
2868  // fold to a constant (in which case the icmp is replaced with a select
2869  // which will usually simplify) or this is the only user of the
2870  // select (in which case we are trading a select+icmp for a simpler
2871  // select+icmp) or all uses of the select can be replaced based on
2872  // dominance information ("Global cases").
2873  bool Transform = false;
2874  if (Op1 && Op2)
2875  Transform = true;
2876  else if (Op1 || Op2) {
2877  // Local case
2878  if (LHSI->hasOneUse())
2879  Transform = true;
2880  // Global cases
2881  else if (CI && !CI->isZero())
2882  // When Op1 is constant try replacing select with second operand.
2883  // Otherwise Op2 is constant and try replacing select with first
2884  // operand.
2885  Transform =
2886  replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
2887  }
2888  if (Transform) {
2889  if (!Op1)
2890  Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
2891  I.getName());
2892  if (!Op2)
2893  Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
2894  I.getName());
2895  return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2896  }
2897  break;
2898  }
2899  case Instruction::IntToPtr:
2900  // icmp pred inttoptr(X), null -> icmp pred X, 0
2901  if (RHSC->isNullValue() &&
2902  DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
2903  return new ICmpInst(
2904  I.getPredicate(), LHSI->getOperand(0),
2905  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2906  break;
2907 
2908  case Instruction::Load:
2909  // Try to optimize things like "A[i] > 4" to index computations.
2910  if (GetElementPtrInst *GEP =
2911  dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2912  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2913  if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2914  !cast<LoadInst>(LHSI)->isVolatile())
2915  if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2916  return Res;
2917  }
2918  break;
2919  }
2920 
2921  return nullptr;
2922 }
2923 
2924 /// Some comparisons can be simplified.
2925 /// In this case, we are looking for comparisons that look like
2926 /// a check for a lossy truncation.
2927 /// Folds:
2928 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
2929 /// Where Mask is some pattern that produces all-ones in low bits:
2930 /// (-1 >> y)
2931 /// ((-1 << y) >> y) <- non-canonical, has extra uses
2932 /// ~(-1 << y)
2933 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
2934 /// The Mask can be a constant, too.
2935 /// For some predicates, the operands are commutative.
2936 /// For others, x can only be on a specific side.
2938  InstCombiner::BuilderTy &Builder) {
2939  ICmpInst::Predicate SrcPred;
2940  Value *X, *M, *Y;
2941  auto m_VariableMask = m_CombineOr(
2943  m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
2945  m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
2946  auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
2947  if (!match(&I, m_c_ICmp(SrcPred,
2948  m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
2949  m_Deferred(X))))
2950  return nullptr;
2951 
2952  ICmpInst::Predicate DstPred;
2953  switch (SrcPred) {
2954  case ICmpInst::Predicate::ICMP_EQ:
2955  // x & (-1 >> y) == x -> x u<= (-1 >> y)
2956  DstPred = ICmpInst::Predicate::ICMP_ULE;
2957  break;
2958  case ICmpInst::Predicate::ICMP_NE:
2959  // x & (-1 >> y) != x -> x u> (-1 >> y)
2960  DstPred = ICmpInst::Predicate::ICMP_UGT;
2961  break;
2962  case ICmpInst::Predicate::ICMP_UGT:
2963  // x u> x & (-1 >> y) -> x u> (-1 >> y)
2964  assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
2965  DstPred = ICmpInst::Predicate::ICMP_UGT;
2966  break;
2967  case ICmpInst::Predicate::ICMP_UGE:
2968  // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
2969  assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
2970  DstPred = ICmpInst::Predicate::ICMP_ULE;
2971  break;
2972  case ICmpInst::Predicate::ICMP_ULT:
2973  // x & (-1 >> y) u< x -> x u> (-1 >> y)
2974  assert(X == I.getOperand(1) && "instsimplify took care of commut. variant");
2975  DstPred = ICmpInst::Predicate::ICMP_UGT;
2976  break;
2977  case ICmpInst::Predicate::ICMP_ULE:
2978  // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
2979  assert(X == I.getOperand(0) && "instsimplify took care of commut. variant");
2980  DstPred = ICmpInst::Predicate::ICMP_ULE;
2981  break;
2982  case ICmpInst::Predicate::ICMP_SGT:
2983  // x s> x & (-1 >> y) -> x s> (-1 >> y)
2984  if (X != I.getOperand(0)) // X must be on LHS of comparison!
2985  return nullptr; // Ignore the other case.
2986  DstPred = ICmpInst::Predicate::ICMP_SGT;
2987  break;
2988  case ICmpInst::Predicate::ICMP_SGE:
2989  // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
2990  if (X != I.getOperand(1)) // X must be on RHS of comparison!
2991  return nullptr; // Ignore the other case.
2992  if (!match(M, m_Constant())) // Can not do this fold with non-constant.
2993  return nullptr;
2994  if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
2995  return nullptr;
2996  DstPred = ICmpInst::Predicate::ICMP_SLE;
2997  break;
2998  case ICmpInst::Predicate::ICMP_SLT:
2999  // x & (-1 >> y) s< x -> x s> (-1 >> y)
3000  if (X != I.getOperand(1)) // X must be on RHS of comparison!
3001  return nullptr; // Ignore the other case.
3002  if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3003  return nullptr;
3004  if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3005  return nullptr;
3006  DstPred = ICmpInst::Predicate::ICMP_SGT;
3007  break;
3008  case ICmpInst::Predicate::ICMP_SLE:
3009  // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3010  if (X != I.getOperand(0)) // X must be on LHS of comparison!
3011  return nullptr; // Ignore the other case.
3012  DstPred = ICmpInst::Predicate::ICMP_SLE;
3013  break;
3014  default:
3015  llvm_unreachable("All possible folds are handled.");
3016  }
3017 
3018  return Builder.CreateICmp(DstPred, X, M);
3019 }
3020 
3021 /// Some comparisons can be simplified.
3022 /// In this case, we are looking for comparisons that look like
3023 /// a check for a lossy signed truncation.
3024 /// Folds: (MaskedBits is a constant.)
3025 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3026 /// Into:
3027 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3028 /// Where KeptBits = bitwidth(%x) - MaskedBits
3029 static Value *
3031  InstCombiner::BuilderTy &Builder) {
3032  ICmpInst::Predicate SrcPred;
3033  Value *X;
3034  const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3035  // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3036  if (!match(&I, m_c_ICmp(SrcPred,
3037  m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3038  m_APInt(C1))),
3039  m_Deferred(X))))
3040  return nullptr;
3041 
3042  // Potential handling of non-splats: for each element:
3043  // * if both are undef, replace with constant 0.
3044  // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3045  // * if both are not undef, and are different, bailout.
3046  // * else, only one is undef, then pick the non-undef one.
3047 
3048  // The shift amount must be equal.
3049  if (*C0 != *C1)
3050  return nullptr;
3051  const APInt &MaskedBits = *C0;
3052  assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3053 
3054  ICmpInst::Predicate DstPred;
3055  switch (SrcPred) {
3056  case ICmpInst::Predicate::ICMP_EQ:
3057  // ((%x << MaskedBits) a>> MaskedBits) == %x
3058  // =>
3059  // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3060  DstPred = ICmpInst::Predicate::ICMP_ULT;
3061  break;
3062  case ICmpInst::Predicate::ICMP_NE:
3063  // ((%x << MaskedBits) a>> MaskedBits) != %x
3064  // =>
3065  // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3066  DstPred = ICmpInst::Predicate::ICMP_UGE;
3067  break;
3068  // FIXME: are more folds possible?
3069  default:
3070  return nullptr;
3071  }
3072 
3073  auto *XType = X->getType();
3074  const unsigned XBitWidth = XType->getScalarSizeInBits();
3075  const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3076  assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3077 
3078  // KeptBits = bitwidth(%x) - MaskedBits
3079  const APInt KeptBits = BitWidth - MaskedBits;
3080  assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3081  // ICmpCst = (1 << KeptBits)
3082  const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3083  assert(ICmpCst.isPowerOf2());
3084  // AddCst = (1 << (KeptBits-1))
3085  const APInt AddCst = ICmpCst.lshr(1);
3086  assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3087 
3088  // T0 = add %x, AddCst
3089  Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3090  // T1 = T0 DstPred ICmpCst
3091  Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3092 
3093  return T1;
3094 }
3095 
3096 /// Try to fold icmp (binop), X or icmp X, (binop).
3097 /// TODO: A large part of this logic is duplicated in InstSimplify's
3098 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3099 /// duplication.
3100 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
3101  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3102 
3103  // Special logic for binary operators.
3104  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3105  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3106  if (!BO0 && !BO1)
3107  return nullptr;
3108 
3109  const CmpInst::Predicate Pred = I.getPredicate();
3110  Value *X;
3111 
3112  // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3113  // (Op1 + X) <u Op1 --> ~Op1 <u X
3114  // Op0 >u (Op0 + X) --> X >u ~Op0
3115  if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3116  Pred == ICmpInst::ICMP_ULT)
3117  return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3118  if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3119  Pred == ICmpInst::ICMP_UGT)
3120  return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3121 
3122  bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3123  if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3124  NoOp0WrapProblem =
3125  ICmpInst::isEquality(Pred) ||
3126  (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3127  (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3128  if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3129  NoOp1WrapProblem =
3130  ICmpInst::isEquality(Pred) ||
3131  (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3132  (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3133 
3134  // Analyze the case when either Op0 or Op1 is an add instruction.
3135  // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3136  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3137  if (BO0 && BO0->getOpcode() == Instruction::Add) {
3138  A = BO0->getOperand(0);
3139  B = BO0->getOperand(1);
3140  }
3141  if (BO1 && BO1->getOpcode() == Instruction::Add) {
3142  C = BO1->getOperand(0);
3143  D = BO1->getOperand(1);
3144  }
3145 
3146  // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3147  if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3148  return new ICmpInst(Pred, A == Op1 ? B : A,
3149  Constant::getNullValue(Op1->getType()));
3150 
3151  // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3152  if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3153  return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3154  C == Op0 ? D : C);
3155 
3156  // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3157  if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3158  NoOp1WrapProblem &&
3159  // Try not to increase register pressure.
3160  BO0->hasOneUse() && BO1->hasOneUse()) {
3161  // Determine Y and Z in the form icmp (X+Y), (X+Z).
3162  Value *Y, *Z;
3163  if (A == C) {
3164  // C + B == C + D -> B == D
3165  Y = B;
3166  Z = D;
3167  } else if (A == D) {
3168  // D + B == C + D -> B == C
3169  Y = B;
3170  Z = C;
3171  } else if (B == C) {
3172  // A + C == C + D -> A == D
3173  Y = A;
3174  Z = D;
3175  } else {
3176  assert(B == D);
3177  // A + D == C + D -> A == C
3178  Y = A;
3179  Z = C;
3180  }
3181  return new ICmpInst(Pred, Y, Z);
3182  }
3183 
3184  // icmp slt (X + -1), Y -> icmp sle X, Y
3185  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3186  match(B, m_AllOnes()))
3187  return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3188 
3189  // icmp sge (X + -1), Y -> icmp sgt X, Y
3190  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3191  match(B, m_AllOnes()))
3192  return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3193 
3194  // icmp sle (X + 1), Y -> icmp slt X, Y
3195  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3196  return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3197 
3198  // icmp sgt (X + 1), Y -> icmp sge X, Y
3199  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3200  return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3201 
3202  // icmp sgt X, (Y + -1) -> icmp sge X, Y
3203  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3204  match(D, m_AllOnes()))
3205  return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3206 
3207  // icmp sle X, (Y + -1) -> icmp slt X, Y
3208  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3209  match(D, m_AllOnes()))
3210  return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3211 
3212  // icmp sge X, (Y + 1) -> icmp sgt X, Y
3213  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3214  return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3215 
3216  // icmp slt X, (Y + 1) -> icmp sle X, Y
3217  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3218  return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3219 
3220  // TODO: The subtraction-related identities shown below also hold, but
3221  // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3222  // wouldn't happen even if they were implemented.
3223  //
3224  // icmp ult (X - 1), Y -> icmp ule X, Y
3225  // icmp uge (X - 1), Y -> icmp ugt X, Y
3226  // icmp ugt X, (Y - 1) -> icmp uge X, Y
3227  // icmp ule X, (Y - 1) -> icmp ult X, Y
3228 
3229  // icmp ule (X + 1), Y -> icmp ult X, Y
3230  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3231  return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3232 
3233  // icmp ugt (X + 1), Y -> icmp uge X, Y
3234  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3235  return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3236 
3237  // icmp uge X, (Y + 1) -> icmp ugt X, Y
3238  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3239  return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3240 
3241  // icmp ult X, (Y + 1) -> icmp ule X, Y
3242  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3243  return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3244 
3245  // if C1 has greater magnitude than C2:
3246  // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3247  // s.t. C3 = C1 - C2
3248  //
3249  // if C2 has greater magnitude than C1:
3250  // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3251  // s.t. C3 = C2 - C1
3252  if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3253  (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3254  if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3255  if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3256  const APInt &AP1 = C1->getValue();
3257  const APInt &AP2 = C2->getValue();
3258  if (AP1.isNegative() == AP2.isNegative()) {
3259  APInt AP1Abs = C1->getValue().abs();
3260  APInt AP2Abs = C2->getValue().abs();
3261  if (AP1Abs.uge(AP2Abs)) {
3262  ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3263  Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3264  return new ICmpInst(Pred, NewAdd, C);
3265  } else {
3266  ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3267  Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3268  return new ICmpInst(Pred, A, NewAdd);
3269  }
3270  }
3271  }
3272 
3273  // Analyze the case when either Op0 or Op1 is a sub instruction.
3274  // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3275  A = nullptr;
3276  B = nullptr;
3277  C = nullptr;
3278  D = nullptr;
3279  if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3280  A = BO0->getOperand(0);
3281  B = BO0->getOperand(1);
3282  }
3283  if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3284  C = BO1->getOperand(0);
3285  D = BO1->getOperand(1);
3286  }
3287 
3288  // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3289  if (A == Op1 && NoOp0WrapProblem)
3290  return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3291  // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3292  if (C == Op0 && NoOp1WrapProblem)
3293  return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3294 
3295  // (A - B) >u A --> A <u B
3296  if (A == Op1 && Pred == ICmpInst::ICMP_UGT)
3297  return new ICmpInst(ICmpInst::ICMP_ULT, A, B);
3298  // C <u (C - D) --> C <u D
3299  if (C == Op0 && Pred == ICmpInst::ICMP_ULT)
3300  return new ICmpInst(ICmpInst::ICMP_ULT, C, D);
3301 
3302  // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3303  if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3304  // Try not to increase register pressure.
3305  BO0->hasOneUse() && BO1->hasOneUse())
3306  return new ICmpInst(Pred, A, C);
3307  // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3308  if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3309  // Try not to increase register pressure.
3310  BO0->hasOneUse() && BO1->hasOneUse())
3311  return new ICmpInst(Pred, D, B);
3312 
3313  // icmp (0-X) < cst --> x > -cst
3314  if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3315  Value *X;
3316  if (match(BO0, m_Neg(m_Value(X))))
3317  if (Constant *RHSC = dyn_cast<Constant>(Op1))
3318  if (RHSC->isNotMinSignedValue())
3319  return new ICmpInst(I.getSwappedPredicate(), X,
3320  ConstantExpr::getNeg(RHSC));
3321  }
3322 
3323  BinaryOperator *SRem = nullptr;
3324  // icmp (srem X, Y), Y
3325  if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3326  SRem = BO0;
3327  // icmp Y, (srem X, Y)
3328  else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3329  Op0 == BO1->getOperand(1))
3330  SRem = BO1;
3331  if (SRem) {
3332  // We don't check hasOneUse to avoid increasing register pressure because
3333  // the value we use is the same value this instruction was already using.
3334  switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3335  default:
3336  break;
3337  case ICmpInst::ICMP_EQ:
3338  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3339  case ICmpInst::ICMP_NE:
3340  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3341  case ICmpInst::ICMP_SGT:
3342  case ICmpInst::ICMP_SGE:
3343  return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3345  case ICmpInst::ICMP_SLT:
3346  case ICmpInst::ICMP_SLE:
3347  return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3348  Constant::getNullValue(SRem->getType()));
3349  }
3350  }
3351 
3352  if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3353  BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3354  switch (BO0->getOpcode()) {
3355  default:
3356  break;
3357  case Instruction::Add:
3358  case Instruction::Sub:
3359  case Instruction::Xor: {
3360  if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3361  return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3362 
3363  const APInt *C;
3364  if (match(BO0->getOperand(1), m_APInt(C))) {
3365  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3366  if (C->isSignMask()) {
3367  ICmpInst::Predicate NewPred =
3369  return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3370  }
3371 
3372  // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3373  if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3374  ICmpInst::Predicate NewPred =
3376  NewPred = I.getSwappedPredicate(NewPred);
3377  return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3378  }
3379  }
3380  break;
3381  }
3382  case Instruction::Mul: {
3383  if (!I.isEquality())
3384  break;
3385 
3386  const APInt *C;
3387  if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3388  !C->isOneValue()) {
3389  // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3390  // Mask = -1 >> count-trailing-zeros(C).
3391  if (unsigned TZs = C->countTrailingZeros()) {
3393  BO0->getType(),
3394  APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3395  Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3396  Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3397  return new ICmpInst(Pred, And1, And2);
3398  }
3399  // If there are no trailing zeros in the multiplier, just eliminate
3400  // the multiplies (no masking is needed):
3401  // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3402  return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3403  }
3404  break;
3405  }
3406  case Instruction::UDiv:
3407  case Instruction::LShr:
3408  if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3409  break;
3410  return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3411 
3412  case Instruction::SDiv:
3413  if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3414  break;
3415  return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3416 
3417  case Instruction::AShr:
3418  if (!BO0->isExact() || !BO1->isExact())
3419  break;
3420  return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3421 
3422  case Instruction::Shl: {
3423  bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3424  bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3425  if (!NUW && !NSW)
3426  break;
3427  if (!NSW && I.isSigned())
3428  break;
3429  return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3430  }
3431  }
3432  }
3433 
3434  if (BO0) {
3435  // Transform A & (L - 1) `ult` L --> L != 0
3436  auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3437  auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3438 
3439  if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3440  auto *Zero = Constant::getNullValue(BO0->getType());
3441  return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3442  }
3443  }
3444 
3445  if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
3446  return replaceInstUsesWith(I, V);
3447 
3448  if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
3449  return replaceInstUsesWith(I, V);
3450 
3451  return nullptr;
3452 }
3453 
3454 /// Fold icmp Pred min|max(X, Y), X.
3456  ICmpInst::Predicate Pred = Cmp.getPredicate();
3457  Value *Op0 = Cmp.getOperand(0);
3458  Value *X = Cmp.getOperand(1);
3459 
3460  // Canonicalize minimum or maximum operand to LHS of the icmp.
3461  if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
3462  match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
3463  match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
3464  match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
3465  std::swap(Op0, X);
3466  Pred = Cmp.getSwappedPredicate();
3467  }
3468 
3469  Value *Y;
3470  if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
3471  // smin(X, Y) == X --> X s<= Y
3472  // smin(X, Y) s>= X --> X s<= Y
3473  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
3474  return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
3475 
3476  // smin(X, Y) != X --> X s> Y
3477  // smin(X, Y) s< X --> X s> Y
3478  if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
3479  return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
3480 
3481  // These cases should be handled in InstSimplify:
3482  // smin(X, Y) s<= X --> true
3483  // smin(X, Y) s> X --> false
3484  return nullptr;
3485  }
3486 
3487  if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
3488  // smax(X, Y) == X --> X s>= Y
3489  // smax(X, Y) s<= X --> X s>= Y
3490  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
3491  return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
3492 
3493  // smax(X, Y) != X --> X s< Y
3494  // smax(X, Y) s> X --> X s< Y
3495  if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
3496  return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
3497 
3498  // These cases should be handled in InstSimplify:
3499  // smax(X, Y) s>= X --> true
3500  // smax(X, Y) s< X --> false
3501  return nullptr;
3502  }
3503 
3504  if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
3505  // umin(X, Y) == X --> X u<= Y
3506  // umin(X, Y) u>= X --> X u<= Y
3507  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
3508  return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
3509 
3510  // umin(X, Y) != X --> X u> Y
3511  // umin(X, Y) u< X --> X u> Y
3512  if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
3513  return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
3514 
3515  // These cases should be handled in InstSimplify:
3516  // umin(X, Y) u<= X --> true
3517  // umin(X, Y) u> X --> false
3518  return nullptr;
3519  }
3520 
3521  if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
3522  // umax(X, Y) == X --> X u>= Y
3523  // umax(X, Y) u<= X --> X u>= Y
3524  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
3525  return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
3526 
3527  // umax(X, Y) != X --> X u< Y
3528  // umax(X, Y) u> X --> X u< Y
3529  if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
3530  return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
3531 
3532  // These cases should be handled in InstSimplify:
3533  // umax(X, Y) u>= X --> true
3534  // umax(X, Y) u< X --> false
3535  return nullptr;
3536  }
3537 
3538  return nullptr;
3539 }
3540 
3541 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3542  if (!I.isEquality())
3543  return nullptr;
3544 
3545  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3546  const CmpInst::Predicate Pred = I.getPredicate();
3547  Value *A, *B, *C, *D;
3548  if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3549  if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
3550  Value *OtherVal = A == Op1 ? B : A;
3551  return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3552  }
3553 
3554  if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3555  // A^c1 == C^c2 --> A == C^(c1^c2)
3556  ConstantInt *C1, *C2;
3557  if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3558  Op1->hasOneUse()) {
3559  Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
3560  Value *Xor = Builder.CreateXor(C, NC);
3561  return new ICmpInst(Pred, A, Xor);
3562  }
3563 
3564  // A^B == A^D -> B == D
3565  if (A == C)
3566  return new ICmpInst(Pred, B, D);
3567  if (A == D)
3568  return new ICmpInst(Pred, B, C);
3569  if (B == C)
3570  return new ICmpInst(Pred, A, D);
3571  if (B == D)
3572  return new ICmpInst(Pred, A, C);
3573  }
3574  }
3575 
3576  if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3577  // A == (A^B) -> B == 0
3578  Value *OtherVal = A == Op0 ? B : A;
3579  return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
3580  }
3581 
3582  // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3583  if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3584  match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3585  Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3586 
3587  if (A == C) {
3588  X = B;
3589  Y = D;
3590  Z = A;
3591  } else if (A == D) {
3592  X = B;
3593  Y = C;
3594  Z = A;
3595  } else if (B == C) {
3596  X = A;
3597  Y = D;
3598  Z = B;
3599  } else if (B == D) {
3600  X = A;
3601  Y = C;
3602  Z = B;
3603  }
3604 
3605  if (X) { // Build (X^Y) & Z
3606  Op1 = Builder.CreateXor(X, Y);
3607  Op1 = Builder.CreateAnd(Op1, Z);
3608  I.setOperand(0, Op1);
3609  I.setOperand(1, Constant::getNullValue(Op1->getType()));
3610  return &I;
3611  }
3612  }
3613 
3614  // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3615  // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3616  ConstantInt *Cst1;
3617  if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3618  match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3619  (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3620  match(Op1, m_ZExt(m_Value(A))))) {
3621  APInt Pow2 = Cst1->getValue() + 1;
3622  if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3623  Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3624  return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
3625  }
3626 
3627  // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3628  // For lshr and ashr pairs.
3629  if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3630  match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3631  (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3632  match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3633  unsigned TypeBits = Cst1->getBitWidth();
3634  unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3635  if (ShAmt < TypeBits && ShAmt != 0) {
3636  ICmpInst::Predicate NewPred =
3638  Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3639  APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3640  return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
3641  }
3642  }
3643 
3644  // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3645  if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3646  match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3647  unsigned TypeBits = Cst1->getBitWidth();
3648  unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3649  if (ShAmt < TypeBits && ShAmt != 0) {
3650  Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
3651  APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3652  Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
3653  I.getName() + ".mask");
3654  return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
3655  }
3656  }
3657 
3658  // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3659  // "icmp (and X, mask), cst"
3660  uint64_t ShAmt = 0;
3661  if (Op0->hasOneUse() &&
3662  match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3663  match(Op1, m_ConstantInt(Cst1)) &&
3664  // Only do this when A has multiple uses. This is most important to do
3665  // when it exposes other optimizations.
3666  !A->hasOneUse()) {
3667  unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3668 
3669  if (ShAmt < ASize) {
3670  APInt MaskV =
3672  MaskV <<= ShAmt;
3673 
3674  APInt CmpV = Cst1->getValue().zext(ASize);
3675  CmpV <<= ShAmt;
3676 
3677  Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
3678  return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
3679  }
3680  }
3681 
3682  // If both operands are byte-swapped or bit-reversed, just compare the
3683  // original values.
3684  // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
3685  // and handle more intrinsics.
3686  if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
3687  (match(Op0, m_BitReverse(m_Value(A))) &&
3688  match(Op1, m_BitReverse(m_Value(B)))))
3689  return new ICmpInst(Pred, A, B);
3690 
3691  return nullptr;
3692 }
3693 
3694 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3695 /// far.
3696 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
3697  const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
3698  Value *LHSCIOp = LHSCI->getOperand(0);
3699  Type *SrcTy = LHSCIOp->getType();
3700  Type *DestTy = LHSCI->getType();
3701  Value *RHSCIOp;
3702 
3703  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
3704  // integer type is the same size as the pointer type.
3705  const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool {
3706  if (isa<VectorType>(SrcTy)) {
3707  SrcTy = cast<VectorType>(SrcTy)->getElementType();
3708  DestTy = cast<VectorType>(DestTy)->getElementType();
3709  }
3710  return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
3711  };
3712  if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3713  CompatibleSizes(SrcTy, DestTy)) {
3714  Value *RHSOp = nullptr;
3715  if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
3716  Value *RHSCIOp = RHSC->getOperand(0);
3717  if (RHSCIOp->getType()->getPointerAddressSpace() ==
3718  LHSCIOp->getType()->getPointerAddressSpace()) {
3719  RHSOp = RHSC->getOperand(0);
3720  // If the pointer types don't match, insert a bitcast.
3721  if (LHSCIOp->getType() != RHSOp->getType())
3722  RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType());
3723  }
3724  } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
3725  RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
3726  }
3727 
3728  if (RHSOp)
3729  return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
3730  }
3731 
3732  // The code below only handles extension cast instructions, so far.
3733  // Enforce this.
3734  if (LHSCI->getOpcode() != Instruction::ZExt &&
3735  LHSCI->getOpcode() != Instruction::SExt)
3736  return nullptr;
3737 
3738  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
3739  bool isSignedCmp = ICmp.isSigned();
3740 
3741  if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
3742  // Not an extension from the same type?
3743  RHSCIOp = CI->getOperand(0);
3744  if (RHSCIOp->getType() != LHSCIOp->getType())
3745  return nullptr;
3746 
3747  // If the signedness of the two casts doesn't agree (i.e. one is a sext
3748  // and the other is a zext), then we can't handle this.
3749  if (CI->getOpcode() != LHSCI->getOpcode())
3750  return nullptr;
3751 
3752  // Deal with equality cases early.
3753  if (ICmp.isEquality())
3754  return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3755 
3756  // A signed comparison of sign extended values simplifies into a
3757  // signed comparison.
3758  if (isSignedCmp && isSignedExt)
3759  return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
3760 
3761  // The other three cases all fold into an unsigned comparison.
3762  return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
3763  }
3764 
3765  // If we aren't dealing with a constant on the RHS, exit early.
3766  auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3767  if (!C)
3768  return nullptr;
3769 
3770  // Compute the constant that would happen if we truncated to SrcTy then
3771  // re-extended to DestTy.
3772  Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
3773  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
3774 
3775  // If the re-extended constant didn't change...
3776  if (Res2 == C) {
3777  // Deal with equality cases early.
3778  if (ICmp.isEquality())
3779  return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3780 
3781  // A signed comparison of sign extended values simplifies into a
3782  // signed comparison.
3783  if (isSignedExt && isSignedCmp)
3784  return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
3785 
3786  // The other three cases all fold into an unsigned comparison.
3787  return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
3788  }
3789 
3790  // The re-extended constant changed, partly changed (in the case of a vector),
3791  // or could not be determined to be equal (in the case of a constant
3792  // expression), so the constant cannot be represented in the shorter type.
3793  // Consequently, we cannot emit a simple comparison.
3794  // All the cases that fold to true or false will have already been handled
3795  // by SimplifyICmpInst, so only deal with the tricky case.
3796 
3797  if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
3798  return nullptr;
3799 
3800  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3801  // should have been folded away previously and not enter in here.
3802 
3803  // We're performing an unsigned comp with a sign extended value.
3804  // This is true if the input is >= 0. [aka >s -1]
3805  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
3806  Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
3807 
3808  // Finally, return the value computed.
3809  if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3810  return replaceInstUsesWith(ICmp, Result);
3811 
3812  assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
3813  return BinaryOperator::CreateNot(Result);
3814 }
3815 
3816 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3817  Value *RHS, Instruction &OrigI,
3818  Value *&Result, Constant *&Overflow) {
3819  if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3820  std::swap(LHS, RHS);
3821 
3822  auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3823  Result = OpResult;
3824  Overflow = OverflowVal;
3825  if (ReuseName)
3826  Result->takeName(&OrigI);
3827  return true;
3828  };
3829 
3830  // If the overflow check was an add followed by a compare, the insertion point
3831  // may be pointing to the compare. We want to insert the new instructions
3832  // before the add in case there are uses of the add between the add and the
3833  // compare.
3834  Builder.SetInsertPoint(&OrigI);
3835 
3836  switch (OCF) {
3837  case OCF_INVALID:
3838  llvm_unreachable("bad overflow check kind!");
3839 
3840  case OCF_UNSIGNED_ADD: {
3841  OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3843  return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(),
3844  true);
3845 
3847  return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true);
3848 
3849  // Fall through uadd into sadd
3851  }
3852  case OCF_SIGNED_ADD: {
3853  // X + 0 -> {X, false}
3854  if (match(RHS, m_Zero()))
3855  return SetResult(LHS, Builder.getFalse(), false);
3856 
3857  // We can strength reduce this signed add into a regular add if we can prove
3858  // that it will never overflow.
3859  if (OCF == OCF_SIGNED_ADD)
3860  if (willNotOverflowSignedAdd(LHS, RHS, OrigI))
3861  return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(),
3862  true);
3863  break;
3864  }
3865 
3866  case OCF_UNSIGNED_SUB:
3867  case OCF_SIGNED_SUB: {
3868  // X - 0 -> {X, false}
3869  if (match(RHS, m_Zero()))
3870  return SetResult(LHS, Builder.getFalse(), false);
3871 
3872  if (OCF == OCF_SIGNED_SUB) {
3873  if (willNotOverflowSignedSub(LHS, RHS, OrigI))
3874  return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(),
3875  true);
3876  } else {
3877  if (willNotOverflowUnsignedSub(LHS, RHS, OrigI))
3878  return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(),
3879  true);
3880  }
3881  break;
3882  }
3883 
3884  case OCF_UNSIGNED_MUL: {
3885  OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
3887  return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(),
3888  true);
3890  return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true);
3892  }
3893  case OCF_SIGNED_MUL:
3894  // X * undef -> undef
3895  if (isa<UndefValue>(RHS))
3896  return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false);
3897 
3898  // X * 0 -> {0, false}
3899  if (match(RHS, m_Zero()))
3900  return SetResult(RHS, Builder.getFalse(), false);
3901 
3902  // X * 1 -> {X, false}
3903  if (match(RHS, m_One()))
3904  return SetResult(LHS, Builder.getFalse(), false);
3905 
3906  if (OCF == OCF_SIGNED_MUL)
3907  if (willNotOverflowSignedMul(LHS, RHS, OrigI))
3908  return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(),
3909  true);
3910  break;
3911  }
3912 
3913  return false;
3914 }
3915 
3916 /// Recognize and process idiom involving test for multiplication
3917 /// overflow.
3918 ///
3919 /// The caller has matched a pattern of the form:
3920 /// I = cmp u (mul(zext A, zext B), V
3921 /// The function checks if this is a test for overflow and if so replaces
3922 /// multiplication with call to 'mul.with.overflow' intrinsic.
3923 ///
3924 /// \param I Compare instruction.
3925 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
3926 /// the compare instruction. Must be of integer type.
3927 /// \param OtherVal The other argument of compare instruction.
3928 /// \returns Instruction which must replace the compare instruction, NULL if no
3929 /// replacement required.
3931  Value *OtherVal, InstCombiner &IC) {
3932  // Don't bother doing this transformation for pointers, don't do it for
3933  // vectors.
3934  if (!isa<IntegerType>(MulVal->getType()))
3935  return nullptr;
3936 
3937  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
3938  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
3939  auto *MulInstr = dyn_cast<Instruction>(MulVal);
3940  if (!MulInstr)
3941  return nullptr;
3942  assert(MulInstr->getOpcode() == Instruction::Mul);
3943 
3944  auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
3945  *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
3946  assert(LHS->getOpcode() == Instruction::ZExt);
3947  assert(RHS->getOpcode() == Instruction::ZExt);
3948  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
3949 
3950  // Calculate type and width of the result produced by mul.with.overflow.
3951  Type *TyA = A->getType(), *TyB = B->getType();
3952  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
3953  WidthB = TyB->getPrimitiveSizeInBits();
3954  unsigned MulWidth;
3955  Type *MulType;
3956  if (WidthB > WidthA) {
3957  MulWidth = WidthB;
3958  MulType = TyB;
3959  } else {
3960  MulWidth = WidthA;
3961  MulType = TyA;
3962  }
3963 
3964  // In order to replace the original mul with a narrower mul.with.overflow,
3965  // all uses must ignore upper bits of the product. The number of used low
3966  // bits must be not greater than the width of mul.with.overflow.
3967  if (MulVal->hasNUsesOrMore(2))
3968  for (User *U : MulVal->users()) {
3969  if (U == &I)
3970  continue;
3971  if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3972  // Check if truncation ignores bits above MulWidth.
3973  unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
3974  if (TruncWidth > MulWidth)
3975  return nullptr;
3976  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3977  // Check if AND ignores bits above MulWidth.
3978  if (BO->getOpcode() != Instruction::And)
3979  return nullptr;
3980  if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
3981  const APInt &CVal = CI->getValue();
3982  if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
3983  return nullptr;
3984  } else {
3985  // In this case we could have the operand of the binary operation
3986  // being defined in another block, and performing the replacement
3987  // could break the dominance relation.
3988  return nullptr;
3989  }
3990  } else {
3991  // Other uses prohibit this transformation.
3992  return nullptr;
3993  }
3994  }
3995 
3996  // Recognize patterns
3997  switch (I.getPredicate()) {
3998  case ICmpInst::ICMP_EQ:
3999  case ICmpInst::ICMP_NE:
4000  // Recognize pattern:
4001  // mulval = mul(zext A, zext B)
4002  // cmp eq/neq mulval, zext trunc mulval
4003  if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4004  if (Zext->hasOneUse()) {
4005  Value *ZextArg = Zext->getOperand(0);
4006  if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4007  if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4008  break; //Recognized
4009  }
4010 
4011  // Recognize pattern:
4012  // mulval = mul(zext A, zext B)
4013  // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4014  ConstantInt *CI;
4015  Value *ValToMask;
4016  if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4017  if (ValToMask != MulVal)
4018  return nullptr;
4019  const APInt &CVal = CI->getValue() + 1;
4020  if (CVal.isPowerOf2()) {
4021  unsigned MaskWidth = CVal.logBase2();
4022  if (MaskWidth == MulWidth)
4023  break; // Recognized
4024  }
4025  }
4026  return nullptr;
4027 
4028  case ICmpInst::ICMP_UGT:
4029  // Recognize pattern:
4030  // mulval = mul(zext A, zext B)
4031  // cmp ugt mulval, max
4032  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4033  APInt MaxVal = APInt::getMaxValue(MulWidth);
4034  MaxVal = MaxVal.zext(CI->getBitWidth());
4035  if (MaxVal.eq(CI->getValue()))
4036  break; // Recognized
4037  }
4038  return nullptr;
4039 
4040  case ICmpInst::ICMP_UGE:
4041  // Recognize pattern:
4042  // mulval = mul(zext A, zext B)
4043  // cmp uge mulval, max+1
4044  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4045  APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4046  if (MaxVal.eq(CI->getValue()))
4047  break; // Recognized
4048  }
4049  return nullptr;
4050 
4051  case ICmpInst::ICMP_ULE:
4052  // Recognize pattern:
4053  // mulval = mul(zext A, zext B)
4054  // cmp ule mulval, max
4055  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4056  APInt MaxVal = APInt::getMaxValue(MulWidth);
4057  MaxVal = MaxVal.zext(CI->getBitWidth());
4058  if (MaxVal.eq(CI->getValue()))
4059  break; // Recognized
4060  }
4061  return nullptr;
4062 
4063  case ICmpInst::ICMP_ULT:
4064  // Recognize pattern:
4065  // mulval = mul(zext A, zext B)
4066  // cmp ule mulval, max + 1
4067  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4068  APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4069  if (MaxVal.eq(CI->getValue()))
4070  break; // Recognized
4071  }
4072  return nullptr;
4073 
4074  default:
4075  return nullptr;
4076  }
4077 
4078  InstCombiner::BuilderTy &Builder = IC.Builder;
4079  Builder.SetInsertPoint(MulInstr);
4080 
4081  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4082  Value *MulA = A, *MulB = B;
4083  if (WidthA < MulWidth)
4084  MulA = Builder.CreateZExt(A, MulType);
4085  if (WidthB < MulWidth)
4086  MulB = Builder.CreateZExt(B, MulType);
4089  CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4090  IC.Worklist.Add(MulInstr);
4091 
4092  // If there are uses of mul result other than the comparison, we know that
4093  // they are truncation or binary AND. Change them to use result of
4094  // mul.with.overflow and adjust properly mask/size.
4095  if (MulVal->hasNUsesOrMore(2)) {
4096  Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4097  for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4098  User *U = *UI++;
4099  if (U == &I || U == OtherVal)
4100  continue;
4101  if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4102  if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4103  IC.replaceInstUsesWith(*TI, Mul);
4104  else
4105  TI->setOperand(0, Mul);
4106  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4107  assert(BO->getOpcode() == Instruction::And);
4108  // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4109  ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4110  APInt ShortMask = CI->getValue().trunc(MulWidth);
4111  Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4112  Instruction *Zext =
4113  cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
4114  IC.Worklist.Add(Zext);
4115  IC.replaceInstUsesWith(*BO, Zext);
4116  } else {
4117  llvm_unreachable("Unexpected Binary operation");
4118  }
4119  IC.Worklist.Add(cast<Instruction>(U));
4120  }
4121  }
4122  if (isa<Instruction>(OtherVal))
4123  IC.Worklist.Add(cast<Instruction>(OtherVal));
4124 
4125  // The original icmp gets replaced with the overflow value, maybe inverted
4126  // depending on predicate.
4127  bool Inverse = false;
4128  switch (I.getPredicate()) {
4129  case ICmpInst::ICMP_NE:
4130  break;
4131  case ICmpInst::ICMP_EQ:
4132  Inverse = true;
4133  break;
4134  case ICmpInst::ICMP_UGT:
4135  case ICmpInst::ICMP_UGE:
4136  if (I.getOperand(0) == MulVal)
4137  break;
4138  Inverse = true;
4139  break;
4140  case ICmpInst::ICMP_ULT:
4141  case ICmpInst::ICMP_ULE:
4142  if (I.getOperand(1) == MulVal)
4143  break;
4144  Inverse = true;
4145  break;
4146  default:
4147  llvm_unreachable("Unexpected predicate");
4148  }
4149  if (Inverse) {
4150  Value *Res = Builder.CreateExtractValue(Call, 1);
4151  return BinaryOperator::CreateNot(Res);
4152  }
4153 
4154  return ExtractValueInst::Create(Call, 1);
4155 }
4156 
4157 /// When performing a comparison against a constant, it is possible that not all
4158 /// the bits in the LHS are demanded. This helper method computes the mask that
4159 /// IS demanded.
4160 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4161  const APInt *RHS;
4162  if (!match(I.getOperand(1), m_APInt(RHS)))
4163  return APInt::getAllOnesValue(BitWidth);
4164 
4165  // If this is a normal comparison, it demands all bits. If it is a sign bit
4166  // comparison, it only demands the sign bit.
4167  bool UnusedBit;
4168  if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4169  return APInt::getSignMask(BitWidth);
4170 
4171  switch (I.getPredicate()) {
4172  // For a UGT comparison, we don't care about any bits that
4173  // correspond to the trailing ones of the comparand. The value of these
4174  // bits doesn't impact the outcome of the comparison, because any value
4175  // greater than the RHS must differ in a bit higher than these due to carry.
4176  case ICmpInst::ICMP_UGT:
4177  return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4178 
4179  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4180  // Any value less than the RHS must differ in a higher bit because of carries.
4181  case ICmpInst::ICMP_ULT:
4182  return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4183 
4184  default:
4185  return APInt::getAllOnesValue(BitWidth);
4186  }
4187 }
4188 
4189 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4190 /// should be swapped.
4191 /// The decision is based on how many times these two operands are reused
4192 /// as subtract operands and their positions in those instructions.
4193 /// The rationale is that several architectures use the same instruction for
4194 /// both subtract and cmp. Thus, it is better if the order of those operands
4195 /// match.
4196 /// \return true if Op0 and Op1 should be swapped.
4197 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4198  // Filter out pointer values as those cannot appear directly in subtract.
4199  // FIXME: we may want to go through inttoptrs or bitcasts.
4200  if (Op0->getType()->isPointerTy())
4201  return false;
4202  // If a subtract already has the same operands as a compare, swapping would be
4203  // bad. If a subtract has the same operands as a compare but in reverse order,
4204  // then swapping is good.
4205  int GoodToSwap = 0;
4206  for (const User *U : Op0->users()) {
4207  if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4208  GoodToSwap++;
4209  else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4210  GoodToSwap--;
4211  }
4212  return GoodToSwap > 0;
4213 }
4214 
4215 /// Check that one use is in the same block as the definition and all
4216 /// other uses are in blocks dominated by a given block.
4217 ///
4218 /// \param DI Definition
4219 /// \param UI Use
4220 /// \param DB Block that must dominate all uses of \p DI outside
4221 /// the parent block
4222 /// \return true when \p UI is the only use of \p DI in the parent block
4223 /// and all other uses of \p DI are in blocks dominated by \p DB.
4224 ///
4226  const Instruction *UI,
4227  const BasicBlock *DB) const {
4228  assert(DI && UI && "Instruction not defined\n");
4229  // Ignore incomplete definitions.
4230  if (!DI->getParent())
4231  return false;
4232  // DI and UI must be in the same block.
4233  if (DI->getParent() != UI->getParent())
4234  return false;
4235  // Protect from self-referencing blocks.
4236  if (DI->getParent() == DB)
4237  return false;
4238  for (const User *U : DI->users()) {
4239  auto *Usr = cast<Instruction>(U);
4240  if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4241  return false;
4242  }
4243  return true;
4244 }
4245 
4246 /// Return true when the instruction sequence within a block is select-cmp-br.
4247 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4248  const BasicBlock *BB = SI->getParent();
4249  if (!BB)
4250  return false;
4251  auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4252  if (!BI || BI->getNumSuccessors() != 2)
4253  return false;
4254  auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4255  if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4256  return false;
4257  return true;
4258 }
4259 
4260 /// True when a select result is replaced by one of its operands
4261 /// in select-icmp sequence. This will eventually result in the elimination
4262 /// of the select.
4263 ///
4264 /// \param SI Select instruction
4265 /// \param Icmp Compare instruction
4266 /// \param SIOpd Operand that replaces the select
4267 ///
4268 /// Notes:
4269 /// - The replacement is global and requires dominator information
4270 /// - The caller is responsible for the actual replacement
4271 ///
4272 /// Example:
4273 ///
4274 /// entry:
4275 /// %4 = select i1 %3, %C* %0, %C* null
4276 /// %5 = icmp eq %C* %4, null
4277 /// br i1 %5, label %9, label %7
4278 /// ...
4279 /// ; <label>:7 ; preds = %entry
4280 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4281 /// ...
4282 ///
4283 /// can be transformed to
4284 ///
4285 /// %5 = icmp eq %C* %0, null
4286 /// %6 = select i1 %3, i1 %5, i1 true
4287 /// br i1 %6, label %9, label %7
4288 /// ...
4289 /// ; <label>:7 ; preds = %entry
4290 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4291 ///
4292 /// Similar when the first operand of the select is a constant or/and
4293 /// the compare is for not equal rather than equal.
4294 ///
4295 /// NOTE: The function is only called when the select and compare constants
4296 /// are equal, the optimization can work only for EQ predicates. This is not a
4297 /// major restriction since a NE compare should be 'normalized' to an equal
4298 /// compare, which usually happens in the combiner and test case
4299 /// select-cmp-br.ll checks for it.
4301  const ICmpInst *Icmp,
4302  const unsigned SIOpd) {
4303  assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4304  if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4305  BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4306  // The check for the single predecessor is not the best that can be
4307  // done. But it protects efficiently against cases like when SI's
4308  // home block has two successors, Succ and Succ1, and Succ1 predecessor
4309  // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4310  // replaced can be reached on either path. So the uniqueness check
4311  // guarantees that the path all uses of SI (outside SI's parent) are on
4312  // is disjoint from all other paths out of SI. But that information
4313  // is more expensive to compute, and the trade-off here is in favor
4314  // of compile-time. It should also be noticed that we check for a single
4315  // predecessor and not only uniqueness. This to handle the situation when
4316  // Succ and Succ1 points to the same basic block.
4317  if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4318  NumSel++;
4319  SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4320  return true;
4321  }
4322  }
4323  return false;
4324 }
4325 
4326 /// Try to fold the comparison based on range information we can get by checking
4327 /// whether bits are known to be zero or one in the inputs.
4328 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4329  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4330  Type *Ty = Op0->getType();
4331  ICmpInst::Predicate Pred = I.getPredicate();
4332 
4333  // Get scalar or pointer size.
4334  unsigned BitWidth = Ty->isIntOrIntVectorTy()
4335  ? Ty->getScalarSizeInBits()
4336  : DL.getIndexTypeSizeInBits(Ty->getScalarType());
4337 
4338  if (!BitWidth)
4339  return nullptr;
4340 
4341  KnownBits Op0Known(BitWidth);
4342  KnownBits Op1Known(BitWidth);
4343 
4344  if (SimplifyDemandedBits(&I, 0,
4345  getDemandedBitsLHSMask(I, BitWidth),
4346  Op0Known, 0))
4347  return &I;
4348 
4349  if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4350  Op1Known, 0))
4351  return &I;
4352 
4353  // Given the known and unknown bits, compute a range that the LHS could be
4354  // in. Compute the Min, Max and RHS values based on the known bits. For the
4355  // EQ and NE we use unsigned values.
4356  APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4357  APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4358  if (I.isSigned()) {
4359  computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4360  computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4361  } else {
4362  computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4363  computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4364  }
4365 
4366  // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4367  // out that the LHS or RHS is a constant. Constant fold this now, so that
4368  // code below can assume that Min != Max.
4369  if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4370  return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4371  if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4372  return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4373 
4374  // Based on the range information we know about the LHS, see if we can
4375  // simplify this comparison. For example, (x&4) < 8 is always true.
4376  switch (Pred) {
4377  default:
4378  llvm_unreachable("Unknown icmp opcode!");
4379  case ICmpInst::ICMP_EQ:
4380  case ICmpInst::ICMP_NE: {
4381  if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4382  return Pred == CmpInst::ICMP_EQ
4383  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4384  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4385  }
4386 
4387  // If all bits are known zero except for one, then we know at most one bit
4388  // is set. If the comparison is against zero, then this is a check to see if
4389  // *that* bit is set.
4390  APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4391  if (Op1Known.isZero()) {
4392  // If the LHS is an AND with the same constant, look through it.
4393  Value *LHS = nullptr;
4394  const APInt *LHSC;
4395  if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4396  *LHSC != Op0KnownZeroInverted)
4397  LHS = Op0;
4398 
4399  Value *X;
4400  if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4401  APInt ValToCheck = Op0KnownZeroInverted;
4402  Type *XTy = X->getType();
4403  if (ValToCheck.isPowerOf2()) {
4404  // ((1 << X) & 8) == 0 -> X != 3
4405  // ((1 << X) & 8) != 0 -> X == 3
4406  auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4407  auto NewPred = ICmpInst::getInversePredicate(Pred);
4408  return new ICmpInst(NewPred, X, CmpC);
4409  } else if ((++ValToCheck).isPowerOf2()) {
4410  // ((1 << X) & 7) == 0 -> X >= 3
4411  // ((1 << X) & 7) != 0 -> X < 3
4412  auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4413  auto NewPred =
4415  return new ICmpInst(NewPred, X, CmpC);
4416  }
4417  }
4418 
4419  // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4420  const APInt *CI;
4421  if (Op0KnownZeroInverted.isOneValue() &&
4422  match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4423  // ((8 >>u X) & 1) == 0 -> X != 3
4424  // ((8 >>u X) & 1) != 0 -> X == 3
4425  unsigned CmpVal = CI->countTrailingZeros();
4426  auto NewPred = ICmpInst::getInversePredicate(Pred);
4427  return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4428  }
4429  }
4430  break;
4431  }
4432  case ICmpInst::ICMP_ULT: {
4433  if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4434  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4435  if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
4436  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4437  if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
4438  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4439 
4440  const APInt *CmpC;
4441  if (match(Op1, m_APInt(CmpC))) {
4442  // A <u C -> A == C-1 if min(A)+1 == C
4443  if (*CmpC == Op0Min + 1)
4444  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4445  ConstantInt::get(Op1->getType(), *CmpC - 1));
4446  // X <u C --> X == 0, if the number of zero bits in the bottom of X
4447  // exceeds the log2 of C.
4448  if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
4449  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4450  Constant::getNullValue(Op1->getType()));
4451  }
4452  break;
4453  }
4454  case ICmpInst::ICMP_UGT: {
4455  if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
4456  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4457  if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
4458  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4459  if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
4460  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4461 
4462  const APInt *CmpC;
4463  if (match(Op1, m_APInt(CmpC))) {
4464  // A >u C -> A == C+1 if max(a)-1 == C
4465  if (*CmpC == Op0Max - 1)
4466  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4467  ConstantInt::get(Op1->getType(), *CmpC + 1));
4468  // X >u C --> X != 0, if the number of zero bits in the bottom of X
4469  // exceeds the log2 of C.
4470  if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
4471  return new ICmpInst(ICmpInst::ICMP_NE, Op0,
4472  Constant::getNullValue(Op1->getType()));
4473  }
4474  break;
4475  }
4476  case ICmpInst::ICMP_SLT: {
4477  if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
4478  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4479  if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
4480  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4481  if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
4482  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4483  const APInt *CmpC;
4484  if (match(Op1, m_APInt(CmpC))) {
4485  if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
4486  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4487  ConstantInt::get(Op1->getType(), *CmpC - 1));
4488  }
4489  break;
4490  }
4491  case ICmpInst::ICMP_SGT: {
4492  if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
4493  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4494  if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
4495  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4496  if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
4497  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4498  const APInt *CmpC;
4499  if (match(Op1, m_APInt(CmpC))) {
4500  if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
4501  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
4502  ConstantInt::get(Op1->getType(), *CmpC + 1));
4503  }
4504  break;
4505  }
4506  case ICmpInst::ICMP_SGE:
4507  assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
4508  if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
4509  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4510  if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
4511  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4512  if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
4513  return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4514  break;
4515  case ICmpInst::ICMP_SLE:
4516  assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4517  if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4518  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4519  if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4520  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4521  if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
4522  return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4523  break;
4524  case ICmpInst::ICMP_UGE:
4525  assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4526  if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4527  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4528  if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4529  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4530  if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
4531  return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4532  break;
4533  case ICmpInst::ICMP_ULE:
4534  assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4535  if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4536  return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4537  if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4538  return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4539  if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
4540  return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4541  break;
4542  }
4543 
4544  // Turn a signed comparison into an unsigned one if both operands are known to
4545  // have the same sign.
4546  if (I.isSigned() &&
4547  ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
4548  (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
4549  return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4550 
4551  return nullptr;
4552 }
4553 
4554 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
4555 /// it into the appropriate icmp lt or icmp gt instruction. This transform
4556 /// allows them to be folded in visitICmpInst.
4558  ICmpInst::Predicate Pred = I.getPredicate();
4559  if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4560  Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4561  return nullptr;
4562 
4563  Value *Op0 = I.getOperand(0);
4564  Value *Op1 = I.getOperand(1);
4565  auto *Op1C = dyn_cast<Constant>(Op1);
4566  if (!Op1C)
4567  return nullptr;
4568 
4569  // Check if the constant operand can be safely incremented/decremented without
4570  // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4571  // the edge cases for us, so we just assert on them. For vectors, we must
4572  // handle the edge cases.
4573  Type *Op1Type = Op1->getType();
4574  bool IsSigned = I.isSigned();
4575  bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
4576  auto *CI = dyn_cast<ConstantInt>(Op1C);
4577  if (CI) {
4578  // A <= MAX -> TRUE ; A >= MIN -> TRUE
4579  assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4580  } else if (Op1Type->isVectorTy()) {
4581  // TODO? If the edge cases for vectors were guaranteed to be handled as they
4582  // are for scalar, we could remove the min/max checks. However, to do that,
4583  // we would have to use insertelement/shufflevector to replace edge values.
4584  unsigned NumElts = Op1Type->getVectorNumElements();
4585  for (unsigned i = 0; i != NumElts; ++i) {
4586  Constant *Elt = Op1C->getAggregateElement(i);
4587  if (!Elt)
4588  return nullptr;
4589 
4590  if (isa<UndefValue>(Elt))
4591  continue;
4592 
4593  // Bail out if we can't determine if this constant is min/max or if we
4594  // know that this constant is min/max.
4595  auto *CI = dyn_cast<ConstantInt>(Elt);
4596  if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4597  return nullptr;
4598  }
4599  } else {
4600  // ConstantExpr?
4601  return nullptr;
4602  }
4603 
4604  // Increment or decrement the constant and set the new comparison predicate:
4605  // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
4606  Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
4608  NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4609  return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
4610 }
4611 
4612 /// Integer compare with boolean values can always be turned into bitwise ops.
4614  InstCombiner::BuilderTy &Builder) {
4615  Value *A = I.getOperand(0), *B = I.getOperand(1);
4616  assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
4617 
4618  // A boolean compared to true/false can be simplified to Op0/true/false in
4619  // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
4620  // Cases not handled by InstSimplify are always 'not' of Op0.
4621  if (match(B, m_Zero())) {
4622  switch (I.getPredicate()) {
4623  case CmpInst::ICMP_EQ: // A == 0 -> !A
4624  case CmpInst::ICMP_ULE: // A <=u 0 -> !A
4625  case CmpInst::ICMP_SGE: // A >=s 0 -> !A
4626  return BinaryOperator::CreateNot(A);
4627  default:
4628  llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4629  }
4630  } else if (match(B, m_One())) {
4631  switch (I.getPredicate()) {
4632  case CmpInst::ICMP_NE: // A != 1 -> !A
4633  case CmpInst::ICMP_ULT: // A <u 1 -> !A
4634  case CmpInst::ICMP_SGT: // A >s -1 -> !A
4635  return BinaryOperator::CreateNot(A);
4636  default:
4637  llvm_unreachable("ICmp i1 X, C not simplified as expected.");
4638  }
4639  }
4640 
4641  switch (I.getPredicate()) {
4642  default:
4643  llvm_unreachable("Invalid icmp instruction!");
4644  case ICmpInst::ICMP_EQ:
4645  // icmp eq i1 A, B -> ~(A ^ B)
4646  return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4647 
4648  case ICmpInst::ICMP_NE:
4649  // icmp ne i1 A, B -> A ^ B
4650  return BinaryOperator::CreateXor(A, B);
4651 
4652  case ICmpInst::ICMP_UGT:
4653  // icmp ugt -> icmp ult
4654  std::swap(A, B);
4656  case ICmpInst::ICMP_ULT:
4657  // icmp ult i1 A, B -> ~A & B
4658  return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
4659 
4660  case ICmpInst::ICMP_SGT:
4661  // icmp sgt -> icmp slt
4662  std::swap(A, B);
4664  case ICmpInst::ICMP_SLT:
4665  // icmp slt i1 A, B -> A & ~B
4666  return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
4667 
4668  case ICmpInst::ICMP_UGE:
4669  // icmp uge -> icmp ule
4670  std::swap(A, B);
4672  case ICmpInst::ICMP_ULE:
4673  // icmp ule i1 A, B -> ~A | B
4674  return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
4675 
4676  case ICmpInst::ICMP_SGE:
4677  // icmp sge -> icmp sle
4678  std::swap(A, B);
4680  case ICmpInst::ICMP_SLE:
4681  // icmp sle i1 A, B -> A | ~B
4682  return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
4683  }
4684 }
4685 
4686 // Transform pattern like:
4687 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
4688 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
4689 // Into:
4690 // (X l>> Y) != 0
4691 // (X l>> Y) == 0
4693  InstCombiner::BuilderTy &Builder) {
4694  ICmpInst::Predicate Pred, NewPred;
4695  Value *X, *Y;
4696  if (match(&Cmp,
4697  m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
4698  // We want X to be the icmp's second operand, so swap predicate if it isn't.
4699  if (Cmp.getOperand(0) == X)
4700  Pred = Cmp.getSwappedPredicate();
4701 
4702  switch (Pred) {
4703  case ICmpInst::ICMP_ULE:
4704  NewPred = ICmpInst::ICMP_NE;
4705  break;
4706  case ICmpInst::ICMP_UGT:
4707  NewPred = ICmpInst::ICMP_EQ;
4708  break;
4709  default:
4710  return nullptr;
4711  }
4712  } else if (match(&Cmp, m_c_ICmp(Pred,
4714  m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
4715  m_Add(m_Shl(m_One(), m_Value(Y)),
4716  m_AllOnes()))),
4717  m_Value(X)))) {
4718  // The variant with 'add' is not canonical, (the variant with 'not' is)
4719  // we only get it because it has extra uses, and can't be canonicalized,
4720 
4721  // We want X to be the icmp's second operand, so swap predicate if it isn't.
4722  if (Cmp.getOperand(0) == X)
4723  Pred = Cmp.getSwappedPredicate();
4724 
4725  switch (Pred) {
4726  case ICmpInst::ICMP_ULT:
4727  NewPred = ICmpInst::ICMP_NE;
4728  break;
4729  case ICmpInst::ICMP_UGE:
4730  NewPred = ICmpInst::ICMP_EQ;
4731  break;
4732  default:
4733  return nullptr;
4734  }
4735  } else
4736  return nullptr;
4737 
4738  Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
4739  Constant *Zero = Constant::getNullValue(NewX->getType());
4740  return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
4741 }
4742 
4744  InstCombiner::BuilderTy &Builder) {
4745  // If both arguments of the cmp are shuffles that use the same mask and
4746  // shuffle within a single vector, move the shuffle after the cmp.
4747  Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
4748  Value *V1, *V2;
4749  Constant *M;
4750  if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) &&
4751  match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
4752  V1->getType() == V2->getType() &&
4753  (LHS->hasOneUse() || RHS->hasOneUse())) {
4754  // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
4756  Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2)
4757  : Builder.CreateFCmp(P, V1, V2);
4758  return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
4759  }
4760  return nullptr;
4761 }
4762 
4764  bool Changed = false;
4765  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4766  unsigned Op0Cplxity = getComplexity(Op0);
4767  unsigned Op1Cplxity = getComplexity(Op1);
4768 
4769  /// Orders the operands of the compare so that they are listed from most
4770  /// complex to least complex. This puts constants before unary operators,
4771  /// before binary operators.
4772  if (Op0Cplxity < Op1Cplxity ||
4773  (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
4774  I.swapOperands();
4775  std::swap(Op0, Op1);
4776  Changed = true;
4777  }
4778 
4779  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
4780  SQ.getWithInstruction(&I)))
4781  return replaceInstUsesWith(I, V);
4782 
4783  // Comparing -val or val with non-zero is the same as just comparing val
4784  // ie, abs(val) != 0 -> val != 0
4785  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
4786  Value *Cond, *SelectTrue, *SelectFalse;
4787  if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
4788  m_Value(SelectFalse)))) {
4789  if (Value *V = dyn_castNegVal(SelectTrue)) {
4790  if (V == SelectFalse)
4791  return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4792  }
4793  else if (Value *V = dyn_castNegVal(SelectFalse)) {
4794  if (V == SelectTrue)
4795  return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4796  }
4797  }
4798  }
4799 
4800  if (Op0->getType()->isIntOrIntVectorTy(1))
4801  if (Instruction *Res = canonicalizeICmpBool(I, Builder))
4802  return Res;
4803 
4804  if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
4805  return NewICmp;
4806 
4807  if (Instruction *Res = foldICmpWithConstant(I))
4808  return Res;
4809 
4810  if (Instruction *Res = foldICmpWithDominatingICmp(I))
4811  return Res;
4812 
4813  if (Instruction *Res = foldICmpUsingKnownBits(I))
4814  return Res;
4815 
4816  // Test if the ICmpInst instruction is used exclusively by a select as
4817  // part of a minimum or maximum operation. If so, refrain from doing
4818  // any other folding. This helps out other analyses which understand
4819  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4820  // and CodeGen. And in this case, at least one of the comparison
4821  // operands has at least one user besides the compare (the select),
4822  // which would often largely negate the benefit of folding anyway.
4823  //
4824  // Do the same for the other patterns recognized by matchSelectPattern.
4825  if (I.hasOneUse())
4826  if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
4827  Value *A, *B;
4828  SelectPatternResult SPR = matchSelectPattern(SI, A, B);
4829  if (SPR.Flavor != SPF_UNKNOWN)
4830  return nullptr;
4831  }
4832 
4833  // Do this after checking for min/max to prevent infinite looping.
4834  if (Instruction *Res = foldICmpWithZero(I))
4835  return Res;
4836 
4837  // FIXME: We only do this after checking for min/max to prevent infinite
4838  // looping caused by a reverse canonicalization of these patterns for min/max.
4839  // FIXME: The organization of folds is a mess. These would naturally go into
4840  // canonicalizeCmpWithConstant(), but we can't move all of the above folds
4841  // down here after the min/max restriction.
4842  ICmpInst::Predicate Pred = I.getPredicate();
4843  const APInt *C;
4844  if (match(Op1, m_APInt(C))) {
4845  // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
4846  if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
4847  Constant *Zero = Constant::getNullValue(Op0->getType());
4848  return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
4849  }
4850 
4851  // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
4852  if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
4853  Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
4854  return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
4855  }
4856  }
4857 
4858  if (Instruction *Res = foldICmpInstWithConstant(I))
4859  return Res;
4860 
4861  if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4862  return Res;
4863 
4864  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4865  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
4866  if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
4867  return NI;
4868  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
4869  if (Instruction *NI = foldGEPICmp(GEP, Op0,
4871  return NI;
4872 
4873  // Try to optimize equality comparisons against alloca-based pointers.
4874  if (Op0->getType()->isPointerTy() && I.isEquality()) {
4875  assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
4876  if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
4877  if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
4878  return New;
4879  if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
4880  if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
4881  return New;
4882  }
4883 
4884  // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
4885  Value *X;
4886  if (match(Op0, m_BitCast(m_SIToFP(m_Value(X))))) {
4887  // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
4888  // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
4889  // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
4890  // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
4891  if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
4892  Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
4893  match(Op1, m_Zero()))
4894  return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
4895 
4896  // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
4897  if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
4898  return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
4899 
4900  // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
4901  if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
4902  return new ICmpInst(Pred, X, ConstantInt::getAllOnesValue(X->getType()));
4903  }
4904 
4905  // Zero-equality checks are preserved through unsigned floating-point casts:
4906  // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
4907  // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
4908  if (match(Op0, m_BitCast(m_UIToFP(m_Value(X)))))
4909  if (I.isEquality() && match(Op1, m_Zero()))
4910  return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
4911 
4912  // Test to see if the operands of the icmp are casted versions of other
4913  // values. If the ptr->ptr cast can be stripped off both arguments, we do so
4914  // now.
4915  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
4916  if (Op0->getType()->isPointerTy() &&
4917  (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
4918  // We keep moving the cast from the left operand over to the right
4919  // operand, where it can often be eliminated completely.
4920  Op0 = CI->getOperand(0);
4921 
4922  // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
4923  // so eliminate it as well.
4924  if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
4925  Op1 = CI2->getOperand(0);
4926 
4927  // If Op1 is a constant, we can fold the cast into the constant.
4928  if (Op0->getType() != Op1->getType()) {
4929  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
4930  Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
4931  } else {
4932  // Otherwise, cast the RHS right before the icmp
4933  Op1 = Builder.CreateBitCast(Op1, Op0->getType());
4934  }
4935  }
4936  return new ICmpInst(I.getPredicate(), Op0, Op1);
4937  }
4938  }
4939 
4940  if (isa<CastInst>(Op0)) {
4941  // Handle the special case of: icmp (cast bool to X), <cst>
4942  // This comes up when you have code like
4943  // int X = A < B;
4944  // if (X) ...
4945  // For generality, we handle any zero-extension of any operand comparison
4946  // with a constant or another cast from the same type.
4947  if (isa<Constant>(Op1) || isa<CastInst>(Op1))
4948  if (Instruction *R = foldICmpWithCastAndCast(I))
4949  return R;
4950  }
4951 
4952  if (Instruction *Res = foldICmpBinOp(I))
4953  return Res;
4954 
4955  if (Instruction *Res = foldICmpWithMinMax(I))
4956  return Res;
4957 
4958  {
4959  Value *A, *B;
4960  // Transform (A & ~B) == 0 --> (A & B) != 0
4961  // and (A & ~B) != 0 --> (A & B) == 0
4962  // if A is a power of 2.
4963  if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
4964  match(Op1, m_Zero()) &&
4965  isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
4966  return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
4967  Op1);
4968 
4969  // ~X < ~Y --> Y < X
4970  // ~X < C --> X > ~C
4971  if (match(Op0, m_Not(m_Value(A)))) {
4972  if (match(Op1, m_Not(m_Value(B))))
4973  return new ICmpInst(I.getPredicate(), B, A);
4974 
4975  const APInt *C;
4976  if (match(Op1, m_APInt(C)))
4977  return new ICmpInst(I.getSwappedPredicate(), A,
4978  ConstantInt::get(Op1->getType(), ~(*C)));
4979  }
4980 
4981  Instruction *AddI = nullptr;
4982  if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4983  m_Instruction(AddI))) &&
4984  isa<IntegerType>(A->getType())) {
4985  Value *Result;
4986  Constant *Overflow;
4987  if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4988  Overflow)) {
4989  replaceInstUsesWith(*AddI, Result);
4990  return replaceInstUsesWith(I, Overflow);
4991  }
4992  }
4993 
4994  // (zext a) * (zext b) --> llvm.umul.with.overflow.
4995  if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
4996  if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
4997  return R;
4998  }
4999  if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5000  if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5001  return R;
5002  }
5003  }
5004 
5005  if (Instruction *Res = foldICmpEquality(I))
5006  return Res;
5007 
5008  // The 'cmpxchg' instruction returns an aggregate containing the old value and
5009  // an i1 which indicates whether or not we successfully did the swap.
5010  //
5011  // Replace comparisons between the old value and the expected value with the
5012  // indicator that 'cmpxchg' returns.
5013  //
5014  // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5015  // spuriously fail. In those cases, the old value may equal the expected
5016  // value but it is possible for the swap to not occur.
5017  if (I.getPredicate() == ICmpInst::ICMP_EQ)
5018  if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5019  if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5020  if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5021  !ACXI->isWeak())
5022  return ExtractValueInst::Create(ACXI, 1);
5023 
5024  {
5025  Value *X;
5026  const APInt *C;
5027  // icmp X+Cst, X
5028  if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5029  return foldICmpAddOpConst(X, *C, I.getPredicate());
5030 
5031  // icmp X, X+Cst
5032  if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5033  return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5034  }
5035 
5036  if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5037  return Res;
5038 
5039  if (I.getType()->isVectorTy())
5040  if (Instruction *Res = foldVectorCmp(I, Builder))
5041  return Res;
5042 
5043  return Changed ? &I : nullptr;
5044 }
5045 
5046 /// Fold fcmp ([us]itofp x, cst) if possible.
5047 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5048  Constant *RHSC) {
5049  if (!isa<ConstantFP>(RHSC)) return nullptr;
5050  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5051 
5052  // Get the width of the mantissa. We don't want to hack on conversions that
5053  // might lose information from the integer, e.g. "i64 -> float"
5054  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5055  if (MantissaWidth == -1) return nullptr; // Unknown.
5056 
5057  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5058 
5059  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5060 
5061  if (I.isEquality()) {
5063  bool IsExact = false;
5064  APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5065  RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5066 
5067  // If the floating point constant isn't an integer value, we know if we will
5068  // ever compare equal / not equal to it.
5069  if (!IsExact) {
5070  // TODO: Can never be -0.0 and other non-representable values
5071  APFloat RHSRoundInt(RHS);
5073  if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5074  if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5075  return replaceInstUsesWith(I, Builder.getFalse());
5076 
5078  return replaceInstUsesWith(I, Builder.getTrue());
5079  }
5080  }
5081 
5082  // TODO: If the constant is exactly representable, is it always OK to do
5083  // equality compares as integer?
5084  }
5085 
5086  // Check to see that the input is converted from an integer type that is small
5087  // enough that preserves all bits. TODO: check here for "known" sign bits.
5088  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5089  unsigned InputSize = IntTy->getScalarSizeInBits();
5090 
5091  // Following test does NOT adjust InputSize downwards for signed inputs,
5092  // because the most negative value still requires all the mantissa bits
5093  // to distinguish it from one less than that value.
5094  if ((int)InputSize > MantissaWidth) {
5095  // Conversion would lose accuracy. Check if loss can impact comparison.
5096  int Exp = ilogb(RHS);
5097  if (Exp == APFloat::IEK_Inf) {
5098  int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5099  if (MaxExponent < (int)InputSize - !LHSUnsigned)
5100  // Conversion could create infinity.
5101  return nullptr;
5102  } else {
5103  // Note that if RHS is zero or NaN, then Exp is negative
5104  // and first condition is trivially false.
5105  if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5106  // Conversion could affect comparison.
5107  return nullptr;
5108  }
5109  }
5110 
5111  // Otherwise, we can potentially simplify the comparison. We know that it
5112  // will always come through as an integer value and we know the constant is
5113  // not a NAN (it would have been previously simplified).
5114  assert(!RHS.isNaN() && "NaN comparison not already folded!");
5115 
5116  ICmpInst::Predicate Pred;
5117  switch (I.getPredicate()) {
5118  default: llvm_unreachable("Unexpected predicate!");
5119  case FCmpInst::FCMP_UEQ:
5120  case FCmpInst::FCMP_OEQ:
5121  Pred = ICmpInst::ICMP_EQ;
5122  break;
5123  case FCmpInst::FCMP_UGT:
5124  case FCmpInst::FCMP_OGT:
5125  Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5126  break;
5127  case FCmpInst::FCMP_UGE:
5128  case FCmpInst::FCMP_OGE:
5129  Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5130  break;
5131  case FCmpInst::FCMP_ULT:
5132  case FCmpInst::FCMP_OLT:
5133  Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5134  break;
5135  case FCmpInst::FCMP_ULE:
5136  case FCmpInst::FCMP_OLE:
5137  Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5138  break;
5139  case FCmpInst::FCMP_UNE:
5140  case FCmpInst::FCMP_ONE:
5141  Pred = ICmpInst::ICMP_NE;
5142  break;
5143  case FCmpInst::FCMP_ORD:
5144  return replaceInstUsesWith(I, Builder.getTrue());
5145  case FCmpInst::FCMP_UNO:
5146  return replaceInstUsesWith(I, Builder.getFalse());
5147  }
5148 
5149  // Now we know that the APFloat is a normal number, zero or inf.
5150 
5151  // See if the FP constant is too large for the integer. For example,
5152  // comparing an i8 to 300.0.
5153  unsigned IntWidth = IntTy->getScalarSizeInBits();
5154 
5155  if (!LHSUnsigned) {
5156  // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5157  // and large values.
5158  APFloat SMax(RHS.getSemantics());
5159  SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5161  if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5162  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5163  Pred == ICmpInst::ICMP_SLE)
5164  return replaceInstUsesWith(I, Builder.getTrue());
5165  return replaceInstUsesWith(I, Builder.getFalse());
5166  }
5167  } else {
5168  // If the RHS value is > UnsignedMax, fold the comparison. This handles
5169  // +INF and large values.
5170  APFloat UMax(RHS.getSemantics());
5171  UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5173  if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5174  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5175  Pred == ICmpInst::ICMP_ULE)
5176  return replaceInstUsesWith(I, Builder.getTrue());
5177  return replaceInstUsesWith(I, Builder.getFalse());
5178  }
5179  }
5180 
5181  if (!LHSUnsigned) {
5182  // See if the RHS value is < SignedMin.
5183  APFloat SMin(RHS.getSemantics());
5184  SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5186  if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5187  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5188  Pred == ICmpInst::ICMP_SGE)
5189  return replaceInstUsesWith(I, Builder.getTrue());
5190  return replaceInstUsesWith(I, Builder.getFalse());
5191  }
5192  } else {
5193  // See if the RHS value is < UnsignedMin.
5194  APFloat SMin(RHS.getSemantics());
5195  SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5197  if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5198  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5199  Pred == ICmpInst::ICMP_UGE)
5200  return replaceInstUsesWith(I, Builder.getTrue());
5201  return replaceInstUsesWith(I, Builder.getFalse());
5202  }
5203  }
5204 
5205  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5206  // [0, UMAX], but it may still be fractional. See if it is fractional by
5207  // casting the FP value to the integer value and back, checking for equality.
5208  // Don't do this for zero, because -0.0 is not fractional.
5209  Constant *RHSInt = LHSUnsigned
5210  ? ConstantExpr::getFPToUI(RHSC, IntTy)
5211  : ConstantExpr::getFPToSI(RHSC, IntTy);
5212  if (!RHS.isZero()) {
5213  bool Equal = LHSUnsigned
5214  ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5215  : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5216  if (!Equal) {
5217  // If we had a comparison against a fractional value, we have to adjust
5218  // the compare predicate and sometimes the value. RHSC is rounded towards
5219  // zero at this point.
5220  switch (Pred) {
5221  default: llvm_unreachable("Unexpected integer comparison!");
5222  case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5223  return replaceInstUsesWith(I, Builder.getTrue());
5224  case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5225  return replaceInstUsesWith(I, Builder.getFalse());
5226  case ICmpInst::ICMP_ULE:
5227  // (float)int <= 4.4 --> int <= 4
5228  // (float)int <= -4.4 --> false
5229  if (RHS.isNegative())
5230  return replaceInstUsesWith(I, Builder.getFalse());
5231  break;
5232  case ICmpInst::ICMP_SLE:
5233  // (float)int <= 4.4 --> int <= 4
5234  // (float)int <= -4.4 --> int < -4
5235  if (RHS.isNegative())
5236  Pred = ICmpInst::ICMP_SLT;
5237  break;
5238  case ICmpInst::ICMP_ULT:
5239  // (float)int < -4.4 --> false
5240  // (float)int < 4.4 --> int <= 4
5241  if (RHS.isNegative())
5242  return replaceInstUsesWith(I, Builder.getFalse());
5243  Pred = ICmpInst::ICMP_ULE;
5244  break;
5245  case ICmpInst::ICMP_SLT:
5246  // (float)int < -4.4 --> int < -4
5247  // (float)int < 4.4 --> int <= 4
5248  if (!RHS.isNegative())
5249  Pred = ICmpInst::ICMP_SLE;
5250  break;
5251  case ICmpInst::ICMP_UGT:
5252  // (float)int > 4.4 --> int > 4
5253  // (float)int > -4.4 --> true
5254  if (RHS.isNegative())
5255  return replaceInstUsesWith(I, Builder.getTrue());
5256  break;
5257  case ICmpInst::ICMP_SGT:
5258  // (float)int > 4.4 --> int > 4
5259  // (float)int > -4.4 --> int >= -4
5260  if (RHS.isNegative())
5261  Pred = ICmpInst::ICMP_SGE;
5262  break;
5263  case ICmpInst::ICMP_UGE:
5264  // (float)int >= -4.4 --> true
5265  // (float)int >= 4.4 --> int > 4
5266  if (RHS.isNegative())
5267  return replaceInstUsesWith(I, Builder.getTrue());
5268  Pred = ICmpInst::ICMP_UGT;
5269  break;
5270  case ICmpInst::ICMP_SGE:
5271  // (float)int >= -4.4 --> int >= -4
5272  // (float)int >= 4.4 --> int > 4
5273  if (!RHS.isNegative())
5274  Pred = ICmpInst::ICMP_SGT;
5275  break;
5276  }
5277  }
5278  }
5279 
5280  // Lower this FP comparison into an appropriate integer version of the
5281  // comparison.
5282  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5283 }
5284 
5285 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5287  Constant *RHSC) {
5288  // When C is not 0.0 and infinities are not allowed:
5289  // (C / X) < 0.0 is a sign-bit test of X
5290  // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5291  // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5292  //
5293  // Proof:
5294  // Multiply (C / X) < 0.0 by X * X / C.
5295  // - X is non zero, if it is the flag 'ninf' is violated.
5296  // - C defines the sign of X * X * C. Thus it also defines whether to swap
5297  // the predicate. C is also non zero by definition.
5298  //
5299  // Thus X * X / C is non zero and the transformation is valid. [qed]
5300 
5301  FCmpInst::Predicate Pred = I.getPredicate();
5302 
5303  // Check that predicates are valid.
5304  if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5305  (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5306  return nullptr;
5307 
5308  // Check that RHS operand is zero.
5309  if (!match(RHSC, m_AnyZeroFP()))
5310  return nullptr;
5311 
5312  // Check fastmath flags ('ninf').
5313  if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5314  return nullptr;
5315 
5316  // Check the properties of the dividend. It must not be zero to avoid a
5317  // division by zero (see Proof).
5318  const APFloat *C;
5319  if (!match(LHSI->getOperand(0), m_APFloat(C)))
5320  return nullptr;
5321 
5322  if (C->isZero())
5323  return nullptr;
5324 
5325  // Get swapped predicate if necessary.
5326  if (C->isNegative())
5327  Pred = I.getSwappedPredicate();
5328 
5329  return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5330 }
5331 
5332 /// Optimize fabs(X) compared with zero.
5334  Value *X;
5335  if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5336  !match(I.getOperand(1), m_PosZeroFP()))
5337  return nullptr;
5338 
5339  auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5340  I->setPredicate(P);
5341  I->setOperand(0, X);
5342  return I;
5343  };
5344 
5345  switch (I.getPredicate()) {
5346  case FCmpInst::FCMP_UGE:
5347  case FCmpInst::FCMP_OLT:
5348  // fabs(X) >= 0.0 --> true
5349  // fabs(X) < 0.0 --> false
5350  llvm_unreachable("fcmp should have simplified");
5351 
5352  case FCmpInst::FCMP_OGT:
5353  // fabs(X) > 0.0 --> X != 0.0
5354  return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5355 
5356  case FCmpInst::FCMP_UGT:
5357  // fabs(X) u> 0.0 --> X u!= 0.0
5358  return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5359 
5360  case FCmpInst::FCMP_OLE:
5361  // fabs(X) <= 0.0 --> X == 0.0
5362  return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5363 
5364  case FCmpInst::FCMP_ULE:
5365  // fabs(X) u<= 0.0 --> X u== 0.0
5366  return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5367 
5368  case FCmpInst::FCMP_OGE:
5369  // fabs(X) >= 0.0 --> !isnan(X)
5370  assert(!I.hasNoNaNs() && "fcmp should have simplified");
5371  return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5372 
5373  case FCmpInst::FCMP_ULT:
5374  // fabs(X) u< 0.0 --> isnan(X)
5375  assert(!I.hasNoNaNs() && "fcmp should have simplified");
5376  return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5377 
5378  case FCmpInst::FCMP_OEQ:
5379  case FCmpInst::FCMP_UEQ:
5380  case FCmpInst::FCMP_ONE:
5381  case FCmpInst::FCMP_UNE:
5382  case FCmpInst::FCMP_ORD:
5383  case FCmpInst::FCMP_UNO:
5384  // Look through the fabs() because it doesn't change anything but the sign.
5385  // fabs(X) == 0.0 --> X == 0.0,
5386  // fabs(X) != 0.0 --> X != 0.0
5387  // isnan(fabs(X)) --> isnan(X)
5388  // !isnan(fabs(X) --> !isnan(X)
5389  return replacePredAndOp0(&I, I.getPredicate(), X);
5390 
5391  default:
5392  return nullptr;
5393  }
5394 }
5395 
5397  bool Changed = false;
5398 
5399  /// Orders the operands of the compare so that they are listed from most
5400  /// complex to least complex. This puts constants before unary operators,
5401  /// before binary operators.
5402  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5403  I.swapOperands();
5404  Changed = true;
5405  }
5406 
5407  const CmpInst::Predicate Pred = I.getPredicate();
5408  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5409  if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
5410  SQ.getWithInstruction(&I)))
5411  return replaceInstUsesWith(I, V);
5412 
5413  // Simplify 'fcmp pred X, X'
5414  if (Op0 == Op1) {
5415  switch (Pred) {
5416  default: break;
5417  case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5418  case FCmpInst::FCMP_ULT: // True if unordered or less than
5419  case FCmpInst::FCMP_UGT: // True if unordered or greater than
5420  case FCmpInst::FCMP_UNE: // True if unordered or not equal
5421  // Canonicalize these to be 'fcmp uno %X, 0.0'.
5424  return &I;
5425 
5426  case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5427  case FCmpInst::FCMP_OEQ: // True if ordered and equal
5428  case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5429  case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5430  // Canonicalize these to be 'fcmp ord %X, 0.0'.
5433  return &I;
5434  }
5435  }
5436 
5437  // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5438  // then canonicalize the operand to 0.0.
5439  if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
5440  if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) {
5442  return &I;
5443  }
5444  if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) {
5446  return &I;
5447  }
5448  }
5449 
5450  // Test if the FCmpInst instruction is used exclusively by a select as
5451  // part of a minimum or maximum operation. If so, refrain from doing
5452  // any other folding. This helps out other analyses which understand
5453  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5454  // and CodeGen. And in this case, at least one of the comparison
5455  // operands has at least one user besides the compare (the select),
5456  // which would often largely negate the benefit of folding anyway.
5457  if (I.hasOneUse())
5458  if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5459  Value *A, *B;
5460  SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5461  if (SPR.Flavor != SPF_UNKNOWN)
5462  return nullptr;
5463  }
5464 
5465  // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5466  // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5467  if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) {
5468  I.setOperand(1, ConstantFP::getNullValue(Op1->getType()));
5469  return &I;
5470  }
5471 
5472  // Handle fcmp with instruction LHS and constant RHS.
5473  Instruction *LHSI;
5474  Constant *RHSC;
5475  if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
5476  switch (LHSI->getOpcode()) {
5477  case Instruction::PHI:
5478  // Only fold fcmp into the PHI if the phi and fcmp are in the same
5479  // block. If in the same block, we're encouraging jump threading. If
5480  // not, we are just pessimizing the code by making an i1 phi.
5481  if (LHSI->getParent() == I.getParent())
5482  if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
5483  return NV;
5484  break;
5485  case Instruction::SIToFP:
5486  case Instruction::UIToFP:
5487  if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
5488  return NV;
5489  break;
5490  case Instruction::FDiv:
5491  if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
5492  return NV;
5493  break;
5494  case Instruction::Load:
5495  if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
5496  if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
5497  if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
5498  !cast<LoadInst>(LHSI)->isVolatile())
5499  if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
5500  return Res;
5501  break;
5502  }
5503  }
5504 
5505  if (Instruction *R = foldFabsWithFcmpZero(I))
5506  return R;
5507 
5508  Value *X, *Y;
5509  if (match(Op0, m_FNeg(m_Value(X)))) {
5510  // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5511  if (match(Op1, m_FNeg(m_Value(Y))))
5512  return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
5513 
5514  // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
5515  Constant *C;
5516  if (match(Op1, m_Constant(C))) {
5517  Constant *NegC = ConstantExpr::getFNeg(C);
5518  return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
5519  }
5520  }
5521 
5522  if (match(Op0, m_FPExt(m_Value(X)))) {
5523  // fcmp (fpext X), (fpext Y) -> fcmp X, Y
5524  if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
5525  return new FCmpInst(Pred, X, Y, "", &I);
5526 
5527  // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
5528  const APFloat *C;
5529  if (match(Op1, m_APFloat(C))) {
5530  const fltSemantics &FPSem =
5532  bool Lossy;
5533  APFloat TruncC = *C;
5534  TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
5535 
5536  // Avoid lossy conversions and denormals.
5537  // Zero is a special case that's OK to convert.
5538  APFloat Fabs = TruncC;
5539  Fabs.clearSign();
5540  if (!Lossy &&
5541  ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
5542  APFloat::cmpLessThan) || Fabs.isZero())) {
5543  Constant *NewC = ConstantFP::get(X->getType(), TruncC);
5544  return new FCmpInst(Pred, X, NewC, "", &I);
5545  }
5546  }
5547  }
5548 
5549  if (I.getType()->isVectorTy())
5550  if (Instruction *Res = foldVectorCmp(I, Builder))
5551  return Res;
5552 
5553  return Changed ? &I : nullptr;
5554 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
APInt abs() const
Get the absolute value;.
Definition: APInt.h:1800
opStatus roundToIntegral(roundingMode RM)
Definition: APFloat.h:1008
bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Returns true if the given value is known be positive (i.e.
Value * EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition: Local.h:29
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:749
uint64_t CallInst * C
static bool subWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned=false)
Compute Result = In1-In2, returning true if the result overflowed for this type.
Value * SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
bool hasNoInfs() const
Determine whether the no-infs flag is set.
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of nonnegative values.
Definition: PatternMatch.h:343
static bool isEquality(Predicate Pred)
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:585
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:71
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1949
void setSignBit()
Set the sign bit to 1.
Definition: APInt.h:1413
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
class_match< UndefValue > m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:87
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
iterator_range< use_iterator > uses()
Definition: Value.h:355
bool isSignMask() const
Check if the APInt&#39;s value is returned by getSignMask.
Definition: APInt.h:473
bool isZero() const
Definition: APFloat.h:1143
Type * getSrcTy() const
Return the source type, as a convenience.
Definition: InstrTypes.h:611
bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
Definition: Constants.cpp:100
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition: APFloat.h:1077
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:562
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:654
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:376
DiagnosticInfoOptimizationBase::Argument NV
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Value * SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FCmpInst, fold the result or return null.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition: InstrTypes.h:889
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:316
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:78
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1200
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
BasicBlock * getSuccessor(unsigned Idx) const
Return the specified successor. This instruction must be a terminator.
APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1591
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
bool dominatesAllUses(const Instruction *DI, const Instruction *UI, const BasicBlock *DB) const
True when DB dominates all uses of DI except UI.
This class represents zero extension of integer types.
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:588
void push_back(const T &Elt)
Definition: SmallVector.h:218
static Instruction * foldVectorCmp(CmpInst &Cmp, InstCombiner::BuilderTy &Builder)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:701
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:858
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1204
APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1520
This class represents a function call, abstracting a target machine&#39;s calling convention.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:648
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:90
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
const Value * getTrueValue() const
unsigned less or equal
Definition: InstrTypes.h:672
unsigned less than
Definition: InstrTypes.h:671
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:779
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1760
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:652
static Instruction * foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, Constant *RHSC)
Fold (C / X) < 0.0 –> X < 0.0 if possible. Swap predicate if necessary.
This instruction constructs a fixed permutation of two input vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
static Constant * getNUWShl(Constant *C1, Constant *C2)
Definition: Constants.h:1005
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:662
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate, true > m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
void Add(Instruction *I)
Add - Add the specified instruction to the worklist if it isn&#39;t already in it.
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1274
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:811
STATISTIC(NumFunctions, "Total number of functions")
F(f)
bool isArithmeticShift() const
Return true if this is an arithmetic shift right.
Definition: Instruction.h:168
const fltSemantics & getSemantics() const
Definition: APFloat.h:1155
ThreeOps_match< V1_t, V2_t, Mask_t, Instruction::ShuffleVector > m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m)
Matches ShuffleVectorInst.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2, bool OnlyIfReduced=false)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1956
Hexagon Common GEP
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2249
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, const unsigned SIOpd)
Try to replace select with select operand SIOpd in SI-ICmp sequence.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1239
unsigned getBitWidth() const
Get the bit width of this value.
Definition: KnownBits.h:40
bool hasNoSignedWrap() const
Determine whether the no signed wrap flag is set.
unsigned getBitWidth() const
getBitWidth - Return the bitwidth of this constant.
Definition: Constants.h:143
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:535
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1509
static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit...
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:265
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition: KnownBits.h:136
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1334
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2238
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1135
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition: APFloat.h:1069
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:657
unsigned countTrailingZeros() const
Count the number of trailing zero bits.
Definition: APInt.h:1632
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:48
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:656
bool isSigned() const
Definition: InstrTypes.h:816
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
Definition: PatternMatch.h:761
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined. ...
This class represents the LLVM &#39;select&#39; instruction.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
Definition: InstrTypes.h:745
Type * getPointerElementType() const
Definition: Type.h:376
OverflowCheckFlavor
Specific patterns of overflow check idioms that we match.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:993
uint64_t getArrayNumElements() const
Definition: DerivedTypes.h:388
Class to represent struct types.
Definition: DerivedTypes.h:201
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
static Instruction * canonicalizeICmpBool(ICmpInst &I, InstCombiner::BuilderTy &Builder)
Integer compare with boolean values can always be turned into bitwise ops.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
ConstantRange difference(const ConstantRange &CR) const
Subtract the specified range from this range (aka relative complement of the sets).
OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
Definition: PatternMatch.h:418
bool isUnsigned() const
Definition: InstrTypes.h:822
static Value * foldICmpWithLowBitMaskedVal(ICmpInst &I, InstCombiner::BuilderTy &Builder)
Some comparisons can be simplified.
CastClass_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
The core instruction combiner logic.
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:653
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1014
ELFYAML::ELF_STO Other
Definition: ELFYAML.cpp:784
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:642
unsigned getNumIndices() const
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1533
static Instruction * transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, const DataLayout &DL)
Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:85
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:606
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:142
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:180
CastClass_match< OpTy, Instruction::FPExt > m_FPExt(const OpTy &Op)
Matches FPExt.
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:4444
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:124
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, APInt &Min, APInt &Max)
Given a signed integer type and a set of known zero and one bits, compute the maximum and minimum val...
Class to represent array types.
Definition: DerivedTypes.h:369
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
Definition: Operator.h:451
This instruction compares its operands according to the predicate given to the constructor.
static Instruction * processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, ConstantInt *CI2, ConstantInt *CI1, InstCombiner &IC)
The caller has matched a pattern of the form: I = icmp ugt (add (add A, B), CI2), CI1 If this is of t...
int32_t exactLogBase2() const
Definition: APInt.h:1788
This class represents a no-op cast from one type to another.
static Instruction * foldICmpWithHighBitMask(ICmpInst &Cmp, InstCombiner::BuilderTy &Builder)
ConstantRange intersectWith(const ConstantRange &CR) const
Return the range that results from the intersection of this range with another range.
static CmpInst * Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, const Twine &Name="", Instruction *InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:82
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:138
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Get a value with upper bits starting at loBit set.
Definition: APInt.h:624
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:445
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:203
int getFPMantissaWidth() const
Return the width of the mantissa of this type.
Definition: Type.cpp:134
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:385
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1659
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:66
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
static bool isChainSelectCmpBranch(const SelectInst *SI)
Return true when the instruction sequence within a block is select-cmp-br.
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1020
This class represents a truncation of integer types.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:127
Value * getOperand(unsigned i) const
Definition: User.h:170
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:211
static std::pair< Value *, Value * > getAsConstantIndexedAddress(Value *V, const DataLayout &DL)
Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express the input Value as a constant...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:335
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:304
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:636
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1773
Value * CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1957
static Value * foldICmpWithTruncSignExtendedVal(ICmpInst &I, InstCombiner::BuilderTy &Builder)
Some comparisons can be simplified.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:854
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:750
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:62
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:364
#define P(N)
static Constant * getFNeg(Constant *C)
Definition: Constants.cpp:2226
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
Definition: Operator.h:501
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:773
bool hasNUsesOrMore(unsigned N) const
Return true if this value has N users or more.
Definition: Value.cpp:135
void clearSign()
Definition: APFloat.h:1051
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:396
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt...
Definition: PatternMatch.h:176
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:217
bool isNegative() const
Definition: APFloat.h:1147
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:391
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:234
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
static void setInsertionPoint(IRBuilder<> &Builder, Value *V, bool Before=true)
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:755
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
static bool canRewriteGEPAsOffset(Value *Start, Value *Base, const DataLayout &DL, SetVector< Value *> &Explored)
Returns true if we can rewrite Start as a GEP with pointer Base and some integer offset.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1185
bool isNaN() const
Definition: APFloat.h:1145
CastClass_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
static Constant * getAnd(Constant *C1, Constant *C2)
Definition: Constants.cpp:2297
static ManagedStatic< OptionRegistry > OR
Definition: Options.cpp:31
bool isOneValue() const
Determine if this is a value of 1.
Definition: APInt.h:411
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1888
static Constant * getSExtOrBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1575
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:309
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:588
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:502
brc_match< Cond_t > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:443
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:767
This instruction compares its operands according to the predicate given to the constructor.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:646
static bool addWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned=false)
Compute Result = In1+In2, returning true if the result overflowed for this type.
Instruction * visitICmpInst(ICmpInst &I)
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:655
static Instruction * foldFabsWithFcmpZero(FCmpInst &I)
Optimize fabs(X) compared with zero.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced=false)
get* - Return some common constants without having to specify the full Instruction::OPCODE identifier...
Definition: Constants.cpp:2053
Class to represent integer types.
Definition: DerivedTypes.h:40
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
Definition: DataLayout.cpp:662
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2232
static Value * rewriteGEPAsOffset(Value *Start, Value *Base, const DataLayout &DL, SetVector< Value *> &Explored)
Returns a re-written value of Start as an indexed GEP using Base as a pointer.
void clearSignBit()
Set the sign bit to 0.
Definition: APInt.h:1472
const Value * getCondition() const
bool eq(const APInt &RHS) const
Equality comparison.
Definition: APInt.h:1153
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:319
bool isZero() const
Returns true if value is all zero.
Definition: KnownBits.h:72
Signum_match< Val_t > m_Signum(const Val_t &V)
Matches a signum pattern.
bool isSplat(unsigned SplatSizeInBits) const
Check if the APInt consists of a repeated bit pattern.
Definition: APInt.cpp:502
static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth)
When performing a comparison against a constant, it is possible that not all the bits in the LHS are ...
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:529
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
unsigned ceilLogBase2() const
Definition: APInt.h:1751
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2083
size_t size() const
Definition: SmallVector.h:53
static wasm::ValType getType(const TargetRegisterClass *RC)
APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1882
bool isExact() const
Determine whether the exact flag is set.
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCompareInstOperands - Attempt to constant fold a compare instruction (icmp/fcmp) with the...
Constant * getSplatValue() const
If this is a splat vector constant, meaning that all of the elements have the same value...
Definition: Constants.cpp:1368
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:661
Value * GetUnderlyingObject(Value *V, const DataLayout &DL, unsigned MaxLookup=6)
This method strips off any GEP address adjustments and pointer casts from the specified value...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1655
deferredval_ty< Value > m_Deferred(Value *const &V)
A commutative-friendly version of m_Specific().
Definition: PatternMatch.h:515
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:971
ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
signed greater than
Definition: InstrTypes.h:673
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
Definition: Constants.cpp:302
static bool hasBranchUse(ICmpInst &I)
Given an icmp instruction, return true if any use of this comparison is a branch on sign bit comparis...
InstCombineWorklist & Worklist
A worklist of the instructions that need to be simplified.
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:51
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
bool isEmptySet() const
Return true if this set contains no members.
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:650
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:555
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:947
static Constant * getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1714
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
unsigned getNumOperands() const
Definition: User.h:192
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition: Constants.h:251
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:427
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
SelectPatternFlavor Flavor
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:1801
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:660
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:64
bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
Definition: Operator.h:514
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
This class represents a range of values.
Definition: ConstantRange.h:47
signed less than
Definition: InstrTypes.h:675
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:421
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:542
void negate()
Negate this APInt in place.
Definition: APInt.h:1493
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1637
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static Instruction * foldICmpWithMinMax(ICmpInst &Cmp)
Fold icmp Pred min|max(X, Y), X.
CastClass_match< OpTy, Instruction::UIToFP > m_UIToFP(const OpTy &Op)
Matches UIToFP.
static Constant * get(Type *Ty, double V)
This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in...
Definition: Constants.cpp:685
#define NC
Definition: regutils.h:42
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1293
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:578
bool isCommutative() const
Return true if the instruction is commutative:
Definition: Instruction.h:478
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:726
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
unsigned logBase2() const
Definition: APInt.h:1748
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a &#39;Neg&#39; as &#39;sub 0, V&#39;.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:462
unsigned countTrailingOnes() const
Count the number of trailing one bits.
Definition: APInt.h:1646
bool isTrueWhenEqual() const
This is just a convenience.
Definition: InstrTypes.h:841
signed less or equal
Definition: InstrTypes.h:676
static ICmpInst * canonicalizeCmpWithConstant(ICmpInst &I)
If we have an icmp le or icmp ge instruction with a constant operand, turn it into the appropriate ic...
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
Class for arbitrary precision integers.
Definition: APInt.h:70
static Value * evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, const DataLayout &DL)
Return a value that can be used to compare the offset implied by a GEP to zero.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1223
bool isPowerOf2() const
Check if this APInt&#39;s value is a power of two greater than zero.
Definition: APInt.h:464
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
CastClass_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
iterator_range< user_iterator > users()
Definition: Value.h:400
static Constant * getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1725
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1530
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:530
const Value * getFalseValue() const
static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C)
Returns true if the exploded icmp can be expressed as a signed comparison to zero and updates the pre...
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:436
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2219
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1255
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:721
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:546
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match &#39;fneg X&#39; as &#39;fsub -0.0, X&#39;.
Definition: PatternMatch.h:689
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:551
unsigned getIntegerBitWidth() const
Definition: DerivedTypes.h:97
OverflowResult
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
unsigned greater or equal
Definition: InstrTypes.h:670
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value...
Definition: APInt.h:482
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
bool isEquality() const
Return true if this predicate is either EQ or NE.
#define I(x, y, z)
Definition: MD5.cpp:58
static Constant * getOr(Constant *C1, Constant *C2)
Definition: Constants.cpp:2301
static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, APInt &Min, APInt &Max)
Given an unsigned integer type and a set of known zero and one bits, compute the maximum and minimum ...
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:193
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:654
static Instruction * foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, const APInt &C)
Fold icmp (shl 1, Y), C.
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value *> Args=None, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1974
CastClass_match< OpTy, Instruction::SIToFP > m_SIToFP(const OpTy &Op)
Matches SIToFP.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition: APFloat.h:904
static Instruction * processUMulZExtIdiom(ICmpInst &I, Value *MulVal, Value *OtherVal, InstCombiner &IC)
Recognize and process idiom involving test for multiplication overflow.
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:658
APInt byteSwap() const
Definition: APInt.cpp:618
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
Definition: APFloat.h:924
bool hasNoUnsignedWrap() const
Determine whether the no unsigned wrap flag is set.
bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:749
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1164
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:437
Optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
void swapOperands()
Exchange the two operands to this instruction in such a way that it does not modify the semantics of ...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:376
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:545
static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1)
Check if the order of Op0 and Op1 as operands in an ICmpInst should be swapped.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1875
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:649
LLVM Value Representation.
Definition: Value.h:73
This file provides internal interfaces used to implement the InstCombine.
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:659
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:355
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:606
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
static Constant * getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1703
static Constant * getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1736
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1124
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:130
Instruction * visitFCmpInst(FCmpInst &I)
bool hasNoNaNs() const
Determine whether the no-NaNs flag is set.
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
static Constant * getExtractValue(Constant *Agg, ArrayRef< unsigned > Idxs, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2195
unsigned greater than
Definition: InstrTypes.h:669
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:761
unsigned countLeadingOnes() const
Count the number of leading one bits.
Definition: APInt.h:1612
void replaceUsesOutsideBlock(Value *V, BasicBlock *BB)
replaceUsesOutsideBlock - Go through the uses list for this definition and make each use point to "V"...
Definition: Value.cpp:439
Type * getArrayElementType() const
Definition: Type.h:365
unsigned countLeadingZeros() const
The APInt version of the countLeadingZeros functions in MathExtras.h.
Definition: APInt.h:1596
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
static bool isVolatile(Instruction *Inst)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:157
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:436
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:651
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
static Constant * SubOne(Constant *C)
Subtract one from a Constant.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:479
#define T1
BinaryOp_match< ValTy, cst_pred_ty< is_all_ones >, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a &#39;Not&#39; as &#39;xor V, -1&#39; or &#39;xor -1, V&#39;.
int ilogb(const IEEEFloat &Arg)
Definition: APFloat.cpp:3789
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:406
signed greater or equal
Definition: InstrTypes.h:674
cmpResult compare(const APFloat &RHS) const
Definition: APFloat.h:1102
UAddWithOverflow_match< LHS_t, RHS_t, Sum_t > m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S)
Match an icmp instruction checking for unsigned overflow on addition.
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
const fltSemantics & getFltSemantics() const
Definition: Type.h:169
static Constant * getXor(Constant *C1, Constant *C2)
Definition: Constants.cpp:2305
gep_type_iterator gep_type_begin(const User *GEP)
APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1895
user_iterator user_end()
Definition: Value.h:384