LLVM  8.0.1
ARMCodeGenPrepare.cpp
Go to the documentation of this file.
1 //===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass inserts intrinsics to handle small types that would otherwise be
12 /// promoted during legalization. Here we can manually promote types or insert
13 /// intrinsics which can handle narrow types that aren't supported by the
14 /// register classes.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "ARM.h"
19 #include "ARMSubtarget.h"
20 #include "ARMTargetMachine.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
39 
40 #define DEBUG_TYPE "arm-codegenprepare"
41 
42 using namespace llvm;
43 
44 static cl::opt<bool>
45 DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true),
46  cl::desc("Disable ARM specific CodeGenPrepare pass"));
47 
48 static cl::opt<bool>
49 EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
50  cl::desc("Use DSP instructions for scalar operations"));
51 
52 static cl::opt<bool>
53 EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
54  cl::desc("Use DSP instructions for scalar operations\
55  with immediate operands"));
56 
57 // The goal of this pass is to enable more efficient code generation for
58 // operations on narrow types (i.e. types with < 32-bits) and this is a
59 // motivating IR code example:
60 //
61 // define hidden i32 @cmp(i8 zeroext) {
62 // %2 = add i8 %0, -49
63 // %3 = icmp ult i8 %2, 3
64 // ..
65 // }
66 //
67 // The issue here is that i8 is type-legalized to i32 because i8 is not a
68 // legal type. Thus, arithmetic is done in integer-precision, but then the
69 // byte value is masked out as follows:
70 //
71 // t19: i32 = add t4, Constant:i32<-49>
72 // t24: i32 = and t19, Constant:i32<255>
73 //
74 // Consequently, we generate code like this:
75 //
76 // subs r0, #49
77 // uxtb r1, r0
78 // cmp r1, #3
79 //
80 // This shows that masking out the byte value results in generation of
81 // the UXTB instruction. This is not optimal as r0 already contains the byte
82 // value we need, and so instead we can just generate:
83 //
84 // sub.w r1, r0, #49
85 // cmp r1, #3
86 //
87 // We achieve this by type promoting the IR to i32 like so for this example:
88 //
89 // define i32 @cmp(i8 zeroext %c) {
90 // %0 = zext i8 %c to i32
91 // %c.off = add i32 %0, -49
92 // %1 = icmp ult i32 %c.off, 3
93 // ..
94 // }
95 //
96 // For this to be valid and legal, we need to prove that the i32 add is
97 // producing the same value as the i8 addition, and that e.g. no overflow
98 // happens.
99 //
100 // A brief sketch of the algorithm and some terminology.
101 // We pattern match interesting IR patterns:
102 // - which have "sources": instructions producing narrow values (i8, i16), and
103 // - they have "sinks": instructions consuming these narrow values.
104 //
105 // We collect all instruction connecting sources and sinks in a worklist, so
106 // that we can mutate these instruction and perform type promotion when it is
107 // legal to do so.
108 
109 namespace {
110 class IRPromoter {
111  SmallPtrSet<Value*, 8> NewInsts;
112  SmallPtrSet<Instruction*, 4> InstsToRemove;
114  SmallPtrSet<Value*, 8> Promoted;
115  Module *M = nullptr;
116  LLVMContext &Ctx;
117  IntegerType *ExtTy = nullptr;
118  IntegerType *OrigTy = nullptr;
119  SmallPtrSetImpl<Value*> *Visited;
120  SmallPtrSetImpl<Value*> *Sources;
122  SmallPtrSetImpl<Instruction*> *SafeToPromote;
123 
124  void ReplaceAllUsersOfWith(Value *From, Value *To);
125  void PrepareConstants(void);
126  void ExtendSources(void);
127  void ConvertTruncs(void);
128  void PromoteTree(void);
129  void TruncateSinks(void);
130  void Cleanup(void);
131 
132 public:
133  IRPromoter(Module *M) : M(M), Ctx(M->getContext()),
134  ExtTy(Type::getInt32Ty(Ctx)) { }
135 
136 
137  void Mutate(Type *OrigTy,
138  SmallPtrSetImpl<Value*> &Visited,
139  SmallPtrSetImpl<Value*> &Sources,
141  SmallPtrSetImpl<Instruction*> &SafeToPromote);
142 };
143 
144 class ARMCodeGenPrepare : public FunctionPass {
145  const ARMSubtarget *ST = nullptr;
146  IRPromoter *Promoter = nullptr;
147  std::set<Value*> AllVisited;
148  SmallPtrSet<Instruction*, 8> SafeToPromote;
149 
150  bool isSafeOverflow(Instruction *I);
151  bool isSupportedValue(Value *V);
152  bool isLegalToPromote(Value *V);
153  bool TryToPromote(Value *V);
154 
155 public:
156  static char ID;
157  static unsigned TypeSize;
158  Type *OrigTy = nullptr;
159 
160  ARMCodeGenPrepare() : FunctionPass(ID) {}
161 
162  void getAnalysisUsage(AnalysisUsage &AU) const override {
164  }
165 
166  StringRef getPassName() const override { return "ARM IR optimizations"; }
167 
168  bool doInitialization(Module &M) override;
169  bool runOnFunction(Function &F) override;
170  bool doFinalization(Module &M) override;
171 };
172 
173 }
174 
175 static bool generateSignBits(Value *V) {
176  if (!isa<Instruction>(V))
177  return false;
178 
179  unsigned Opc = cast<Instruction>(V)->getOpcode();
180  return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
181  Opc == Instruction::SRem;
182 }
183 
184 static bool EqualTypeSize(Value *V) {
185  return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
186 }
187 
188 static bool LessOrEqualTypeSize(Value *V) {
189  return V->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize;
190 }
191 
192 static bool GreaterThanTypeSize(Value *V) {
193  return V->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize;
194 }
195 
196 static bool LessThanTypeSize(Value *V) {
197  return V->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize;
198 }
199 
200 /// Some instructions can use 8- and 16-bit operands, and we don't need to
201 /// promote anything larger. We disallow booleans to make life easier when
202 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
203 /// types are accepted so we can handle switches.
204 static bool isSupportedType(Value *V) {
205  Type *Ty = V->getType();
206 
207  // Allow voids and pointers, these won't be promoted.
208  if (Ty->isVoidTy() || Ty->isPointerTy())
209  return true;
210 
211  if (auto *Ld = dyn_cast<LoadInst>(V))
212  Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
213 
214  if (!isa<IntegerType>(Ty) ||
215  cast<IntegerType>(V->getType())->getBitWidth() == 1)
216  return false;
217 
218  return LessOrEqualTypeSize(V);
219 }
220 
221 /// Return true if the given value is a source in the use-def chain, producing
222 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
223 /// of the tree to i32. We guarantee that these won't populate the upper bits
224 /// of the register. ZExt on the loads will be free, and the same for call
225 /// return values because we only accept ones that guarantee a zeroext ret val.
226 /// Many arguments will have the zeroext attribute too, so those would be free
227 /// too.
228 static bool isSource(Value *V) {
229  if (!isa<IntegerType>(V->getType()))
230  return false;
231 
232  // TODO Allow zext to be sources.
233  if (isa<Argument>(V))
234  return true;
235  else if (isa<LoadInst>(V))
236  return true;
237  else if (isa<BitCastInst>(V))
238  return true;
239  else if (auto *Call = dyn_cast<CallInst>(V))
240  return Call->hasRetAttr(Attribute::AttrKind::ZExt);
241  else if (auto *Trunc = dyn_cast<TruncInst>(V))
242  return EqualTypeSize(Trunc);
243  return false;
244 }
245 
246 /// Return true if V will require any promoted values to be truncated for the
247 /// the IR to remain valid. We can't mutate the value type of these
248 /// instructions.
249 static bool isSink(Value *V) {
250  // TODO The truncate also isn't actually necessary because we would already
251  // proved that the data value is kept within the range of the original data
252  // type.
253 
254  // Sinks are:
255  // - points where the value in the register is being observed, such as an
256  // icmp, switch or store.
257  // - points where value types have to match, such as calls and returns.
258  // - zext are included to ease the transformation and are generally removed
259  // later on.
260  if (auto *Store = dyn_cast<StoreInst>(V))
261  return LessOrEqualTypeSize(Store->getValueOperand());
262  if (auto *Return = dyn_cast<ReturnInst>(V))
263  return LessOrEqualTypeSize(Return->getReturnValue());
264  if (auto *ZExt = dyn_cast<ZExtInst>(V))
265  return GreaterThanTypeSize(ZExt);
266  if (auto *Switch = dyn_cast<SwitchInst>(V))
267  return LessThanTypeSize(Switch->getCondition());
268  if (auto *ICmp = dyn_cast<ICmpInst>(V))
269  return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
270 
271  return isa<CallInst>(V);
272 }
273 
274 /// Return whether the instruction can be promoted within any modifications to
275 /// its operands or result.
276 bool ARMCodeGenPrepare::isSafeOverflow(Instruction *I) {
277  // FIXME Do we need NSW too?
278  if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap())
279  return true;
280 
281  // We can support a, potentially, overflowing instruction (I) if:
282  // - It is only used by an unsigned icmp.
283  // - The icmp uses a constant.
284  // - The overflowing value (I) is decreasing, i.e would underflow - wrapping
285  // around zero to become a larger number than before.
286  // - The underflowing instruction (I) also uses a constant.
287  //
288  // We can then use the two constants to calculate whether the result would
289  // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
290  // just underflows the range, the icmp would give the same result whether the
291  // result has been truncated or not. We calculate this by:
292  // - Zero extending both constants, if needed, to 32-bits.
293  // - Take the absolute value of I's constant, adding this to the icmp const.
294  // - Check that this value is not out of range for small type. If it is, it
295  // means that it has underflowed enough to wrap around the icmp constant.
296  //
297  // For example:
298  //
299  // %sub = sub i8 %a, 2
300  // %cmp = icmp ule i8 %sub, 254
301  //
302  // If %a = 0, %sub = -2 == FE == 254
303  // But if this is evalulated as a i32
304  // %sub = -2 == FF FF FF FE == 4294967294
305  // So the unsigned compares (i8 and i32) would not yield the same result.
306  //
307  // Another way to look at it is:
308  // %a - 2 <= 254
309  // %a + 2 <= 254 + 2
310  // %a <= 256
311  // And we can't represent 256 in the i8 format, so we don't support it.
312  //
313  // Whereas:
314  //
315  // %sub i8 %a, 1
316  // %cmp = icmp ule i8 %sub, 254
317  //
318  // If %a = 0, %sub = -1 == FF == 255
319  // As i32:
320  // %sub = -1 == FF FF FF FF == 4294967295
321  //
322  // In this case, the unsigned compare results would be the same and this
323  // would also be true for ult, uge and ugt:
324  // - (255 < 254) == (0xFFFFFFFF < 254) == false
325  // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
326  // - (255 > 254) == (0xFFFFFFFF > 254) == true
327  // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
328  //
329  // To demonstrate why we can't handle increasing values:
330  //
331  // %add = add i8 %a, 2
332  // %cmp = icmp ult i8 %add, 127
333  //
334  // If %a = 254, %add = 256 == (i8 1)
335  // As i32:
336  // %add = 256
337  //
338  // (1 < 127) != (256 < 127)
339 
340  unsigned Opc = I->getOpcode();
341  if (Opc != Instruction::Add && Opc != Instruction::Sub)
342  return false;
343 
344  if (!I->hasOneUse() ||
345  !isa<ICmpInst>(*I->user_begin()) ||
346  !isa<ConstantInt>(I->getOperand(1)))
347  return false;
348 
349  ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
350  bool NegImm = OverflowConst->isNegative();
351  bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
352  ((Opc == Instruction::Add) && NegImm);
353  if (!IsDecreasing)
354  return false;
355 
356  // Don't support an icmp that deals with sign bits.
357  auto *CI = cast<ICmpInst>(*I->user_begin());
358  if (CI->isSigned() || CI->isEquality())
359  return false;
360 
361  ConstantInt *ICmpConst = nullptr;
362  if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
363  ICmpConst = Const;
364  else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
365  ICmpConst = Const;
366  else
367  return false;
368 
369  // Now check that the result can't wrap on itself.
370  APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
371  ICmpConst->getValue().zext(32) : ICmpConst->getValue();
372 
373  Total += OverflowConst->getValue().getBitWidth() < 32 ?
374  OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
375 
376  APInt Max = APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize);
377 
378  if (Total.getBitWidth() > Max.getBitWidth()) {
379  if (Total.ugt(Max.zext(Total.getBitWidth())))
380  return false;
381  } else if (Max.getBitWidth() > Total.getBitWidth()) {
382  if (Total.zext(Max.getBitWidth()).ugt(Max))
383  return false;
384  } else if (Total.ugt(Max))
385  return false;
386 
387  LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
388  return true;
389 }
390 
391 static bool shouldPromote(Value *V) {
392  if (!isa<IntegerType>(V->getType()) || isSink(V))
393  return false;
394 
395  if (isSource(V))
396  return true;
397 
398  auto *I = dyn_cast<Instruction>(V);
399  if (!I)
400  return false;
401 
402  if (isa<ICmpInst>(I))
403  return false;
404 
405  return true;
406 }
407 
408 /// Return whether we can safely mutate V's type to ExtTy without having to be
409 /// concerned with zero extending or truncation.
410 static bool isPromotedResultSafe(Value *V) {
411  if (!isa<Instruction>(V))
412  return true;
413 
414  if (generateSignBits(V))
415  return false;
416 
417  return !isa<OverflowingBinaryOperator>(V);
418 }
419 
420 /// Return the intrinsic for the instruction that can perform the same
421 /// operation but on a narrow type. This is using the parallel dsp intrinsics
422 /// on scalar values.
424  // Whether we use the signed or unsigned versions of these intrinsics
425  // doesn't matter because we're not using the GE bits that they set in
426  // the APSR.
427  switch(I->getOpcode()) {
428  default:
429  break;
430  case Instruction::Add:
431  return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
433  case Instruction::Sub:
434  return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
436  }
437  llvm_unreachable("unhandled opcode for narrow intrinsic");
438 }
439 
440 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
442  Instruction *InstTo = dyn_cast<Instruction>(To);
443  bool ReplacedAll = true;
444 
445  LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From << " with " << *To
446  << "\n");
447 
448  for (Use &U : From->uses()) {
449  auto *User = cast<Instruction>(U.getUser());
450  if (InstTo && User->isIdenticalTo(InstTo)) {
451  ReplacedAll = false;
452  continue;
453  }
454  Users.push_back(User);
455  }
456 
457  for (auto *U : Users)
458  U->replaceUsesOfWith(From, To);
459 
460  if (ReplacedAll)
461  if (auto *I = dyn_cast<Instruction>(From))
462  InstsToRemove.insert(I);
463 }
464 
465 void IRPromoter::PrepareConstants() {
466  IRBuilder<> Builder{Ctx};
467  // First step is to prepare the instructions for mutation. Most constants
468  // just need to be zero extended into their new type, but complications arise
469  // because:
470  // - For nuw binary operators, negative immediates would need sign extending;
471  // however, instead we'll change them to positive and zext them. We can do
472  // this because:
473  // > The operators that can wrap are: add, sub, mul and shl.
474  // > shl interprets its second operand as unsigned and if the first operand
475  // is an immediate, it will need zext to be nuw.
476  // > I'm assuming mul has to interpret immediates as unsigned for nuw.
477  // > Which leaves the nuw add and sub to be handled; as with shl, if an
478  // immediate is used as operand 0, it will need zext to be nuw.
479  // - We also allow add and sub to safely overflow in certain circumstances
480  // and only when the value (operand 0) is being decreased.
481  //
482  // For adds and subs, that are either nuw or safely wrap and use a negative
483  // immediate as operand 1, we create an equivalent instruction using a
484  // positive immediate. That positive immediate can then be zext along with
485  // all the other immediates later.
486  for (auto *V : *Visited) {
487  if (!isa<Instruction>(V))
488  continue;
489 
490  auto *I = cast<Instruction>(V);
491  if (SafeToPromote->count(I)) {
492 
493  if (!isa<OverflowingBinaryOperator>(I))
494  continue;
495 
496  if (auto *Const = dyn_cast<ConstantInt>(I->getOperand(1))) {
497  if (!Const->isNegative())
498  break;
499 
500  unsigned Opc = I->getOpcode();
501  if (Opc != Instruction::Add && Opc != Instruction::Sub)
502  continue;
503 
504  LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I << "\n");
505  auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
506  Builder.SetInsertPoint(I);
507  Value *NewVal = Opc == Instruction::Sub ?
508  Builder.CreateAdd(I->getOperand(0), NewConst) :
509  Builder.CreateSub(I->getOperand(0), NewConst);
510  LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal << "\n");
511 
512  if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
513  NewInst->copyIRFlags(I);
514  NewInsts.insert(NewInst);
515  }
516  InstsToRemove.insert(I);
517  I->replaceAllUsesWith(NewVal);
518  }
519  }
520  }
521  for (auto *I : NewInsts)
522  Visited->insert(I);
523 }
524 
525 void IRPromoter::ExtendSources() {
526  IRBuilder<> Builder{Ctx};
527 
528  auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
529  assert(V->getType() != ExtTy && "zext already extends to i32");
530  LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
531  Builder.SetInsertPoint(InsertPt);
532  if (auto *I = dyn_cast<Instruction>(V))
533  Builder.SetCurrentDebugLocation(I->getDebugLoc());
534 
535  Value *ZExt = Builder.CreateZExt(V, ExtTy);
536  if (auto *I = dyn_cast<Instruction>(ZExt)) {
537  if (isa<Argument>(V))
538  I->moveBefore(InsertPt);
539  else
540  I->moveAfter(InsertPt);
541  NewInsts.insert(I);
542  }
543 
544  ReplaceAllUsersOfWith(V, ZExt);
545  };
546 
547  // Now, insert extending instructions between the sources and their users.
548  LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
549  for (auto V : *Sources) {
550  LLVM_DEBUG(dbgs() << " - " << *V << "\n");
551  if (auto *I = dyn_cast<Instruction>(V))
552  InsertZExt(I, I);
553  else if (auto *Arg = dyn_cast<Argument>(V)) {
554  BasicBlock &BB = Arg->getParent()->front();
555  InsertZExt(Arg, &*BB.getFirstInsertionPt());
556  } else {
557  llvm_unreachable("unhandled source that needs extending");
558  }
559  Promoted.insert(V);
560  }
561 }
562 
563 void IRPromoter::PromoteTree() {
564  LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
565 
566  IRBuilder<> Builder{Ctx};
567 
568  // Mutate the types of the instructions within the tree. Here we handle
569  // constant operands.
570  for (auto *V : *Visited) {
571  if (Sources->count(V))
572  continue;
573 
574  auto *I = cast<Instruction>(V);
575  if (Sinks->count(I))
576  continue;
577 
578  for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
579  Value *Op = I->getOperand(i);
580  if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
581  continue;
582 
583  if (auto *Const = dyn_cast<ConstantInt>(Op)) {
584  Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
585  I->setOperand(i, NewConst);
586  } else if (isa<UndefValue>(Op))
587  I->setOperand(i, UndefValue::get(ExtTy));
588  }
589 
590  if (shouldPromote(I)) {
591  I->mutateType(ExtTy);
592  Promoted.insert(I);
593  }
594  }
595 
596  // Finally, any instructions that should be promoted but haven't yet been,
597  // need to be handled using intrinsics.
598  for (auto *V : *Visited) {
599  auto *I = dyn_cast<Instruction>(V);
600  if (!I)
601  continue;
602 
603  if (Sources->count(I) || Sinks->count(I))
604  continue;
605 
606  if (!shouldPromote(I) || SafeToPromote->count(I) || NewInsts.count(I))
607  continue;
608 
609  assert(EnableDSP && "DSP intrinisc insertion not enabled!");
610 
611  // Replace unsafe instructions with appropriate intrinsic calls.
612  LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
613  << *I << "\n");
614  Function *DSPInst =
616  Builder.SetInsertPoint(I);
617  Builder.SetCurrentDebugLocation(I->getDebugLoc());
618  Value *Args[] = { I->getOperand(0), I->getOperand(1) };
619  CallInst *Call = Builder.CreateCall(DSPInst, Args);
620  NewInsts.insert(Call);
621  ReplaceAllUsersOfWith(I, Call);
622  }
623 }
624 
625 void IRPromoter::TruncateSinks() {
626  LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
627 
628  IRBuilder<> Builder{Ctx};
629 
630  auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
631  if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
632  return nullptr;
633 
634  if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
635  return nullptr;
636 
637  LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
638  << *V << "\n");
639  Builder.SetInsertPoint(cast<Instruction>(V));
640  auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
641  if (Trunc)
642  NewInsts.insert(Trunc);
643  return Trunc;
644  };
645 
646  // Fix up any stores or returns that use the results of the promoted
647  // chain.
648  for (auto I : *Sinks) {
649  LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I << "\n");
650 
651  // Handle calls separately as we need to iterate over arg operands.
652  if (auto *Call = dyn_cast<CallInst>(I)) {
653  for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
654  Value *Arg = Call->getArgOperand(i);
655  Type *Ty = TruncTysMap[Call][i];
656  if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
657  Trunc->moveBefore(Call);
658  Call->setArgOperand(i, Trunc);
659  }
660  }
661  continue;
662  }
663 
664  // Special case switches because we need to truncate the condition.
665  if (auto *Switch = dyn_cast<SwitchInst>(I)) {
666  Type *Ty = TruncTysMap[Switch][0];
667  if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
668  Trunc->moveBefore(Switch);
669  Switch->setCondition(Trunc);
670  }
671  continue;
672  }
673 
674  // Now handle the others.
675  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
676  Type *Ty = TruncTysMap[I][i];
677  if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
678  Trunc->moveBefore(I);
679  I->setOperand(i, Trunc);
680  }
681  }
682  }
683 }
684 
685 void IRPromoter::Cleanup() {
686  // Some zexts will now have become redundant, along with their trunc
687  // operands, so remove them
688  for (auto V : *Visited) {
689  if (!isa<CastInst>(V))
690  continue;
691 
692  auto ZExt = cast<CastInst>(V);
693  if (ZExt->getDestTy() != ExtTy)
694  continue;
695 
696  Value *Src = ZExt->getOperand(0);
697  if (ZExt->getSrcTy() == ZExt->getDestTy()) {
698  LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
699  << "\n");
700  ReplaceAllUsersOfWith(ZExt, Src);
701  continue;
702  }
703 
704  // For any truncs that we insert to handle zexts, we can replace the
705  // result of the zext with the input to the trunc.
706  if (NewInsts.count(Src) && isa<ZExtInst>(V) && isa<TruncInst>(Src)) {
707  auto *Trunc = cast<TruncInst>(Src);
708  assert(Trunc->getOperand(0)->getType() == ExtTy &&
709  "expected inserted trunc to be operating on i32");
710  ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
711  }
712  }
713 
714  for (auto *I : InstsToRemove) {
715  LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
716  I->dropAllReferences();
717  I->eraseFromParent();
718  }
719 
720  InstsToRemove.clear();
721  NewInsts.clear();
722  TruncTysMap.clear();
723  Promoted.clear();
724 }
725 
726 void IRPromoter::ConvertTruncs() {
727  IRBuilder<> Builder{Ctx};
728 
729  for (auto *V : *Visited) {
730  if (!isa<TruncInst>(V) || Sources->count(V))
731  continue;
732 
733  auto *Trunc = cast<TruncInst>(V);
734  assert(LessThanTypeSize(Trunc) && "expected narrow trunc");
735 
736  Builder.SetInsertPoint(Trunc);
737  unsigned NumBits =
738  cast<IntegerType>(Trunc->getType())->getScalarSizeInBits();
740  Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
741 
742  if (auto *I = dyn_cast<Instruction>(Masked))
743  NewInsts.insert(I);
744 
745  ReplaceAllUsersOfWith(Trunc, Masked);
746  }
747 }
748 
749 void IRPromoter::Mutate(Type *OrigTy,
750  SmallPtrSetImpl<Value*> &Visited,
751  SmallPtrSetImpl<Value*> &Sources,
753  SmallPtrSetImpl<Instruction*> &SafeToPromote) {
754  LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
755  << ARMCodeGenPrepare::TypeSize << " to 32-bits\n");
756 
757  assert(isa<IntegerType>(OrigTy) && "expected integer type");
758  this->OrigTy = cast<IntegerType>(OrigTy);
759  assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
760  "original type not smaller than extended type");
761 
762  this->Visited = &Visited;
763  this->Sources = &Sources;
764  this->Sinks = &Sinks;
765  this->SafeToPromote = &SafeToPromote;
766 
767  // Cache original types of the values that will likely need truncating
768  for (auto *I : Sinks) {
769  if (auto *Call = dyn_cast<CallInst>(I)) {
770  for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
771  Value *Arg = Call->getArgOperand(i);
772  TruncTysMap[Call].push_back(Arg->getType());
773  }
774  } else if (auto *Switch = dyn_cast<SwitchInst>(I))
775  TruncTysMap[I].push_back(Switch->getCondition()->getType());
776  else {
777  for (unsigned i = 0; i < I->getNumOperands(); ++i)
778  TruncTysMap[I].push_back(I->getOperand(i)->getType());
779  }
780  }
781 
782  // Convert adds and subs using negative immediates to equivalent instructions
783  // that use positive constants.
784  PrepareConstants();
785 
786  // Insert zext instructions between sources and their users.
787  ExtendSources();
788 
789  // Convert any truncs, that aren't sources, into AND masks.
790  ConvertTruncs();
791 
792  // Promote visited instructions, mutating their types in place. Also insert
793  // DSP intrinsics, if enabled, for adds and subs which would be unsafe to
794  // promote.
795  PromoteTree();
796 
797  // Insert trunc instructions for use by calls, stores etc...
798  TruncateSinks();
799 
800  // Finally, remove unecessary zexts and truncs, delete old instructions and
801  // clear the data structures.
802  Cleanup();
803 
804  LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
805 }
806 
807 /// We accept most instructions, as well as Arguments and ConstantInsts. We
808 /// Disallow casts other than zext and truncs and only allow calls if their
809 /// return value is zeroext. We don't allow opcodes that can introduce sign
810 /// bits.
811 bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
812  if (auto *I = dyn_cast<ICmpInst>(V)) {
813  // Now that we allow small types than TypeSize, only allow icmp of
814  // TypeSize because they will require a trunc to be legalised.
815  // TODO: Allow icmp of smaller types, and calculate at the end
816  // whether the transform would be beneficial.
817  if (isa<PointerType>(I->getOperand(0)->getType()))
818  return true;
819  return EqualTypeSize(I->getOperand(0));
820  }
821 
822  // Memory instructions
823  if (isa<StoreInst>(V) || isa<GetElementPtrInst>(V))
824  return true;
825 
826  // Branches and targets.
827  if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V))
828  return true;
829 
830  // Non-instruction values that we can handle.
831  if ((isa<Constant>(V) && !isa<ConstantExpr>(V)) || isa<Argument>(V))
832  return isSupportedType(V);
833 
834  if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V) ||
835  isa<LoadInst>(V))
836  return isSupportedType(V);
837 
838  if (isa<SExtInst>(V))
839  return false;
840 
841  if (auto *Cast = dyn_cast<CastInst>(V))
842  return isSupportedType(Cast) || isSupportedType(Cast->getOperand(0));
843 
844  // Special cases for calls as we need to check for zeroext
845  // TODO We should accept calls even if they don't have zeroext, as they can
846  // still be sinks.
847  if (auto *Call = dyn_cast<CallInst>(V))
848  return isSupportedType(Call) &&
849  Call->hasRetAttr(Attribute::AttrKind::ZExt);
850 
851  if (!isa<BinaryOperator>(V))
852  return false;
853 
854  if (!isSupportedType(V))
855  return false;
856 
857  if (generateSignBits(V)) {
858  LLVM_DEBUG(dbgs() << "ARM CGP: No, instruction can generate sign bits.\n");
859  return false;
860  }
861  return true;
862 }
863 
864 /// Check that the type of V would be promoted and that the original type is
865 /// smaller than the targeted promoted type. Check that we're not trying to
866 /// promote something larger than our base 'TypeSize' type.
868 
869  auto *I = dyn_cast<Instruction>(V);
870  if (!I)
871  return true;
872 
873  if (SafeToPromote.count(I))
874  return true;
875 
876  if (isPromotedResultSafe(V) || isSafeOverflow(I)) {
877  SafeToPromote.insert(I);
878  return true;
879  }
880 
881  if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
882  return false;
883 
884  // If promotion is not safe, can we use a DSP instruction to natively
885  // handle the narrow type?
886  if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
887  return false;
888 
889  if (ST->isThumb() && !ST->hasThumb2())
890  return false;
891 
892  // TODO
893  // Would it be profitable? For Thumb code, these parallel DSP instructions
894  // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
895  // Cortex-A, specifically Cortex-A72, the latency is double and throughput is
896  // halved. They also do not take immediates as operands.
897  for (auto &Op : I->operands()) {
898  if (isa<Constant>(Op)) {
899  if (!EnableDSPWithImms)
900  return false;
901  }
902  }
903  LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I << "\n");
904  return true;
905 }
906 
907 bool ARMCodeGenPrepare::TryToPromote(Value *V) {
908  OrigTy = V->getType();
909  TypeSize = OrigTy->getPrimitiveSizeInBits();
910  if (TypeSize > 16 || TypeSize < 8)
911  return false;
912 
913  SafeToPromote.clear();
914 
915  if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
916  return false;
917 
918  LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
919  << TypeSize << "\n");
920 
921  SetVector<Value*> WorkList;
922  SmallPtrSet<Value*, 8> Sources;
924  SmallPtrSet<Value*, 16> CurrentVisited;
925  WorkList.insert(V);
926 
927  // Return true if V was added to the worklist as a supported instruction,
928  // if it was already visited, or if we don't need to explore it (e.g.
929  // pointer values and GEPs), and false otherwise.
930  auto AddLegalInst = [&](Value *V) {
931  if (CurrentVisited.count(V))
932  return true;
933 
934  // Ignore GEPs because they don't need promoting and the constant indices
935  // will prevent the transformation.
936  if (isa<GetElementPtrInst>(V))
937  return true;
938 
939  if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
940  LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
941  return false;
942  }
943 
944  WorkList.insert(V);
945  return true;
946  };
947 
948  // Iterate through, and add to, a tree of operands and users in the use-def.
949  while (!WorkList.empty()) {
950  Value *V = WorkList.back();
951  WorkList.pop_back();
952  if (CurrentVisited.count(V))
953  continue;
954 
955  // Ignore non-instructions, other than arguments.
956  if (!isa<Instruction>(V) && !isSource(V))
957  continue;
958 
959  // If we've already visited this value from somewhere, bail now because
960  // the tree has already been explored.
961  // TODO: This could limit the transform, ie if we try to promote something
962  // from an i8 and fail first, before trying an i16.
963  if (AllVisited.count(V))
964  return false;
965 
966  CurrentVisited.insert(V);
967  AllVisited.insert(V);
968 
969  // Calls can be both sources and sinks.
970  if (isSink(V))
971  Sinks.insert(cast<Instruction>(V));
972 
973  if (isSource(V))
974  Sources.insert(V);
975 
976  if (!isSink(V) && !isSource(V)) {
977  if (auto *I = dyn_cast<Instruction>(V)) {
978  // Visit operands of any instruction visited.
979  for (auto &U : I->operands()) {
980  if (!AddLegalInst(U))
981  return false;
982  }
983  }
984  }
985 
986  // Don't visit users of a node which isn't going to be mutated unless its a
987  // source.
988  if (isSource(V) || shouldPromote(V)) {
989  for (Use &U : V->uses()) {
990  if (!AddLegalInst(U.getUser()))
991  return false;
992  }
993  }
994  }
995 
996  LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
997  for (auto *I : CurrentVisited)
998  I->dump();
999  );
1000  unsigned ToPromote = 0;
1001  for (auto *V : CurrentVisited) {
1002  if (Sources.count(V))
1003  continue;
1004  if (Sinks.count(cast<Instruction>(V)))
1005  continue;
1006  ++ToPromote;
1007  }
1008 
1009  if (ToPromote < 2)
1010  return false;
1011 
1012  Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks, SafeToPromote);
1013  return true;
1014 }
1015 
1016 bool ARMCodeGenPrepare::doInitialization(Module &M) {
1017  Promoter = new IRPromoter(&M);
1018  return false;
1019 }
1020 
1022  if (skipFunction(F) || DisableCGP)
1023  return false;
1024 
1025  auto *TPC = &getAnalysis<TargetPassConfig>();
1026  if (!TPC)
1027  return false;
1028 
1029  const TargetMachine &TM = TPC->getTM<TargetMachine>();
1030  ST = &TM.getSubtarget<ARMSubtarget>(F);
1031  bool MadeChange = false;
1032  LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
1033 
1034  // Search up from icmps to try to promote their operands.
1035  for (BasicBlock &BB : F) {
1036  auto &Insts = BB.getInstList();
1037  for (auto &I : Insts) {
1038  if (AllVisited.count(&I))
1039  continue;
1040 
1041  if (isa<ICmpInst>(I)) {
1042  auto &CI = cast<ICmpInst>(I);
1043 
1044  // Skip signed or pointer compares
1045  if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
1046  continue;
1047 
1048  LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");
1049 
1050  for (auto &Op : CI.operands()) {
1051  if (auto *I = dyn_cast<Instruction>(Op))
1052  MadeChange |= TryToPromote(I);
1053  }
1054  }
1055  }
1056  LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
1057  dbgs() << F;
1058  report_fatal_error("Broken function after type promotion");
1059  });
1060  }
1061  if (MadeChange)
1062  LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
1063 
1064  return MadeChange;
1065 }
1066 
1067 bool ARMCodeGenPrepare::doFinalization(Module &M) {
1068  delete Promoter;
1069  return false;
1070 }
1071 
1072 INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
1073  "ARM IR optimizations", false, false)
1075  false, false)
1076 
1077 char ARMCodeGenPrepare::ID = 0;
1078 unsigned ARMCodeGenPrepare::TypeSize = 0;
1079 
1081  return new ARMCodeGenPrepare();
1082 }
APInt abs() const
Get the absolute value;.
Definition: APInt.h:1800
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
static bool generateSignBits(Value *V)
iterator_range< use_iterator > uses()
Definition: Value.h:355
static bool isSupportedType(Value *V)
Some instructions can use 8- and 16-bit operands, and we don&#39;t need to promote anything larger...
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:562
static Intrinsic::ID getNarrowIntrinsic(Instruction *I)
Return the intrinsic for the instruction that can perform the same operation but on a narrow type...
void dropAllReferences()
Drop all references to operands.
Definition: User.h:295
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:140
This class represents lattice values for constants.
Definition: AllocatorList.h:24
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:858
This class represents a function call, abstracting a target machine&#39;s calling convention.
bool isLegalToPromote(CallSite CS, Function *Callee, const char **FailureReason=nullptr)
Return true if the given indirect call site can be made to call Callee.
F(f)
setjmp/longjmp based exceptions
iv Induction Variable Users
Definition: IVUsers.cpp:52
const T & back() const
Return the last element of the SetVector.
Definition: SetVector.h:129
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1509
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:4298
AnalysisUsage & addRequired()
INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations", false, false) INITIALIZE_PASS_END(ARMCodeGenPrepare
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
static bool isPromotedResultSafe(Value *V)
Return whether we can safely mutate V&#39;s type to ExtTy without having to be concerned with zero extend...
static Optional< unsigned > getOpcode(ArrayRef< VPValue *> Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:197
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
This file contains the simple types necessary to represent the attributes associated with functions a...
void pop_back()
Remove the last element of the SetVector.
Definition: SetVector.h:222
Target-Independent Code Generator Pass Configuration Options.
static bool shouldPromote(Value *V)
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1665
static bool isSource(Value *V)
Return true if the given value is a source in the use-def chain, producing a narrow &#39;TypeSize&#39; value...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
static bool LessOrEqualTypeSize(Value *V)
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:142
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:138
static bool GreaterThanTypeSize(Value *V)
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1020
Value * getOperand(unsigned i) const
Definition: User.h:170
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:141
static bool runOnFunction(Function &F, bool PostInlining)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:217
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
static unsigned getScalarSizeInBits(Type *Ty)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
Represent the analysis usage information of a pass.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
op_range operands()
Definition: User.h:238
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
static bool EqualTypeSize(Value *V)
Class to represent integer types.
Definition: DerivedTypes.h:40
static cl::opt< bool > EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false), cl::desc("Use DSP instructions for scalar operations\ with immediate operands"))
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isNegative() const
Definition: Constants.h:188
unsigned getNumOperands() const
Definition: User.h:192
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
BlockVerifier::State From
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
static cl::opt< bool > DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true), cl::desc("Disable ARM specific CodeGenPrepare pass"))
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
Class for arbitrary precision integers.
Definition: APInt.h:70
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:530
amdgpu Simplify well known AMD library false Value Value * Arg
#define DEBUG_TYPE
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1255
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:311
void clear()
Definition: ilist.h:309
static bool LessThanTypeSize(Value *V)
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
static cl::opt< bool > EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false), cl::desc("Use DSP instructions for scalar operations"))
#define I(x, y, z)
Definition: MD5.cpp:58
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:73
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:4809
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
bool hasNoUnsignedWrap() const
Determine whether the no unsigned wrap flag is set.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition: Value.h:604
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
void moveAfter(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Definition: Instruction.cpp:91
user_iterator user_begin()
Definition: Value.h:376
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
LLVM Value Representation.
Definition: Value.h:73
FunctionPass * createARMCodeGenPreparePass()
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Definition: Instruction.cpp:87
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
ARM IR optimizations
const STC & getSubtarget(const Function &F) const
This method returns a pointer to the specified type of TargetSubtargetInfo.
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Statically lint checks LLVM IR
Definition: Lint.cpp:193
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
static bool isSink(Value *V)
Return true if V will require any promoted values to be truncated for the the IR to remain valid...