LLVM  8.0.1
NaryReassociate.cpp
Go to the documentation of this file.
1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates n-ary add expressions and eliminates the redundancy
11 // exposed by the reassociation.
12 //
13 // A motivating example:
14 //
15 // void foo(int a, int b) {
16 // bar(a + b);
17 // bar((a + 2) + b);
18 // }
19 //
20 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
21 // the above code to
22 //
23 // int t = a + b;
24 // bar(t);
25 // bar(t + 2);
26 //
27 // However, the Reassociate pass is unable to do that because it processes each
28 // instruction individually and believes (a + 2) + b is the best form according
29 // to its rank system.
30 //
31 // To address this limitation, NaryReassociate reassociates an expression in a
32 // form that reuses existing instructions. As a result, NaryReassociate can
33 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
34 // (a + b) is computed before.
35 //
36 // NaryReassociate works as follows. For every instruction in the form of (a +
37 // b) + c, it checks whether a + c or b + c is already computed by a dominating
38 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
39 // c) + a and removes the redundancy accordingly. To efficiently look up whether
40 // an expression is computed before, we store each instruction seen and its SCEV
41 // into an SCEV-to-instruction map.
42 //
43 // Although the algorithm pattern-matches only ternary additions, it
44 // automatically handles many >3-ary expressions by walking through the function
45 // in the depth-first order. For example, given
46 //
47 // (a + c) + d
48 // ((a + b) + c) + d
49 //
50 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
51 // ((a + c) + b) + d into ((a + c) + d) + b.
52 //
53 // Finally, the above dominator-based algorithm may need to be run multiple
54 // iterations before emitting optimal code. One source of this need is that we
55 // only split an operand when it is used only once. The above algorithm can
56 // eliminate an instruction and decrease the usage count of its operands. As a
57 // result, an instruction that previously had multiple uses may become a
58 // single-use instruction and thus eligible for split consideration. For
59 // example,
60 //
61 // ac = a + c
62 // ab = a + b
63 // abc = ab + c
64 // ab2 = ab + b
65 // ab2c = ab2 + c
66 //
67 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
68 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
69 // result, ab2 becomes dead and ab will be used only once in the second
70 // iteration.
71 //
72 // Limitations and TODO items:
73 //
74 // 1) We only considers n-ary adds and muls for now. This should be extended
75 // and generalized.
76 //
77 //===----------------------------------------------------------------------===//
78 
81 #include "llvm/ADT/SmallVector.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/Constants.h"
90 #include "llvm/IR/DataLayout.h"
91 #include "llvm/IR/DerivedTypes.h"
92 #include "llvm/IR/Dominators.h"
93 #include "llvm/IR/Function.h"
95 #include "llvm/IR/IRBuilder.h"
96 #include "llvm/IR/InstrTypes.h"
97 #include "llvm/IR/Instruction.h"
98 #include "llvm/IR/Instructions.h"
99 #include "llvm/IR/Module.h"
100 #include "llvm/IR/Operator.h"
101 #include "llvm/IR/PatternMatch.h"
102 #include "llvm/IR/Type.h"
103 #include "llvm/IR/Value.h"
104 #include "llvm/IR/ValueHandle.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include <cassert>
110 #include <cstdint>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "nary-reassociate"
116 
117 namespace {
118 
119 class NaryReassociateLegacyPass : public FunctionPass {
120 public:
121  static char ID;
122 
123  NaryReassociateLegacyPass() : FunctionPass(ID) {
125  }
126 
127  bool doInitialization(Module &M) override {
128  return false;
129  }
130 
131  bool runOnFunction(Function &F) override;
132 
133  void getAnalysisUsage(AnalysisUsage &AU) const override {
142  AU.setPreservesCFG();
143  }
144 
145 private:
146  NaryReassociatePass Impl;
147 };
148 
149 } // end anonymous namespace
150 
152 
153 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
154  "Nary reassociation", false, false)
160 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
161  "Nary reassociation", false, false)
162 
164  return new NaryReassociateLegacyPass();
165 }
166 
168  if (skipFunction(F))
169  return false;
170 
171  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
172  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
173  auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
174  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
175  auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
176 
177  return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
178 }
179 
182  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
183  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
184  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
185  auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
186  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
187 
188  if (!runImpl(F, AC, DT, SE, TLI, TTI))
189  return PreservedAnalyses::all();
190 
192  PA.preserveSet<CFGAnalyses>();
194  return PA;
195 }
196 
198  DominatorTree *DT_, ScalarEvolution *SE_,
199  TargetLibraryInfo *TLI_,
200  TargetTransformInfo *TTI_) {
201  AC = AC_;
202  DT = DT_;
203  SE = SE_;
204  TLI = TLI_;
205  TTI = TTI_;
206  DL = &F.getParent()->getDataLayout();
207 
208  bool Changed = false, ChangedInThisIteration;
209  do {
210  ChangedInThisIteration = doOneIteration(F);
211  Changed |= ChangedInThisIteration;
212  } while (ChangedInThisIteration);
213  return Changed;
214 }
215 
216 // Whitelist the instruction types NaryReassociate handles for now.
218  switch (I->getOpcode()) {
219  case Instruction::Add:
220  case Instruction::GetElementPtr:
221  case Instruction::Mul:
222  return true;
223  default:
224  return false;
225  }
226 }
227 
228 bool NaryReassociatePass::doOneIteration(Function &F) {
229  bool Changed = false;
230  SeenExprs.clear();
231  // Process the basic blocks in a depth first traversal of the dominator
232  // tree. This order ensures that all bases of a candidate are in Candidates
233  // when we process it.
234  for (const auto Node : depth_first(DT)) {
235  BasicBlock *BB = Node->getBlock();
236  for (auto I = BB->begin(); I != BB->end(); ++I) {
237  if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
238  const SCEV *OldSCEV = SE->getSCEV(&*I);
239  if (Instruction *NewI = tryReassociate(&*I)) {
240  Changed = true;
241  SE->forgetValue(&*I);
242  I->replaceAllUsesWith(NewI);
243  WeakVH NewIExist = NewI;
244  // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
245  // entry will be replaced with nullptr if deleted.
247  if (!NewIExist) {
248  // Rare occation where the new instruction (NewI) have been removed,
249  // probably due to parts of the input code was dead from the
250  // beginning, reset the iterator and start over from the beginning
251  I = BB->begin();
252  continue;
253  }
254  I = NewI->getIterator();
255  }
256  // Add the rewritten instruction to SeenExprs; the original instruction
257  // is deleted.
258  const SCEV *NewSCEV = SE->getSCEV(&*I);
259  SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
260  // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
261  // is equivalent to I. However, ScalarEvolution::getSCEV may
262  // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
263  // we reassociate
264  // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
265  // to
266  // NewI = &a[sext(i)] + sext(j).
267  //
268  // ScalarEvolution computes
269  // getSCEV(I) = a + 4 * sext(i + j)
270  // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
271  // which are different SCEVs.
272  //
273  // To alleviate this issue of ScalarEvolution not always capturing
274  // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
275  // map both SCEV before and after tryReassociate(I) to I.
276  //
277  // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
278  if (NewSCEV != OldSCEV)
279  SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
280  }
281  }
282  }
283  return Changed;
284 }
285 
286 Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
287  switch (I->getOpcode()) {
288  case Instruction::Add:
289  case Instruction::Mul:
290  return tryReassociateBinaryOp(cast<BinaryOperator>(I));
291  case Instruction::GetElementPtr:
292  return tryReassociateGEP(cast<GetElementPtrInst>(I));
293  default:
294  llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
295  }
296 }
297 
299  const TargetTransformInfo *TTI) {
301  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
302  Indices.push_back(*I);
303  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
304  Indices) == TargetTransformInfo::TCC_Free;
305 }
306 
307 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
308  // Not worth reassociating GEP if it is foldable.
309  if (isGEPFoldable(GEP, TTI))
310  return nullptr;
311 
312  gep_type_iterator GTI = gep_type_begin(*GEP);
313  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
314  if (GTI.isSequential()) {
315  if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
316  GTI.getIndexedType())) {
317  return NewGEP;
318  }
319  }
320  }
321  return nullptr;
322 }
323 
324 bool NaryReassociatePass::requiresSignExtension(Value *Index,
325  GetElementPtrInst *GEP) {
326  unsigned PointerSizeInBits =
327  DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
328  return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
329 }
330 
332 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
333  unsigned I, Type *IndexedType) {
334  Value *IndexToSplit = GEP->getOperand(I + 1);
335  if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
336  IndexToSplit = SExt->getOperand(0);
337  } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
338  // zext can be treated as sext if the source is non-negative.
339  if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
340  IndexToSplit = ZExt->getOperand(0);
341  }
342 
343  if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
344  // If the I-th index needs sext and the underlying add is not equipped with
345  // nsw, we cannot split the add because
346  // sext(LHS + RHS) != sext(LHS) + sext(RHS).
347  if (requiresSignExtension(IndexToSplit, GEP) &&
348  computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
350  return nullptr;
351 
352  Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
353  // IndexToSplit = LHS + RHS.
354  if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
355  return NewGEP;
356  // Symmetrically, try IndexToSplit = RHS + LHS.
357  if (LHS != RHS) {
358  if (auto *NewGEP =
359  tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
360  return NewGEP;
361  }
362  }
363  return nullptr;
364 }
365 
367 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
368  unsigned I, Value *LHS,
369  Value *RHS, Type *IndexedType) {
370  // Look for GEP's closest dominator that has the same SCEV as GEP except that
371  // the I-th index is replaced with LHS.
372  SmallVector<const SCEV *, 4> IndexExprs;
373  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
374  IndexExprs.push_back(SE->getSCEV(*Index));
375  // Replace the I-th index with LHS.
376  IndexExprs[I] = SE->getSCEV(LHS);
377  if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
378  DL->getTypeSizeInBits(LHS->getType()) <
379  DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
380  // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
381  // zext if the source operand is proved non-negative. We should do that
382  // consistently so that CandidateExpr more likely appears before. See
383  // @reassociate_gep_assume for an example of this canonicalization.
384  IndexExprs[I] =
385  SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
386  }
387  const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
388  IndexExprs);
389 
390  Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
391  if (Candidate == nullptr)
392  return nullptr;
393 
394  IRBuilder<> Builder(GEP);
395  // Candidate does not necessarily have the same pointer type as GEP. Use
396  // bitcast or pointer cast to make sure they have the same type, so that the
397  // later RAUW doesn't complain.
398  Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
399  assert(Candidate->getType() == GEP->getType());
400 
401  // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
402  uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
403  Type *ElementType = GEP->getResultElementType();
404  uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
405  // Another less rare case: because I is not necessarily the last index of the
406  // GEP, the size of the type at the I-th index (IndexedSize) is not
407  // necessarily divisible by ElementSize. For example,
408  //
409  // #pragma pack(1)
410  // struct S {
411  // int a[3];
412  // int64 b[8];
413  // };
414  // #pragma pack()
415  //
416  // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
417  //
418  // TODO: bail out on this case for now. We could emit uglygep.
419  if (IndexedSize % ElementSize != 0)
420  return nullptr;
421 
422  // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
423  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
424  if (RHS->getType() != IntPtrTy)
425  RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
426  if (IndexedSize != ElementSize) {
427  RHS = Builder.CreateMul(
428  RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
429  }
430  GetElementPtrInst *NewGEP =
431  cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
432  NewGEP->setIsInBounds(GEP->isInBounds());
433  NewGEP->takeName(GEP);
434  return NewGEP;
435 }
436 
437 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
438  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
439  // There is no need to reassociate 0.
440  if (SE->getSCEV(I)->isZero())
441  return nullptr;
442  if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
443  return NewI;
444  if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
445  return NewI;
446  return nullptr;
447 }
448 
449 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
450  BinaryOperator *I) {
451  Value *A = nullptr, *B = nullptr;
452  // To be conservative, we reassociate I only when it is the only user of (A op
453  // B).
454  if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
455  // I = (A op B) op RHS
456  // = (A op RHS) op B or (B op RHS) op A
457  const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
458  const SCEV *RHSExpr = SE->getSCEV(RHS);
459  if (BExpr != RHSExpr) {
460  if (auto *NewI =
461  tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
462  return NewI;
463  }
464  if (AExpr != RHSExpr) {
465  if (auto *NewI =
466  tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
467  return NewI;
468  }
469  }
470  return nullptr;
471 }
472 
473 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
474  Value *RHS,
475  BinaryOperator *I) {
476  // Look for the closest dominator LHS of I that computes LHSExpr, and replace
477  // I with LHS op RHS.
478  auto *LHS = findClosestMatchingDominator(LHSExpr, I);
479  if (LHS == nullptr)
480  return nullptr;
481 
482  Instruction *NewI = nullptr;
483  switch (I->getOpcode()) {
484  case Instruction::Add:
485  NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
486  break;
487  case Instruction::Mul:
488  NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
489  break;
490  default:
491  llvm_unreachable("Unexpected instruction.");
492  }
493  NewI->takeName(I);
494  return NewI;
495 }
496 
497 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
498  Value *&Op1, Value *&Op2) {
499  switch (I->getOpcode()) {
500  case Instruction::Add:
501  return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
502  case Instruction::Mul:
503  return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
504  default:
505  llvm_unreachable("Unexpected instruction.");
506  }
507  return false;
508 }
509 
510 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
511  const SCEV *LHS,
512  const SCEV *RHS) {
513  switch (I->getOpcode()) {
514  case Instruction::Add:
515  return SE->getAddExpr(LHS, RHS);
516  case Instruction::Mul:
517  return SE->getMulExpr(LHS, RHS);
518  default:
519  llvm_unreachable("Unexpected instruction.");
520  }
521  return nullptr;
522 }
523 
524 Instruction *
525 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
526  Instruction *Dominatee) {
527  auto Pos = SeenExprs.find(CandidateExpr);
528  if (Pos == SeenExprs.end())
529  return nullptr;
530 
531  auto &Candidates = Pos->second;
532  // Because we process the basic blocks in pre-order of the dominator tree, a
533  // candidate that doesn't dominate the current instruction won't dominate any
534  // future instruction either. Therefore, we pop it out of the stack. This
535  // optimization makes the algorithm O(n).
536  while (!Candidates.empty()) {
537  // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
538  // removed
539  // during rewriting.
540  if (Value *Candidate = Candidates.back()) {
541  Instruction *CandidateInstruction = cast<Instruction>(Candidate);
542  if (DT->dominates(CandidateInstruction, Dominatee))
543  return CandidateInstruction;
544  }
545  Candidates.pop_back();
546  }
547  return nullptr;
548 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:71
static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT)
This is the entry point for all transforms.
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:770
This class represents lattice values for constants.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:316
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
This class represents zero extension of integer types.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:701
The main scalar evolution driver.
int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value *> Operands) const
Estimate the cost of a GEP operation when lowered.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
Analysis pass providing the TargetTransformInfo.
nary reassociate
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:231
F(f)
This class represents a sign extension of integer types.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
Hexagon Common GEP
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:48
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
Type * getSourceElementType() const
Definition: Instructions.h:951
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:642
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:182
Value * CreateSExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a SExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:1684
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
A nullable Value handle that is nullable.
Definition: ValueHandle.h:141
op_iterator idx_begin()
Definition: Instructions.h:979
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
bool isKnownNonNegative(const Value *V, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Returns true if the give value is known to be non-negative.
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Value * getOperand(unsigned i) const
Definition: User.h:170
INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate", "Nary reassociation", false, false) INITIALIZE_PASS_END(NaryReassociateLegacyPass
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:854
static bool runOnFunction(Function &F, bool PostInlining)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Wrapper pass for TargetTransformInfo.
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:154
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Expected to fold away in lowering.
Represent the analysis usage information of a pass.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:430
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:160
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1048
Value * CreateGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1458
A function analysis which provides an AssumptionCache.
unsigned getNumOperands() const
Definition: User.h:192
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
iterator end()
Definition: BasicBlock.h:271
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Module.h This file contains the declarations for the Module class.
Provides information about what library functions are available for the current target.
bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_, ScalarEvolution *SE_, TargetLibraryInfo *TLI_, TargetTransformInfo *TTI_)
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
Represents analyses that only rely on functions&#39; control flow.
Definition: PassManager.h:115
Analysis pass that exposes the ScalarEvolution for a function.
Value * CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1810
This class represents an analyzed expression in the program.
void preserveSet()
Mark an analysis set as preserved.
Definition: PassManager.h:190
#define I(x, y, z)
Definition: MD5.cpp:58
nary Nary reassociation
Type * getResultElementType() const
Definition: Instructions.h:956
void initializeNaryReassociateLegacyPassPass(PassRegistry &)
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:175
Analysis pass providing the TargetLibraryInfo.
iterator_range< df_iterator< T > > depth_first(const T &G)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
static bool isPotentiallyNaryReassociable(Instruction *I)
static bool isGEPFoldable(GetElementPtrInst *GEP, const TargetTransformInfo *TTI)
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
A container for analyses that lazily runs them and caches their results.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:260
This pass exposes codegen information to IR-level passes.
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
FunctionPass * createNaryReassociatePass()
gep_type_iterator gep_type_begin(const User *GEP)