LLVM  8.0.1
ScalarEvolutionExpander.cpp
Go to the documentation of this file.
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15 
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
30 
31 using namespace llvm;
32 using namespace PatternMatch;
33 
34 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
35 /// reusing an existing cast if a suitable one exists, moving an existing
36 /// cast if a suitable one exists but isn't in the right place, or
37 /// creating a new one.
38 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
41  // This function must be called with the builder having a valid insertion
42  // point. It doesn't need to be the actual IP where the uses of the returned
43  // cast will be added, but it must dominate such IP.
44  // We use this precondition to produce a cast that will dominate all its
45  // uses. In particular, this is crucial for the case where the builder's
46  // insertion point *is* the point where we were asked to put the cast.
47  // Since we don't know the builder's insertion point is actually
48  // where the uses will be added (only that it dominates it), we are
49  // not allowed to move it.
50  BasicBlock::iterator BIP = Builder.GetInsertPoint();
51 
52  Instruction *Ret = nullptr;
53 
54  // Check to see if there is already a cast!
55  for (User *U : V->users())
56  if (U->getType() == Ty)
57  if (CastInst *CI = dyn_cast<CastInst>(U))
58  if (CI->getOpcode() == Op) {
59  // If the cast isn't where we want it, create a new cast at IP.
60  // Likewise, do not reuse a cast at BIP because it must dominate
61  // instructions that might be inserted before BIP.
62  if (BasicBlock::iterator(CI) != IP || BIP == IP) {
63  // Create a new cast, and leave the old cast in place in case
64  // it is being used as an insert point. Clear its operand
65  // so that it doesn't hold anything live.
66  Ret = CastInst::Create(Op, V, Ty, "", &*IP);
67  Ret->takeName(CI);
68  CI->replaceAllUsesWith(Ret);
69  CI->setOperand(0, UndefValue::get(V->getType()));
70  break;
71  }
72  Ret = CI;
73  break;
74  }
75 
76  // Create a new cast.
77  if (!Ret)
78  Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
79 
80  // We assert at the end of the function since IP might point to an
81  // instruction with different dominance properties than a cast
82  // (an invoke for example) and not dominate BIP (but the cast does).
83  assert(SE.DT.dominates(Ret, &*BIP));
84 
85  rememberInstruction(Ret);
86  return Ret;
87 }
88 
90  BasicBlock *MustDominate) {
92  if (auto *II = dyn_cast<InvokeInst>(I))
93  IP = II->getNormalDest()->begin();
94 
95  while (isa<PHINode>(IP))
96  ++IP;
97 
98  if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
99  ++IP;
100  } else if (isa<CatchSwitchInst>(IP)) {
101  IP = MustDominate->getFirstInsertionPt();
102  } else {
103  assert(!IP->isEHPad() && "unexpected eh pad!");
104  }
105 
106  return IP;
107 }
108 
109 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
110 /// which must be possible with a noop cast, doing what we can to share
111 /// the casts.
112 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
113  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
114  assert((Op == Instruction::BitCast ||
115  Op == Instruction::PtrToInt ||
116  Op == Instruction::IntToPtr) &&
117  "InsertNoopCastOfTo cannot perform non-noop casts!");
118  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
119  "InsertNoopCastOfTo cannot change sizes!");
120 
121  // Short-circuit unnecessary bitcasts.
122  if (Op == Instruction::BitCast) {
123  if (V->getType() == Ty)
124  return V;
125  if (CastInst *CI = dyn_cast<CastInst>(V)) {
126  if (CI->getOperand(0)->getType() == Ty)
127  return CI->getOperand(0);
128  }
129  }
130  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
131  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
132  SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
133  if (CastInst *CI = dyn_cast<CastInst>(V))
134  if ((CI->getOpcode() == Instruction::PtrToInt ||
135  CI->getOpcode() == Instruction::IntToPtr) &&
136  SE.getTypeSizeInBits(CI->getType()) ==
137  SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
138  return CI->getOperand(0);
139  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
140  if ((CE->getOpcode() == Instruction::PtrToInt ||
141  CE->getOpcode() == Instruction::IntToPtr) &&
142  SE.getTypeSizeInBits(CE->getType()) ==
143  SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
144  return CE->getOperand(0);
145  }
146 
147  // Fold a cast of a constant.
148  if (Constant *C = dyn_cast<Constant>(V))
149  return ConstantExpr::getCast(Op, C, Ty);
150 
151  // Cast the argument at the beginning of the entry block, after
152  // any bitcasts of other arguments.
153  if (Argument *A = dyn_cast<Argument>(V)) {
154  BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
155  while ((isa<BitCastInst>(IP) &&
156  isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
157  cast<BitCastInst>(IP)->getOperand(0) != A) ||
158  isa<DbgInfoIntrinsic>(IP))
159  ++IP;
160  return ReuseOrCreateCast(A, Ty, Op, IP);
161  }
162 
163  // Cast the instruction immediately after the instruction.
164  Instruction *I = cast<Instruction>(V);
165  BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
166  return ReuseOrCreateCast(I, Ty, Op, IP);
167 }
168 
169 /// InsertBinop - Insert the specified binary operator, doing a small amount
170 /// of work to avoid inserting an obviously redundant operation.
171 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
172  Value *LHS, Value *RHS) {
173  // Fold a binop with constant operands.
174  if (Constant *CLHS = dyn_cast<Constant>(LHS))
175  if (Constant *CRHS = dyn_cast<Constant>(RHS))
176  return ConstantExpr::get(Opcode, CLHS, CRHS);
177 
178  // Do a quick scan to see if we have this binop nearby. If so, reuse it.
179  unsigned ScanLimit = 6;
180  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
181  // Scanning starts from the last instruction before the insertion point.
182  BasicBlock::iterator IP = Builder.GetInsertPoint();
183  if (IP != BlockBegin) {
184  --IP;
185  for (; ScanLimit; --IP, --ScanLimit) {
186  // Don't count dbg.value against the ScanLimit, to avoid perturbing the
187  // generated code.
188  if (isa<DbgInfoIntrinsic>(IP))
189  ScanLimit++;
190 
191  // Conservatively, do not use any instruction which has any of wrap/exact
192  // flags installed.
193  // TODO: Instead of simply disable poison instructions we can be clever
194  // here and match SCEV to this instruction.
195  auto canGeneratePoison = [](Instruction *I) {
196  if (isa<OverflowingBinaryOperator>(I) &&
197  (I->hasNoSignedWrap() || I->hasNoUnsignedWrap()))
198  return true;
199  if (isa<PossiblyExactOperator>(I) && I->isExact())
200  return true;
201  return false;
202  };
203  if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
204  IP->getOperand(1) == RHS && !canGeneratePoison(&*IP))
205  return &*IP;
206  if (IP == BlockBegin) break;
207  }
208  }
209 
210  // Save the original insertion point so we can restore it when we're done.
211  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
212  SCEVInsertPointGuard Guard(Builder, this);
213 
214  // Move the insertion point out of as many loops as we can.
215  while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
216  if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
217  BasicBlock *Preheader = L->getLoopPreheader();
218  if (!Preheader) break;
219 
220  // Ok, move up a level.
221  Builder.SetInsertPoint(Preheader->getTerminator());
222  }
223 
224  // If we haven't found this binop, insert it.
225  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
226  BO->setDebugLoc(Loc);
227  rememberInstruction(BO);
228 
229  return BO;
230 }
231 
232 /// FactorOutConstant - Test if S is divisible by Factor, using signed
233 /// division. If so, update S with Factor divided out and return true.
234 /// S need not be evenly divisible if a reasonable remainder can be
235 /// computed.
236 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
237 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
238 /// check to see if the divide was folded.
239 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
240  const SCEV *Factor, ScalarEvolution &SE,
241  const DataLayout &DL) {
242  // Everything is divisible by one.
243  if (Factor->isOne())
244  return true;
245 
246  // x/x == 1.
247  if (S == Factor) {
248  S = SE.getConstant(S->getType(), 1);
249  return true;
250  }
251 
252  // For a Constant, check for a multiple of the given factor.
253  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
254  // 0/x == 0.
255  if (C->isZero())
256  return true;
257  // Check for divisibility.
258  if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
259  ConstantInt *CI =
260  ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
261  // If the quotient is zero and the remainder is non-zero, reject
262  // the value at this scale. It will be considered for subsequent
263  // smaller scales.
264  if (!CI->isZero()) {
265  const SCEV *Div = SE.getConstant(CI);
266  S = Div;
267  Remainder = SE.getAddExpr(
268  Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
269  return true;
270  }
271  }
272  }
273 
274  // In a Mul, check if there is a constant operand which is a multiple
275  // of the given factor.
276  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
277  // Size is known, check if there is a constant operand which is a multiple
278  // of the given factor. If so, we can factor it.
279  const SCEVConstant *FC = cast<SCEVConstant>(Factor);
280  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
281  if (!C->getAPInt().srem(FC->getAPInt())) {
282  SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
283  NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
284  S = SE.getMulExpr(NewMulOps);
285  return true;
286  }
287  }
288 
289  // In an AddRec, check if both start and step are divisible.
290  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
291  const SCEV *Step = A->getStepRecurrence(SE);
292  const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
293  if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
294  return false;
295  if (!StepRem->isZero())
296  return false;
297  const SCEV *Start = A->getStart();
298  if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
299  return false;
300  S = SE.getAddRecExpr(Start, Step, A->getLoop(),
301  A->getNoWrapFlags(SCEV::FlagNW));
302  return true;
303  }
304 
305  return false;
306 }
307 
308 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
309 /// is the number of SCEVAddRecExprs present, which are kept at the end of
310 /// the list.
311 ///
313  Type *Ty,
314  ScalarEvolution &SE) {
315  unsigned NumAddRecs = 0;
316  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
317  ++NumAddRecs;
318  // Group Ops into non-addrecs and addrecs.
319  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
320  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
321  // Let ScalarEvolution sort and simplify the non-addrecs list.
322  const SCEV *Sum = NoAddRecs.empty() ?
323  SE.getConstant(Ty, 0) :
324  SE.getAddExpr(NoAddRecs);
325  // If it returned an add, use the operands. Otherwise it simplified
326  // the sum into a single value, so just use that.
327  Ops.clear();
328  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
329  Ops.append(Add->op_begin(), Add->op_end());
330  else if (!Sum->isZero())
331  Ops.push_back(Sum);
332  // Then append the addrecs.
333  Ops.append(AddRecs.begin(), AddRecs.end());
334 }
335 
336 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
337 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
338 /// This helps expose more opportunities for folding parts of the expressions
339 /// into GEP indices.
340 ///
342  Type *Ty,
343  ScalarEvolution &SE) {
344  // Find the addrecs.
346  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
347  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
348  const SCEV *Start = A->getStart();
349  if (Start->isZero()) break;
350  const SCEV *Zero = SE.getConstant(Ty, 0);
351  AddRecs.push_back(SE.getAddRecExpr(Zero,
352  A->getStepRecurrence(SE),
353  A->getLoop(),
354  A->getNoWrapFlags(SCEV::FlagNW)));
355  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
356  Ops[i] = Zero;
357  Ops.append(Add->op_begin(), Add->op_end());
358  e += Add->getNumOperands();
359  } else {
360  Ops[i] = Start;
361  }
362  }
363  if (!AddRecs.empty()) {
364  // Add the addrecs onto the end of the list.
365  Ops.append(AddRecs.begin(), AddRecs.end());
366  // Resort the operand list, moving any constants to the front.
367  SimplifyAddOperands(Ops, Ty, SE);
368  }
369 }
370 
371 /// expandAddToGEP - Expand an addition expression with a pointer type into
372 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
373 /// BasicAliasAnalysis and other passes analyze the result. See the rules
374 /// for getelementptr vs. inttoptr in
375 /// http://llvm.org/docs/LangRef.html#pointeraliasing
376 /// for details.
377 ///
378 /// Design note: The correctness of using getelementptr here depends on
379 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
380 /// they may introduce pointer arithmetic which may not be safely converted
381 /// into getelementptr.
382 ///
383 /// Design note: It might seem desirable for this function to be more
384 /// loop-aware. If some of the indices are loop-invariant while others
385 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
386 /// loop-invariant portions of the overall computation outside the loop.
387 /// However, there are a few reasons this is not done here. Hoisting simple
388 /// arithmetic is a low-level optimization that often isn't very
389 /// important until late in the optimization process. In fact, passes
390 /// like InstructionCombining will combine GEPs, even if it means
391 /// pushing loop-invariant computation down into loops, so even if the
392 /// GEPs were split here, the work would quickly be undone. The
393 /// LoopStrengthReduction pass, which is usually run quite late (and
394 /// after the last InstructionCombining pass), takes care of hoisting
395 /// loop-invariant portions of expressions, after considering what
396 /// can be folded using target addressing modes.
397 ///
398 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
399  const SCEV *const *op_end,
400  PointerType *PTy,
401  Type *Ty,
402  Value *V) {
403  Type *OriginalElTy = PTy->getElementType();
404  Type *ElTy = OriginalElTy;
405  SmallVector<Value *, 4> GepIndices;
406  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
407  bool AnyNonZeroIndices = false;
408 
409  // Split AddRecs up into parts as either of the parts may be usable
410  // without the other.
411  SplitAddRecs(Ops, Ty, SE);
412 
413  Type *IntPtrTy = DL.getIntPtrType(PTy);
414 
415  // Descend down the pointer's type and attempt to convert the other
416  // operands into GEP indices, at each level. The first index in a GEP
417  // indexes into the array implied by the pointer operand; the rest of
418  // the indices index into the element or field type selected by the
419  // preceding index.
420  for (;;) {
421  // If the scale size is not 0, attempt to factor out a scale for
422  // array indexing.
424  if (ElTy->isSized()) {
425  const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
426  if (!ElSize->isZero()) {
428  for (const SCEV *Op : Ops) {
429  const SCEV *Remainder = SE.getConstant(Ty, 0);
430  if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
431  // Op now has ElSize factored out.
432  ScaledOps.push_back(Op);
433  if (!Remainder->isZero())
434  NewOps.push_back(Remainder);
435  AnyNonZeroIndices = true;
436  } else {
437  // The operand was not divisible, so add it to the list of operands
438  // we'll scan next iteration.
439  NewOps.push_back(Op);
440  }
441  }
442  // If we made any changes, update Ops.
443  if (!ScaledOps.empty()) {
444  Ops = NewOps;
445  SimplifyAddOperands(Ops, Ty, SE);
446  }
447  }
448  }
449 
450  // Record the scaled array index for this level of the type. If
451  // we didn't find any operands that could be factored, tentatively
452  // assume that element zero was selected (since the zero offset
453  // would obviously be folded away).
454  Value *Scaled = ScaledOps.empty() ?
456  expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
457  GepIndices.push_back(Scaled);
458 
459  // Collect struct field index operands.
460  while (StructType *STy = dyn_cast<StructType>(ElTy)) {
461  bool FoundFieldNo = false;
462  // An empty struct has no fields.
463  if (STy->getNumElements() == 0) break;
464  // Field offsets are known. See if a constant offset falls within any of
465  // the struct fields.
466  if (Ops.empty())
467  break;
468  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
469  if (SE.getTypeSizeInBits(C->getType()) <= 64) {
470  const StructLayout &SL = *DL.getStructLayout(STy);
471  uint64_t FullOffset = C->getValue()->getZExtValue();
472  if (FullOffset < SL.getSizeInBytes()) {
473  unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
474  GepIndices.push_back(
476  ElTy = STy->getTypeAtIndex(ElIdx);
477  Ops[0] =
478  SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
479  AnyNonZeroIndices = true;
480  FoundFieldNo = true;
481  }
482  }
483  // If no struct field offsets were found, tentatively assume that
484  // field zero was selected (since the zero offset would obviously
485  // be folded away).
486  if (!FoundFieldNo) {
487  ElTy = STy->getTypeAtIndex(0u);
488  GepIndices.push_back(
490  }
491  }
492 
493  if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
494  ElTy = ATy->getElementType();
495  else
496  break;
497  }
498 
499  // If none of the operands were convertible to proper GEP indices, cast
500  // the base to i8* and do an ugly getelementptr with that. It's still
501  // better than ptrtoint+arithmetic+inttoptr at least.
502  if (!AnyNonZeroIndices) {
503  // Cast the base to i8*.
504  V = InsertNoopCastOfTo(V,
506 
507  assert(!isa<Instruction>(V) ||
508  SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
509 
510  // Expand the operands for a plain byte offset.
511  Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
512 
513  // Fold a GEP with constant operands.
514  if (Constant *CLHS = dyn_cast<Constant>(V))
515  if (Constant *CRHS = dyn_cast<Constant>(Idx))
517  CLHS, CRHS);
518 
519  // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
520  unsigned ScanLimit = 6;
521  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
522  // Scanning starts from the last instruction before the insertion point.
523  BasicBlock::iterator IP = Builder.GetInsertPoint();
524  if (IP != BlockBegin) {
525  --IP;
526  for (; ScanLimit; --IP, --ScanLimit) {
527  // Don't count dbg.value against the ScanLimit, to avoid perturbing the
528  // generated code.
529  if (isa<DbgInfoIntrinsic>(IP))
530  ScanLimit++;
531  if (IP->getOpcode() == Instruction::GetElementPtr &&
532  IP->getOperand(0) == V && IP->getOperand(1) == Idx)
533  return &*IP;
534  if (IP == BlockBegin) break;
535  }
536  }
537 
538  // Save the original insertion point so we can restore it when we're done.
539  SCEVInsertPointGuard Guard(Builder, this);
540 
541  // Move the insertion point out of as many loops as we can.
542  while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
543  if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
544  BasicBlock *Preheader = L->getLoopPreheader();
545  if (!Preheader) break;
546 
547  // Ok, move up a level.
548  Builder.SetInsertPoint(Preheader->getTerminator());
549  }
550 
551  // Emit a GEP.
552  Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
553  rememberInstruction(GEP);
554 
555  return GEP;
556  }
557 
558  {
559  SCEVInsertPointGuard Guard(Builder, this);
560 
561  // Move the insertion point out of as many loops as we can.
562  while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
563  if (!L->isLoopInvariant(V)) break;
564 
565  bool AnyIndexNotLoopInvariant = any_of(
566  GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
567 
568  if (AnyIndexNotLoopInvariant)
569  break;
570 
571  BasicBlock *Preheader = L->getLoopPreheader();
572  if (!Preheader) break;
573 
574  // Ok, move up a level.
575  Builder.SetInsertPoint(Preheader->getTerminator());
576  }
577 
578  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
579  // because ScalarEvolution may have changed the address arithmetic to
580  // compute a value which is beyond the end of the allocated object.
581  Value *Casted = V;
582  if (V->getType() != PTy)
583  Casted = InsertNoopCastOfTo(Casted, PTy);
584  Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
585  Ops.push_back(SE.getUnknown(GEP));
586  rememberInstruction(GEP);
587  }
588 
589  return expand(SE.getAddExpr(Ops));
590 }
591 
592 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
593  Value *V) {
594  const SCEV *const Ops[1] = {Op};
595  return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
596 }
597 
598 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
599 /// SCEV expansion. If they are nested, this is the most nested. If they are
600 /// neighboring, pick the later.
601 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
602  DominatorTree &DT) {
603  if (!A) return B;
604  if (!B) return A;
605  if (A->contains(B)) return B;
606  if (B->contains(A)) return A;
607  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
608  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
609  return A; // Arbitrarily break the tie.
610 }
611 
612 /// getRelevantLoop - Get the most relevant loop associated with the given
613 /// expression, according to PickMostRelevantLoop.
614 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
615  // Test whether we've already computed the most relevant loop for this SCEV.
616  auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
617  if (!Pair.second)
618  return Pair.first->second;
619 
620  if (isa<SCEVConstant>(S))
621  // A constant has no relevant loops.
622  return nullptr;
623  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
624  if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
625  return Pair.first->second = SE.LI.getLoopFor(I->getParent());
626  // A non-instruction has no relevant loops.
627  return nullptr;
628  }
629  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
630  const Loop *L = nullptr;
631  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
632  L = AR->getLoop();
633  for (const SCEV *Op : N->operands())
634  L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
635  return RelevantLoops[N] = L;
636  }
637  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
638  const Loop *Result = getRelevantLoop(C->getOperand());
639  return RelevantLoops[C] = Result;
640  }
641  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
642  const Loop *Result = PickMostRelevantLoop(
643  getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
644  return RelevantLoops[D] = Result;
645  }
646  llvm_unreachable("Unexpected SCEV type!");
647 }
648 
649 namespace {
650 
651 /// LoopCompare - Compare loops by PickMostRelevantLoop.
652 class LoopCompare {
653  DominatorTree &DT;
654 public:
655  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
656 
657  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
658  std::pair<const Loop *, const SCEV *> RHS) const {
659  // Keep pointer operands sorted at the end.
660  if (LHS.second->getType()->isPointerTy() !=
661  RHS.second->getType()->isPointerTy())
662  return LHS.second->getType()->isPointerTy();
663 
664  // Compare loops with PickMostRelevantLoop.
665  if (LHS.first != RHS.first)
666  return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
667 
668  // If one operand is a non-constant negative and the other is not,
669  // put the non-constant negative on the right so that a sub can
670  // be used instead of a negate and add.
671  if (LHS.second->isNonConstantNegative()) {
672  if (!RHS.second->isNonConstantNegative())
673  return false;
674  } else if (RHS.second->isNonConstantNegative())
675  return true;
676 
677  // Otherwise they are equivalent according to this comparison.
678  return false;
679  }
680 };
681 
682 }
683 
684 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
685  Type *Ty = SE.getEffectiveSCEVType(S->getType());
686 
687  // Collect all the add operands in a loop, along with their associated loops.
688  // Iterate in reverse so that constants are emitted last, all else equal, and
689  // so that pointer operands are inserted first, which the code below relies on
690  // to form more involved GEPs.
692  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
693  E(S->op_begin()); I != E; ++I)
694  OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
695 
696  // Sort by loop. Use a stable sort so that constants follow non-constants and
697  // pointer operands precede non-pointer operands.
698  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
699 
700  // Emit instructions to add all the operands. Hoist as much as possible
701  // out of loops, and form meaningful getelementptrs where possible.
702  Value *Sum = nullptr;
703  for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
704  const Loop *CurLoop = I->first;
705  const SCEV *Op = I->second;
706  if (!Sum) {
707  // This is the first operand. Just expand it.
708  Sum = expand(Op);
709  ++I;
710  } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
711  // The running sum expression is a pointer. Try to form a getelementptr
712  // at this level with that as the base.
714  for (; I != E && I->first == CurLoop; ++I) {
715  // If the operand is SCEVUnknown and not instructions, peek through
716  // it, to enable more of it to be folded into the GEP.
717  const SCEV *X = I->second;
718  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
719  if (!isa<Instruction>(U->getValue()))
720  X = SE.getSCEV(U->getValue());
721  NewOps.push_back(X);
722  }
723  Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
724  } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
725  // The running sum is an integer, and there's a pointer at this level.
726  // Try to form a getelementptr. If the running sum is instructions,
727  // use a SCEVUnknown to avoid re-analyzing them.
729  NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
730  SE.getSCEV(Sum));
731  for (++I; I != E && I->first == CurLoop; ++I)
732  NewOps.push_back(I->second);
733  Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
734  } else if (Op->isNonConstantNegative()) {
735  // Instead of doing a negate and add, just do a subtract.
736  Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
737  Sum = InsertNoopCastOfTo(Sum, Ty);
738  Sum = InsertBinop(Instruction::Sub, Sum, W);
739  ++I;
740  } else {
741  // A simple add.
742  Value *W = expandCodeFor(Op, Ty);
743  Sum = InsertNoopCastOfTo(Sum, Ty);
744  // Canonicalize a constant to the RHS.
745  if (isa<Constant>(Sum)) std::swap(Sum, W);
746  Sum = InsertBinop(Instruction::Add, Sum, W);
747  ++I;
748  }
749  }
750 
751  return Sum;
752 }
753 
754 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
755  Type *Ty = SE.getEffectiveSCEVType(S->getType());
756 
757  // Collect all the mul operands in a loop, along with their associated loops.
758  // Iterate in reverse so that constants are emitted last, all else equal.
760  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
761  E(S->op_begin()); I != E; ++I)
762  OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
763 
764  // Sort by loop. Use a stable sort so that constants follow non-constants.
765  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
766 
767  // Emit instructions to mul all the operands. Hoist as much as possible
768  // out of loops.
769  Value *Prod = nullptr;
770  auto I = OpsAndLoops.begin();
771 
772  // Expand the calculation of X pow N in the following manner:
773  // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
774  // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
775  const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
776  auto E = I;
777  // Calculate how many times the same operand from the same loop is included
778  // into this power.
779  uint64_t Exponent = 0;
780  const uint64_t MaxExponent = UINT64_MAX >> 1;
781  // No one sane will ever try to calculate such huge exponents, but if we
782  // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
783  // below when the power of 2 exceeds our Exponent, and we want it to be
784  // 1u << 31 at most to not deal with unsigned overflow.
785  while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
786  ++Exponent;
787  ++E;
788  }
789  assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
790 
791  // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
792  // that are needed into the result.
793  Value *P = expandCodeFor(I->second, Ty);
794  Value *Result = nullptr;
795  if (Exponent & 1)
796  Result = P;
797  for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
798  P = InsertBinop(Instruction::Mul, P, P);
799  if (Exponent & BinExp)
800  Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P;
801  }
802 
803  I = E;
804  assert(Result && "Nothing was expanded?");
805  return Result;
806  };
807 
808  while (I != OpsAndLoops.end()) {
809  if (!Prod) {
810  // This is the first operand. Just expand it.
811  Prod = ExpandOpBinPowN();
812  } else if (I->second->isAllOnesValue()) {
813  // Instead of doing a multiply by negative one, just do a negate.
814  Prod = InsertNoopCastOfTo(Prod, Ty);
815  Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
816  ++I;
817  } else {
818  // A simple mul.
819  Value *W = ExpandOpBinPowN();
820  Prod = InsertNoopCastOfTo(Prod, Ty);
821  // Canonicalize a constant to the RHS.
822  if (isa<Constant>(Prod)) std::swap(Prod, W);
823  const APInt *RHS;
824  if (match(W, m_Power2(RHS))) {
825  // Canonicalize Prod*(1<<C) to Prod<<C.
826  assert(!Ty->isVectorTy() && "vector types are not SCEVable");
827  Prod = InsertBinop(Instruction::Shl, Prod,
828  ConstantInt::get(Ty, RHS->logBase2()));
829  } else {
830  Prod = InsertBinop(Instruction::Mul, Prod, W);
831  }
832  }
833  }
834 
835  return Prod;
836 }
837 
838 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
839  Type *Ty = SE.getEffectiveSCEVType(S->getType());
840 
841  Value *LHS = expandCodeFor(S->getLHS(), Ty);
842  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
843  const APInt &RHS = SC->getAPInt();
844  if (RHS.isPowerOf2())
845  return InsertBinop(Instruction::LShr, LHS,
846  ConstantInt::get(Ty, RHS.logBase2()));
847  }
848 
849  Value *RHS = expandCodeFor(S->getRHS(), Ty);
850  return InsertBinop(Instruction::UDiv, LHS, RHS);
851 }
852 
853 /// Move parts of Base into Rest to leave Base with the minimal
854 /// expression that provides a pointer operand suitable for a
855 /// GEP expansion.
856 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
857  ScalarEvolution &SE) {
858  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
859  Base = A->getStart();
860  Rest = SE.getAddExpr(Rest,
861  SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
862  A->getStepRecurrence(SE),
863  A->getLoop(),
864  A->getNoWrapFlags(SCEV::FlagNW)));
865  }
866  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
867  Base = A->getOperand(A->getNumOperands()-1);
868  SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
869  NewAddOps.back() = Rest;
870  Rest = SE.getAddExpr(NewAddOps);
871  ExposePointerBase(Base, Rest, SE);
872  }
873 }
874 
875 /// Determine if this is a well-behaved chain of instructions leading back to
876 /// the PHI. If so, it may be reused by expanded expressions.
877 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
878  const Loop *L) {
879  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
880  (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
881  return false;
882  // If any of the operands don't dominate the insert position, bail.
883  // Addrec operands are always loop-invariant, so this can only happen
884  // if there are instructions which haven't been hoisted.
885  if (L == IVIncInsertLoop) {
886  for (User::op_iterator OI = IncV->op_begin()+1,
887  OE = IncV->op_end(); OI != OE; ++OI)
888  if (Instruction *OInst = dyn_cast<Instruction>(OI))
889  if (!SE.DT.dominates(OInst, IVIncInsertPos))
890  return false;
891  }
892  // Advance to the next instruction.
893  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
894  if (!IncV)
895  return false;
896 
897  if (IncV->mayHaveSideEffects())
898  return false;
899 
900  if (IncV == PN)
901  return true;
902 
903  return isNormalAddRecExprPHI(PN, IncV, L);
904 }
905 
906 /// getIVIncOperand returns an induction variable increment's induction
907 /// variable operand.
908 ///
909 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
910 /// operands dominate InsertPos.
911 ///
912 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
913 /// simple patterns generated by getAddRecExprPHILiterally and
914 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
916  Instruction *InsertPos,
917  bool allowScale) {
918  if (IncV == InsertPos)
919  return nullptr;
920 
921  switch (IncV->getOpcode()) {
922  default:
923  return nullptr;
924  // Check for a simple Add/Sub or GEP of a loop invariant step.
925  case Instruction::Add:
926  case Instruction::Sub: {
927  Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
928  if (!OInst || SE.DT.dominates(OInst, InsertPos))
929  return dyn_cast<Instruction>(IncV->getOperand(0));
930  return nullptr;
931  }
932  case Instruction::BitCast:
933  return dyn_cast<Instruction>(IncV->getOperand(0));
934  case Instruction::GetElementPtr:
935  for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
936  if (isa<Constant>(*I))
937  continue;
938  if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
939  if (!SE.DT.dominates(OInst, InsertPos))
940  return nullptr;
941  }
942  if (allowScale) {
943  // allow any kind of GEP as long as it can be hoisted.
944  continue;
945  }
946  // This must be a pointer addition of constants (pretty), which is already
947  // handled, or some number of address-size elements (ugly). Ugly geps
948  // have 2 operands. i1* is used by the expander to represent an
949  // address-size element.
950  if (IncV->getNumOperands() != 2)
951  return nullptr;
952  unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
953  if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
954  && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
955  return nullptr;
956  break;
957  }
958  return dyn_cast<Instruction>(IncV->getOperand(0));
959  }
960 }
961 
962 /// If the insert point of the current builder or any of the builders on the
963 /// stack of saved builders has 'I' as its insert point, update it to point to
964 /// the instruction after 'I'. This is intended to be used when the instruction
965 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a
966 /// different block, the inconsistent insert point (with a mismatched
967 /// Instruction and Block) can lead to an instruction being inserted in a block
968 /// other than its parent.
969 void SCEVExpander::fixupInsertPoints(Instruction *I) {
970  BasicBlock::iterator It(*I);
971  BasicBlock::iterator NewInsertPt = std::next(It);
972  if (Builder.GetInsertPoint() == It)
973  Builder.SetInsertPoint(&*NewInsertPt);
974  for (auto *InsertPtGuard : InsertPointGuards)
975  if (InsertPtGuard->GetInsertPoint() == It)
976  InsertPtGuard->SetInsertPoint(NewInsertPt);
977 }
978 
979 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
980 /// it available to other uses in this loop. Recursively hoist any operands,
981 /// until we reach a value that dominates InsertPos.
983  if (SE.DT.dominates(IncV, InsertPos))
984  return true;
985 
986  // InsertPos must itself dominate IncV so that IncV's new position satisfies
987  // its existing users.
988  if (isa<PHINode>(InsertPos) ||
989  !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
990  return false;
991 
992  if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
993  return false;
994 
995  // Check that the chain of IV operands leading back to Phi can be hoisted.
997  for(;;) {
998  Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
999  if (!Oper)
1000  return false;
1001  // IncV is safe to hoist.
1002  IVIncs.push_back(IncV);
1003  IncV = Oper;
1004  if (SE.DT.dominates(IncV, InsertPos))
1005  break;
1006  }
1007  for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1008  fixupInsertPoints(*I);
1009  (*I)->moveBefore(InsertPos);
1010  }
1011  return true;
1012 }
1013 
1014 /// Determine if this cyclic phi is in a form that would have been generated by
1015 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1016 /// as it is in a low-cost form, for example, no implied multiplication. This
1017 /// should match any patterns generated by getAddRecExprPHILiterally and
1018 /// expandAddtoGEP.
1019 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1020  const Loop *L) {
1021  for(Instruction *IVOper = IncV;
1022  (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1023  /*allowScale=*/false));) {
1024  if (IVOper == PN)
1025  return true;
1026  }
1027  return false;
1028 }
1029 
1030 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1031 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1032 /// need to materialize IV increments elsewhere to handle difficult situations.
1033 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1034  Type *ExpandTy, Type *IntTy,
1035  bool useSubtract) {
1036  Value *IncV;
1037  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1038  if (ExpandTy->isPointerTy()) {
1039  PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1040  // If the step isn't constant, don't use an implicitly scaled GEP, because
1041  // that would require a multiply inside the loop.
1042  if (!isa<ConstantInt>(StepV))
1043  GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1044  GEPPtrTy->getAddressSpace());
1045  IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1046  if (IncV->getType() != PN->getType()) {
1047  IncV = Builder.CreateBitCast(IncV, PN->getType());
1048  rememberInstruction(IncV);
1049  }
1050  } else {
1051  IncV = useSubtract ?
1052  Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1053  Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1054  rememberInstruction(IncV);
1055  }
1056  return IncV;
1057 }
1058 
1059 /// Hoist the addrec instruction chain rooted in the loop phi above the
1060 /// position. This routine assumes that this is possible (has been checked).
1061 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1062  Instruction *Pos, PHINode *LoopPhi) {
1063  do {
1064  if (DT->dominates(InstToHoist, Pos))
1065  break;
1066  // Make sure the increment is where we want it. But don't move it
1067  // down past a potential existing post-inc user.
1068  fixupInsertPoints(InstToHoist);
1069  InstToHoist->moveBefore(Pos);
1070  Pos = InstToHoist;
1071  InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1072  } while (InstToHoist != LoopPhi);
1073 }
1074 
1075 /// Check whether we can cheaply express the requested SCEV in terms of
1076 /// the available PHI SCEV by truncation and/or inversion of the step.
1078  const SCEVAddRecExpr *Phi,
1079  const SCEVAddRecExpr *Requested,
1080  bool &InvertStep) {
1081  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1082  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1083 
1084  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1085  return false;
1086 
1087  // Try truncate it if necessary.
1088  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1089  if (!Phi)
1090  return false;
1091 
1092  // Check whether truncation will help.
1093  if (Phi == Requested) {
1094  InvertStep = false;
1095  return true;
1096  }
1097 
1098  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1099  if (SE.getAddExpr(Requested->getStart(),
1100  SE.getNegativeSCEV(Requested)) == Phi) {
1101  InvertStep = true;
1102  return true;
1103  }
1104 
1105  return false;
1106 }
1107 
1108 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1109  if (!isa<IntegerType>(AR->getType()))
1110  return false;
1111 
1112  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1113  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1114  const SCEV *Step = AR->getStepRecurrence(SE);
1115  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1116  SE.getSignExtendExpr(AR, WideTy));
1117  const SCEV *ExtendAfterOp =
1118  SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1119  return ExtendAfterOp == OpAfterExtend;
1120 }
1121 
1122 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1123  if (!isa<IntegerType>(AR->getType()))
1124  return false;
1125 
1126  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1127  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1128  const SCEV *Step = AR->getStepRecurrence(SE);
1129  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1130  SE.getZeroExtendExpr(AR, WideTy));
1131  const SCEV *ExtendAfterOp =
1132  SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1133  return ExtendAfterOp == OpAfterExtend;
1134 }
1135 
1136 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1137 /// the base addrec, which is the addrec without any non-loop-dominating
1138 /// values, and return the PHI.
1139 PHINode *
1140 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1141  const Loop *L,
1142  Type *ExpandTy,
1143  Type *IntTy,
1144  Type *&TruncTy,
1145  bool &InvertStep) {
1146  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1147 
1148  // Reuse a previously-inserted PHI, if present.
1149  BasicBlock *LatchBlock = L->getLoopLatch();
1150  if (LatchBlock) {
1151  PHINode *AddRecPhiMatch = nullptr;
1152  Instruction *IncV = nullptr;
1153  TruncTy = nullptr;
1154  InvertStep = false;
1155 
1156  // Only try partially matching scevs that need truncation and/or
1157  // step-inversion if we know this loop is outside the current loop.
1158  bool TryNonMatchingSCEV =
1159  IVIncInsertLoop &&
1160  SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1161 
1162  for (PHINode &PN : L->getHeader()->phis()) {
1163  if (!SE.isSCEVable(PN.getType()))
1164  continue;
1165 
1166  const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1167  if (!PhiSCEV)
1168  continue;
1169 
1170  bool IsMatchingSCEV = PhiSCEV == Normalized;
1171  // We only handle truncation and inversion of phi recurrences for the
1172  // expanded expression if the expanded expression's loop dominates the
1173  // loop we insert to. Check now, so we can bail out early.
1174  if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1175  continue;
1176 
1177  // TODO: this possibly can be reworked to avoid this cast at all.
1178  Instruction *TempIncV =
1180  if (!TempIncV)
1181  continue;
1182 
1183  // Check whether we can reuse this PHI node.
1184  if (LSRMode) {
1185  if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1186  continue;
1187  if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1188  continue;
1189  } else {
1190  if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1191  continue;
1192  }
1193 
1194  // Stop if we have found an exact match SCEV.
1195  if (IsMatchingSCEV) {
1196  IncV = TempIncV;
1197  TruncTy = nullptr;
1198  InvertStep = false;
1199  AddRecPhiMatch = &PN;
1200  break;
1201  }
1202 
1203  // Try whether the phi can be translated into the requested form
1204  // (truncated and/or offset by a constant).
1205  if ((!TruncTy || InvertStep) &&
1206  canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1207  // Record the phi node. But don't stop we might find an exact match
1208  // later.
1209  AddRecPhiMatch = &PN;
1210  IncV = TempIncV;
1211  TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1212  }
1213  }
1214 
1215  if (AddRecPhiMatch) {
1216  // Potentially, move the increment. We have made sure in
1217  // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1218  if (L == IVIncInsertLoop)
1219  hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1220 
1221  // Ok, the add recurrence looks usable.
1222  // Remember this PHI, even in post-inc mode.
1223  InsertedValues.insert(AddRecPhiMatch);
1224  // Remember the increment.
1225  rememberInstruction(IncV);
1226  return AddRecPhiMatch;
1227  }
1228  }
1229 
1230  // Save the original insertion point so we can restore it when we're done.
1231  SCEVInsertPointGuard Guard(Builder, this);
1232 
1233  // Another AddRec may need to be recursively expanded below. For example, if
1234  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1235  // loop. Remove this loop from the PostIncLoops set before expanding such
1236  // AddRecs. Otherwise, we cannot find a valid position for the step
1237  // (i.e. StepV can never dominate its loop header). Ideally, we could do
1238  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1239  // so it's not worth implementing SmallPtrSet::swap.
1240  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1241  PostIncLoops.clear();
1242 
1243  // Expand code for the start value into the loop preheader.
1244  assert(L->getLoopPreheader() &&
1245  "Can't expand add recurrences without a loop preheader!");
1246  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1248 
1249  // StartV must have been be inserted into L's preheader to dominate the new
1250  // phi.
1251  assert(!isa<Instruction>(StartV) ||
1252  SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1253  L->getHeader()));
1254 
1255  // Expand code for the step value. Do this before creating the PHI so that PHI
1256  // reuse code doesn't see an incomplete PHI.
1257  const SCEV *Step = Normalized->getStepRecurrence(SE);
1258  // If the stride is negative, insert a sub instead of an add for the increment
1259  // (unless it's a constant, because subtracts of constants are canonicalized
1260  // to adds).
1261  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1262  if (useSubtract)
1263  Step = SE.getNegativeSCEV(Step);
1264  // Expand the step somewhere that dominates the loop header.
1265  Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1266 
1267  // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1268  // we actually do emit an addition. It does not apply if we emit a
1269  // subtraction.
1270  bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1271  bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1272 
1273  // Create the PHI.
1274  BasicBlock *Header = L->getHeader();
1275  Builder.SetInsertPoint(Header, Header->begin());
1276  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1277  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1278  Twine(IVName) + ".iv");
1279  rememberInstruction(PN);
1280 
1281  // Create the step instructions and populate the PHI.
1282  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1283  BasicBlock *Pred = *HPI;
1284 
1285  // Add a start value.
1286  if (!L->contains(Pred)) {
1287  PN->addIncoming(StartV, Pred);
1288  continue;
1289  }
1290 
1291  // Create a step value and add it to the PHI.
1292  // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1293  // instructions at IVIncInsertPos.
1294  Instruction *InsertPos = L == IVIncInsertLoop ?
1295  IVIncInsertPos : Pred->getTerminator();
1296  Builder.SetInsertPoint(InsertPos);
1297  Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1298 
1299  if (isa<OverflowingBinaryOperator>(IncV)) {
1300  if (IncrementIsNUW)
1301  cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1302  if (IncrementIsNSW)
1303  cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1304  }
1305  PN->addIncoming(IncV, Pred);
1306  }
1307 
1308  // After expanding subexpressions, restore the PostIncLoops set so the caller
1309  // can ensure that IVIncrement dominates the current uses.
1310  PostIncLoops = SavedPostIncLoops;
1311 
1312  // Remember this PHI, even in post-inc mode.
1313  InsertedValues.insert(PN);
1314 
1315  return PN;
1316 }
1317 
1318 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1319  Type *STy = S->getType();
1320  Type *IntTy = SE.getEffectiveSCEVType(STy);
1321  const Loop *L = S->getLoop();
1322 
1323  // Determine a normalized form of this expression, which is the expression
1324  // before any post-inc adjustment is made.
1325  const SCEVAddRecExpr *Normalized = S;
1326  if (PostIncLoops.count(L)) {
1328  Loops.insert(L);
1329  Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1330  }
1331 
1332  // Strip off any non-loop-dominating component from the addrec start.
1333  const SCEV *Start = Normalized->getStart();
1334  const SCEV *PostLoopOffset = nullptr;
1335  if (!SE.properlyDominates(Start, L->getHeader())) {
1336  PostLoopOffset = Start;
1337  Start = SE.getConstant(Normalized->getType(), 0);
1338  Normalized = cast<SCEVAddRecExpr>(
1339  SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1340  Normalized->getLoop(),
1341  Normalized->getNoWrapFlags(SCEV::FlagNW)));
1342  }
1343 
1344  // Strip off any non-loop-dominating component from the addrec step.
1345  const SCEV *Step = Normalized->getStepRecurrence(SE);
1346  const SCEV *PostLoopScale = nullptr;
1347  if (!SE.dominates(Step, L->getHeader())) {
1348  PostLoopScale = Step;
1349  Step = SE.getConstant(Normalized->getType(), 1);
1350  if (!Start->isZero()) {
1351  // The normalization below assumes that Start is constant zero, so if
1352  // it isn't re-associate Start to PostLoopOffset.
1353  assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1354  PostLoopOffset = Start;
1355  Start = SE.getConstant(Normalized->getType(), 0);
1356  }
1357  Normalized =
1358  cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1359  Start, Step, Normalized->getLoop(),
1360  Normalized->getNoWrapFlags(SCEV::FlagNW)));
1361  }
1362 
1363  // Expand the core addrec. If we need post-loop scaling, force it to
1364  // expand to an integer type to avoid the need for additional casting.
1365  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1366  // We can't use a pointer type for the addrec if the pointer type is
1367  // non-integral.
1368  Type *AddRecPHIExpandTy =
1369  DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1370 
1371  // In some cases, we decide to reuse an existing phi node but need to truncate
1372  // it and/or invert the step.
1373  Type *TruncTy = nullptr;
1374  bool InvertStep = false;
1375  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1376  IntTy, TruncTy, InvertStep);
1377 
1378  // Accommodate post-inc mode, if necessary.
1379  Value *Result;
1380  if (!PostIncLoops.count(L))
1381  Result = PN;
1382  else {
1383  // In PostInc mode, use the post-incremented value.
1384  BasicBlock *LatchBlock = L->getLoopLatch();
1385  assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1386  Result = PN->getIncomingValueForBlock(LatchBlock);
1387 
1388  // For an expansion to use the postinc form, the client must call
1389  // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1390  // or dominated by IVIncInsertPos.
1391  if (isa<Instruction>(Result) &&
1392  !SE.DT.dominates(cast<Instruction>(Result),
1393  &*Builder.GetInsertPoint())) {
1394  // The induction variable's postinc expansion does not dominate this use.
1395  // IVUsers tries to prevent this case, so it is rare. However, it can
1396  // happen when an IVUser outside the loop is not dominated by the latch
1397  // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1398  // all cases. Consider a phi outside whose operand is replaced during
1399  // expansion with the value of the postinc user. Without fundamentally
1400  // changing the way postinc users are tracked, the only remedy is
1401  // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1402  // but hopefully expandCodeFor handles that.
1403  bool useSubtract =
1404  !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1405  if (useSubtract)
1406  Step = SE.getNegativeSCEV(Step);
1407  Value *StepV;
1408  {
1409  // Expand the step somewhere that dominates the loop header.
1410  SCEVInsertPointGuard Guard(Builder, this);
1411  StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1412  }
1413  Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1414  }
1415  }
1416 
1417  // We have decided to reuse an induction variable of a dominating loop. Apply
1418  // truncation and/or inversion of the step.
1419  if (TruncTy) {
1420  Type *ResTy = Result->getType();
1421  // Normalize the result type.
1422  if (ResTy != SE.getEffectiveSCEVType(ResTy))
1423  Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1424  // Truncate the result.
1425  if (TruncTy != Result->getType()) {
1426  Result = Builder.CreateTrunc(Result, TruncTy);
1427  rememberInstruction(Result);
1428  }
1429  // Invert the result.
1430  if (InvertStep) {
1431  Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1432  Result);
1433  rememberInstruction(Result);
1434  }
1435  }
1436 
1437  // Re-apply any non-loop-dominating scale.
1438  if (PostLoopScale) {
1439  assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1440  Result = InsertNoopCastOfTo(Result, IntTy);
1441  Result = Builder.CreateMul(Result,
1442  expandCodeFor(PostLoopScale, IntTy));
1443  rememberInstruction(Result);
1444  }
1445 
1446  // Re-apply any non-loop-dominating offset.
1447  if (PostLoopOffset) {
1448  if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1449  if (Result->getType()->isIntegerTy()) {
1450  Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1451  Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1452  } else {
1453  Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1454  }
1455  } else {
1456  Result = InsertNoopCastOfTo(Result, IntTy);
1457  Result = Builder.CreateAdd(Result,
1458  expandCodeFor(PostLoopOffset, IntTy));
1459  rememberInstruction(Result);
1460  }
1461  }
1462 
1463  return Result;
1464 }
1465 
1466 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1467  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1468 
1469  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1470  const Loop *L = S->getLoop();
1471 
1472  // First check for an existing canonical IV in a suitable type.
1473  PHINode *CanonicalIV = nullptr;
1474  if (PHINode *PN = L->getCanonicalInductionVariable())
1475  if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1476  CanonicalIV = PN;
1477 
1478  // Rewrite an AddRec in terms of the canonical induction variable, if
1479  // its type is more narrow.
1480  if (CanonicalIV &&
1481  SE.getTypeSizeInBits(CanonicalIV->getType()) >
1482  SE.getTypeSizeInBits(Ty)) {
1484  for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1485  NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1486  Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1488  BasicBlock::iterator NewInsertPt =
1489  findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1490  V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1491  &*NewInsertPt);
1492  return V;
1493  }
1494 
1495  // {X,+,F} --> X + {0,+,F}
1496  if (!S->getStart()->isZero()) {
1497  SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1498  NewOps[0] = SE.getConstant(Ty, 0);
1499  const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1501 
1502  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1503  // comments on expandAddToGEP for details.
1504  const SCEV *Base = S->getStart();
1505  // Dig into the expression to find the pointer base for a GEP.
1506  const SCEV *ExposedRest = Rest;
1507  ExposePointerBase(Base, ExposedRest, SE);
1508  // If we found a pointer, expand the AddRec with a GEP.
1509  if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1510  // Make sure the Base isn't something exotic, such as a multiplied
1511  // or divided pointer value. In those cases, the result type isn't
1512  // actually a pointer type.
1513  if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1514  Value *StartV = expand(Base);
1515  assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1516  return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1517  }
1518  }
1519 
1520  // Just do a normal add. Pre-expand the operands to suppress folding.
1521  //
1522  // The LHS and RHS values are factored out of the expand call to make the
1523  // output independent of the argument evaluation order.
1524  const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1525  const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1526  return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1527  }
1528 
1529  // If we don't yet have a canonical IV, create one.
1530  if (!CanonicalIV) {
1531  // Create and insert the PHI node for the induction variable in the
1532  // specified loop.
1533  BasicBlock *Header = L->getHeader();
1534  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1535  CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1536  &Header->front());
1537  rememberInstruction(CanonicalIV);
1538 
1539  SmallSet<BasicBlock *, 4> PredSeen;
1540  Constant *One = ConstantInt::get(Ty, 1);
1541  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1542  BasicBlock *HP = *HPI;
1543  if (!PredSeen.insert(HP).second) {
1544  // There must be an incoming value for each predecessor, even the
1545  // duplicates!
1546  CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1547  continue;
1548  }
1549 
1550  if (L->contains(HP)) {
1551  // Insert a unit add instruction right before the terminator
1552  // corresponding to the back-edge.
1553  Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1554  "indvar.next",
1555  HP->getTerminator());
1556  Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1557  rememberInstruction(Add);
1558  CanonicalIV->addIncoming(Add, HP);
1559  } else {
1560  CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1561  }
1562  }
1563  }
1564 
1565  // {0,+,1} --> Insert a canonical induction variable into the loop!
1566  if (S->isAffine() && S->getOperand(1)->isOne()) {
1567  assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1568  "IVs with types different from the canonical IV should "
1569  "already have been handled!");
1570  return CanonicalIV;
1571  }
1572 
1573  // {0,+,F} --> {0,+,1} * F
1574 
1575  // If this is a simple linear addrec, emit it now as a special case.
1576  if (S->isAffine()) // {0,+,F} --> i*F
1577  return
1578  expand(SE.getTruncateOrNoop(
1579  SE.getMulExpr(SE.getUnknown(CanonicalIV),
1580  SE.getNoopOrAnyExtend(S->getOperand(1),
1581  CanonicalIV->getType())),
1582  Ty));
1583 
1584  // If this is a chain of recurrences, turn it into a closed form, using the
1585  // folders, then expandCodeFor the closed form. This allows the folders to
1586  // simplify the expression without having to build a bunch of special code
1587  // into this folder.
1588  const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
1589 
1590  // Promote S up to the canonical IV type, if the cast is foldable.
1591  const SCEV *NewS = S;
1592  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1593  if (isa<SCEVAddRecExpr>(Ext))
1594  NewS = Ext;
1595 
1596  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1597  //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1598 
1599  // Truncate the result down to the original type, if needed.
1600  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1601  return expand(T);
1602 }
1603 
1604 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1605  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1606  Value *V = expandCodeFor(S->getOperand(),
1607  SE.getEffectiveSCEVType(S->getOperand()->getType()));
1608  Value *I = Builder.CreateTrunc(V, Ty);
1609  rememberInstruction(I);
1610  return I;
1611 }
1612 
1613 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1614  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1615  Value *V = expandCodeFor(S->getOperand(),
1616  SE.getEffectiveSCEVType(S->getOperand()->getType()));
1617  Value *I = Builder.CreateZExt(V, Ty);
1618  rememberInstruction(I);
1619  return I;
1620 }
1621 
1622 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1623  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1624  Value *V = expandCodeFor(S->getOperand(),
1625  SE.getEffectiveSCEVType(S->getOperand()->getType()));
1626  Value *I = Builder.CreateSExt(V, Ty);
1627  rememberInstruction(I);
1628  return I;
1629 }
1630 
1631 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1632  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1633  Type *Ty = LHS->getType();
1634  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1635  // In the case of mixed integer and pointer types, do the
1636  // rest of the comparisons as integer.
1637  if (S->getOperand(i)->getType() != Ty) {
1638  Ty = SE.getEffectiveSCEVType(Ty);
1639  LHS = InsertNoopCastOfTo(LHS, Ty);
1640  }
1641  Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1642  Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1643  rememberInstruction(ICmp);
1644  Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1645  rememberInstruction(Sel);
1646  LHS = Sel;
1647  }
1648  // In the case of mixed integer and pointer types, cast the
1649  // final result back to the pointer type.
1650  if (LHS->getType() != S->getType())
1651  LHS = InsertNoopCastOfTo(LHS, S->getType());
1652  return LHS;
1653 }
1654 
1655 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1656  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1657  Type *Ty = LHS->getType();
1658  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1659  // In the case of mixed integer and pointer types, do the
1660  // rest of the comparisons as integer.
1661  if (S->getOperand(i)->getType() != Ty) {
1662  Ty = SE.getEffectiveSCEVType(Ty);
1663  LHS = InsertNoopCastOfTo(LHS, Ty);
1664  }
1665  Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1666  Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1667  rememberInstruction(ICmp);
1668  Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1669  rememberInstruction(Sel);
1670  LHS = Sel;
1671  }
1672  // In the case of mixed integer and pointer types, cast the
1673  // final result back to the pointer type.
1674  if (LHS->getType() != S->getType())
1675  LHS = InsertNoopCastOfTo(LHS, S->getType());
1676  return LHS;
1677 }
1678 
1680  Instruction *IP) {
1681  setInsertPoint(IP);
1682  return expandCodeFor(SH, Ty);
1683 }
1684 
1686  // Expand the code for this SCEV.
1687  Value *V = expand(SH);
1688  if (Ty) {
1689  assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1690  "non-trivial casts should be done with the SCEVs directly!");
1691  V = InsertNoopCastOfTo(V, Ty);
1692  }
1693  return V;
1694 }
1695 
1696 ScalarEvolution::ValueOffsetPair
1697 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1698  const Instruction *InsertPt) {
1699  SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1700  // If the expansion is not in CanonicalMode, and the SCEV contains any
1701  // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1702  if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1703  // If S is scConstant, it may be worse to reuse an existing Value.
1704  if (S->getSCEVType() != scConstant && Set) {
1705  // Choose a Value from the set which dominates the insertPt.
1706  // insertPt should be inside the Value's parent loop so as not to break
1707  // the LCSSA form.
1708  for (auto const &VOPair : *Set) {
1709  Value *V = VOPair.first;
1710  ConstantInt *Offset = VOPair.second;
1711  Instruction *EntInst = nullptr;
1712  if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1713  S->getType() == V->getType() &&
1714  EntInst->getFunction() == InsertPt->getFunction() &&
1715  SE.DT.dominates(EntInst, InsertPt) &&
1716  (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1717  SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1718  return {V, Offset};
1719  }
1720  }
1721  }
1722  return {nullptr, nullptr};
1723 }
1724 
1725 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1726 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1727 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1728 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1729 // the expansion will try to reuse Value from ExprValueMap, and only when it
1730 // fails, expand the SCEV literally.
1731 Value *SCEVExpander::expand(const SCEV *S) {
1732  // Compute an insertion point for this SCEV object. Hoist the instructions
1733  // as far out in the loop nest as possible.
1734  Instruction *InsertPt = &*Builder.GetInsertPoint();
1735  for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1736  L = L->getParentLoop())
1737  if (SE.isLoopInvariant(S, L)) {
1738  if (!L) break;
1739  if (BasicBlock *Preheader = L->getLoopPreheader())
1740  InsertPt = Preheader->getTerminator();
1741  else {
1742  // LSR sets the insertion point for AddRec start/step values to the
1743  // block start to simplify value reuse, even though it's an invalid
1744  // position. SCEVExpander must correct for this in all cases.
1745  InsertPt = &*L->getHeader()->getFirstInsertionPt();
1746  }
1747  } else {
1748  // We can move insertion point only if there is no div or rem operations
1749  // otherwise we are risky to move it over the check for zero denominator.
1750  auto SafeToHoist = [](const SCEV *S) {
1751  return !SCEVExprContains(S, [](const SCEV *S) {
1752  if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1753  if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1754  // Division by non-zero constants can be hoisted.
1755  return SC->getValue()->isZero();
1756  // All other divisions should not be moved as they may be
1757  // divisions by zero and should be kept within the
1758  // conditions of the surrounding loops that guard their
1759  // execution (see PR35406).
1760  return true;
1761  }
1762  return false;
1763  });
1764  };
1765  // If the SCEV is computable at this level, insert it into the header
1766  // after the PHIs (and after any other instructions that we've inserted
1767  // there) so that it is guaranteed to dominate any user inside the loop.
1768  if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L) &&
1769  SafeToHoist(S))
1770  InsertPt = &*L->getHeader()->getFirstInsertionPt();
1771  while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1772  (isInsertedInstruction(InsertPt) ||
1773  isa<DbgInfoIntrinsic>(InsertPt))) {
1774  InsertPt = &*std::next(InsertPt->getIterator());
1775  }
1776  break;
1777  }
1778 
1779  // Check to see if we already expanded this here.
1780  auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1781  if (I != InsertedExpressions.end())
1782  return I->second;
1783 
1784  SCEVInsertPointGuard Guard(Builder, this);
1785  Builder.SetInsertPoint(InsertPt);
1786 
1787  // Expand the expression into instructions.
1788  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1789  Value *V = VO.first;
1790 
1791  if (!V)
1792  V = visit(S);
1793  else if (VO.second) {
1794  if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1795  Type *Ety = Vty->getPointerElementType();
1796  int64_t Offset = VO.second->getSExtValue();
1797  int64_t ESize = SE.getTypeSizeInBits(Ety);
1798  if ((Offset * 8) % ESize == 0) {
1799  ConstantInt *Idx =
1800  ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1801  V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1802  } else {
1803  ConstantInt *Idx =
1804  ConstantInt::getSigned(VO.second->getType(), -Offset);
1805  unsigned AS = Vty->getAddressSpace();
1806  V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1807  V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1808  "uglygep");
1809  V = Builder.CreateBitCast(V, Vty);
1810  }
1811  } else {
1812  V = Builder.CreateSub(V, VO.second);
1813  }
1814  }
1815  // Remember the expanded value for this SCEV at this location.
1816  //
1817  // This is independent of PostIncLoops. The mapped value simply materializes
1818  // the expression at this insertion point. If the mapped value happened to be
1819  // a postinc expansion, it could be reused by a non-postinc user, but only if
1820  // its insertion point was already at the head of the loop.
1821  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1822  return V;
1823 }
1824 
1825 void SCEVExpander::rememberInstruction(Value *I) {
1826  if (!PostIncLoops.empty())
1827  InsertedPostIncValues.insert(I);
1828  else
1829  InsertedValues.insert(I);
1830 }
1831 
1832 /// getOrInsertCanonicalInductionVariable - This method returns the
1833 /// canonical induction variable of the specified type for the specified
1834 /// loop (inserting one if there is none). A canonical induction variable
1835 /// starts at zero and steps by one on each iteration.
1836 PHINode *
1838  Type *Ty) {
1839  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1840 
1841  // Build a SCEV for {0,+,1}<L>.
1842  // Conservatively use FlagAnyWrap for now.
1843  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1844  SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1845 
1846  // Emit code for it.
1847  SCEVInsertPointGuard Guard(Builder, this);
1848  PHINode *V =
1849  cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1850 
1851  return V;
1852 }
1853 
1854 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1855 /// replace them with their most canonical representative. Return the number of
1856 /// phis eliminated.
1857 ///
1858 /// This does not depend on any SCEVExpander state but should be used in
1859 /// the same context that SCEVExpander is used.
1860 unsigned
1863  const TargetTransformInfo *TTI) {
1864  // Find integer phis in order of increasing width.
1866  for (PHINode &PN : L->getHeader()->phis())
1867  Phis.push_back(&PN);
1868 
1869  if (TTI)
1870  llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1871  // Put pointers at the back and make sure pointer < pointer = false.
1872  if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1873  return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1874  return RHS->getType()->getPrimitiveSizeInBits() <
1875  LHS->getType()->getPrimitiveSizeInBits();
1876  });
1877 
1878  unsigned NumElim = 0;
1880  // Process phis from wide to narrow. Map wide phis to their truncation
1881  // so narrow phis can reuse them.
1882  for (PHINode *Phi : Phis) {
1883  auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1884  if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1885  return V;
1886  if (!SE.isSCEVable(PN->getType()))
1887  return nullptr;
1888  auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1889  if (!Const)
1890  return nullptr;
1891  return Const->getValue();
1892  };
1893 
1894  // Fold constant phis. They may be congruent to other constant phis and
1895  // would confuse the logic below that expects proper IVs.
1896  if (Value *V = SimplifyPHINode(Phi)) {
1897  if (V->getType() != Phi->getType())
1898  continue;
1899  Phi->replaceAllUsesWith(V);
1900  DeadInsts.emplace_back(Phi);
1901  ++NumElim;
1903  << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1904  continue;
1905  }
1906 
1907  if (!SE.isSCEVable(Phi->getType()))
1908  continue;
1909 
1910  PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1911  if (!OrigPhiRef) {
1912  OrigPhiRef = Phi;
1913  if (Phi->getType()->isIntegerTy() && TTI &&
1914  TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1915  // This phi can be freely truncated to the narrowest phi type. Map the
1916  // truncated expression to it so it will be reused for narrow types.
1917  const SCEV *TruncExpr =
1918  SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1919  ExprToIVMap[TruncExpr] = Phi;
1920  }
1921  continue;
1922  }
1923 
1924  // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1925  // sense.
1926  if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1927  continue;
1928 
1929  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1930  Instruction *OrigInc = dyn_cast<Instruction>(
1931  OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1932  Instruction *IsomorphicInc =
1933  dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1934 
1935  if (OrigInc && IsomorphicInc) {
1936  // If this phi has the same width but is more canonical, replace the
1937  // original with it. As part of the "more canonical" determination,
1938  // respect a prior decision to use an IV chain.
1939  if (OrigPhiRef->getType() == Phi->getType() &&
1940  !(ChainedPhis.count(Phi) ||
1941  isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1942  (ChainedPhis.count(Phi) ||
1943  isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1944  std::swap(OrigPhiRef, Phi);
1945  std::swap(OrigInc, IsomorphicInc);
1946  }
1947  // Replacing the congruent phi is sufficient because acyclic
1948  // redundancy elimination, CSE/GVN, should handle the
1949  // rest. However, once SCEV proves that a phi is congruent,
1950  // it's often the head of an IV user cycle that is isomorphic
1951  // with the original phi. It's worth eagerly cleaning up the
1952  // common case of a single IV increment so that DeleteDeadPHIs
1953  // can remove cycles that had postinc uses.
1954  const SCEV *TruncExpr =
1955  SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1956  if (OrigInc != IsomorphicInc &&
1957  TruncExpr == SE.getSCEV(IsomorphicInc) &&
1958  SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1959  hoistIVInc(OrigInc, IsomorphicInc)) {
1961  dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1962  << *IsomorphicInc << '\n');
1963  Value *NewInc = OrigInc;
1964  if (OrigInc->getType() != IsomorphicInc->getType()) {
1965  Instruction *IP = nullptr;
1966  if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1967  IP = &*PN->getParent()->getFirstInsertionPt();
1968  else
1969  IP = OrigInc->getNextNode();
1970 
1971  IRBuilder<> Builder(IP);
1972  Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1973  NewInc = Builder.CreateTruncOrBitCast(
1974  OrigInc, IsomorphicInc->getType(), IVName);
1975  }
1976  IsomorphicInc->replaceAllUsesWith(NewInc);
1977  DeadInsts.emplace_back(IsomorphicInc);
1978  }
1979  }
1980  }
1981  DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
1982  << *Phi << '\n');
1983  ++NumElim;
1984  Value *NewIV = OrigPhiRef;
1985  if (OrigPhiRef->getType() != Phi->getType()) {
1986  IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1987  Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1988  NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1989  }
1990  Phi->replaceAllUsesWith(NewIV);
1991  DeadInsts.emplace_back(Phi);
1992  }
1993  return NumElim;
1994 }
1995 
1997  const Instruction *At, Loop *L) {
1999  getRelatedExistingExpansion(S, At, L);
2000  if (VO && VO.getValue().second == nullptr)
2001  return VO.getValue().first;
2002  return nullptr;
2003 }
2004 
2007  Loop *L) {
2008  using namespace llvm::PatternMatch;
2009 
2010  SmallVector<BasicBlock *, 4> ExitingBlocks;
2011  L->getExitingBlocks(ExitingBlocks);
2012 
2013  // Look for suitable value in simple conditions at the loop exits.
2014  for (BasicBlock *BB : ExitingBlocks) {
2015  ICmpInst::Predicate Pred;
2016  Instruction *LHS, *RHS;
2017  BasicBlock *TrueBB, *FalseBB;
2018 
2019  if (!match(BB->getTerminator(),
2020  m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2021  TrueBB, FalseBB)))
2022  continue;
2023 
2024  if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2025  return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2026 
2027  if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2028  return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2029  }
2030 
2031  // Use expand's logic which is used for reusing a previous Value in
2032  // ExprValueMap.
2033  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2034  if (VO.first)
2035  return VO;
2036 
2037  // There is potential to make this significantly smarter, but this simple
2038  // heuristic already gets some interesting cases.
2039 
2040  // Can not find suitable value.
2041  return None;
2042 }
2043 
2044 bool SCEVExpander::isHighCostExpansionHelper(
2045  const SCEV *S, Loop *L, const Instruction *At,
2046  SmallPtrSetImpl<const SCEV *> &Processed) {
2047 
2048  // If we can find an existing value for this scev available at the point "At"
2049  // then consider the expression cheap.
2050  if (At && getRelatedExistingExpansion(S, At, L))
2051  return false;
2052 
2053  // Zero/One operand expressions
2054  switch (S->getSCEVType()) {
2055  case scUnknown:
2056  case scConstant:
2057  return false;
2058  case scTruncate:
2059  return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
2060  L, At, Processed);
2061  case scZeroExtend:
2062  return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
2063  L, At, Processed);
2064  case scSignExtend:
2065  return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
2066  L, At, Processed);
2067  }
2068 
2069  if (!Processed.insert(S).second)
2070  return false;
2071 
2072  if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2073  // If the divisor is a power of two and the SCEV type fits in a native
2074  // integer, consider the division cheap irrespective of whether it occurs in
2075  // the user code since it can be lowered into a right shift.
2076  if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
2077  if (SC->getAPInt().isPowerOf2()) {
2078  const DataLayout &DL =
2080  unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
2081  return DL.isIllegalInteger(Width);
2082  }
2083 
2084  // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2085  // HowManyLessThans produced to compute a precise expression, rather than a
2086  // UDiv from the user's code. If we can't find a UDiv in the code with some
2087  // simple searching, assume the former consider UDivExpr expensive to
2088  // compute.
2089  BasicBlock *ExitingBB = L->getExitingBlock();
2090  if (!ExitingBB)
2091  return true;
2092 
2093  // At the beginning of this function we already tried to find existing value
2094  // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2095  // involving division. This is just a simple search heuristic.
2096  if (!At)
2097  At = &ExitingBB->back();
2098  if (!getRelatedExistingExpansion(
2099  SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
2100  return true;
2101  }
2102 
2103  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2104  // the exit condition.
2105  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
2106  return true;
2107 
2108  // Recurse past nary expressions, which commonly occur in the
2109  // BackedgeTakenCount. They may already exist in program code, and if not,
2110  // they are not too expensive rematerialize.
2111  if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2112  for (auto *Op : NAry->operands())
2113  if (isHighCostExpansionHelper(Op, L, At, Processed))
2114  return true;
2115  }
2116 
2117  // If we haven't recognized an expensive SCEV pattern, assume it's an
2118  // expression produced by program code.
2119  return false;
2120 }
2121 
2123  Instruction *IP) {
2124  assert(IP);
2125  switch (Pred->getKind()) {
2127  return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2129  return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2130  case SCEVPredicate::P_Wrap: {
2131  auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2132  return expandWrapPredicate(AddRecPred, IP);
2133  }
2134  }
2135  llvm_unreachable("Unknown SCEV predicate type");
2136 }
2137 
2139  Instruction *IP) {
2140  Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2141  Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2142 
2143  Builder.SetInsertPoint(IP);
2144  auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2145  return I;
2146 }
2147 
2149  Instruction *Loc, bool Signed) {
2150  assert(AR->isAffine() && "Cannot generate RT check for "
2151  "non-affine expression");
2152 
2153  SCEVUnionPredicate Pred;
2154  const SCEV *ExitCount =
2155  SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2156 
2157  assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2158 
2159  const SCEV *Step = AR->getStepRecurrence(SE);
2160  const SCEV *Start = AR->getStart();
2161 
2162  Type *ARTy = AR->getType();
2163  unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2164  unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2165 
2166  // The expression {Start,+,Step} has nusw/nssw if
2167  // Step < 0, Start - |Step| * Backedge <= Start
2168  // Step >= 0, Start + |Step| * Backedge > Start
2169  // and |Step| * Backedge doesn't unsigned overflow.
2170 
2171  IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2172  Builder.SetInsertPoint(Loc);
2173  Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2174 
2175  IntegerType *Ty =
2176  IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2177  Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2178 
2179  Value *StepValue = expandCodeFor(Step, Ty, Loc);
2180  Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2181  Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2182 
2183  ConstantInt *Zero =
2185 
2186  Builder.SetInsertPoint(Loc);
2187  // Compute |Step|
2188  Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2189  Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2190 
2191  // Get the backedge taken count and truncate or extended to the AR type.
2192  Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2193  auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2195 
2196  // Compute |Step| * Backedge
2197  CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2198  Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2199  Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2200 
2201  // Compute:
2202  // Start + |Step| * Backedge < Start
2203  // Start - |Step| * Backedge > Start
2204  Value *Add = nullptr, *Sub = nullptr;
2205  if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2206  const SCEV *MulS = SE.getSCEV(MulV);
2207  const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2208  Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2209  ARPtrTy);
2210  Sub = Builder.CreateBitCast(
2211  expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2212  } else {
2213  Add = Builder.CreateAdd(StartValue, MulV);
2214  Sub = Builder.CreateSub(StartValue, MulV);
2215  }
2216 
2217  Value *EndCompareGT = Builder.CreateICmp(
2218  Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2219 
2220  Value *EndCompareLT = Builder.CreateICmp(
2221  Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2222 
2223  // Select the answer based on the sign of Step.
2224  Value *EndCheck =
2225  Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2226 
2227  // If the backedge taken count type is larger than the AR type,
2228  // check that we don't drop any bits by truncating it. If we are
2229  // dropping bits, then we have overflow (unless the step is zero).
2230  if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2231  auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2232  auto *BackedgeCheck =
2233  Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2234  ConstantInt::get(Loc->getContext(), MaxVal));
2235  BackedgeCheck = Builder.CreateAnd(
2236  BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2237 
2238  EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2239  }
2240 
2241  EndCheck = Builder.CreateOr(EndCheck, OfMul);
2242  return EndCheck;
2243 }
2244 
2246  Instruction *IP) {
2247  const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2248  Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2249 
2250  // Add a check for NUSW
2252  NUSWCheck = generateOverflowCheck(A, IP, false);
2253 
2254  // Add a check for NSSW
2256  NSSWCheck = generateOverflowCheck(A, IP, true);
2257 
2258  if (NUSWCheck && NSSWCheck)
2259  return Builder.CreateOr(NUSWCheck, NSSWCheck);
2260 
2261  if (NUSWCheck)
2262  return NUSWCheck;
2263 
2264  if (NSSWCheck)
2265  return NSSWCheck;
2266 
2267  return ConstantInt::getFalse(IP->getContext());
2268 }
2269 
2271  Instruction *IP) {
2272  auto *BoolType = IntegerType::get(IP->getContext(), 1);
2273  Value *Check = ConstantInt::getNullValue(BoolType);
2274 
2275  // Loop over all checks in this set.
2276  for (auto Pred : Union->getPredicates()) {
2277  auto *NextCheck = expandCodeForPredicate(Pred, IP);
2278  Builder.SetInsertPoint(IP);
2279  Check = Builder.CreateOr(Check, NextCheck);
2280  }
2281 
2282  return Check;
2283 }
2284 
2285 namespace {
2286 // Search for a SCEV subexpression that is not safe to expand. Any expression
2287 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2288 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2289 // instruction, but the important thing is that we prove the denominator is
2290 // nonzero before expansion.
2291 //
2292 // IVUsers already checks that IV-derived expressions are safe. So this check is
2293 // only needed when the expression includes some subexpression that is not IV
2294 // derived.
2295 //
2296 // Currently, we only allow division by a nonzero constant here. If this is
2297 // inadequate, we could easily allow division by SCEVUnknown by using
2298 // ValueTracking to check isKnownNonZero().
2299 //
2300 // We cannot generally expand recurrences unless the step dominates the loop
2301 // header. The expander handles the special case of affine recurrences by
2302 // scaling the recurrence outside the loop, but this technique isn't generally
2303 // applicable. Expanding a nested recurrence outside a loop requires computing
2304 // binomial coefficients. This could be done, but the recurrence has to be in a
2305 // perfectly reduced form, which can't be guaranteed.
2306 struct SCEVFindUnsafe {
2307  ScalarEvolution &SE;
2308  bool IsUnsafe;
2309 
2310  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2311 
2312  bool follow(const SCEV *S) {
2313  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2314  const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2315  if (!SC || SC->getValue()->isZero()) {
2316  IsUnsafe = true;
2317  return false;
2318  }
2319  }
2320  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2321  const SCEV *Step = AR->getStepRecurrence(SE);
2322  if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2323  IsUnsafe = true;
2324  return false;
2325  }
2326  }
2327  return true;
2328  }
2329  bool isDone() const { return IsUnsafe; }
2330 };
2331 }
2332 
2333 namespace llvm {
2334 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2335  SCEVFindUnsafe Search(SE);
2336  visitAll(S, Search);
2337  return !Search.IsUnsafe;
2338 }
2339 
2340 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2341  ScalarEvolution &SE) {
2342  return isSafeToExpand(S, SE) && SE.dominates(S, InsertionPoint->getParent());
2343 }
2344 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
static bool Check(DecodeStatus &Out, DecodeStatus In)
const NoneType None
Definition: None.h:24
uint64_t CallInst * C
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos)
Utility for hoisting an IV increment.
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:585
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:173
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
Definition: LoopInfoImpl.h:225
Value * getExactExistingExpansion(const SCEV *S, const Instruction *At, Loop *L)
Try to find existing LLVM IR value for S available at the point At.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
const SCEV * getConstant(ConstantInt *V)
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant *> IdxList, bool InBounds=false, Optional< unsigned > InRangeIndex=None, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition: Constants.h:1154
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:265
bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, ScalarEvolution &SE)
Return true if the given expression is safe to expand in the sense that all materialized values are d...
const SCEV * normalizeForPostIncUse(const SCEV *S, const PostIncLoopSet &Loops, ScalarEvolution &SE)
Normalize S to be post-increment for all loops present in Loops.
The main scalar evolution driver.
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:858
bool isZero() const
Return true if the expression is a constant zero.
This class represents a function call, abstracting a target machine&#39;s calling convention.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Definition: LoopInfoImpl.h:174
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space...
Definition: Type.cpp:630
unsigned less than
Definition: InstrTypes.h:671
Optional< ScalarEvolution::ValueOffsetPair > getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L)
Try to find the ValueOffsetPair for S.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
This class represents a truncation of an integer value to a smaller integer value.
Value * expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc)
A specialized variant of expandCodeForPredicate, handling the case when we are expanding code for a S...
A debug info location.
Definition: DebugLoc.h:34
const SCEV * getOperand() const
Hexagon Common GEP
static void SimplifyAddOperands(SmallVectorImpl< const SCEV *> &Ops, Type *Ty, ScalarEvolution &SE)
SimplifyAddOperands - Sort and simplify a list of add operands.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
op_iterator op_begin()
Definition: User.h:230
unsigned getElementContainingOffset(uint64_t Offset) const
Given a valid byte offset into the structure, returns the structure index that contains it...
Definition: DataLayout.cpp:84
This is the base class for unary cast operator classes.
return AArch64::GPR64RegClass contains(Reg)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:130
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:265
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:65
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:48
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:529
Hexagon Hardware Loops
Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
Type * getPointerElementType() const
Definition: Type.h:376
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static const Loop * PickMostRelevantLoop(const Loop *A, const Loop *B, DominatorTree &DT)
PickMostRelevantLoop - Given two loops pick the one that&#39;s most relevant for SCEV expansion...
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
Class to represent struct types.
Definition: DerivedTypes.h:201
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
LLVMContext & getContext() const
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
This node represents multiplication of some number of SCEVs.
Value * generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, bool Signed)
Generates code that evaluates if the AR expression will overflow.
const APInt & getAPInt() const
BlockT * getHeader() const
Definition: LoopInfo.h:100
ConstantInt * getValue() const
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:889
#define UINT64_MAX
Definition: DataTypes.h:83
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it&#39;s free to truncate a value of type Ty1 to type Ty2.
This node represents a polynomial recurrence on the trip count of the specified loop.
const T & getValue() const LLVM_LVALUE_FUNCTION
Definition: Optional.h:161
Class to represent array types.
Definition: DerivedTypes.h:369
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
op_iterator op_begin() const
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:151
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:385
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1020
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Value * getOperand(unsigned i) const
Definition: User.h:170
Class to represent pointers.
Definition: DerivedTypes.h:467
#define P(N)
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
const SCEV * getOperand(unsigned i) const
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:217
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:308
SCEVPredicateKind getKind() const
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
This class represents a binary unsigned division operation.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
Value * getIncomingValueForBlock(const BasicBlock *BB) const
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
const Instruction & front() const
Definition: BasicBlock.h:281
#define H(x, y, z)
Definition: MD5.cpp:57
const SCEV * getExpr() const override
Implementation of the SCEVPredicate interface.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:562
const SCEV * getAddExpr(SmallVectorImpl< const SCEV *> &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
const SCEV * getLHS() const
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:113
brc_match< Cond_t > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
op_iterator op_end()
Definition: User.h:232
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1193
const Instruction & back() const
Definition: BasicBlock.h:283
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:646
static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, const SCEV *Factor, ScalarEvolution &SE, const DataLayout &DL)
FactorOutConstant - Test if S is divisible by Factor, using signed division.
Value * expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I)
Insert code to directly compute the specified SCEV expression into the program.
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:116
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:495
self_iterator getIterator()
Definition: ilist_node.h:82
Class to represent integer types.
Definition: DerivedTypes.h:40
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:181
static Expected< BitVector > expand(StringRef S, StringRef Original)
Definition: GlobPattern.cpp:28
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:60
const SCEV * getLHS() const
Returns the left hand side of the equality.
void getExitingBlocks(SmallVectorImpl< BlockT *> &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
Definition: LoopInfoImpl.h:35
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
const SCEV * getRHS() const
Returns the right hand side of the equality.
size_t size() const
Definition: SmallVector.h:53
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:220
const SCEV * getMulExpr(SmallVectorImpl< const SCEV *> &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static void SplitAddRecs(SmallVectorImpl< const SCEV *> &Ops, Type *Ty, ScalarEvolution &SE)
SplitAddRecs - Flatten a list of add operands, moving addrec start values out to the top level...
signed greater than
Definition: InstrTypes.h:673
This class represents an assumption made using SCEV expressions which can be checked at run-time...
static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR)
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1116
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, ScalarEvolution &SE)
Move parts of Base into Rest to leave Base with the minimal expression that provides a pointer operan...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
Definition: LoopInfo.h:110
unsigned getSCEVType() const
bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
unsigned getNumOperands() const
Definition: User.h:192
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:216
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
Type * getType() const
Return the LLVM type of this SCEV expression.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
PHINode * getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty)
This method returns the canonical induction variable of the specified type for the specified loop (in...
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
bool dominates(const Instruction *Def, const Use &U) const
Return true if Def dominates a use in User.
Definition: Dominators.cpp:249
Module.h This file contains the declarations for the Module class.
signed less than
Definition: InstrTypes.h:675
uint64_t getSizeInBytes() const
Definition: DataLayout.h:537
CHAIN = SC CHAIN, Imm128 - System call.
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.cpp:636
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
unsigned logBase2() const
Definition: APInt.h:1748
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
PHINode * getCanonicalInductionVariable() const
Check to see if the loop has a canonical induction variable: an integer recurrence that starts at 0 a...
Definition: LoopInfo.cpp:113
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
Class for arbitrary precision integers.
Definition: APInt.h:70
This node represents an addition of some number of SCEVs.
static BasicBlock::iterator findInsertPointAfter(Instruction *I, BasicBlock *MustDominate)
bool isPowerOf2() const
Check if this APInt&#39;s value is a power of two greater than zero.
Definition: APInt.h:464
This class represents a signed maximum selection.
iterator_range< user_iterator > users()
Definition: Value.h:400
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:90
Value * expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc)
A specialized variant of expandCodeForPredicate, handling the case when we are expanding code for a S...
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1530
void visitAll(const SCEV *Root, SV &Visitor)
Use SCEVTraversal to visit all nodes in the given expression tree.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:530
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:394
This class represents a zero extension of a small integer value to a larger integer value...
Value * CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1760
static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR)
LoopT * getParentLoop() const
Definition: LoopInfo.h:101
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass&#39;s ...
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:311
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:551
void emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:652
This class represents an analyzed expression in the program.
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
unsigned getIntegerBitWidth() const
Definition: DerivedTypes.h:97
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
static Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:193
This class represents a sign extension of a small integer value to a larger integer value...
This class represents an unsigned maximum selection.
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
Instruction * getIVIncOperand(Instruction *IncV, Instruction *InsertPos, bool allowScale)
Return the induction variable increment&#39;s IV operand.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:325
const SCEV * getRHS() const
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, SmallVectorImpl< WeakTrackingVH > &DeadInsts, const TargetTransformInfo *TTI=nullptr)
replace congruent phis with their most canonical representative.
const SmallVectorImpl< const SCEVPredicate * > & getPredicates() const
DebugType
Definition: COFF.h:643
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This class represents a composition of other SCEV predicates, and is the class that most clients will...
bool isOne() const
Return true if the expression is a constant one.
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
Value * expandEqualPredicate(const SCEVEqualPredicate *Pred, Instruction *Loc)
A specialized variant of expandCodeForPredicate, handling the case when we are expanding code for a S...
LLVM Value Representation.
Definition: Value.h:73
A vector that has set insertion semantics.
Definition: SetVector.h:41
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Definition: Instruction.cpp:87
static Value * SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q)
See if we can fold the given phi. If not, returns null.
bool dominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV dominate the specified basic block...
unsigned greater than
Definition: InstrTypes.h:669
This pass exposes codegen information to IR-level passes.
bool isIllegalInteger(uint64_t Width) const
Definition: DataLayout.h:250
static APInt getNullValue(unsigned numBits)
Get the &#39;0&#39; value.
Definition: APInt.h:569
This node is a base class providing common functionality for n&#39;ary operators.
This class represents an assumption made on an AddRec expression.
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE)
Return true if the given expression is safe to expand in the sense that all materialized values are s...
Value * SimplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
Definition: LoopInfoImpl.h:50
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
This class represents an assumption that two SCEV expressions are equal, and this can be checked at r...
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
IncrementWrapFlags getFlags() const
Returns the set assumed no overflow flags.
Type * getElementType() const
Definition: DerivedTypes.h:486
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:479
const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
const BasicBlock * getParent() const
Definition: Instruction.h:67
static bool canBeCheaplyTransformed(ScalarEvolution &SE, const SCEVAddRecExpr *Phi, const SCEVAddRecExpr *Requested, bool &InvertStep)
Check whether we can cheaply express the requested SCEV in terms of the available PHI SCEV by truncat...
This class represents a constant integer value.
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
static Constant * get(unsigned Opcode, Constant *C1, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a unary operator constant expression, folding if possible.
Definition: Constants.cpp:1806