LLVM  8.0.1
MCSchedule.h
Go to the documentation of this file.
1 //===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to describe a subtarget's machine model
11 // for scheduling and other instruction cost heuristics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MC_MCSCHEDULE_H
16 #define LLVM_MC_MCSCHEDULE_H
17 
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/Support/DataTypes.h"
21 #include <cassert>
22 
23 namespace llvm {
24 
25 struct InstrItinerary;
26 class MCSubtargetInfo;
27 class MCInstrInfo;
28 class MCInst;
29 class InstrItineraryData;
30 
31 /// Define a kind of processor resource that will be modeled by the scheduler.
33  const char *Name;
34  unsigned NumUnits; // Number of resource of this kind
35  unsigned SuperIdx; // Index of the resources kind that contains this kind.
36 
37  // Number of resources that may be buffered.
38  //
39  // Buffered resources (BufferSize != 0) may be consumed at some indeterminate
40  // cycle after dispatch. This should be used for out-of-order cpus when
41  // instructions that use this resource can be buffered in a reservaton
42  // station.
43  //
44  // Unbuffered resources (BufferSize == 0) always consume their resource some
45  // fixed number of cycles after dispatch. If a resource is unbuffered, then
46  // the scheduler will avoid scheduling instructions with conflicting resources
47  // in the same cycle. This is for in-order cpus, or the in-order portion of
48  // an out-of-order cpus.
50 
51  // If the resource has sub-units, a pointer to the first element of an array
52  // of `NumUnits` elements containing the ProcResourceIdx of the sub units.
53  // nullptr if the resource does not have sub-units.
54  const unsigned *SubUnitsIdxBegin;
55 
56  bool operator==(const MCProcResourceDesc &Other) const {
57  return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx
58  && BufferSize == Other.BufferSize;
59  }
60 };
61 
62 /// Identify one of the processor resource kinds consumed by a particular
63 /// scheduling class for the specified number of cycles.
65  uint16_t ProcResourceIdx;
66  uint16_t Cycles;
67 
68  bool operator==(const MCWriteProcResEntry &Other) const {
69  return ProcResourceIdx == Other.ProcResourceIdx && Cycles == Other.Cycles;
70  }
71 };
72 
73 /// Specify the latency in cpu cycles for a particular scheduling class and def
74 /// index. -1 indicates an invalid latency. Heuristics would typically consider
75 /// an instruction with invalid latency to have infinite latency. Also identify
76 /// the WriteResources of this def. When the operand expands to a sequence of
77 /// writes, this ID is the last write in the sequence.
79  int16_t Cycles;
80  uint16_t WriteResourceID;
81 
82  bool operator==(const MCWriteLatencyEntry &Other) const {
83  return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID;
84  }
85 };
86 
87 /// Specify the number of cycles allowed after instruction issue before a
88 /// particular use operand reads its registers. This effectively reduces the
89 /// write's latency. Here we allow negative cycles for corner cases where
90 /// latency increases. This rule only applies when the entry's WriteResource
91 /// matches the write's WriteResource.
92 ///
93 /// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by
94 /// WriteResourceIdx.
96  unsigned UseIdx;
97  unsigned WriteResourceID;
98  int Cycles;
99 
100  bool operator==(const MCReadAdvanceEntry &Other) const {
101  return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID
102  && Cycles == Other.Cycles;
103  }
104 };
105 
106 /// Summarize the scheduling resources required for an instruction of a
107 /// particular scheduling class.
108 ///
109 /// Defined as an aggregate struct for creating tables with initializer lists.
111  static const unsigned short InvalidNumMicroOps = (1U << 14) - 1;
112  static const unsigned short VariantNumMicroOps = InvalidNumMicroOps - 1;
113 
114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
115  const char* Name;
116 #endif
117  uint16_t NumMicroOps : 14;
118  bool BeginGroup : 1;
119  bool EndGroup : 1;
120  uint16_t WriteProcResIdx; // First index into WriteProcResTable.
122  uint16_t WriteLatencyIdx; // First index into WriteLatencyTable.
124  uint16_t ReadAdvanceIdx; // First index into ReadAdvanceTable.
126 
127  bool isValid() const {
128  return NumMicroOps != InvalidNumMicroOps;
129  }
130  bool isVariant() const {
131  return NumMicroOps == VariantNumMicroOps;
132  }
133 };
134 
135 /// Specify the cost of a register definition in terms of number of physical
136 /// register allocated at register renaming stage. For example, AMD Jaguar.
137 /// natively supports 128-bit data types, and operations on 256-bit registers
138 /// (i.e. YMM registers) are internally split into two COPs (complex operations)
139 /// and each COP updates a physical register. Basically, on Jaguar, a YMM
140 /// register write effectively consumes two physical registers. That means,
141 /// the cost of a YMM write in the BtVer2 model is 2.
143  unsigned RegisterClassID;
144  unsigned Cost;
146 };
147 
148 /// A register file descriptor.
149 ///
150 /// This struct allows to describe processor register files. In particular, it
151 /// helps describing the size of the register file, as well as the cost of
152 /// allocating a register file at register renaming stage.
153 /// FIXME: this struct can be extended to provide information about the number
154 /// of read/write ports to the register file. A value of zero for field
155 /// 'NumPhysRegs' means: this register file has an unbounded number of physical
156 /// registers.
158  const char *Name;
159  uint16_t NumPhysRegs;
161  // Index of the first cost entry in MCExtraProcessorInfo::RegisterCostTable.
163  // A value of zero means: there is no limit in the number of moves that can be
164  // eliminated every cycle.
166  // Ture if this register file only knows how to optimize register moves from
167  // known zero registers.
169 };
170 
171 /// Provide extra details about the machine processor.
172 ///
173 /// This is a collection of "optional" processor information that is not
174 /// normally used by the LLVM machine schedulers, but that can be consumed by
175 /// external tools like llvm-mca to improve the quality of the peformance
176 /// analysis.
178  // Actual size of the reorder buffer in hardware.
180  // Number of instructions retired per cycle.
186  unsigned LoadQueueID;
187  unsigned StoreQueueID;
188 };
189 
190 /// Machine model for scheduling, bundling, and heuristics.
191 ///
192 /// The machine model directly provides basic information about the
193 /// microarchitecture to the scheduler in the form of properties. It also
194 /// optionally refers to scheduler resource tables and itinerary
195 /// tables. Scheduler resource tables model the latency and cost for each
196 /// instruction type. Itinerary tables are an independent mechanism that
197 /// provides a detailed reservation table describing each cycle of instruction
198 /// execution. Subtargets may define any or all of the above categories of data
199 /// depending on the type of CPU and selected scheduler.
200 ///
201 /// The machine independent properties defined here are used by the scheduler as
202 /// an abstract machine model. A real micro-architecture has a number of
203 /// buffers, queues, and stages. Declaring that a given machine-independent
204 /// abstract property corresponds to a specific physical property across all
205 /// subtargets can't be done. Nonetheless, the abstract model is
206 /// useful. Futhermore, subtargets typically extend this model with processor
207 /// specific resources to model any hardware features that can be exploited by
208 /// sceduling heuristics and aren't sufficiently represented in the abstract.
209 ///
210 /// The abstract pipeline is built around the notion of an "issue point". This
211 /// is merely a reference point for counting machine cycles. The physical
212 /// machine will have pipeline stages that delay execution. The scheduler does
213 /// not model those delays because they are irrelevant as long as they are
214 /// consistent. Inaccuracies arise when instructions have different execution
215 /// delays relative to each other, in addition to their intrinsic latency. Those
216 /// special cases can be handled by TableGen constructs such as, ReadAdvance,
217 /// which reduces latency when reading data, and ResourceCycles, which consumes
218 /// a processor resource when writing data for a number of abstract
219 /// cycles.
220 ///
221 /// TODO: One tool currently missing is the ability to add a delay to
222 /// ResourceCycles. That would be easy to add and would likely cover all cases
223 /// currently handled by the legacy itinerary tables.
224 ///
225 /// A note on out-of-order execution and, more generally, instruction
226 /// buffers. Part of the CPU pipeline is always in-order. The issue point, which
227 /// is the point of reference for counting cycles, only makes sense as an
228 /// in-order part of the pipeline. Other parts of the pipeline are sometimes
229 /// falling behind and sometimes catching up. It's only interesting to model
230 /// those other, decoupled parts of the pipeline if they may be predictably
231 /// resource constrained in a way that the scheduler can exploit.
232 ///
233 /// The LLVM machine model distinguishes between in-order constraints and
234 /// out-of-order constraints so that the target's scheduling strategy can apply
235 /// appropriate heuristics. For a well-balanced CPU pipeline, out-of-order
236 /// resources would not typically be treated as a hard scheduling
237 /// constraint. For example, in the GenericScheduler, a delay caused by limited
238 /// out-of-order resources is not directly reflected in the number of cycles
239 /// that the scheduler sees between issuing an instruction and its dependent
240 /// instructions. In other words, out-of-order resources don't directly increase
241 /// the latency between pairs of instructions. However, they can still be used
242 /// to detect potential bottlenecks across a sequence of instructions and bias
243 /// the scheduling heuristics appropriately.
244 struct MCSchedModel {
245  // IssueWidth is the maximum number of instructions that may be scheduled in
246  // the same per-cycle group. This is meant to be a hard in-order constraint
247  // (a.k.a. "hazard"). In the GenericScheduler strategy, no more than
248  // IssueWidth micro-ops can ever be scheduled in a particular cycle.
249  //
250  // In practice, IssueWidth is useful to model any bottleneck between the
251  // decoder (after micro-op expansion) and the out-of-order reservation
252  // stations or the decoder bandwidth itself. If the total number of
253  // reservation stations is also a bottleneck, or if any other pipeline stage
254  // has a bandwidth limitation, then that can be naturally modeled by adding an
255  // out-of-order processor resource.
256  unsigned IssueWidth;
257  static const unsigned DefaultIssueWidth = 1;
258 
259  // MicroOpBufferSize is the number of micro-ops that the processor may buffer
260  // for out-of-order execution.
261  //
262  // "0" means operations that are not ready in this cycle are not considered
263  // for scheduling (they go in the pending queue). Latency is paramount. This
264  // may be more efficient if many instructions are pending in a schedule.
265  //
266  // "1" means all instructions are considered for scheduling regardless of
267  // whether they are ready in this cycle. Latency still causes issue stalls,
268  // but we balance those stalls against other heuristics.
269  //
270  // "> 1" means the processor is out-of-order. This is a machine independent
271  // estimate of highly machine specific characteristics such as the register
272  // renaming pool and reorder buffer.
274  static const unsigned DefaultMicroOpBufferSize = 0;
275 
276  // LoopMicroOpBufferSize is the number of micro-ops that the processor may
277  // buffer for optimized loop execution. More generally, this represents the
278  // optimal number of micro-ops in a loop body. A loop may be partially
279  // unrolled to bring the count of micro-ops in the loop body closer to this
280  // number.
282  static const unsigned DefaultLoopMicroOpBufferSize = 0;
283 
284  // LoadLatency is the expected latency of load instructions.
285  unsigned LoadLatency;
286  static const unsigned DefaultLoadLatency = 4;
287 
288  // HighLatency is the expected latency of "very high latency" operations.
289  // See TargetInstrInfo::isHighLatencyDef().
290  // By default, this is set to an arbitrarily high number of cycles
291  // likely to have some impact on scheduling heuristics.
292  unsigned HighLatency;
293  static const unsigned DefaultHighLatency = 10;
294 
295  // MispredictPenalty is the typical number of extra cycles the processor
296  // takes to recover from a branch misprediction.
298  static const unsigned DefaultMispredictPenalty = 10;
299 
300  bool PostRAScheduler; // default value is false
301 
303 
304  unsigned ProcID;
308  unsigned NumSchedClasses;
309  // Instruction itinerary tables used by InstrItineraryData.
310  friend class InstrItineraryData;
312 
314 
315  bool hasExtraProcessorInfo() const { return ExtraProcessorInfo; }
316 
317  unsigned getProcessorID() const { return ProcID; }
318 
319  /// Does this machine model include instruction-level scheduling.
320  bool hasInstrSchedModel() const { return SchedClassTable; }
321 
323  assert(hasExtraProcessorInfo() &&
324  "No extra information available for this model");
325  return *ExtraProcessorInfo;
326  }
327 
328  /// Return true if this machine model data for all instructions with a
329  /// scheduling class (itinerary class or SchedRW list).
330  bool isComplete() const { return CompleteModel; }
331 
332  /// Return true if machine supports out of order execution.
333  bool isOutOfOrder() const { return MicroOpBufferSize > 1; }
334 
335  unsigned getNumProcResourceKinds() const {
336  return NumProcResourceKinds;
337  }
338 
339  const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const {
340  assert(hasInstrSchedModel() && "No scheduling machine model");
341 
342  assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx");
343  return &ProcResourceTable[ProcResourceIdx];
344  }
345 
346  const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const {
347  assert(hasInstrSchedModel() && "No scheduling machine model");
348 
349  assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx");
350  return &SchedClassTable[SchedClassIdx];
351  }
352 
353  /// Returns the latency value for the scheduling class.
354  static int computeInstrLatency(const MCSubtargetInfo &STI,
355  const MCSchedClassDesc &SCDesc);
356 
357  int computeInstrLatency(const MCSubtargetInfo &STI, unsigned SClass) const;
358  int computeInstrLatency(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
359  const MCInst &Inst) const;
360 
361  // Returns the reciprocal throughput information from a MCSchedClassDesc.
362  static double
363  getReciprocalThroughput(const MCSubtargetInfo &STI,
364  const MCSchedClassDesc &SCDesc);
365 
366  static double
367  getReciprocalThroughput(unsigned SchedClass, const InstrItineraryData &IID);
368 
369  double
370  getReciprocalThroughput(const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
371  const MCInst &Inst) const;
372 
373  /// Returns the default initialized model.
374  static const MCSchedModel &GetDefaultSchedModel() { return Default; }
375  static const MCSchedModel Default;
376 };
377 
378 } // namespace llvm
379 
380 #endif
unsigned MispredictPenalty
Definition: MCSchedule.h:297
unsigned MicroOpBufferSize
Definition: MCSchedule.h:273
This class represents lattice values for constants.
Definition: AllocatorList.h:24
unsigned IssueWidth
Definition: MCSchedule.h:256
uint16_t NumReadAdvanceEntries
Definition: MCSchedule.h:125
const MCProcResourceDesc * getProcResource(unsigned ProcResourceIdx) const
Definition: MCSchedule.h:339
unsigned getProcessorID() const
Definition: MCSchedule.h:317
const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const
Definition: MCSchedule.h:346
bool isComplete() const
Return true if this machine model data for all instructions with a scheduling class (itinerary class ...
Definition: MCSchedule.h:330
A register file descriptor.
Definition: MCSchedule.h:157
unsigned NumProcResourceKinds
Definition: MCSchedule.h:307
Specify the cost of a register definition in terms of number of physical register allocated at regist...
Definition: MCSchedule.h:142
Provide extra details about the machine processor.
Definition: MCSchedule.h:177
uint16_t NumWriteProcResEntries
Definition: MCSchedule.h:121
uint16_t MaxMovesEliminatedPerCycle
Definition: MCSchedule.h:165
Itinerary data supplied by a subtarget to be used by a target.
bool isValid() const
Definition: MCSchedule.h:127
const InstrItinerary * InstrItineraries
Definition: MCSchedule.h:311
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:161
static const MCSchedModel & GetDefaultSchedModel()
Returns the default initialized model.
Definition: MCSchedule.h:374
bool operator==(const MCReadAdvanceEntry &Other) const
Definition: MCSchedule.h:100
unsigned LoadLatency
Definition: MCSchedule.h:285
bool operator==(const MCProcResourceDesc &Other) const
Definition: MCSchedule.h:56
bool hasExtraProcessorInfo() const
Definition: MCSchedule.h:315
const MCRegisterFileDesc * RegisterFiles
Definition: MCSchedule.h:182
const unsigned * SubUnitsIdxBegin
Definition: MCSchedule.h:54
Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...
Definition: MCSchedule.h:64
Summarize the scheduling resources required for an instruction of a particular scheduling class...
Definition: MCSchedule.h:110
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:24
bool operator==(const MCWriteProcResEntry &Other) const
Definition: MCSchedule.h:68
bool operator==(const MCWriteLatencyEntry &Other) const
Definition: MCSchedule.h:82
const MCRegisterCostEntry * RegisterCostTable
Definition: MCSchedule.h:184
bool hasInstrSchedModel() const
Does this machine model include instruction-level scheduling.
Definition: MCSchedule.h:320
Specify the latency in cpu cycles for a particular scheduling class and def index.
Definition: MCSchedule.h:78
Define a kind of processor resource that will be modeled by the scheduler.
Definition: MCSchedule.h:32
static const MCSchedModel Default
Definition: MCSchedule.h:375
unsigned HighLatency
Definition: MCSchedule.h:292
bool isOutOfOrder() const
Return true if machine supports out of order execution.
Definition: MCSchedule.h:333
bool isVariant() const
Definition: MCSchedule.h:130
const MCSchedClassDesc * SchedClassTable
Definition: MCSchedule.h:306
unsigned LoopMicroOpBufferSize
Definition: MCSchedule.h:281
Specify the number of cycles allowed after instruction issue before a particular use operand reads it...
Definition: MCSchedule.h:95
Generic base class for all target subtargets.
const MCExtraProcessorInfo & getExtraProcessorInfo() const
Definition: MCSchedule.h:322
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
An itinerary represents the scheduling information for an instruction.
uint16_t NumRegisterCostEntries
Definition: MCSchedule.h:160
uint16_t NumWriteLatencyEntries
Definition: MCSchedule.h:123
const MCProcResourceDesc * ProcResourceTable
Definition: MCSchedule.h:305
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:244
unsigned NumSchedClasses
Definition: MCSchedule.h:308
const MCExtraProcessorInfo * ExtraProcessorInfo
Definition: MCSchedule.h:313
unsigned getNumProcResourceKinds() const
Definition: MCSchedule.h:335