LLVM  8.0.1
X86VZeroUpper.cpp
Go to the documentation of this file.
1 //===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which inserts x86 AVX vzeroupper instructions
11 // before calls to SSE encoded functions. This avoids transition latency
12 // penalty when transferring control between AVX encoded instructions and old
13 // SSE encoding mode.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86.h"
18 #include "X86InstrInfo.h"
19 #include "X86Subtarget.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/Support/Debug.h"
37 #include <cassert>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "x86-vzeroupper"
42 
43 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
44 
45 namespace {
46 
47  class VZeroUpperInserter : public MachineFunctionPass {
48  public:
49  VZeroUpperInserter() : MachineFunctionPass(ID) {}
50 
51  bool runOnMachineFunction(MachineFunction &MF) override;
52 
53  MachineFunctionProperties getRequiredProperties() const override {
56  }
57 
58  StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
59 
60  private:
61  void processBasicBlock(MachineBasicBlock &MBB);
62  void insertVZeroUpper(MachineBasicBlock::iterator I,
63  MachineBasicBlock &MBB);
64  void addDirtySuccessor(MachineBasicBlock &MBB);
65 
66  using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
67 
68  static const char* getBlockExitStateName(BlockExitState ST);
69 
70  // Core algorithm state:
71  // BlockState - Each block is either:
72  // - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
73  // vzeroupper instructions in this block.
74  // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
75  // block that will ensure that YMM/ZMM is clean on exit.
76  // - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
77  // subsequent vzeroupper in the block clears it.
78  //
79  // AddedToDirtySuccessors - This flag is raised when a block is added to the
80  // DirtySuccessors list to ensure that it's not
81  // added multiple times.
82  //
83  // FirstUnguardedCall - Records the location of the first unguarded call in
84  // each basic block that may need to be guarded by a
85  // vzeroupper. We won't know whether it actually needs
86  // to be guarded until we discover a predecessor that
87  // is DIRTY_OUT.
88  struct BlockState {
89  BlockExitState ExitState = PASS_THROUGH;
90  bool AddedToDirtySuccessors = false;
91  MachineBasicBlock::iterator FirstUnguardedCall;
92 
93  BlockState() = default;
94  };
95 
96  using BlockStateMap = SmallVector<BlockState, 8>;
97  using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
98 
99  BlockStateMap BlockStates;
100  DirtySuccessorsWorkList DirtySuccessors;
101  bool EverMadeChange;
102  bool IsX86INTR;
103  const TargetInstrInfo *TII;
104 
105  static char ID;
106  };
107 
108 } // end anonymous namespace
109 
110 char VZeroUpperInserter::ID = 0;
111 
113  return new VZeroUpperInserter();
114 }
115 
116 #ifndef NDEBUG
117 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
118  switch (ST) {
119  case PASS_THROUGH: return "Pass-through";
120  case EXITS_DIRTY: return "Exits-dirty";
121  case EXITS_CLEAN: return "Exits-clean";
122  }
123  llvm_unreachable("Invalid block exit state.");
124 }
125 #endif
126 
127 /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
128 /// Thus, there is no need to check for Y/ZMM16 and above.
129 static bool isYmmOrZmmReg(unsigned Reg) {
130  return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
131  (Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
132 }
133 
135  for (std::pair<unsigned, unsigned> LI : MRI.liveins())
136  if (isYmmOrZmmReg(LI.first))
137  return true;
138 
139  return false;
140 }
141 
142 static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
143  for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
144  if (!MO.clobbersPhysReg(reg))
145  return false;
146  }
147  for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
148  if (!MO.clobbersPhysReg(reg))
149  return false;
150  }
151  return true;
152 }
153 
155  for (const MachineOperand &MO : MI.operands()) {
156  if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
157  return true;
158  if (!MO.isReg())
159  continue;
160  if (MO.isDebug())
161  continue;
162  if (isYmmOrZmmReg(MO.getReg()))
163  return true;
164  }
165  return false;
166 }
167 
168 /// Check if given call instruction has a RegMask operand.
170  assert(MI.isCall() && "Can only be called on call instructions.");
171  for (const MachineOperand &MO : MI.operands()) {
172  if (MO.isRegMask())
173  return true;
174  }
175  return false;
176 }
177 
178 /// Insert a vzeroupper instruction before I.
179 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
180  MachineBasicBlock &MBB) {
181  DebugLoc dl = I->getDebugLoc();
182  BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
183  ++NumVZU;
184  EverMadeChange = true;
185 }
186 
187 /// Add MBB to the DirtySuccessors list if it hasn't already been added.
188 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
189  if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
190  DirtySuccessors.push_back(&MBB);
191  BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
192  }
193 }
194 
195 /// Loop over all of the instructions in the basic block, inserting vzeroupper
196 /// instructions before function calls.
197 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
198  // Start by assuming that the block is PASS_THROUGH which implies no unguarded
199  // calls.
200  BlockExitState CurState = PASS_THROUGH;
201  BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
202 
203  for (MachineInstr &MI : MBB) {
204  bool IsCall = MI.isCall();
205  bool IsReturn = MI.isReturn();
206  bool IsControlFlow = IsCall || IsReturn;
207 
208  // No need for vzeroupper before iret in interrupt handler function,
209  // epilogue will restore YMM/ZMM registers if needed.
210  if (IsX86INTR && IsReturn)
211  continue;
212 
213  // An existing VZERO* instruction resets the state.
214  if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
215  CurState = EXITS_CLEAN;
216  continue;
217  }
218 
219  // Shortcut: don't need to check regular instructions in dirty state.
220  if (!IsControlFlow && CurState == EXITS_DIRTY)
221  continue;
222 
223  if (hasYmmOrZmmReg(MI)) {
224  // We found a ymm/zmm-using instruction; this could be an AVX/AVX512
225  // instruction, or it could be control flow.
226  CurState = EXITS_DIRTY;
227  continue;
228  }
229 
230  // Check for control-flow out of the current function (which might
231  // indirectly execute SSE instructions).
232  if (!IsControlFlow)
233  continue;
234 
235  // If the call has no RegMask, skip it as well. It usually happens on
236  // helper function calls (such as '_chkstk', '_ftol2') where standard
237  // calling convention is not used (RegMask is not used to mark register
238  // clobbered and register usage (def/implicit-def/use) is well-defined and
239  // explicitly specified.
240  if (IsCall && !callHasRegMask(MI))
241  continue;
242 
243  // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
244  // registers. In addition, the processor changes back to Clean state, after
245  // which execution of SSE instructions or AVX instructions has no transition
246  // penalty. Add the VZEROUPPER instruction before any function call/return
247  // that might execute SSE code.
248  // FIXME: In some cases, we may want to move the VZEROUPPER into a
249  // predecessor block.
250  if (CurState == EXITS_DIRTY) {
251  // After the inserted VZEROUPPER the state becomes clean again, but
252  // other YMM/ZMM may appear before other subsequent calls or even before
253  // the end of the BB.
254  insertVZeroUpper(MI, MBB);
255  CurState = EXITS_CLEAN;
256  } else if (CurState == PASS_THROUGH) {
257  // If this block is currently in pass-through state and we encounter a
258  // call then whether we need a vzeroupper or not depends on whether this
259  // block has successors that exit dirty. Record the location of the call,
260  // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
261  // It will be inserted later if necessary.
262  BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
263  CurState = EXITS_CLEAN;
264  }
265  }
266 
267  LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
268  << getBlockExitStateName(CurState) << '\n');
269 
270  if (CurState == EXITS_DIRTY)
271  for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
272  SE = MBB.succ_end();
273  SI != SE; ++SI)
274  addDirtySuccessor(**SI);
275 
276  BlockStates[MBB.getNumber()].ExitState = CurState;
277 }
278 
279 /// Loop over all of the basic blocks, inserting vzeroupper instructions before
280 /// function calls.
281 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
282  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
283  if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite())
284  return false;
285  TII = ST.getInstrInfo();
287  EverMadeChange = false;
288  IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
289 
290  bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
291 
292  // Fast check: if the function doesn't use any ymm/zmm registers, we don't
293  // need to insert any VZEROUPPER instructions. This is constant-time, so it
294  // is cheap in the common case of no ymm/zmm use.
295  bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
296  const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass};
297  for (auto *RC : RCs) {
298  if (!YmmOrZmmUsed) {
299  for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
300  i++) {
301  if (!MRI.reg_nodbg_empty(*i)) {
302  YmmOrZmmUsed = true;
303  break;
304  }
305  }
306  }
307  }
308  if (!YmmOrZmmUsed) {
309  return false;
310  }
311 
312  assert(BlockStates.empty() && DirtySuccessors.empty() &&
313  "X86VZeroUpper state should be clear");
314  BlockStates.resize(MF.getNumBlockIDs());
315 
316  // Process all blocks. This will compute block exit states, record the first
317  // unguarded call in each block, and add successors of dirty blocks to the
318  // DirtySuccessors list.
319  for (MachineBasicBlock &MBB : MF)
320  processBasicBlock(MBB);
321 
322  // If any YMM/ZMM regs are live-in to this function, add the entry block to
323  // the DirtySuccessors list
324  if (FnHasLiveInYmmOrZmm)
325  addDirtySuccessor(MF.front());
326 
327  // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
328  // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
329  // through PASS_THROUGH blocks.
330  while (!DirtySuccessors.empty()) {
331  MachineBasicBlock &MBB = *DirtySuccessors.back();
332  DirtySuccessors.pop_back();
333  BlockState &BBState = BlockStates[MBB.getNumber()];
334 
335  // MBB is a successor of a dirty block, so its first call needs to be
336  // guarded.
337  if (BBState.FirstUnguardedCall != MBB.end())
338  insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
339 
340  // If this successor was a pass-through block, then it is now dirty. Its
341  // successors need to be added to the worklist (if they haven't been
342  // already).
343  if (BBState.ExitState == PASS_THROUGH) {
344  LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber()
345  << " was Pass-through, is now Dirty-out.\n");
346  for (MachineBasicBlock *Succ : MBB.successors())
347  addDirtySuccessor(*Succ);
348  }
349  }
350 
351  BlockStates.clear();
352  return EverMadeChange;
353 }
bool reg_nodbg_empty(unsigned RegNo) const
reg_nodbg_empty - Return true if the only instructions using or defining Reg are Debug instructions...
bool hasAVX() const
Definition: X86Subtarget.h:560
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:633
This class represents lattice values for constants.
Definition: AllocatorList.h:24
static bool hasYmmOrZmmReg(MachineInstr &MI)
unsigned getNumBlockIDs() const
getNumBlockIDs - Return the number of MBB ID&#39;s allocated.
static bool isYmmOrZmmReg(unsigned Reg)
VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
const X86InstrInfo * getInstrInfo() const override
Definition: X86Subtarget.h:481
unsigned Reg
STATISTIC(NumFunctions, "Total number of functions")
A debug info location.
Definition: DebugLoc.h:34
FunctionPass * createX86IssueVZeroUpperPass()
This pass inserts AVX vzeroupper instructions before each call to avoid transition penalty between fu...
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:459
iterator_range< succ_iterator > successors()
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they&#39;re not in a MachineFuncti...
TargetInstrInfo - Interface to description of machine instruction set.
MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
unsigned const MachineRegisterInfo * MRI
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
static bool callHasRegMask(MachineInstr &MI)
Check if given call instruction has a RegMask operand.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool hasFastPartialYMMorZMMWrite() const
Definition: X86Subtarget.h:631
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:213
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
static bool clobbersPhysReg(const uint32_t *RegMask, unsigned PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
ArrayRef< std::pair< unsigned, unsigned > > liveins() const
MachineRegisterInfo - Keep track of information for virtual and physical registers, including vreg register classes, use/def chains for registers, etc.
MachineFunctionProperties & set(Property P)
Representation of each machine instruction.
Definition: MachineInstr.h:64
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
#define I(x, y, z)
Definition: MD5.cpp:58
static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI)
X86_INTR - x86 hardware interrupt context.
Definition: CallingConv.h:174
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO)
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
#define LLVM_DEBUG(X)
Definition: Debug.h:123
std::vector< MachineBasicBlock * >::iterator succ_iterator
Properties which a MachineFunction may have at a given point in time.