LLVM  8.0.1
ImplicitNullChecks.cpp
Go to the documentation of this file.
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass turns explicit null checks of the form
11 //
12 // test %r10, %r10
13 // je throw_npe
14 // movl (%r10), %esi
15 // ...
16 //
17 // to
18 //
19 // faulting_load_op("movl (%r10), %esi", throw_npe)
20 // ...
21 //
22 // With the help of a runtime that understands the .fault_maps section,
23 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
24 // a page fault.
25 // Store and LoadStore are also supported.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/FaultMaps.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 
62 using namespace llvm;
63 
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65  cl::desc("The page size of the target in bytes"),
66  cl::init(4096), cl::Hidden);
67 
69  "imp-null-max-insts-to-consider",
70  cl::desc("The max number of instructions to consider hoisting loads over "
71  "(the algorithm is quadratic over this number)"),
72  cl::Hidden, cl::init(8));
73 
74 #define DEBUG_TYPE "implicit-null-checks"
75 
76 STATISTIC(NumImplicitNullChecks,
77  "Number of explicit null checks made implicit");
78 
79 namespace {
80 
81 class ImplicitNullChecks : public MachineFunctionPass {
82  /// Return true if \c computeDependence can process \p MI.
83  static bool canHandle(const MachineInstr *MI);
84 
85  /// Helper function for \c computeDependence. Return true if \p A
86  /// and \p B do not have any dependences between them, and can be
87  /// re-ordered without changing program semantics.
88  bool canReorder(const MachineInstr *A, const MachineInstr *B);
89 
90  /// A data type for representing the result computed by \c
91  /// computeDependence. States whether it is okay to reorder the
92  /// instruction passed to \c computeDependence with at most one
93  /// dependency.
94  struct DependenceResult {
95  /// Can we actually re-order \p MI with \p Insts (see \c
96  /// computeDependence).
97  bool CanReorder;
98 
99  /// If non-None, then an instruction in \p Insts that also must be
100  /// hoisted.
101  Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102 
103  /*implicit*/ DependenceResult(
104  bool CanReorder,
105  Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106  : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107  assert((!PotentialDependence || CanReorder) &&
108  "!CanReorder && PotentialDependence.hasValue() not allowed!");
109  }
110  };
111 
112  /// Compute a result for the following question: can \p MI be
113  /// re-ordered from after \p Insts to before it.
114  ///
115  /// \c canHandle should return true for all instructions in \p
116  /// Insts.
117  DependenceResult computeDependence(const MachineInstr *MI,
119 
120  /// Represents one null check that can be made implicit.
121  class NullCheck {
122  // The memory operation the null check can be folded into.
123  MachineInstr *MemOperation;
124 
125  // The instruction actually doing the null check (Ptr != 0).
126  MachineInstr *CheckOperation;
127 
128  // The block the check resides in.
129  MachineBasicBlock *CheckBlock;
130 
131  // The block branched to if the pointer is non-null.
132  MachineBasicBlock *NotNullSucc;
133 
134  // The block branched to if the pointer is null.
135  MachineBasicBlock *NullSucc;
136 
137  // If this is non-null, then MemOperation has a dependency on this
138  // instruction; and it needs to be hoisted to execute before MemOperation.
139  MachineInstr *OnlyDependency;
140 
141  public:
142  explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143  MachineBasicBlock *checkBlock,
144  MachineBasicBlock *notNullSucc,
145  MachineBasicBlock *nullSucc,
146  MachineInstr *onlyDependency)
147  : MemOperation(memOperation), CheckOperation(checkOperation),
148  CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149  OnlyDependency(onlyDependency) {}
150 
151  MachineInstr *getMemOperation() const { return MemOperation; }
152 
153  MachineInstr *getCheckOperation() const { return CheckOperation; }
154 
155  MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156 
157  MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158 
159  MachineBasicBlock *getNullSucc() const { return NullSucc; }
160 
161  MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162  };
163 
164  const TargetInstrInfo *TII = nullptr;
165  const TargetRegisterInfo *TRI = nullptr;
166  AliasAnalysis *AA = nullptr;
167  MachineFrameInfo *MFI = nullptr;
168 
169  bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170  SmallVectorImpl<NullCheck> &NullCheckList);
171  MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172  MachineBasicBlock *HandlerMBB);
173  void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174 
175  enum AliasResult {
176  AR_NoAlias,
177  AR_MayAlias,
178  AR_WillAliasEverything
179  };
180 
181  /// Returns AR_NoAlias if \p MI memory operation does not alias with
182  /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183  /// they may alias and any further memory operation may alias with \p PrevMI.
184  AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI);
185 
186  enum SuitabilityResult {
187  SR_Suitable,
188  SR_Unsuitable,
189  SR_Impossible
190  };
191 
192  /// Return SR_Suitable if \p MI a memory operation that can be used to
193  /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
194  /// \p MI cannot be used to null check and SR_Impossible if there is
195  /// no sense to continue lookup due to any other instruction will not be able
196  /// to be used. \p PrevInsts is the set of instruction seen since
197  /// the explicit null check on \p PointerReg.
198  SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
199  ArrayRef<MachineInstr *> PrevInsts);
200 
201  /// Return true if \p FaultingMI can be hoisted from after the
202  /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
203  /// non-null value if we also need to (and legally can) hoist a depedency.
204  bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
205  ArrayRef<MachineInstr *> InstsSeenSoFar,
207 
208 public:
209  static char ID;
210 
211  ImplicitNullChecks() : MachineFunctionPass(ID) {
213  }
214 
215  bool runOnMachineFunction(MachineFunction &MF) override;
216 
217  void getAnalysisUsage(AnalysisUsage &AU) const override {
220  }
221 
222  MachineFunctionProperties getRequiredProperties() const override {
225  }
226 };
227 
228 } // end anonymous namespace
229 
230 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
231  if (MI->isCall() || MI->hasUnmodeledSideEffects())
232  return false;
233  auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
234  (void)IsRegMask;
235 
236  assert(!llvm::any_of(MI->operands(), IsRegMask) &&
237  "Calls were filtered out above!");
238 
239  auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
240  return llvm::all_of(MI->memoperands(), IsUnordered);
241 }
242 
243 ImplicitNullChecks::DependenceResult
244 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
245  ArrayRef<MachineInstr *> Block) {
246  assert(llvm::all_of(Block, canHandle) && "Check this first!");
247  assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
248 
250 
251  for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
252  if (canReorder(*I, MI))
253  continue;
254 
255  if (Dep == None) {
256  // Found one possible dependency, keep track of it.
257  Dep = I;
258  } else {
259  // We found two dependencies, so bail out.
260  return {false, None};
261  }
262  }
263 
264  return {true, Dep};
265 }
266 
267 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
268  const MachineInstr *B) {
269  assert(canHandle(A) && canHandle(B) && "Precondition!");
270 
271  // canHandle makes sure that we _can_ correctly analyze the dependencies
272  // between A and B here -- for instance, we should not be dealing with heap
273  // load-store dependencies here.
274 
275  for (auto MOA : A->operands()) {
276  if (!(MOA.isReg() && MOA.getReg()))
277  continue;
278 
279  unsigned RegA = MOA.getReg();
280  for (auto MOB : B->operands()) {
281  if (!(MOB.isReg() && MOB.getReg()))
282  continue;
283 
284  unsigned RegB = MOB.getReg();
285 
286  if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
287  return false;
288  }
289  }
290 
291  return true;
292 }
293 
294 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
295  TII = MF.getSubtarget().getInstrInfo();
296  TRI = MF.getRegInfo().getTargetRegisterInfo();
297  MFI = &MF.getFrameInfo();
298  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
299 
300  SmallVector<NullCheck, 16> NullCheckList;
301 
302  for (auto &MBB : MF)
303  analyzeBlockForNullChecks(MBB, NullCheckList);
304 
305  if (!NullCheckList.empty())
306  rewriteNullChecks(NullCheckList);
307 
308  return !NullCheckList.empty();
309 }
310 
311 // Return true if any register aliasing \p Reg is live-in into \p MBB.
312 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
313  MachineBasicBlock *MBB, unsigned Reg) {
314  for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
315  ++AR)
316  if (MBB->isLiveIn(*AR))
317  return true;
318  return false;
319 }
320 
321 ImplicitNullChecks::AliasResult
322 ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI,
323  MachineInstr *PrevMI) {
324  // If it is not memory access, skip the check.
325  if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
326  return AR_NoAlias;
327  // Load-Load may alias
328  if (!(MI.mayStore() || PrevMI->mayStore()))
329  return AR_NoAlias;
330  // We lost info, conservatively alias. If it was store then no sense to
331  // continue because we won't be able to check against it further.
332  if (MI.memoperands_empty())
333  return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
334  if (PrevMI->memoperands_empty())
335  return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
336 
337  for (MachineMemOperand *MMO1 : MI.memoperands()) {
338  // MMO1 should have a value due it comes from operation we'd like to use
339  // as implicit null check.
340  assert(MMO1->getValue() && "MMO1 should have a Value!");
341  for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
342  if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
343  if (PSV->mayAlias(MFI))
344  return AR_MayAlias;
345  continue;
346  }
347  llvm::AliasResult AAResult =
348  AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
349  MMO1->getAAInfo()),
350  MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
351  MMO2->getAAInfo()));
352  if (AAResult != NoAlias)
353  return AR_MayAlias;
354  }
355  }
356  return AR_NoAlias;
357 }
358 
359 ImplicitNullChecks::SuitabilityResult
360 ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
361  ArrayRef<MachineInstr *> PrevInsts) {
362  int64_t Offset;
363  MachineOperand *BaseOp;
364 
365  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) ||
366  !BaseOp->isReg() || BaseOp->getReg() != PointerReg)
367  return SR_Unsuitable;
368 
369  // We want the mem access to be issued at a sane offset from PointerReg,
370  // so that if PointerReg is null then the access reliably page faults.
371  if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
372  -PageSize < Offset && Offset < PageSize))
373  return SR_Unsuitable;
374 
375  // Finally, check whether the current memory access aliases with previous one.
376  for (auto *PrevMI : PrevInsts) {
377  AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
378  if (AR == AR_WillAliasEverything)
379  return SR_Impossible;
380  if (AR == AR_MayAlias)
381  return SR_Unsuitable;
382  }
383  return SR_Suitable;
384 }
385 
386 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
387  unsigned PointerReg,
388  ArrayRef<MachineInstr *> InstsSeenSoFar,
389  MachineBasicBlock *NullSucc,
391  auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
392  if (!DepResult.CanReorder)
393  return false;
394 
395  if (!DepResult.PotentialDependence) {
396  Dependence = nullptr;
397  return true;
398  }
399 
400  auto DependenceItr = *DepResult.PotentialDependence;
401  auto *DependenceMI = *DependenceItr;
402 
403  // We don't want to reason about speculating loads. Note -- at this point
404  // we should have already filtered out all of the other non-speculatable
405  // things, like calls and stores.
406  // We also do not want to hoist stores because it might change the memory
407  // while the FaultingMI may result in faulting.
408  assert(canHandle(DependenceMI) && "Should never have reached here!");
409  if (DependenceMI->mayLoadOrStore())
410  return false;
411 
412  for (auto &DependenceMO : DependenceMI->operands()) {
413  if (!(DependenceMO.isReg() && DependenceMO.getReg()))
414  continue;
415 
416  // Make sure that we won't clobber any live ins to the sibling block by
417  // hoisting Dependency. For instance, we can't hoist INST to before the
418  // null check (even if it safe, and does not violate any dependencies in
419  // the non_null_block) if %rdx is live in to _null_block.
420  //
421  // test %rcx, %rcx
422  // je _null_block
423  // _non_null_block:
424  // %rdx = INST
425  // ...
426  //
427  // This restriction does not apply to the faulting load inst because in
428  // case the pointer loaded from is in the null page, the load will not
429  // semantically execute, and affect machine state. That is, if the load
430  // was loading into %rax and it faults, the value of %rax should stay the
431  // same as it would have been had the load not have executed and we'd have
432  // branched to NullSucc directly.
433  if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
434  return false;
435 
436  // The Dependency can't be re-defining the base register -- then we won't
437  // get the memory operation on the address we want. This is already
438  // checked in \c IsSuitableMemoryOp.
439  assert(!(DependenceMO.isDef() &&
440  TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
441  "Should have been checked before!");
442  }
443 
444  auto DepDepResult =
445  computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
446 
447  if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
448  return false;
449 
450  Dependence = DependenceMI;
451  return true;
452 }
453 
454 /// Analyze MBB to check if its terminating branch can be turned into an
455 /// implicit null check. If yes, append a description of the said null check to
456 /// NullCheckList and return true, else return false.
457 bool ImplicitNullChecks::analyzeBlockForNullChecks(
458  MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
459  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
460 
461  MDNode *BranchMD = nullptr;
462  if (auto *BB = MBB.getBasicBlock())
463  BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
464 
465  if (!BranchMD)
466  return false;
467 
468  MachineBranchPredicate MBP;
469 
470  if (TII->analyzeBranchPredicate(MBB, MBP, true))
471  return false;
472 
473  // Is the predicate comparing an integer to zero?
474  if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
475  (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
476  MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
477  return false;
478 
479  // If we cannot erase the test instruction itself, then making the null check
480  // implicit does not buy us much.
481  if (!MBP.SingleUseCondition)
482  return false;
483 
484  MachineBasicBlock *NotNullSucc, *NullSucc;
485 
486  if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
487  NotNullSucc = MBP.TrueDest;
488  NullSucc = MBP.FalseDest;
489  } else {
490  NotNullSucc = MBP.FalseDest;
491  NullSucc = MBP.TrueDest;
492  }
493 
494  // We handle the simplest case for now. We can potentially do better by using
495  // the machine dominator tree.
496  if (NotNullSucc->pred_size() != 1)
497  return false;
498 
499  // To prevent the invalid transformation of the following code:
500  //
501  // mov %rax, %rcx
502  // test %rax, %rax
503  // %rax = ...
504  // je throw_npe
505  // mov(%rcx), %r9
506  // mov(%rax), %r10
507  //
508  // into:
509  //
510  // mov %rax, %rcx
511  // %rax = ....
512  // faulting_load_op("movl (%rax), %r10", throw_npe)
513  // mov(%rcx), %r9
514  //
515  // we must ensure that there are no instructions between the 'test' and
516  // conditional jump that modify %rax.
517  const unsigned PointerReg = MBP.LHS.getReg();
518 
519  assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block");
520 
521  for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
522  if (I->modifiesRegister(PointerReg, TRI))
523  return false;
524 
525  // Starting with a code fragment like:
526  //
527  // test %rax, %rax
528  // jne LblNotNull
529  //
530  // LblNull:
531  // callq throw_NullPointerException
532  //
533  // LblNotNull:
534  // Inst0
535  // Inst1
536  // ...
537  // Def = Load (%rax + <offset>)
538  // ...
539  //
540  //
541  // we want to end up with
542  //
543  // Def = FaultingLoad (%rax + <offset>), LblNull
544  // jmp LblNotNull ;; explicit or fallthrough
545  //
546  // LblNotNull:
547  // Inst0
548  // Inst1
549  // ...
550  //
551  // LblNull:
552  // callq throw_NullPointerException
553  //
554  //
555  // To see why this is legal, consider the two possibilities:
556  //
557  // 1. %rax is null: since we constrain <offset> to be less than PageSize, the
558  // load instruction dereferences the null page, causing a segmentation
559  // fault.
560  //
561  // 2. %rax is not null: in this case we know that the load cannot fault, as
562  // otherwise the load would've faulted in the original program too and the
563  // original program would've been undefined.
564  //
565  // This reasoning cannot be extended to justify hoisting through arbitrary
566  // control flow. For instance, in the example below (in pseudo-C)
567  //
568  // if (ptr == null) { throw_npe(); unreachable; }
569  // if (some_cond) { return 42; }
570  // v = ptr->field; // LD
571  // ...
572  //
573  // we cannot (without code duplication) use the load marked "LD" to null check
574  // ptr -- clause (2) above does not apply in this case. In the above program
575  // the safety of ptr->field can be dependent on some_cond; and, for instance,
576  // ptr could be some non-null invalid reference that never gets loaded from
577  // because some_cond is always true.
578 
579  SmallVector<MachineInstr *, 8> InstsSeenSoFar;
580 
581  for (auto &MI : *NotNullSucc) {
582  if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
583  return false;
584 
585  MachineInstr *Dependence;
586  SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
587  if (SR == SR_Impossible)
588  return false;
589  if (SR == SR_Suitable &&
590  canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
591  NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
592  NullSucc, Dependence);
593  return true;
594  }
595 
596  // If MI re-defines the PointerReg then we cannot move further.
597  if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
598  return MO.isReg() && MO.getReg() && MO.isDef() &&
599  TRI->regsOverlap(MO.getReg(), PointerReg);
600  }))
601  return false;
602  InstsSeenSoFar.push_back(&MI);
603  }
604 
605  return false;
606 }
607 
608 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
609 /// The FAULTING instruction does the same load/store as MI
610 /// (defining the same register), and branches to HandlerMBB if the mem access
611 /// faults. The FAULTING instruction is inserted at the end of MBB.
612 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
613  MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
614  const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
615  // all targets.
616 
617  DebugLoc DL;
618  unsigned NumDefs = MI->getDesc().getNumDefs();
619  assert(NumDefs <= 1 && "other cases unhandled!");
620 
621  unsigned DefReg = NoRegister;
622  if (NumDefs != 0) {
623  DefReg = MI->getOperand(0).getReg();
624  assert(NumDefs == 1 && "expected exactly one def!");
625  }
626 
628  if (MI->mayLoad())
629  FK =
631  else
633 
634  auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
635  .addImm(FK)
636  .addMBB(HandlerMBB)
637  .addImm(MI->getOpcode());
638 
639  for (auto &MO : MI->uses()) {
640  if (MO.isReg()) {
641  MachineOperand NewMO = MO;
642  if (MO.isUse()) {
643  NewMO.setIsKill(false);
644  } else {
645  assert(MO.isDef() && "Expected def or use");
646  NewMO.setIsDead(false);
647  }
648  MIB.add(NewMO);
649  } else {
650  MIB.add(MO);
651  }
652  }
653 
654  MIB.setMemRefs(MI->memoperands());
655 
656  return MIB;
657 }
658 
659 /// Rewrite the null checks in NullCheckList into implicit null checks.
660 void ImplicitNullChecks::rewriteNullChecks(
662  DebugLoc DL;
663 
664  for (auto &NC : NullCheckList) {
665  // Remove the conditional branch dependent on the null check.
666  unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
667  (void)BranchesRemoved;
668  assert(BranchesRemoved > 0 && "expected at least one branch!");
669 
670  if (auto *DepMI = NC.getOnlyDependency()) {
671  DepMI->removeFromParent();
672  NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
673  }
674 
675  // Insert a faulting instruction where the conditional branch was
676  // originally. We check earlier ensures that this bit of code motion
677  // is legal. We do not touch the successors list for any basic block
678  // since we haven't changed control flow, we've just made it implicit.
679  MachineInstr *FaultingInstr = insertFaultingInstr(
680  NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
681  // Now the values defined by MemOperation, if any, are live-in of
682  // the block of MemOperation.
683  // The original operation may define implicit-defs alongside
684  // the value.
685  MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
686  for (const MachineOperand &MO : FaultingInstr->operands()) {
687  if (!MO.isReg() || !MO.isDef())
688  continue;
689  unsigned Reg = MO.getReg();
690  if (!Reg || MBB->isLiveIn(Reg))
691  continue;
692  MBB->addLiveIn(Reg);
693  }
694 
695  if (auto *DepMI = NC.getOnlyDependency()) {
696  for (auto &MO : DepMI->operands()) {
697  if (!MO.isReg() || !MO.getReg() || !MO.isDef())
698  continue;
699  if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
700  NC.getNotNullSucc()->addLiveIn(MO.getReg());
701  }
702  }
703 
704  NC.getMemOperation()->eraseFromParent();
705  NC.getCheckOperation()->eraseFromParent();
706 
707  // Insert an *unconditional* branch to not-null successor.
708  TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
709  /*Cond=*/None, DL);
710 
711  NumImplicitNullChecks++;
712  }
713 }
714 
715 char ImplicitNullChecks::ID = 0;
716 
718 
719 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
720  "Implicit null checks", false, false)
722 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
723  "Implicit null checks", false, false)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:633
This class represents lattice values for constants.
Definition: AllocatorList.h:24
iterator_range< mop_iterator > uses()
Returns a range that includes all operands that are register uses.
Definition: MachineInstr.h:492
iterator begin() const
Definition: ArrayRef.h:137
static constexpr LocationSize unknown()
unsigned getReg() const
getReg - Returns the register number.
unsigned Reg
bool isPredicable(QueryType Type=AllInBundle) const
Return true if this instruction has a predicate operand that controls execution.
Definition: MachineInstr.h:687
The two locations do not alias at all.
Definition: AliasAnalysis.h:84
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1186
STATISTIC(NumFunctions, "Total number of functions")
unsigned const TargetRegisterInfo * TRI
A debug info location.
Definition: DebugLoc.h:34
Metadata node.
Definition: Metadata.h:864
void setIsDead(bool Val=true)
static cl::opt< unsigned > MaxInstsToConsider("imp-null-max-insts-to-consider", cl::desc("The max number of instructions to consider hoisting loads over " "(the algorithm is quadratic over this number)"), cl::Hidden, cl::init(8))
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:459
virtual unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const
Remove the branching code at the end of the specific MBB.
Represents a predicate at the MachineFunction level.
virtual bool getMemOperandWithOffset(MachineInstr &MI, MachineOperand *&BaseOp, int64_t &Offset, const TargetRegisterInfo *TRI) const
Get the base operand and byte offset of an instruction that reads/writes memory.
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB)
The main low level interface to the alias analysis implementation.
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
A description of a memory reference used in the backend.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
Implicit null checks
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted...
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:406
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
#define DEBUG_TYPE
virtual const TargetInstrInfo * getInstrInfo() const
reverse_iterator rbegin()
TargetInstrInfo - Interface to description of machine instruction set.
AliasResult
The possible results of an alias query.
Definition: AliasAnalysis.h:78
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
Definition: MachineInstr.h:820
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
const TargetRegisterInfo * getTargetRegisterInfo() const
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:516
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE, "Implicit null checks", false, false) INITIALIZE_PASS_END(ImplicitNullChecks
MCRegAliasIterator enumerates all registers aliasing Reg.
Represent the analysis usage information of a pass.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1193
void initializeImplicitNullChecksPass(PassRegistry &)
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
size_t size() const
Definition: SmallVector.h:53
char & ImplicitNullChecksID
ImplicitNullChecks - This pass folds null pointer checks into nearby memory operations.
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
void setIsKill(bool Val=true)
Representation for a specific memory location.
bool regsOverlap(unsigned regA, unsigned regB) const
Returns true if the two registers are equal or alias each other.
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
iterator end() const
Definition: ArrayRef.h:138
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:226
#define NC
Definition: regutils.h:42
unsigned pred_size() const
bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
Special value supplied for machine level alias analysis.
MachineFunctionProperties & set(Property P)
Representation of each machine instruction.
Definition: MachineInstr.h:64
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
void emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:652
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify=false) const
Analyze the branching code at the end of MBB and parse it into the MachineBranchPredicate structure i...
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
This file provides utility analysis objects describing memory locations.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode...
Definition: MCInstrInfo.h:45
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, MachineBasicBlock *MBB, unsigned Reg)
#define I(x, y, z)
Definition: MD5.cpp:58
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
static cl::opt< int > PageSize("imp-null-check-page-size", cl::desc("The page size of the target in bytes"), cl::init(4096), cl::Hidden)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
Definition: MachineInstr.h:807
bool memoperands_empty() const
Return true if we don&#39;t have any memory operands which described the memory access done by this instr...
Definition: MachineInstr.h:546
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore...
IRTranslator LLVM IR MI
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
Dependence - This class represents a dependence between two memory memory references in a function...
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
Properties which a MachineFunction may have at a given point in time.
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:1245