LLVM  8.0.1
YAMLParser.cpp
Go to the documentation of this file.
1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a YAML parser.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/AllocatorList.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/SMLoc.h"
28 #include "llvm/Support/SourceMgr.h"
29 #include "llvm/Support/Unicode.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <map>
36 #include <memory>
37 #include <string>
38 #include <system_error>
39 #include <utility>
40 
41 using namespace llvm;
42 using namespace yaml;
43 
45  UEF_UTF32_LE, ///< UTF-32 Little Endian
46  UEF_UTF32_BE, ///< UTF-32 Big Endian
47  UEF_UTF16_LE, ///< UTF-16 Little Endian
48  UEF_UTF16_BE, ///< UTF-16 Big Endian
49  UEF_UTF8, ///< UTF-8 or ascii.
50  UEF_Unknown ///< Not a valid Unicode encoding.
51 };
52 
53 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
54 /// it exists. Length is in {0, 2, 3, 4}.
55 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
56 
57 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
58 /// encoding form of \a Input.
59 ///
60 /// @param Input A string of length 0 or more.
61 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
62 /// and how long the byte order mark is if one exists.
64  if (Input.empty())
65  return std::make_pair(UEF_Unknown, 0);
66 
67  switch (uint8_t(Input[0])) {
68  case 0x00:
69  if (Input.size() >= 4) {
70  if ( Input[1] == 0
71  && uint8_t(Input[2]) == 0xFE
72  && uint8_t(Input[3]) == 0xFF)
73  return std::make_pair(UEF_UTF32_BE, 4);
74  if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
75  return std::make_pair(UEF_UTF32_BE, 0);
76  }
77 
78  if (Input.size() >= 2 && Input[1] != 0)
79  return std::make_pair(UEF_UTF16_BE, 0);
80  return std::make_pair(UEF_Unknown, 0);
81  case 0xFF:
82  if ( Input.size() >= 4
83  && uint8_t(Input[1]) == 0xFE
84  && Input[2] == 0
85  && Input[3] == 0)
86  return std::make_pair(UEF_UTF32_LE, 4);
87 
88  if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
89  return std::make_pair(UEF_UTF16_LE, 2);
90  return std::make_pair(UEF_Unknown, 0);
91  case 0xFE:
92  if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
93  return std::make_pair(UEF_UTF16_BE, 2);
94  return std::make_pair(UEF_Unknown, 0);
95  case 0xEF:
96  if ( Input.size() >= 3
97  && uint8_t(Input[1]) == 0xBB
98  && uint8_t(Input[2]) == 0xBF)
99  return std::make_pair(UEF_UTF8, 3);
100  return std::make_pair(UEF_Unknown, 0);
101  }
102 
103  // It could still be utf-32 or utf-16.
104  if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
105  return std::make_pair(UEF_UTF32_LE, 0);
106 
107  if (Input.size() >= 2 && Input[1] == 0)
108  return std::make_pair(UEF_UTF16_LE, 0);
109 
110  return std::make_pair(UEF_UTF8, 0);
111 }
112 
113 /// Pin the vtables to this file.
114 void Node::anchor() {}
115 void NullNode::anchor() {}
116 void ScalarNode::anchor() {}
117 void BlockScalarNode::anchor() {}
118 void KeyValueNode::anchor() {}
119 void MappingNode::anchor() {}
120 void SequenceNode::anchor() {}
121 void AliasNode::anchor() {}
122 
123 namespace llvm {
124 namespace yaml {
125 
126 /// Token - A single YAML token.
127 struct Token {
128  enum TokenKind {
129  TK_Error, // Uninitialized token.
151  TK_Tag
152  } Kind = TK_Error;
153 
154  /// A string of length 0 or more whose begin() points to the logical location
155  /// of the token in the input.
157 
158  /// The value of a block scalar node.
159  std::string Value;
160 
161  Token() = default;
162 };
163 
164 } // end namespace yaml
165 } // end namespace llvm
166 
168 
169 namespace {
170 
171 /// This struct is used to track simple keys.
172 ///
173 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
174 /// which could legally be the start of a simple key. When peekNext is called,
175 /// if the Token To be returned is referenced by a SimpleKey, we continue
176 /// tokenizing until that potential simple key has either been found to not be
177 /// a simple key (we moved on to the next line or went further than 1024 chars).
178 /// Or when we run into a Value, and then insert a Key token (and possibly
179 /// others) before the SimpleKey's Tok.
180 struct SimpleKey {
182  unsigned Column;
183  unsigned Line;
184  unsigned FlowLevel;
185  bool IsRequired;
186 
187  bool operator ==(const SimpleKey &Other) {
188  return Tok == Other.Tok;
189  }
190 };
191 
192 } // end anonymous namespace
193 
194 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
195 /// subsequence and the subsequence's length in code units (uint8_t).
196 /// A length of 0 represents an error.
197 using UTF8Decoded = std::pair<uint32_t, unsigned>;
198 
201  StringRef::iterator End = Range.end();
202  // 1 byte: [0x00, 0x7f]
203  // Bit pattern: 0xxxxxxx
204  if ((*Position & 0x80) == 0) {
205  return std::make_pair(*Position, 1);
206  }
207  // 2 bytes: [0x80, 0x7ff]
208  // Bit pattern: 110xxxxx 10xxxxxx
209  if (Position + 1 != End &&
210  ((*Position & 0xE0) == 0xC0) &&
211  ((*(Position + 1) & 0xC0) == 0x80)) {
212  uint32_t codepoint = ((*Position & 0x1F) << 6) |
213  (*(Position + 1) & 0x3F);
214  if (codepoint >= 0x80)
215  return std::make_pair(codepoint, 2);
216  }
217  // 3 bytes: [0x8000, 0xffff]
218  // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
219  if (Position + 2 != End &&
220  ((*Position & 0xF0) == 0xE0) &&
221  ((*(Position + 1) & 0xC0) == 0x80) &&
222  ((*(Position + 2) & 0xC0) == 0x80)) {
223  uint32_t codepoint = ((*Position & 0x0F) << 12) |
224  ((*(Position + 1) & 0x3F) << 6) |
225  (*(Position + 2) & 0x3F);
226  // Codepoints between 0xD800 and 0xDFFF are invalid, as
227  // they are high / low surrogate halves used by UTF-16.
228  if (codepoint >= 0x800 &&
229  (codepoint < 0xD800 || codepoint > 0xDFFF))
230  return std::make_pair(codepoint, 3);
231  }
232  // 4 bytes: [0x10000, 0x10FFFF]
233  // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
234  if (Position + 3 != End &&
235  ((*Position & 0xF8) == 0xF0) &&
236  ((*(Position + 1) & 0xC0) == 0x80) &&
237  ((*(Position + 2) & 0xC0) == 0x80) &&
238  ((*(Position + 3) & 0xC0) == 0x80)) {
239  uint32_t codepoint = ((*Position & 0x07) << 18) |
240  ((*(Position + 1) & 0x3F) << 12) |
241  ((*(Position + 2) & 0x3F) << 6) |
242  (*(Position + 3) & 0x3F);
243  if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
244  return std::make_pair(codepoint, 4);
245  }
246  return std::make_pair(0, 0);
247 }
248 
249 namespace llvm {
250 namespace yaml {
251 
252 /// Scans YAML tokens from a MemoryBuffer.
253 class Scanner {
254 public:
255  Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
256  std::error_code *EC = nullptr);
257  Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
258  std::error_code *EC = nullptr);
259 
260  /// Parse the next token and return it without popping it.
261  Token &peekNext();
262 
263  /// Parse the next token and pop it from the queue.
264  Token getNext();
265 
266  void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
267  ArrayRef<SMRange> Ranges = None) {
268  SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
269  }
270 
271  void setError(const Twine &Message, StringRef::iterator Position) {
272  if (Current >= End)
273  Current = End - 1;
274 
275  // propagate the error if possible
276  if (EC)
277  *EC = make_error_code(std::errc::invalid_argument);
278 
279  // Don't print out more errors after the first one we encounter. The rest
280  // are just the result of the first, and have no meaning.
281  if (!Failed)
282  printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
283  Failed = true;
284  }
285 
286  void setError(const Twine &Message) {
287  setError(Message, Current);
288  }
289 
290  /// Returns true if an error occurred while parsing.
291  bool failed() {
292  return Failed;
293  }
294 
295 private:
296  void init(MemoryBufferRef Buffer);
297 
298  StringRef currentInput() {
299  return StringRef(Current, End - Current);
300  }
301 
302  /// Decode a UTF-8 minimal well-formed code unit subsequence starting
303  /// at \a Position.
304  ///
305  /// If the UTF-8 code units starting at Position do not form a well-formed
306  /// code unit subsequence, then the Unicode scalar value is 0, and the length
307  /// is 0.
309  return ::decodeUTF8(StringRef(Position, End - Position));
310  }
311 
312  // The following functions are based on the gramar rules in the YAML spec. The
313  // style of the function names it meant to closely match how they are written
314  // in the spec. The number within the [] is the number of the grammar rule in
315  // the spec.
316  //
317  // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
318  //
319  // c-
320  // A production starting and ending with a special character.
321  // b-
322  // A production matching a single line break.
323  // nb-
324  // A production starting and ending with a non-break character.
325  // s-
326  // A production starting and ending with a white space character.
327  // ns-
328  // A production starting and ending with a non-space character.
329  // l-
330  // A production matching complete line(s).
331 
332  /// Skip a single nb-char[27] starting at Position.
333  ///
334  /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
335  /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
336  ///
337  /// @returns The code unit after the nb-char, or Position if it's not an
338  /// nb-char.
339  StringRef::iterator skip_nb_char(StringRef::iterator Position);
340 
341  /// Skip a single b-break[28] starting at Position.
342  ///
343  /// A b-break is 0xD 0xA | 0xD | 0xA
344  ///
345  /// @returns The code unit after the b-break, or Position if it's not a
346  /// b-break.
347  StringRef::iterator skip_b_break(StringRef::iterator Position);
348 
349  /// Skip a single s-space[31] starting at Position.
350  ///
351  /// An s-space is 0x20
352  ///
353  /// @returns The code unit after the s-space, or Position if it's not a
354  /// s-space.
355  StringRef::iterator skip_s_space(StringRef::iterator Position);
356 
357  /// Skip a single s-white[33] starting at Position.
358  ///
359  /// A s-white is 0x20 | 0x9
360  ///
361  /// @returns The code unit after the s-white, or Position if it's not a
362  /// s-white.
363  StringRef::iterator skip_s_white(StringRef::iterator Position);
364 
365  /// Skip a single ns-char[34] starting at Position.
366  ///
367  /// A ns-char is nb-char - s-white
368  ///
369  /// @returns The code unit after the ns-char, or Position if it's not a
370  /// ns-char.
371  StringRef::iterator skip_ns_char(StringRef::iterator Position);
372 
373  using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
374 
375  /// Skip minimal well-formed code unit subsequences until Func
376  /// returns its input.
377  ///
378  /// @returns The code unit after the last minimal well-formed code unit
379  /// subsequence that Func accepted.
380  StringRef::iterator skip_while( SkipWhileFunc Func
381  , StringRef::iterator Position);
382 
383  /// Skip minimal well-formed code unit subsequences until Func returns its
384  /// input.
385  void advanceWhile(SkipWhileFunc Func);
386 
387  /// Scan ns-uri-char[39]s starting at Cur.
388  ///
389  /// This updates Cur and Column while scanning.
390  void scan_ns_uri_char();
391 
392  /// Consume a minimal well-formed code unit subsequence starting at
393  /// \a Cur. Return false if it is not the same Unicode scalar value as
394  /// \a Expected. This updates \a Column.
395  bool consume(uint32_t Expected);
396 
397  /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
398  void skip(uint32_t Distance);
399 
400  /// Return true if the minimal well-formed code unit subsequence at
401  /// Pos is whitespace or a new line
402  bool isBlankOrBreak(StringRef::iterator Position);
403 
404  /// Consume a single b-break[28] if it's present at the current position.
405  ///
406  /// Return false if the code unit at the current position isn't a line break.
407  bool consumeLineBreakIfPresent();
408 
409  /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
410  void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
411  , unsigned AtColumn
412  , bool IsRequired);
413 
414  /// Remove simple keys that can no longer be valid simple keys.
415  ///
416  /// Invalid simple keys are not on the current line or are further than 1024
417  /// columns back.
418  void removeStaleSimpleKeyCandidates();
419 
420  /// Remove all simple keys on FlowLevel \a Level.
421  void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
422 
423  /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
424  /// tokens if needed.
425  bool unrollIndent(int ToColumn);
426 
427  /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
428  /// if needed.
429  bool rollIndent( int ToColumn
431  , TokenQueueT::iterator InsertPoint);
432 
433  /// Skip a single-line comment when the comment starts at the current
434  /// position of the scanner.
435  void skipComment();
436 
437  /// Skip whitespace and comments until the start of the next token.
438  void scanToNextToken();
439 
440  /// Must be the first token generated.
441  bool scanStreamStart();
442 
443  /// Generate tokens needed to close out the stream.
444  bool scanStreamEnd();
445 
446  /// Scan a %BLAH directive.
447  bool scanDirective();
448 
449  /// Scan a ... or ---.
450  bool scanDocumentIndicator(bool IsStart);
451 
452  /// Scan a [ or { and generate the proper flow collection start token.
453  bool scanFlowCollectionStart(bool IsSequence);
454 
455  /// Scan a ] or } and generate the proper flow collection end token.
456  bool scanFlowCollectionEnd(bool IsSequence);
457 
458  /// Scan the , that separates entries in a flow collection.
459  bool scanFlowEntry();
460 
461  /// Scan the - that starts block sequence entries.
462  bool scanBlockEntry();
463 
464  /// Scan an explicit ? indicating a key.
465  bool scanKey();
466 
467  /// Scan an explicit : indicating a value.
468  bool scanValue();
469 
470  /// Scan a quoted scalar.
471  bool scanFlowScalar(bool IsDoubleQuoted);
472 
473  /// Scan an unquoted scalar.
474  bool scanPlainScalar();
475 
476  /// Scan an Alias or Anchor starting with * or &.
477  bool scanAliasOrAnchor(bool IsAlias);
478 
479  /// Scan a block scalar starting with | or >.
480  bool scanBlockScalar(bool IsLiteral);
481 
482  /// Scan a chomping indicator in a block scalar header.
483  char scanBlockChompingIndicator();
484 
485  /// Scan an indentation indicator in a block scalar header.
486  unsigned scanBlockIndentationIndicator();
487 
488  /// Scan a block scalar header.
489  ///
490  /// Return false if an error occurred.
491  bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
492  bool &IsDone);
493 
494  /// Look for the indentation level of a block scalar.
495  ///
496  /// Return false if an error occurred.
497  bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
498  unsigned &LineBreaks, bool &IsDone);
499 
500  /// Scan the indentation of a text line in a block scalar.
501  ///
502  /// Return false if an error occurred.
503  bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
504  bool &IsDone);
505 
506  /// Scan a tag of the form !stuff.
507  bool scanTag();
508 
509  /// Dispatch to the next scanning function based on \a *Cur.
510  bool fetchMoreTokens();
511 
512  /// The SourceMgr used for diagnostics and buffer management.
513  SourceMgr &SM;
514 
515  /// The original input.
516  MemoryBufferRef InputBuffer;
517 
518  /// The current position of the scanner.
519  StringRef::iterator Current;
520 
521  /// The end of the input (one past the last character).
523 
524  /// Current YAML indentation level in spaces.
525  int Indent;
526 
527  /// Current column number in Unicode code points.
528  unsigned Column;
529 
530  /// Current line number.
531  unsigned Line;
532 
533  /// How deep we are in flow style containers. 0 Means at block level.
534  unsigned FlowLevel;
535 
536  /// Are we at the start of the stream?
537  bool IsStartOfStream;
538 
539  /// Can the next token be the start of a simple key?
540  bool IsSimpleKeyAllowed;
541 
542  /// True if an error has occurred.
543  bool Failed;
544 
545  /// Should colors be used when printing out the diagnostic messages?
546  bool ShowColors;
547 
548  /// Queue of tokens. This is required to queue up tokens while looking
549  /// for the end of a simple key. And for cases where a single character
550  /// can produce multiple tokens (e.g. BlockEnd).
551  TokenQueueT TokenQueue;
552 
553  /// Indentation levels.
554  SmallVector<int, 4> Indents;
555 
556  /// Potential simple keys.
557  SmallVector<SimpleKey, 4> SimpleKeys;
558 
559  std::error_code *EC;
560 };
561 
562 } // end namespace yaml
563 } // end namespace llvm
564 
565 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
566 static void encodeUTF8( uint32_t UnicodeScalarValue
567  , SmallVectorImpl<char> &Result) {
568  if (UnicodeScalarValue <= 0x7F) {
569  Result.push_back(UnicodeScalarValue & 0x7F);
570  } else if (UnicodeScalarValue <= 0x7FF) {
571  uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
572  uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
573  Result.push_back(FirstByte);
574  Result.push_back(SecondByte);
575  } else if (UnicodeScalarValue <= 0xFFFF) {
576  uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
577  uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
578  uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
579  Result.push_back(FirstByte);
580  Result.push_back(SecondByte);
581  Result.push_back(ThirdByte);
582  } else if (UnicodeScalarValue <= 0x10FFFF) {
583  uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
584  uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
585  uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
586  uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
587  Result.push_back(FirstByte);
588  Result.push_back(SecondByte);
589  Result.push_back(ThirdByte);
590  Result.push_back(FourthByte);
591  }
592 }
593 
595  SourceMgr SM;
596  Scanner scanner(Input, SM);
597  while (true) {
598  Token T = scanner.getNext();
599  switch (T.Kind) {
601  OS << "Stream-Start: ";
602  break;
603  case Token::TK_StreamEnd:
604  OS << "Stream-End: ";
605  break;
607  OS << "Version-Directive: ";
608  break;
610  OS << "Tag-Directive: ";
611  break;
613  OS << "Document-Start: ";
614  break;
616  OS << "Document-End: ";
617  break;
619  OS << "Block-Entry: ";
620  break;
621  case Token::TK_BlockEnd:
622  OS << "Block-End: ";
623  break;
625  OS << "Block-Sequence-Start: ";
626  break;
628  OS << "Block-Mapping-Start: ";
629  break;
630  case Token::TK_FlowEntry:
631  OS << "Flow-Entry: ";
632  break;
634  OS << "Flow-Sequence-Start: ";
635  break;
637  OS << "Flow-Sequence-End: ";
638  break;
640  OS << "Flow-Mapping-Start: ";
641  break;
643  OS << "Flow-Mapping-End: ";
644  break;
645  case Token::TK_Key:
646  OS << "Key: ";
647  break;
648  case Token::TK_Value:
649  OS << "Value: ";
650  break;
651  case Token::TK_Scalar:
652  OS << "Scalar: ";
653  break;
655  OS << "Block Scalar: ";
656  break;
657  case Token::TK_Alias:
658  OS << "Alias: ";
659  break;
660  case Token::TK_Anchor:
661  OS << "Anchor: ";
662  break;
663  case Token::TK_Tag:
664  OS << "Tag: ";
665  break;
666  case Token::TK_Error:
667  break;
668  }
669  OS << T.Range << "\n";
670  if (T.Kind == Token::TK_StreamEnd)
671  break;
672  else if (T.Kind == Token::TK_Error)
673  return false;
674  }
675  return true;
676 }
677 
679  SourceMgr SM;
680  Scanner scanner(Input, SM);
681  while (true) {
682  Token T = scanner.getNext();
683  if (T.Kind == Token::TK_StreamEnd)
684  break;
685  else if (T.Kind == Token::TK_Error)
686  return false;
687  }
688  return true;
689 }
690 
691 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
692  std::string EscapedInput;
693  for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
694  if (*i == '\\')
695  EscapedInput += "\\\\";
696  else if (*i == '"')
697  EscapedInput += "\\\"";
698  else if (*i == 0)
699  EscapedInput += "\\0";
700  else if (*i == 0x07)
701  EscapedInput += "\\a";
702  else if (*i == 0x08)
703  EscapedInput += "\\b";
704  else if (*i == 0x09)
705  EscapedInput += "\\t";
706  else if (*i == 0x0A)
707  EscapedInput += "\\n";
708  else if (*i == 0x0B)
709  EscapedInput += "\\v";
710  else if (*i == 0x0C)
711  EscapedInput += "\\f";
712  else if (*i == 0x0D)
713  EscapedInput += "\\r";
714  else if (*i == 0x1B)
715  EscapedInput += "\\e";
716  else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
717  std::string HexStr = utohexstr(*i);
718  EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
719  } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
720  UTF8Decoded UnicodeScalarValue
721  = decodeUTF8(StringRef(i, Input.end() - i));
722  if (UnicodeScalarValue.second == 0) {
723  // Found invalid char.
724  SmallString<4> Val;
725  encodeUTF8(0xFFFD, Val);
726  EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
727  // FIXME: Error reporting.
728  return EscapedInput;
729  }
730  if (UnicodeScalarValue.first == 0x85)
731  EscapedInput += "\\N";
732  else if (UnicodeScalarValue.first == 0xA0)
733  EscapedInput += "\\_";
734  else if (UnicodeScalarValue.first == 0x2028)
735  EscapedInput += "\\L";
736  else if (UnicodeScalarValue.first == 0x2029)
737  EscapedInput += "\\P";
738  else if (!EscapePrintable &&
739  sys::unicode::isPrintable(UnicodeScalarValue.first))
740  EscapedInput += StringRef(i, UnicodeScalarValue.second);
741  else {
742  std::string HexStr = utohexstr(UnicodeScalarValue.first);
743  if (HexStr.size() <= 2)
744  EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
745  else if (HexStr.size() <= 4)
746  EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
747  else if (HexStr.size() <= 8)
748  EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
749  }
750  i += UnicodeScalarValue.second - 1;
751  } else
752  EscapedInput.push_back(*i);
753  }
754  return EscapedInput;
755 }
756 
757 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
758  std::error_code *EC)
759  : SM(sm), ShowColors(ShowColors), EC(EC) {
760  init(MemoryBufferRef(Input, "YAML"));
761 }
762 
763 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
764  std::error_code *EC)
765  : SM(SM_), ShowColors(ShowColors), EC(EC) {
766  init(Buffer);
767 }
768 
769 void Scanner::init(MemoryBufferRef Buffer) {
770  InputBuffer = Buffer;
771  Current = InputBuffer.getBufferStart();
772  End = InputBuffer.getBufferEnd();
773  Indent = -1;
774  Column = 0;
775  Line = 0;
776  FlowLevel = 0;
777  IsStartOfStream = true;
778  IsSimpleKeyAllowed = true;
779  Failed = false;
780  std::unique_ptr<MemoryBuffer> InputBufferOwner =
782  SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
783 }
784 
786  // If the current token is a possible simple key, keep parsing until we
787  // can confirm.
788  bool NeedMore = false;
789  while (true) {
790  if (TokenQueue.empty() || NeedMore) {
791  if (!fetchMoreTokens()) {
792  TokenQueue.clear();
793  TokenQueue.push_back(Token());
794  return TokenQueue.front();
795  }
796  }
797  assert(!TokenQueue.empty() &&
798  "fetchMoreTokens lied about getting tokens!");
799 
800  removeStaleSimpleKeyCandidates();
801  SimpleKey SK;
802  SK.Tok = TokenQueue.begin();
803  if (!is_contained(SimpleKeys, SK))
804  break;
805  else
806  NeedMore = true;
807  }
808  return TokenQueue.front();
809 }
810 
812  Token Ret = peekNext();
813  // TokenQueue can be empty if there was an error getting the next token.
814  if (!TokenQueue.empty())
815  TokenQueue.pop_front();
816 
817  // There cannot be any referenced Token's if the TokenQueue is empty. So do a
818  // quick deallocation of them all.
819  if (TokenQueue.empty())
820  TokenQueue.resetAlloc();
821 
822  return Ret;
823 }
824 
825 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
826  if (Position == End)
827  return Position;
828  // Check 7 bit c-printable - b-char.
829  if ( *Position == 0x09
830  || (*Position >= 0x20 && *Position <= 0x7E))
831  return Position + 1;
832 
833  // Check for valid UTF-8.
834  if (uint8_t(*Position) & 0x80) {
835  UTF8Decoded u8d = decodeUTF8(Position);
836  if ( u8d.second != 0
837  && u8d.first != 0xFEFF
838  && ( u8d.first == 0x85
839  || ( u8d.first >= 0xA0
840  && u8d.first <= 0xD7FF)
841  || ( u8d.first >= 0xE000
842  && u8d.first <= 0xFFFD)
843  || ( u8d.first >= 0x10000
844  && u8d.first <= 0x10FFFF)))
845  return Position + u8d.second;
846  }
847  return Position;
848 }
849 
850 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
851  if (Position == End)
852  return Position;
853  if (*Position == 0x0D) {
854  if (Position + 1 != End && *(Position + 1) == 0x0A)
855  return Position + 2;
856  return Position + 1;
857  }
858 
859  if (*Position == 0x0A)
860  return Position + 1;
861  return Position;
862 }
863 
864 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
865  if (Position == End)
866  return Position;
867  if (*Position == ' ')
868  return Position + 1;
869  return Position;
870 }
871 
872 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
873  if (Position == End)
874  return Position;
875  if (*Position == ' ' || *Position == '\t')
876  return Position + 1;
877  return Position;
878 }
879 
880 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
881  if (Position == End)
882  return Position;
883  if (*Position == ' ' || *Position == '\t')
884  return Position;
885  return skip_nb_char(Position);
886 }
887 
888 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
889  , StringRef::iterator Position) {
890  while (true) {
891  StringRef::iterator i = (this->*Func)(Position);
892  if (i == Position)
893  break;
894  Position = i;
895  }
896  return Position;
897 }
898 
899 void Scanner::advanceWhile(SkipWhileFunc Func) {
900  auto Final = skip_while(Func, Current);
901  Column += Final - Current;
902  Current = Final;
903 }
904 
905 static bool is_ns_hex_digit(const char C) {
906  return (C >= '0' && C <= '9')
907  || (C >= 'a' && C <= 'z')
908  || (C >= 'A' && C <= 'Z');
909 }
910 
911 static bool is_ns_word_char(const char C) {
912  return C == '-'
913  || (C >= 'a' && C <= 'z')
914  || (C >= 'A' && C <= 'Z');
915 }
916 
917 void Scanner::scan_ns_uri_char() {
918  while (true) {
919  if (Current == End)
920  break;
921  if (( *Current == '%'
922  && Current + 2 < End
923  && is_ns_hex_digit(*(Current + 1))
924  && is_ns_hex_digit(*(Current + 2)))
925  || is_ns_word_char(*Current)
926  || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
927  != StringRef::npos) {
928  ++Current;
929  ++Column;
930  } else
931  break;
932  }
933 }
934 
935 bool Scanner::consume(uint32_t Expected) {
936  if (Expected >= 0x80)
937  report_fatal_error("Not dealing with this yet");
938  if (Current == End)
939  return false;
940  if (uint8_t(*Current) >= 0x80)
941  report_fatal_error("Not dealing with this yet");
942  if (uint8_t(*Current) == Expected) {
943  ++Current;
944  ++Column;
945  return true;
946  }
947  return false;
948 }
949 
950 void Scanner::skip(uint32_t Distance) {
951  Current += Distance;
952  Column += Distance;
953  assert(Current <= End && "Skipped past the end");
954 }
955 
956 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
957  if (Position == End)
958  return false;
959  return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
960  *Position == '\n';
961 }
962 
963 bool Scanner::consumeLineBreakIfPresent() {
964  auto Next = skip_b_break(Current);
965  if (Next == Current)
966  return false;
967  Column = 0;
968  ++Line;
969  Current = Next;
970  return true;
971 }
972 
973 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
974  , unsigned AtColumn
975  , bool IsRequired) {
976  if (IsSimpleKeyAllowed) {
977  SimpleKey SK;
978  SK.Tok = Tok;
979  SK.Line = Line;
980  SK.Column = AtColumn;
981  SK.IsRequired = IsRequired;
982  SK.FlowLevel = FlowLevel;
983  SimpleKeys.push_back(SK);
984  }
985 }
986 
987 void Scanner::removeStaleSimpleKeyCandidates() {
988  for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
989  i != SimpleKeys.end();) {
990  if (i->Line != Line || i->Column + 1024 < Column) {
991  if (i->IsRequired)
992  setError( "Could not find expected : for simple key"
993  , i->Tok->Range.begin());
994  i = SimpleKeys.erase(i);
995  } else
996  ++i;
997  }
998 }
999 
1000 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1001  if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1002  SimpleKeys.pop_back();
1003 }
1004 
1005 bool Scanner::unrollIndent(int ToColumn) {
1006  Token T;
1007  // Indentation is ignored in flow.
1008  if (FlowLevel != 0)
1009  return true;
1010 
1011  while (Indent > ToColumn) {
1013  T.Range = StringRef(Current, 1);
1014  TokenQueue.push_back(T);
1015  Indent = Indents.pop_back_val();
1016  }
1017 
1018  return true;
1019 }
1020 
1021 bool Scanner::rollIndent( int ToColumn
1023  , TokenQueueT::iterator InsertPoint) {
1024  if (FlowLevel)
1025  return true;
1026  if (Indent < ToColumn) {
1027  Indents.push_back(Indent);
1028  Indent = ToColumn;
1029 
1030  Token T;
1031  T.Kind = Kind;
1032  T.Range = StringRef(Current, 0);
1033  TokenQueue.insert(InsertPoint, T);
1034  }
1035  return true;
1036 }
1037 
1038 void Scanner::skipComment() {
1039  if (*Current != '#')
1040  return;
1041  while (true) {
1042  // This may skip more than one byte, thus Column is only incremented
1043  // for code points.
1044  StringRef::iterator I = skip_nb_char(Current);
1045  if (I == Current)
1046  break;
1047  Current = I;
1048  ++Column;
1049  }
1050 }
1051 
1052 void Scanner::scanToNextToken() {
1053  while (true) {
1054  while (*Current == ' ' || *Current == '\t') {
1055  skip(1);
1056  }
1057 
1058  skipComment();
1059 
1060  // Skip EOL.
1061  StringRef::iterator i = skip_b_break(Current);
1062  if (i == Current)
1063  break;
1064  Current = i;
1065  ++Line;
1066  Column = 0;
1067  // New lines may start a simple key.
1068  if (!FlowLevel)
1069  IsSimpleKeyAllowed = true;
1070  }
1071 }
1072 
1073 bool Scanner::scanStreamStart() {
1074  IsStartOfStream = false;
1075 
1076  EncodingInfo EI = getUnicodeEncoding(currentInput());
1077 
1078  Token T;
1080  T.Range = StringRef(Current, EI.second);
1081  TokenQueue.push_back(T);
1082  Current += EI.second;
1083  return true;
1084 }
1085 
1086 bool Scanner::scanStreamEnd() {
1087  // Force an ending new line if one isn't present.
1088  if (Column != 0) {
1089  Column = 0;
1090  ++Line;
1091  }
1092 
1093  unrollIndent(-1);
1094  SimpleKeys.clear();
1095  IsSimpleKeyAllowed = false;
1096 
1097  Token T;
1099  T.Range = StringRef(Current, 0);
1100  TokenQueue.push_back(T);
1101  return true;
1102 }
1103 
1104 bool Scanner::scanDirective() {
1105  // Reset the indentation level.
1106  unrollIndent(-1);
1107  SimpleKeys.clear();
1108  IsSimpleKeyAllowed = false;
1109 
1110  StringRef::iterator Start = Current;
1111  consume('%');
1112  StringRef::iterator NameStart = Current;
1113  Current = skip_while(&Scanner::skip_ns_char, Current);
1114  StringRef Name(NameStart, Current - NameStart);
1115  Current = skip_while(&Scanner::skip_s_white, Current);
1116 
1117  Token T;
1118  if (Name == "YAML") {
1119  Current = skip_while(&Scanner::skip_ns_char, Current);
1121  T.Range = StringRef(Start, Current - Start);
1122  TokenQueue.push_back(T);
1123  return true;
1124  } else if(Name == "TAG") {
1125  Current = skip_while(&Scanner::skip_ns_char, Current);
1126  Current = skip_while(&Scanner::skip_s_white, Current);
1127  Current = skip_while(&Scanner::skip_ns_char, Current);
1129  T.Range = StringRef(Start, Current - Start);
1130  TokenQueue.push_back(T);
1131  return true;
1132  }
1133  return false;
1134 }
1135 
1136 bool Scanner::scanDocumentIndicator(bool IsStart) {
1137  unrollIndent(-1);
1138  SimpleKeys.clear();
1139  IsSimpleKeyAllowed = false;
1140 
1141  Token T;
1143  T.Range = StringRef(Current, 3);
1144  skip(3);
1145  TokenQueue.push_back(T);
1146  return true;
1147 }
1148 
1149 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1150  Token T;
1151  T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1153  T.Range = StringRef(Current, 1);
1154  skip(1);
1155  TokenQueue.push_back(T);
1156 
1157  // [ and { may begin a simple key.
1158  saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1159 
1160  // And may also be followed by a simple key.
1161  IsSimpleKeyAllowed = true;
1162  ++FlowLevel;
1163  return true;
1164 }
1165 
1166 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1167  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1168  IsSimpleKeyAllowed = false;
1169  Token T;
1170  T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1172  T.Range = StringRef(Current, 1);
1173  skip(1);
1174  TokenQueue.push_back(T);
1175  if (FlowLevel)
1176  --FlowLevel;
1177  return true;
1178 }
1179 
1180 bool Scanner::scanFlowEntry() {
1181  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1182  IsSimpleKeyAllowed = true;
1183  Token T;
1185  T.Range = StringRef(Current, 1);
1186  skip(1);
1187  TokenQueue.push_back(T);
1188  return true;
1189 }
1190 
1191 bool Scanner::scanBlockEntry() {
1192  rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1193  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1194  IsSimpleKeyAllowed = true;
1195  Token T;
1197  T.Range = StringRef(Current, 1);
1198  skip(1);
1199  TokenQueue.push_back(T);
1200  return true;
1201 }
1202 
1203 bool Scanner::scanKey() {
1204  if (!FlowLevel)
1205  rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1206 
1207  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1208  IsSimpleKeyAllowed = !FlowLevel;
1209 
1210  Token T;
1211  T.Kind = Token::TK_Key;
1212  T.Range = StringRef(Current, 1);
1213  skip(1);
1214  TokenQueue.push_back(T);
1215  return true;
1216 }
1217 
1218 bool Scanner::scanValue() {
1219  // If the previous token could have been a simple key, insert the key token
1220  // into the token queue.
1221  if (!SimpleKeys.empty()) {
1222  SimpleKey SK = SimpleKeys.pop_back_val();
1223  Token T;
1224  T.Kind = Token::TK_Key;
1225  T.Range = SK.Tok->Range;
1226  TokenQueueT::iterator i, e;
1227  for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1228  if (i == SK.Tok)
1229  break;
1230  }
1231  assert(i != e && "SimpleKey not in token queue!");
1232  i = TokenQueue.insert(i, T);
1233 
1234  // We may also need to add a Block-Mapping-Start token.
1235  rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1236 
1237  IsSimpleKeyAllowed = false;
1238  } else {
1239  if (!FlowLevel)
1240  rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1241  IsSimpleKeyAllowed = !FlowLevel;
1242  }
1243 
1244  Token T;
1245  T.Kind = Token::TK_Value;
1246  T.Range = StringRef(Current, 1);
1247  skip(1);
1248  TokenQueue.push_back(T);
1249  return true;
1250 }
1251 
1252 // Forbidding inlining improves performance by roughly 20%.
1253 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1254 LLVM_ATTRIBUTE_NOINLINE static bool
1256 
1257 // Returns whether a character at 'Position' was escaped with a leading '\'.
1258 // 'First' specifies the position of the first character in the string.
1260  StringRef::iterator Position) {
1261  assert(Position - 1 >= First);
1262  StringRef::iterator I = Position - 1;
1263  // We calculate the number of consecutive '\'s before the current position
1264  // by iterating backwards through our string.
1265  while (I >= First && *I == '\\') --I;
1266  // (Position - 1 - I) now contains the number of '\'s before the current
1267  // position. If it is odd, the character at 'Position' was escaped.
1268  return (Position - 1 - I) % 2 == 1;
1269 }
1270 
1271 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1272  StringRef::iterator Start = Current;
1273  unsigned ColStart = Column;
1274  if (IsDoubleQuoted) {
1275  do {
1276  ++Current;
1277  while (Current != End && *Current != '"')
1278  ++Current;
1279  // Repeat until the previous character was not a '\' or was an escaped
1280  // backslash.
1281  } while ( Current != End
1282  && *(Current - 1) == '\\'
1283  && wasEscaped(Start + 1, Current));
1284  } else {
1285  skip(1);
1286  while (true) {
1287  // Skip a ' followed by another '.
1288  if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1289  skip(2);
1290  continue;
1291  } else if (*Current == '\'')
1292  break;
1293  StringRef::iterator i = skip_nb_char(Current);
1294  if (i == Current) {
1295  i = skip_b_break(Current);
1296  if (i == Current)
1297  break;
1298  Current = i;
1299  Column = 0;
1300  ++Line;
1301  } else {
1302  if (i == End)
1303  break;
1304  Current = i;
1305  ++Column;
1306  }
1307  }
1308  }
1309 
1310  if (Current == End) {
1311  setError("Expected quote at end of scalar", Current);
1312  return false;
1313  }
1314 
1315  skip(1); // Skip ending quote.
1316  Token T;
1317  T.Kind = Token::TK_Scalar;
1318  T.Range = StringRef(Start, Current - Start);
1319  TokenQueue.push_back(T);
1320 
1321  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1322 
1323  IsSimpleKeyAllowed = false;
1324 
1325  return true;
1326 }
1327 
1328 bool Scanner::scanPlainScalar() {
1329  StringRef::iterator Start = Current;
1330  unsigned ColStart = Column;
1331  unsigned LeadingBlanks = 0;
1332  assert(Indent >= -1 && "Indent must be >= -1 !");
1333  unsigned indent = static_cast<unsigned>(Indent + 1);
1334  while (true) {
1335  if (*Current == '#')
1336  break;
1337 
1338  while (!isBlankOrBreak(Current)) {
1339  if ( FlowLevel && *Current == ':'
1340  && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1341  setError("Found unexpected ':' while scanning a plain scalar", Current);
1342  return false;
1343  }
1344 
1345  // Check for the end of the plain scalar.
1346  if ( (*Current == ':' && isBlankOrBreak(Current + 1))
1347  || ( FlowLevel
1348  && (StringRef(Current, 1).find_first_of(",:?[]{}")
1349  != StringRef::npos)))
1350  break;
1351 
1352  StringRef::iterator i = skip_nb_char(Current);
1353  if (i == Current)
1354  break;
1355  Current = i;
1356  ++Column;
1357  }
1358 
1359  // Are we at the end?
1360  if (!isBlankOrBreak(Current))
1361  break;
1362 
1363  // Eat blanks.
1364  StringRef::iterator Tmp = Current;
1365  while (isBlankOrBreak(Tmp)) {
1366  StringRef::iterator i = skip_s_white(Tmp);
1367  if (i != Tmp) {
1368  if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1369  setError("Found invalid tab character in indentation", Tmp);
1370  return false;
1371  }
1372  Tmp = i;
1373  ++Column;
1374  } else {
1375  i = skip_b_break(Tmp);
1376  if (!LeadingBlanks)
1377  LeadingBlanks = 1;
1378  Tmp = i;
1379  Column = 0;
1380  ++Line;
1381  }
1382  }
1383 
1384  if (!FlowLevel && Column < indent)
1385  break;
1386 
1387  Current = Tmp;
1388  }
1389  if (Start == Current) {
1390  setError("Got empty plain scalar", Start);
1391  return false;
1392  }
1393  Token T;
1394  T.Kind = Token::TK_Scalar;
1395  T.Range = StringRef(Start, Current - Start);
1396  TokenQueue.push_back(T);
1397 
1398  // Plain scalars can be simple keys.
1399  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1400 
1401  IsSimpleKeyAllowed = false;
1402 
1403  return true;
1404 }
1405 
1406 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1407  StringRef::iterator Start = Current;
1408  unsigned ColStart = Column;
1409  skip(1);
1410  while(true) {
1411  if ( *Current == '[' || *Current == ']'
1412  || *Current == '{' || *Current == '}'
1413  || *Current == ','
1414  || *Current == ':')
1415  break;
1416  StringRef::iterator i = skip_ns_char(Current);
1417  if (i == Current)
1418  break;
1419  Current = i;
1420  ++Column;
1421  }
1422 
1423  if (Start == Current) {
1424  setError("Got empty alias or anchor", Start);
1425  return false;
1426  }
1427 
1428  Token T;
1429  T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1430  T.Range = StringRef(Start, Current - Start);
1431  TokenQueue.push_back(T);
1432 
1433  // Alias and anchors can be simple keys.
1434  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1435 
1436  IsSimpleKeyAllowed = false;
1437 
1438  return true;
1439 }
1440 
1441 char Scanner::scanBlockChompingIndicator() {
1442  char Indicator = ' ';
1443  if (Current != End && (*Current == '+' || *Current == '-')) {
1444  Indicator = *Current;
1445  skip(1);
1446  }
1447  return Indicator;
1448 }
1449 
1450 /// Get the number of line breaks after chomping.
1451 ///
1452 /// Return the number of trailing line breaks to emit, depending on
1453 /// \p ChompingIndicator.
1454 static unsigned getChompedLineBreaks(char ChompingIndicator,
1455  unsigned LineBreaks, StringRef Str) {
1456  if (ChompingIndicator == '-') // Strip all line breaks.
1457  return 0;
1458  if (ChompingIndicator == '+') // Keep all line breaks.
1459  return LineBreaks;
1460  // Clip trailing lines.
1461  return Str.empty() ? 0 : 1;
1462 }
1463 
1464 unsigned Scanner::scanBlockIndentationIndicator() {
1465  unsigned Indent = 0;
1466  if (Current != End && (*Current >= '1' && *Current <= '9')) {
1467  Indent = unsigned(*Current - '0');
1468  skip(1);
1469  }
1470  return Indent;
1471 }
1472 
1473 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1474  unsigned &IndentIndicator, bool &IsDone) {
1475  auto Start = Current;
1476 
1477  ChompingIndicator = scanBlockChompingIndicator();
1478  IndentIndicator = scanBlockIndentationIndicator();
1479  // Check for the chomping indicator once again.
1480  if (ChompingIndicator == ' ')
1481  ChompingIndicator = scanBlockChompingIndicator();
1482  Current = skip_while(&Scanner::skip_s_white, Current);
1483  skipComment();
1484 
1485  if (Current == End) { // EOF, we have an empty scalar.
1486  Token T;
1488  T.Range = StringRef(Start, Current - Start);
1489  TokenQueue.push_back(T);
1490  IsDone = true;
1491  return true;
1492  }
1493 
1494  if (!consumeLineBreakIfPresent()) {
1495  setError("Expected a line break after block scalar header", Current);
1496  return false;
1497  }
1498  return true;
1499 }
1500 
1501 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1502  unsigned BlockExitIndent,
1503  unsigned &LineBreaks, bool &IsDone) {
1504  unsigned MaxAllSpaceLineCharacters = 0;
1505  StringRef::iterator LongestAllSpaceLine;
1506 
1507  while (true) {
1508  advanceWhile(&Scanner::skip_s_space);
1509  if (skip_nb_char(Current) != Current) {
1510  // This line isn't empty, so try and find the indentation.
1511  if (Column <= BlockExitIndent) { // End of the block literal.
1512  IsDone = true;
1513  return true;
1514  }
1515  // We found the block's indentation.
1516  BlockIndent = Column;
1517  if (MaxAllSpaceLineCharacters > BlockIndent) {
1518  setError(
1519  "Leading all-spaces line must be smaller than the block indent",
1520  LongestAllSpaceLine);
1521  return false;
1522  }
1523  return true;
1524  }
1525  if (skip_b_break(Current) != Current &&
1526  Column > MaxAllSpaceLineCharacters) {
1527  // Record the longest all-space line in case it's longer than the
1528  // discovered block indent.
1529  MaxAllSpaceLineCharacters = Column;
1530  LongestAllSpaceLine = Current;
1531  }
1532 
1533  // Check for EOF.
1534  if (Current == End) {
1535  IsDone = true;
1536  return true;
1537  }
1538 
1539  if (!consumeLineBreakIfPresent()) {
1540  IsDone = true;
1541  return true;
1542  }
1543  ++LineBreaks;
1544  }
1545  return true;
1546 }
1547 
1548 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1549  unsigned BlockExitIndent, bool &IsDone) {
1550  // Skip the indentation.
1551  while (Column < BlockIndent) {
1552  auto I = skip_s_space(Current);
1553  if (I == Current)
1554  break;
1555  Current = I;
1556  ++Column;
1557  }
1558 
1559  if (skip_nb_char(Current) == Current)
1560  return true;
1561 
1562  if (Column <= BlockExitIndent) { // End of the block literal.
1563  IsDone = true;
1564  return true;
1565  }
1566 
1567  if (Column < BlockIndent) {
1568  if (Current != End && *Current == '#') { // Trailing comment.
1569  IsDone = true;
1570  return true;
1571  }
1572  setError("A text line is less indented than the block scalar", Current);
1573  return false;
1574  }
1575  return true; // A normal text line.
1576 }
1577 
1578 bool Scanner::scanBlockScalar(bool IsLiteral) {
1579  // Eat '|' or '>'
1580  assert(*Current == '|' || *Current == '>');
1581  skip(1);
1582 
1583  char ChompingIndicator;
1584  unsigned BlockIndent;
1585  bool IsDone = false;
1586  if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1587  return false;
1588  if (IsDone)
1589  return true;
1590 
1591  auto Start = Current;
1592  unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1593  unsigned LineBreaks = 0;
1594  if (BlockIndent == 0) {
1595  if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1596  IsDone))
1597  return false;
1598  }
1599 
1600  // Scan the block's scalars body.
1601  SmallString<256> Str;
1602  while (!IsDone) {
1603  if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1604  return false;
1605  if (IsDone)
1606  break;
1607 
1608  // Parse the current line.
1609  auto LineStart = Current;
1610  advanceWhile(&Scanner::skip_nb_char);
1611  if (LineStart != Current) {
1612  Str.append(LineBreaks, '\n');
1613  Str.append(StringRef(LineStart, Current - LineStart));
1614  LineBreaks = 0;
1615  }
1616 
1617  // Check for EOF.
1618  if (Current == End)
1619  break;
1620 
1621  if (!consumeLineBreakIfPresent())
1622  break;
1623  ++LineBreaks;
1624  }
1625 
1626  if (Current == End && !LineBreaks)
1627  // Ensure that there is at least one line break before the end of file.
1628  LineBreaks = 1;
1629  Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1630 
1631  // New lines may start a simple key.
1632  if (!FlowLevel)
1633  IsSimpleKeyAllowed = true;
1634 
1635  Token T;
1637  T.Range = StringRef(Start, Current - Start);
1638  T.Value = Str.str().str();
1639  TokenQueue.push_back(T);
1640  return true;
1641 }
1642 
1643 bool Scanner::scanTag() {
1644  StringRef::iterator Start = Current;
1645  unsigned ColStart = Column;
1646  skip(1); // Eat !.
1647  if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1648  else if (*Current == '<') {
1649  skip(1);
1650  scan_ns_uri_char();
1651  if (!consume('>'))
1652  return false;
1653  } else {
1654  // FIXME: Actually parse the c-ns-shorthand-tag rule.
1655  Current = skip_while(&Scanner::skip_ns_char, Current);
1656  }
1657 
1658  Token T;
1659  T.Kind = Token::TK_Tag;
1660  T.Range = StringRef(Start, Current - Start);
1661  TokenQueue.push_back(T);
1662 
1663  // Tags can be simple keys.
1664  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1665 
1666  IsSimpleKeyAllowed = false;
1667 
1668  return true;
1669 }
1670 
1671 bool Scanner::fetchMoreTokens() {
1672  if (IsStartOfStream)
1673  return scanStreamStart();
1674 
1675  scanToNextToken();
1676 
1677  if (Current == End)
1678  return scanStreamEnd();
1679 
1680  removeStaleSimpleKeyCandidates();
1681 
1682  unrollIndent(Column);
1683 
1684  if (Column == 0 && *Current == '%')
1685  return scanDirective();
1686 
1687  if (Column == 0 && Current + 4 <= End
1688  && *Current == '-'
1689  && *(Current + 1) == '-'
1690  && *(Current + 2) == '-'
1691  && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1692  return scanDocumentIndicator(true);
1693 
1694  if (Column == 0 && Current + 4 <= End
1695  && *Current == '.'
1696  && *(Current + 1) == '.'
1697  && *(Current + 2) == '.'
1698  && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1699  return scanDocumentIndicator(false);
1700 
1701  if (*Current == '[')
1702  return scanFlowCollectionStart(true);
1703 
1704  if (*Current == '{')
1705  return scanFlowCollectionStart(false);
1706 
1707  if (*Current == ']')
1708  return scanFlowCollectionEnd(true);
1709 
1710  if (*Current == '}')
1711  return scanFlowCollectionEnd(false);
1712 
1713  if (*Current == ',')
1714  return scanFlowEntry();
1715 
1716  if (*Current == '-' && isBlankOrBreak(Current + 1))
1717  return scanBlockEntry();
1718 
1719  if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1720  return scanKey();
1721 
1722  if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1723  return scanValue();
1724 
1725  if (*Current == '*')
1726  return scanAliasOrAnchor(true);
1727 
1728  if (*Current == '&')
1729  return scanAliasOrAnchor(false);
1730 
1731  if (*Current == '!')
1732  return scanTag();
1733 
1734  if (*Current == '|' && !FlowLevel)
1735  return scanBlockScalar(true);
1736 
1737  if (*Current == '>' && !FlowLevel)
1738  return scanBlockScalar(false);
1739 
1740  if (*Current == '\'')
1741  return scanFlowScalar(false);
1742 
1743  if (*Current == '"')
1744  return scanFlowScalar(true);
1745 
1746  // Get a plain scalar.
1747  StringRef FirstChar(Current, 1);
1748  if (!(isBlankOrBreak(Current)
1749  || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1750  || (*Current == '-' && !isBlankOrBreak(Current + 1))
1751  || (!FlowLevel && (*Current == '?' || *Current == ':')
1752  && isBlankOrBreak(Current + 1))
1753  || (!FlowLevel && *Current == ':'
1754  && Current + 2 < End
1755  && *(Current + 1) == ':'
1756  && !isBlankOrBreak(Current + 2)))
1757  return scanPlainScalar();
1758 
1759  setError("Unrecognized character while tokenizing.");
1760  return false;
1761 }
1762 
1763 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1764  std::error_code *EC)
1765  : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1766 
1767 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1768  std::error_code *EC)
1769  : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1770 
1771 Stream::~Stream() = default;
1772 
1773 bool Stream::failed() { return scanner->failed(); }
1774 
1775 void Stream::printError(Node *N, const Twine &Msg) {
1776  scanner->printError( N->getSourceRange().Start
1778  , Msg
1779  , N->getSourceRange());
1780 }
1781 
1783  if (CurrentDoc)
1784  report_fatal_error("Can only iterate over the stream once");
1785 
1786  // Skip Stream-Start.
1787  scanner->getNext();
1788 
1789  CurrentDoc.reset(new Document(*this));
1790  return document_iterator(CurrentDoc);
1791 }
1792 
1794  return document_iterator();
1795 }
1796 
1798  for (document_iterator i = begin(), e = end(); i != e; ++i)
1799  i->skip();
1800 }
1801 
1802 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1803  StringRef T)
1804  : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1805  SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1806  SourceRange = SMRange(Start, Start);
1807 }
1808 
1809 std::string Node::getVerbatimTag() const {
1810  StringRef Raw = getRawTag();
1811  if (!Raw.empty() && Raw != "!") {
1812  std::string Ret;
1813  if (Raw.find_last_of('!') == 0) {
1814  Ret = Doc->getTagMap().find("!")->second;
1815  Ret += Raw.substr(1);
1816  return Ret;
1817  } else if (Raw.startswith("!!")) {
1818  Ret = Doc->getTagMap().find("!!")->second;
1819  Ret += Raw.substr(2);
1820  return Ret;
1821  } else {
1822  StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1823  std::map<StringRef, StringRef>::const_iterator It =
1824  Doc->getTagMap().find(TagHandle);
1825  if (It != Doc->getTagMap().end())
1826  Ret = It->second;
1827  else {
1828  Token T;
1829  T.Kind = Token::TK_Tag;
1830  T.Range = TagHandle;
1831  setError(Twine("Unknown tag handle ") + TagHandle, T);
1832  }
1833  Ret += Raw.substr(Raw.find_last_of('!') + 1);
1834  return Ret;
1835  }
1836  }
1837 
1838  switch (getType()) {
1839  case NK_Null:
1840  return "tag:yaml.org,2002:null";
1841  case NK_Scalar:
1842  case NK_BlockScalar:
1843  // TODO: Tag resolution.
1844  return "tag:yaml.org,2002:str";
1845  case NK_Mapping:
1846  return "tag:yaml.org,2002:map";
1847  case NK_Sequence:
1848  return "tag:yaml.org,2002:seq";
1849  }
1850 
1851  return "";
1852 }
1853 
1855  return Doc->peekNext();
1856 }
1857 
1859  return Doc->getNext();
1860 }
1861 
1863  return Doc->parseBlockNode();
1864 }
1865 
1867  return Doc->NodeAllocator;
1868 }
1869 
1870 void Node::setError(const Twine &Msg, Token &Tok) const {
1871  Doc->setError(Msg, Tok);
1872 }
1873 
1874 bool Node::failed() const {
1875  return Doc->failed();
1876 }
1877 
1879  // TODO: Handle newlines properly. We need to remove leading whitespace.
1880  if (Value[0] == '"') { // Double quoted.
1881  // Pull off the leading and trailing "s.
1882  StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1883  // Search for characters that would require unescaping the value.
1884  StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1885  if (i != StringRef::npos)
1886  return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1887  return UnquotedValue;
1888  } else if (Value[0] == '\'') { // Single quoted.
1889  // Pull off the leading and trailing 's.
1890  StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1891  StringRef::size_type i = UnquotedValue.find('\'');
1892  if (i != StringRef::npos) {
1893  // We're going to need Storage.
1894  Storage.clear();
1895  Storage.reserve(UnquotedValue.size());
1896  for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1897  StringRef Valid(UnquotedValue.begin(), i);
1898  Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1899  Storage.push_back('\'');
1900  UnquotedValue = UnquotedValue.substr(i + 2);
1901  }
1902  Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1903  return StringRef(Storage.begin(), Storage.size());
1904  }
1905  return UnquotedValue;
1906  }
1907  // Plain or block.
1908  return Value.rtrim(' ');
1909 }
1910 
1911 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1913  , SmallVectorImpl<char> &Storage)
1914  const {
1915  // Use Storage to build proper value.
1916  Storage.clear();
1917  Storage.reserve(UnquotedValue.size());
1918  for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1919  // Insert all previous chars into Storage.
1920  StringRef Valid(UnquotedValue.begin(), i);
1921  Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1922  // Chop off inserted chars.
1923  UnquotedValue = UnquotedValue.substr(i);
1924 
1925  assert(!UnquotedValue.empty() && "Can't be empty!");
1926 
1927  // Parse escape or line break.
1928  switch (UnquotedValue[0]) {
1929  case '\r':
1930  case '\n':
1931  Storage.push_back('\n');
1932  if ( UnquotedValue.size() > 1
1933  && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1934  UnquotedValue = UnquotedValue.substr(1);
1935  UnquotedValue = UnquotedValue.substr(1);
1936  break;
1937  default:
1938  if (UnquotedValue.size() == 1)
1939  // TODO: Report error.
1940  break;
1941  UnquotedValue = UnquotedValue.substr(1);
1942  switch (UnquotedValue[0]) {
1943  default: {
1944  Token T;
1945  T.Range = StringRef(UnquotedValue.begin(), 1);
1946  setError("Unrecognized escape code!", T);
1947  return "";
1948  }
1949  case '\r':
1950  case '\n':
1951  // Remove the new line.
1952  if ( UnquotedValue.size() > 1
1953  && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1954  UnquotedValue = UnquotedValue.substr(1);
1955  // If this was just a single byte newline, it will get skipped
1956  // below.
1957  break;
1958  case '0':
1959  Storage.push_back(0x00);
1960  break;
1961  case 'a':
1962  Storage.push_back(0x07);
1963  break;
1964  case 'b':
1965  Storage.push_back(0x08);
1966  break;
1967  case 't':
1968  case 0x09:
1969  Storage.push_back(0x09);
1970  break;
1971  case 'n':
1972  Storage.push_back(0x0A);
1973  break;
1974  case 'v':
1975  Storage.push_back(0x0B);
1976  break;
1977  case 'f':
1978  Storage.push_back(0x0C);
1979  break;
1980  case 'r':
1981  Storage.push_back(0x0D);
1982  break;
1983  case 'e':
1984  Storage.push_back(0x1B);
1985  break;
1986  case ' ':
1987  Storage.push_back(0x20);
1988  break;
1989  case '"':
1990  Storage.push_back(0x22);
1991  break;
1992  case '/':
1993  Storage.push_back(0x2F);
1994  break;
1995  case '\\':
1996  Storage.push_back(0x5C);
1997  break;
1998  case 'N':
1999  encodeUTF8(0x85, Storage);
2000  break;
2001  case '_':
2002  encodeUTF8(0xA0, Storage);
2003  break;
2004  case 'L':
2005  encodeUTF8(0x2028, Storage);
2006  break;
2007  case 'P':
2008  encodeUTF8(0x2029, Storage);
2009  break;
2010  case 'x': {
2011  if (UnquotedValue.size() < 3)
2012  // TODO: Report error.
2013  break;
2014  unsigned int UnicodeScalarValue;
2015  if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2016  // TODO: Report error.
2017  UnicodeScalarValue = 0xFFFD;
2018  encodeUTF8(UnicodeScalarValue, Storage);
2019  UnquotedValue = UnquotedValue.substr(2);
2020  break;
2021  }
2022  case 'u': {
2023  if (UnquotedValue.size() < 5)
2024  // TODO: Report error.
2025  break;
2026  unsigned int UnicodeScalarValue;
2027  if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2028  // TODO: Report error.
2029  UnicodeScalarValue = 0xFFFD;
2030  encodeUTF8(UnicodeScalarValue, Storage);
2031  UnquotedValue = UnquotedValue.substr(4);
2032  break;
2033  }
2034  case 'U': {
2035  if (UnquotedValue.size() < 9)
2036  // TODO: Report error.
2037  break;
2038  unsigned int UnicodeScalarValue;
2039  if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2040  // TODO: Report error.
2041  UnicodeScalarValue = 0xFFFD;
2042  encodeUTF8(UnicodeScalarValue, Storage);
2043  UnquotedValue = UnquotedValue.substr(8);
2044  break;
2045  }
2046  }
2047  UnquotedValue = UnquotedValue.substr(1);
2048  }
2049  }
2050  Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
2051  return StringRef(Storage.begin(), Storage.size());
2052 }
2053 
2055  if (Key)
2056  return Key;
2057  // Handle implicit null keys.
2058  {
2059  Token &t = peekNext();
2060  if ( t.Kind == Token::TK_BlockEnd
2061  || t.Kind == Token::TK_Value
2062  || t.Kind == Token::TK_Error) {
2063  return Key = new (getAllocator()) NullNode(Doc);
2064  }
2065  if (t.Kind == Token::TK_Key)
2066  getNext(); // skip TK_Key.
2067  }
2068 
2069  // Handle explicit null keys.
2070  Token &t = peekNext();
2071  if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2072  return Key = new (getAllocator()) NullNode(Doc);
2073  }
2074 
2075  // We've got a normal key.
2076  return Key = parseBlockNode();
2077 }
2078 
2080  if (Value)
2081  return Value;
2082  getKey()->skip();
2083  if (failed())
2084  return Value = new (getAllocator()) NullNode(Doc);
2085 
2086  // Handle implicit null values.
2087  {
2088  Token &t = peekNext();
2089  if ( t.Kind == Token::TK_BlockEnd
2091  || t.Kind == Token::TK_Key
2092  || t.Kind == Token::TK_FlowEntry
2093  || t.Kind == Token::TK_Error) {
2094  return Value = new (getAllocator()) NullNode(Doc);
2095  }
2096 
2097  if (t.Kind != Token::TK_Value) {
2098  setError("Unexpected token in Key Value.", t);
2099  return Value = new (getAllocator()) NullNode(Doc);
2100  }
2101  getNext(); // skip TK_Value.
2102  }
2103 
2104  // Handle explicit null values.
2105  Token &t = peekNext();
2106  if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2107  return Value = new (getAllocator()) NullNode(Doc);
2108  }
2109 
2110  // We got a normal value.
2111  return Value = parseBlockNode();
2112 }
2113 
2114 void MappingNode::increment() {
2115  if (failed()) {
2116  IsAtEnd = true;
2117  CurrentEntry = nullptr;
2118  return;
2119  }
2120  if (CurrentEntry) {
2121  CurrentEntry->skip();
2122  if (Type == MT_Inline) {
2123  IsAtEnd = true;
2124  CurrentEntry = nullptr;
2125  return;
2126  }
2127  }
2128  Token T = peekNext();
2129  if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2130  // KeyValueNode eats the TK_Key. That way it can detect null keys.
2131  CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2132  } else if (Type == MT_Block) {
2133  switch (T.Kind) {
2134  case Token::TK_BlockEnd:
2135  getNext();
2136  IsAtEnd = true;
2137  CurrentEntry = nullptr;
2138  break;
2139  default:
2140  setError("Unexpected token. Expected Key or Block End", T);
2142  case Token::TK_Error:
2143  IsAtEnd = true;
2144  CurrentEntry = nullptr;
2145  }
2146  } else {
2147  switch (T.Kind) {
2148  case Token::TK_FlowEntry:
2149  // Eat the flow entry and recurse.
2150  getNext();
2151  return increment();
2153  getNext();
2155  case Token::TK_Error:
2156  // Set this to end iterator.
2157  IsAtEnd = true;
2158  CurrentEntry = nullptr;
2159  break;
2160  default:
2161  setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2162  "Mapping End."
2163  , T);
2164  IsAtEnd = true;
2165  CurrentEntry = nullptr;
2166  }
2167  }
2168 }
2169 
2171  if (failed()) {
2172  IsAtEnd = true;
2173  CurrentEntry = nullptr;
2174  return;
2175  }
2176  if (CurrentEntry)
2177  CurrentEntry->skip();
2178  Token T = peekNext();
2179  if (SeqType == ST_Block) {
2180  switch (T.Kind) {
2181  case Token::TK_BlockEntry:
2182  getNext();
2183  CurrentEntry = parseBlockNode();
2184  if (!CurrentEntry) { // An error occurred.
2185  IsAtEnd = true;
2186  CurrentEntry = nullptr;
2187  }
2188  break;
2189  case Token::TK_BlockEnd:
2190  getNext();
2191  IsAtEnd = true;
2192  CurrentEntry = nullptr;
2193  break;
2194  default:
2195  setError( "Unexpected token. Expected Block Entry or Block End."
2196  , T);
2198  case Token::TK_Error:
2199  IsAtEnd = true;
2200  CurrentEntry = nullptr;
2201  }
2202  } else if (SeqType == ST_Indentless) {
2203  switch (T.Kind) {
2204  case Token::TK_BlockEntry:
2205  getNext();
2206  CurrentEntry = parseBlockNode();
2207  if (!CurrentEntry) { // An error occurred.
2208  IsAtEnd = true;
2209  CurrentEntry = nullptr;
2210  }
2211  break;
2212  default:
2213  case Token::TK_Error:
2214  IsAtEnd = true;
2215  CurrentEntry = nullptr;
2216  }
2217  } else if (SeqType == ST_Flow) {
2218  switch (T.Kind) {
2219  case Token::TK_FlowEntry:
2220  // Eat the flow entry and recurse.
2221  getNext();
2222  WasPreviousTokenFlowEntry = true;
2223  return increment();
2225  getNext();
2227  case Token::TK_Error:
2228  // Set this to end iterator.
2229  IsAtEnd = true;
2230  CurrentEntry = nullptr;
2231  break;
2232  case Token::TK_StreamEnd:
2233  case Token::TK_DocumentEnd:
2235  setError("Could not find closing ]!", T);
2236  // Set this to end iterator.
2237  IsAtEnd = true;
2238  CurrentEntry = nullptr;
2239  break;
2240  default:
2241  if (!WasPreviousTokenFlowEntry) {
2242  setError("Expected , between entries!", T);
2243  IsAtEnd = true;
2244  CurrentEntry = nullptr;
2245  break;
2246  }
2247  // Otherwise it must be a flow entry.
2248  CurrentEntry = parseBlockNode();
2249  if (!CurrentEntry) {
2250  IsAtEnd = true;
2251  }
2252  WasPreviousTokenFlowEntry = false;
2253  break;
2254  }
2255  }
2256 }
2257 
2258 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2259  // Tag maps starts with two default mappings.
2260  TagMap["!"] = "!";
2261  TagMap["!!"] = "tag:yaml.org,2002:";
2262 
2263  if (parseDirectives())
2264  expectToken(Token::TK_DocumentStart);
2265  Token &T = peekNext();
2266  if (T.Kind == Token::TK_DocumentStart)
2267  getNext();
2268 }
2269 
2271  if (stream.scanner->failed())
2272  return false;
2273  if (!Root)
2274  getRoot();
2275  Root->skip();
2276  Token &T = peekNext();
2277  if (T.Kind == Token::TK_StreamEnd)
2278  return false;
2279  if (T.Kind == Token::TK_DocumentEnd) {
2280  getNext();
2281  return skip();
2282  }
2283  return true;
2284 }
2285 
2286 Token &Document::peekNext() {
2287  return stream.scanner->peekNext();
2288 }
2289 
2290 Token Document::getNext() {
2291  return stream.scanner->getNext();
2292 }
2293 
2294 void Document::setError(const Twine &Message, Token &Location) const {
2295  stream.scanner->setError(Message, Location.Range.begin());
2296 }
2297 
2298 bool Document::failed() const {
2299  return stream.scanner->failed();
2300 }
2301 
2303  Token T = peekNext();
2304  // Handle properties.
2305  Token AnchorInfo;
2306  Token TagInfo;
2307 parse_property:
2308  switch (T.Kind) {
2309  case Token::TK_Alias:
2310  getNext();
2311  return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2312  case Token::TK_Anchor:
2313  if (AnchorInfo.Kind == Token::TK_Anchor) {
2314  setError("Already encountered an anchor for this node!", T);
2315  return nullptr;
2316  }
2317  AnchorInfo = getNext(); // Consume TK_Anchor.
2318  T = peekNext();
2319  goto parse_property;
2320  case Token::TK_Tag:
2321  if (TagInfo.Kind == Token::TK_Tag) {
2322  setError("Already encountered a tag for this node!", T);
2323  return nullptr;
2324  }
2325  TagInfo = getNext(); // Consume TK_Tag.
2326  T = peekNext();
2327  goto parse_property;
2328  default:
2329  break;
2330  }
2331 
2332  switch (T.Kind) {
2333  case Token::TK_BlockEntry:
2334  // We got an unindented BlockEntry sequence. This is not terminated with
2335  // a BlockEnd.
2336  // Don't eat the TK_BlockEntry, SequenceNode needs it.
2337  return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2338  , AnchorInfo.Range.substr(1)
2339  , TagInfo.Range
2342  getNext();
2343  return new (NodeAllocator)
2344  SequenceNode( stream.CurrentDoc
2345  , AnchorInfo.Range.substr(1)
2346  , TagInfo.Range
2349  getNext();
2350  return new (NodeAllocator)
2351  MappingNode( stream.CurrentDoc
2352  , AnchorInfo.Range.substr(1)
2353  , TagInfo.Range
2356  getNext();
2357  return new (NodeAllocator)
2358  SequenceNode( stream.CurrentDoc
2359  , AnchorInfo.Range.substr(1)
2360  , TagInfo.Range
2363  getNext();
2364  return new (NodeAllocator)
2365  MappingNode( stream.CurrentDoc
2366  , AnchorInfo.Range.substr(1)
2367  , TagInfo.Range
2369  case Token::TK_Scalar:
2370  getNext();
2371  return new (NodeAllocator)
2372  ScalarNode( stream.CurrentDoc
2373  , AnchorInfo.Range.substr(1)
2374  , TagInfo.Range
2375  , T.Range);
2376  case Token::TK_BlockScalar: {
2377  getNext();
2378  StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2379  StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2380  return new (NodeAllocator)
2381  BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2382  TagInfo.Range, StrCopy, T.Range);
2383  }
2384  case Token::TK_Key:
2385  // Don't eat the TK_Key, KeyValueNode expects it.
2386  return new (NodeAllocator)
2387  MappingNode( stream.CurrentDoc
2388  , AnchorInfo.Range.substr(1)
2389  , TagInfo.Range
2392  case Token::TK_DocumentEnd:
2393  case Token::TK_StreamEnd:
2394  default:
2395  // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2396  // !!null null.
2397  return new (NodeAllocator) NullNode(stream.CurrentDoc);
2398  case Token::TK_Error:
2399  return nullptr;
2400  }
2401  llvm_unreachable("Control flow shouldn't reach here.");
2402  return nullptr;
2403 }
2404 
2405 bool Document::parseDirectives() {
2406  bool isDirective = false;
2407  while (true) {
2408  Token T = peekNext();
2409  if (T.Kind == Token::TK_TagDirective) {
2410  parseTAGDirective();
2411  isDirective = true;
2412  } else if (T.Kind == Token::TK_VersionDirective) {
2413  parseYAMLDirective();
2414  isDirective = true;
2415  } else
2416  break;
2417  }
2418  return isDirective;
2419 }
2420 
2421 void Document::parseYAMLDirective() {
2422  getNext(); // Eat %YAML <version>
2423 }
2424 
2425 void Document::parseTAGDirective() {
2426  Token Tag = getNext(); // %TAG <handle> <prefix>
2427  StringRef T = Tag.Range;
2428  // Strip %TAG
2429  T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2430  std::size_t HandleEnd = T.find_first_of(" \t");
2431  StringRef TagHandle = T.substr(0, HandleEnd);
2432  StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2433  TagMap[TagHandle] = TagPrefix;
2434 }
2435 
2436 bool Document::expectToken(int TK) {
2437  Token T = getNext();
2438  if (T.Kind != TK) {
2439  setError("Unexpected token", T);
2440  return false;
2441  }
2442  return true;
2443 }
const NoneType None
Definition: None.h:24
uint64_t CallInst * C
Represents a range in source code.
Definition: SMLoc.h:49
std::unique_ptr< Document > & Doc
Definition: YAMLParser.h:176
bool operator==(const BinaryRef &LHS, const BinaryRef &RHS)
Definition: YAML.h:99
LLVM_NODISCARD std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:228
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:140
This class represents lattice values for constants.
Definition: AllocatorList.h:24
StringRef getRawTag() const
Get the tag as it was written in the document.
Definition: YAMLParser.h:154
const char * getBufferEnd() const
Definition: MemoryBuffer.h:278
A linked-list with a custom, local allocator.
Definition: AllocatorList.h:35
const char * iterator
Definition: StringRef.h:53
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
Node(unsigned int Type, std::unique_ptr< Document > &, StringRef Anchor, StringRef Tag)
Not a valid Unicode encoding.
Definition: YAMLParser.cpp:50
Scanner(StringRef Input, SourceMgr &SM, bool ShowColors=true, std::error_code *EC=nullptr)
Definition: YAMLParser.cpp:757
bool scanTokens(StringRef Input)
Scans all tokens in input without outputting anything.
Definition: YAMLParser.cpp:678
std::pair< UnicodeEncodingForm, unsigned > EncodingInfo
EncodingInfo - Holds the encoding type and length of the byte order mark if it exists.
Definition: YAMLParser.cpp:55
void push_back(const T &Elt)
Definition: SmallVector.h:218
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
static std::unique_ptr< MemoryBuffer > getMemBuffer(StringRef InputData, StringRef BufferName="", bool RequiresNullTerminator=true)
Open the specified memory range as a MemoryBuffer.
bool failed() const
std::string Value
The value of a block scalar node.
Definition: YAMLParser.cpp:159
Represents a YAML sequence created from either a block sequence for a flow sequence.
Definition: YAMLParser.h:453
static LLVM_ATTRIBUTE_NOINLINE bool wasEscaped(StringRef::iterator First, StringRef::iterator Position)
LLVM_NODISCARD size_t find_last_of(char C, size_t From=npos) const
Find the last character in the string that is C, or npos if not found.
Definition: StringRef.h:421
Node * getKey()
Parse and return the key.
UTF-8 or ascii.
Definition: YAMLParser.cpp:49
std::string escape(StringRef Input, bool EscapePrintable=true)
Escape Input for a double quoted scalar; if EscapePrintable is true, all UTF8 sequences will be escap...
Definition: YAMLParser.cpp:691
void resetAlloc()
Reset the underlying allocator.
Node * parseBlockNode()
document_iterator begin()
Represents an alias to a Node with an anchor.
Definition: YAMLParser.h:505
LLVM_NODISCARD StringRef ltrim(char Char) const
Return string with consecutive Char characters starting from the the left removed.
Definition: StringRef.h:820
void reserve(size_type N)
Definition: SmallVector.h:376
UTF-32 Little Endian.
Definition: YAMLParser.cpp:45
document_iterator end()
#define LLVM_ATTRIBUTE_NOINLINE
Definition: Compiler.h:70
void push_back(T &&V)
SMLoc Start
Definition: SMLoc.h:51
void PrintMessage(raw_ostream &OS, SMLoc Loc, DiagKind Kind, const Twine &Msg, ArrayRef< SMRange > Ranges=None, ArrayRef< SMFixIt > FixIts=None, bool ShowColors=true) const
Emit a message about the specified location with the specified string.
Definition: SourceMgr.cpp:248
amdgpu Simplify well known AMD library false Value Value const Twine & Name
static bool is_ns_hex_digit(const char C)
Definition: YAMLParser.cpp:905
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
LLVM_NODISCARD StringRef copy(Allocator &A) const
Definition: StringRef.h:156
bool failed()
Returns true if an error occurred while parsing.
Definition: YAMLParser.cpp:291
std::error_code make_error_code(BitcodeError E)
TypeID
Definitions of all of the base types for the Type system.
Definition: Type.h:55
Tagged union holding either a T or a Error.
Definition: CachePruning.h:23
static EncodingInfo getUnicodeEncoding(StringRef Input)
getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode encoding form of Input...
Definition: YAMLParser.cpp:63
Position
Position to insert a new instruction relative to an existing instruction.
ELFYAML::ELF_STO Other
Definition: ELFYAML.cpp:784
StringRef str() const
Explicit conversion to StringRef.
Definition: SmallString.h:267
Key
PAL metadata keys.
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool startswith(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:267
virtual void skip()
Definition: YAMLParser.h:171
A key and value pair.
Definition: YAMLParser.h:280
bool isPrintable(int UCS)
Determines if a character is likely to be displayed correctly on the terminal.
Definition: Unicode.cpp:23
Node * getRoot()
Parse and return the root level node.
Definition: YAMLParser.h:535
#define T
unsigned AddNewSourceBuffer(std::unique_ptr< MemoryBuffer > F, SMLoc IncludeLoc)
Add a new source buffer to this source manager.
Definition: SourceMgr.h:152
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:598
std::pair< uint32_t, unsigned > UTF8Decoded
The Unicode scalar value of a UTF-8 minimal well-formed code unit subsequence and the subsequence&#39;s l...
Definition: YAMLParser.cpp:197
void append(in_iter S, in_iter E)
Append from an iterator pair.
Definition: SmallString.h:75
bool dumpTokens(StringRef Input, raw_ostream &)
Dump all the tokens in this stream to OS.
Definition: YAMLParser.cpp:594
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
IteratorImpl< T, typename list_type::iterator > iterator
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
void printError(Node *N, const Twine &Msg)
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:141
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
static unsigned getChompedLineBreaks(char ChompingIndicator, unsigned LineBreaks, StringRef Str)
Get the number of line breaks after chomping.
Document(Stream &ParentStream)
StringRef Range
A string of length 0 or more whose begin() points to the logical location of the token in the input...
Definition: YAMLParser.cpp:156
void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message, ArrayRef< SMRange > Ranges=None)
Definition: YAMLParser.cpp:266
Token getNext()
Parse the next token and pop it from the queue.
Definition: YAMLParser.cpp:811
This owns the files read by a parser, handles include stacks, and handles diagnostic wrangling...
Definition: SourceMgr.h:42
iterator erase(const_iterator CI)
Definition: SmallVector.h:445
BumpPtrAllocator & getAllocator()
size_t size() const
Definition: SmallVector.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
A scalar node is an opaque datum that can be presented as a series of zero or more Unicode scalar val...
Definition: YAMLParser.h:207
UTF-16 Little Endian.
Definition: YAMLParser.cpp:47
static Cursor skipComment(Cursor C)
Skip a line comment and return the updated cursor.
Definition: MILexer.cpp:100
A null value.
Definition: YAMLParser.h:192
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE StringRef drop_back(size_t N=1) const
Return a StringRef equal to &#39;this&#39; but with the last N elements dropped.
Definition: StringRef.h:654
void setError(const Twine &Message, StringRef::iterator Position)
Definition: YAMLParser.cpp:271
std::enable_if< std::numeric_limits< T >::is_signed, bool >::type getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition: StringRef.h:497
void setError(const Twine &Message, Token &Location) const
Node * getValue()
Parse and return the value.
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition: Error.h:148
bool skip()
Finish parsing the current document and return true if there are more.
enum llvm::yaml::Token::TokenKind Kind
Token & peekNext()
Parse the next token and return it without popping it.
Definition: YAMLParser.cpp:785
Token & peekNext()
This class represents a YAML stream potentially containing multiple documents.
Definition: YAMLParser.h:84
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
iterator insert(iterator I, T &&V)
static void encodeUTF8(uint32_t UnicodeScalarValue, SmallVectorImpl< char > &Result)
encodeUTF8 - Encode UnicodeScalarValue in UTF-8 and append it to result.
Definition: YAMLParser.cpp:566
void setError(const Twine &Message)
Definition: YAMLParser.cpp:286
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:478
static UTF8Decoded decodeUTF8(StringRef Range)
Definition: YAMLParser.cpp:199
iterator begin() const
Definition: StringRef.h:106
static SMLoc getFromPointer(const char *Ptr)
Definition: SMLoc.h:37
Stream(StringRef Input, SourceMgr &, bool ShowColors=true, std::error_code *EC=nullptr)
This keeps a reference to the string referenced by Input.
unsigned int getType() const
Definition: YAMLParser.h:173
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
static const size_t npos
Definition: StringRef.h:51
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
LLVM_NODISCARD size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition: StringRef.h:395
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
Token - A single YAML token.
Definition: YAMLParser.cpp:127
A block scalar node is an opaque datum that can be presented as a series of zero or more Unicode scal...
Definition: YAMLParser.h:250
Represents a YAML map created from either a block map for a flow map.
Definition: YAMLParser.h:405
UTF-16 Big Endian.
Definition: YAMLParser.cpp:48
const unsigned Kind
Scans YAML tokens from a MemoryBuffer.
Definition: YAMLParser.cpp:253
Iterator abstraction for Documents over a Stream.
Definition: YAMLParser.h:580
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Definition: JSON.cpp:598
const char * getBufferStart() const
Definition: MemoryBuffer.h:277
SMRange SourceRange
Definition: YAMLParser.h:177
LLVM Value Representation.
Definition: Value.h:73
friend class Document
Definition: YAMLParser.h:107
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
std::string getVerbatimTag() const
Get the verbatium tag for a given Node.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
StringRef getValue(SmallVectorImpl< char > &Storage) const
Gets the value of this node as a StringRef.
Represents a location in source code.
Definition: SMLoc.h:24
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition: StringRef.h:298
An inline mapping node is used for "[key: value]".
Definition: YAMLParser.h:412
iterator end() const
Definition: StringRef.h:108
UTF-32 Big Endian.
Definition: YAMLParser.cpp:46
Node * parseBlockNode()
Root for parsing a node. Returns a single node.
SMRange getSourceRange() const
Definition: YAMLParser.h:160
std::string utohexstr(uint64_t X, bool LowerCase=false)
Definition: StringExtras.h:125
UnicodeEncodingForm
Definition: YAMLParser.cpp:44
Abstract base class for all Nodes.
Definition: YAMLParser.h:114
static bool is_ns_word_char(const char C)
Definition: YAMLParser.cpp:911
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:1245