LLVM  8.0.1
PHITransAddr.cpp
Go to the documentation of this file.
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PHITransAddr class.
11 //
12 //===----------------------------------------------------------------------===//
13 
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/Support/Debug.h"
24 using namespace llvm;
25 
26 static bool CanPHITrans(Instruction *Inst) {
27  if (isa<PHINode>(Inst) ||
28  isa<GetElementPtrInst>(Inst))
29  return true;
30 
31  if (isa<CastInst>(Inst) &&
33  return true;
34 
35  if (Inst->getOpcode() == Instruction::Add &&
36  isa<ConstantInt>(Inst->getOperand(1)))
37  return true;
38 
39  // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
40  // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
41  // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
42  return false;
43 }
44 
45 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
47  if (!Addr) {
48  dbgs() << "PHITransAddr: null\n";
49  return;
50  }
51  dbgs() << "PHITransAddr: " << *Addr << "\n";
52  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
53  dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n";
54 }
55 #endif
56 
57 
58 static bool VerifySubExpr(Value *Expr,
59  SmallVectorImpl<Instruction*> &InstInputs) {
60  // If this is a non-instruction value, there is nothing to do.
62  if (!I) return true;
63 
64  // If it's an instruction, it is either in Tmp or its operands recursively
65  // are.
66  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
67  if (Entry != InstInputs.end()) {
68  InstInputs.erase(Entry);
69  return true;
70  }
71 
72  // If it isn't in the InstInputs list it is a subexpr incorporated into the
73  // address. Sanity check that it is phi translatable.
74  if (!CanPHITrans(I)) {
75  errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
76  errs() << *I << '\n';
77  llvm_unreachable("Either something is missing from InstInputs or "
78  "CanPHITrans is wrong.");
79  }
80 
81  // Validate the operands of the instruction.
82  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
83  if (!VerifySubExpr(I->getOperand(i), InstInputs))
84  return false;
85 
86  return true;
87 }
88 
89 /// Verify - Check internal consistency of this data structure. If the
90 /// structure is valid, it returns true. If invalid, it prints errors and
91 /// returns false.
92 bool PHITransAddr::Verify() const {
93  if (!Addr) return true;
94 
95  SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
96 
97  if (!VerifySubExpr(Addr, Tmp))
98  return false;
99 
100  if (!Tmp.empty()) {
101  errs() << "PHITransAddr contains extra instructions:\n";
102  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
103  errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n";
104  llvm_unreachable("This is unexpected.");
105  }
106 
107  // a-ok.
108  return true;
109 }
110 
111 
112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
113 /// if we have some hope of doing it. This should be used as a filter to
114 /// avoid calling PHITranslateValue in hopeless situations.
116  // If the input value is not an instruction, or if it is not defined in CurBB,
117  // then we don't need to phi translate it.
118  Instruction *Inst = dyn_cast<Instruction>(Addr);
119  return !Inst || CanPHITrans(Inst);
120 }
121 
122 
123 static void RemoveInstInputs(Value *V,
124  SmallVectorImpl<Instruction*> &InstInputs) {
126  if (!I) return;
127 
128  // If the instruction is in the InstInputs list, remove it.
129  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
130  if (Entry != InstInputs.end()) {
131  InstInputs.erase(Entry);
132  return;
133  }
134 
135  assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
136 
137  // Otherwise, it must have instruction inputs itself. Zap them recursively.
138  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
139  if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
140  RemoveInstInputs(Op, InstInputs);
141  }
142 }
143 
144 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
145  BasicBlock *PredBB,
146  const DominatorTree *DT) {
147  // If this is a non-instruction value, it can't require PHI translation.
148  Instruction *Inst = dyn_cast<Instruction>(V);
149  if (!Inst) return V;
150 
151  // Determine whether 'Inst' is an input to our PHI translatable expression.
152  bool isInput = is_contained(InstInputs, Inst);
153 
154  // Handle inputs instructions if needed.
155  if (isInput) {
156  if (Inst->getParent() != CurBB) {
157  // If it is an input defined in a different block, then it remains an
158  // input.
159  return Inst;
160  }
161 
162  // If 'Inst' is defined in this block and is an input that needs to be phi
163  // translated, we need to incorporate the value into the expression or fail.
164 
165  // In either case, the instruction itself isn't an input any longer.
166  InstInputs.erase(find(InstInputs, Inst));
167 
168  // If this is a PHI, go ahead and translate it.
169  if (PHINode *PN = dyn_cast<PHINode>(Inst))
170  return AddAsInput(PN->getIncomingValueForBlock(PredBB));
171 
172  // If this is a non-phi value, and it is analyzable, we can incorporate it
173  // into the expression by making all instruction operands be inputs.
174  if (!CanPHITrans(Inst))
175  return nullptr;
176 
177  // All instruction operands are now inputs (and of course, they may also be
178  // defined in this block, so they may need to be phi translated themselves.
179  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
180  if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
181  InstInputs.push_back(Op);
182  }
183 
184  // Ok, it must be an intermediate result (either because it started that way
185  // or because we just incorporated it into the expression). See if its
186  // operands need to be phi translated, and if so, reconstruct it.
187 
188  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
189  if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
190  Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
191  if (!PHIIn) return nullptr;
192  if (PHIIn == Cast->getOperand(0))
193  return Cast;
194 
195  // Find an available version of this cast.
196 
197  // Constants are trivial to find.
198  if (Constant *C = dyn_cast<Constant>(PHIIn))
199  return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
200  C, Cast->getType()));
201 
202  // Otherwise we have to see if a casted version of the incoming pointer
203  // is available. If so, we can use it, otherwise we have to fail.
204  for (User *U : PHIIn->users()) {
205  if (CastInst *CastI = dyn_cast<CastInst>(U))
206  if (CastI->getOpcode() == Cast->getOpcode() &&
207  CastI->getType() == Cast->getType() &&
208  (!DT || DT->dominates(CastI->getParent(), PredBB)))
209  return CastI;
210  }
211  return nullptr;
212  }
213 
214  // Handle getelementptr with at least one PHI translatable operand.
215  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
216  SmallVector<Value*, 8> GEPOps;
217  bool AnyChanged = false;
218  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
219  Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
220  if (!GEPOp) return nullptr;
221 
222  AnyChanged |= GEPOp != GEP->getOperand(i);
223  GEPOps.push_back(GEPOp);
224  }
225 
226  if (!AnyChanged)
227  return GEP;
228 
229  // Simplify the GEP to handle 'gep x, 0' -> x etc.
230  if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(),
231  GEPOps, {DL, TLI, DT, AC})) {
232  for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
233  RemoveInstInputs(GEPOps[i], InstInputs);
234 
235  return AddAsInput(V);
236  }
237 
238  // Scan to see if we have this GEP available.
239  Value *APHIOp = GEPOps[0];
240  for (User *U : APHIOp->users()) {
241  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
242  if (GEPI->getType() == GEP->getType() &&
243  GEPI->getNumOperands() == GEPOps.size() &&
244  GEPI->getParent()->getParent() == CurBB->getParent() &&
245  (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
246  if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
247  return GEPI;
248  }
249  }
250  return nullptr;
251  }
252 
253  // Handle add with a constant RHS.
254  if (Inst->getOpcode() == Instruction::Add &&
255  isa<ConstantInt>(Inst->getOperand(1))) {
256  // PHI translate the LHS.
257  Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
258  bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
259  bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
260 
261  Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
262  if (!LHS) return nullptr;
263 
264  // If the PHI translated LHS is an add of a constant, fold the immediates.
265  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
266  if (BOp->getOpcode() == Instruction::Add)
267  if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
268  LHS = BOp->getOperand(0);
269  RHS = ConstantExpr::getAdd(RHS, CI);
270  isNSW = isNUW = false;
271 
272  // If the old 'LHS' was an input, add the new 'LHS' as an input.
273  if (is_contained(InstInputs, BOp)) {
274  RemoveInstInputs(BOp, InstInputs);
275  AddAsInput(LHS);
276  }
277  }
278 
279  // See if the add simplifies away.
280  if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
281  // If we simplified the operands, the LHS is no longer an input, but Res
282  // is.
283  RemoveInstInputs(LHS, InstInputs);
284  return AddAsInput(Res);
285  }
286 
287  // If we didn't modify the add, just return it.
288  if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
289  return Inst;
290 
291  // Otherwise, see if we have this add available somewhere.
292  for (User *U : LHS->users()) {
293  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
294  if (BO->getOpcode() == Instruction::Add &&
295  BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
296  BO->getParent()->getParent() == CurBB->getParent() &&
297  (!DT || DT->dominates(BO->getParent(), PredBB)))
298  return BO;
299  }
300 
301  return nullptr;
302  }
303 
304  // Otherwise, we failed.
305  return nullptr;
306 }
307 
308 
309 /// PHITranslateValue - PHI translate the current address up the CFG from
310 /// CurBB to Pred, updating our state to reflect any needed changes. If
311 /// 'MustDominate' is true, the translated value must dominate
312 /// PredBB. This returns true on failure and sets Addr to null.
314  const DominatorTree *DT,
315  bool MustDominate) {
316  assert(DT || !MustDominate);
317  assert(Verify() && "Invalid PHITransAddr!");
318  if (DT && DT->isReachableFromEntry(PredBB))
319  Addr =
320  PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr);
321  else
322  Addr = nullptr;
323  assert(Verify() && "Invalid PHITransAddr!");
324 
325  if (MustDominate)
326  // Make sure the value is live in the predecessor.
327  if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
328  if (!DT->dominates(Inst->getParent(), PredBB))
329  Addr = nullptr;
330 
331  return Addr == nullptr;
332 }
333 
334 /// PHITranslateWithInsertion - PHI translate this value into the specified
335 /// predecessor block, inserting a computation of the value if it is
336 /// unavailable.
337 ///
338 /// All newly created instructions are added to the NewInsts list. This
339 /// returns null on failure.
340 ///
343  const DominatorTree &DT,
344  SmallVectorImpl<Instruction*> &NewInsts) {
345  unsigned NISize = NewInsts.size();
346 
347  // Attempt to PHI translate with insertion.
348  Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
349 
350  // If successful, return the new value.
351  if (Addr) return Addr;
352 
353  // If not, destroy any intermediate instructions inserted.
354  while (NewInsts.size() != NISize)
355  NewInsts.pop_back_val()->eraseFromParent();
356  return nullptr;
357 }
358 
359 
360 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
361 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
362 /// block. All newly created instructions are added to the NewInsts list.
363 /// This returns null on failure.
364 ///
365 Value *PHITransAddr::
366 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
367  BasicBlock *PredBB, const DominatorTree &DT,
368  SmallVectorImpl<Instruction*> &NewInsts) {
369  // See if we have a version of this value already available and dominating
370  // PredBB. If so, there is no need to insert a new instance of it.
371  PHITransAddr Tmp(InVal, DL, AC);
372  if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
373  return Tmp.getAddr();
374 
375  // We don't need to PHI translate values which aren't instructions.
376  auto *Inst = dyn_cast<Instruction>(InVal);
377  if (!Inst)
378  return nullptr;
379 
380  // Handle cast of PHI translatable value.
381  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
382  if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
383  Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
384  CurBB, PredBB, DT, NewInsts);
385  if (!OpVal) return nullptr;
386 
387  // Otherwise insert a cast at the end of PredBB.
388  CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
389  InVal->getName() + ".phi.trans.insert",
390  PredBB->getTerminator());
391  New->setDebugLoc(Inst->getDebugLoc());
392  NewInsts.push_back(New);
393  return New;
394  }
395 
396  // Handle getelementptr with at least one PHI operand.
397  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
398  SmallVector<Value*, 8> GEPOps;
399  BasicBlock *CurBB = GEP->getParent();
400  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
401  Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
402  CurBB, PredBB, DT, NewInsts);
403  if (!OpVal) return nullptr;
404  GEPOps.push_back(OpVal);
405  }
406 
408  GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1),
409  InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
410  Result->setDebugLoc(Inst->getDebugLoc());
411  Result->setIsInBounds(GEP->isInBounds());
412  NewInsts.push_back(Result);
413  return Result;
414  }
415 
416 #if 0
417  // FIXME: This code works, but it is unclear that we actually want to insert
418  // a big chain of computation in order to make a value available in a block.
419  // This needs to be evaluated carefully to consider its cost trade offs.
420 
421  // Handle add with a constant RHS.
422  if (Inst->getOpcode() == Instruction::Add &&
423  isa<ConstantInt>(Inst->getOperand(1))) {
424  // PHI translate the LHS.
425  Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
426  CurBB, PredBB, DT, NewInsts);
427  if (OpVal == 0) return 0;
428 
429  BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
430  InVal->getName()+".phi.trans.insert",
431  PredBB->getTerminator());
432  Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
433  Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
434  NewInsts.push_back(Res);
435  return Res;
436  }
437 #endif
438 
439  return nullptr;
440 }
uint64_t CallInst * C
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
void push_back(const T &Elt)
Definition: SmallVector.h:218
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Definition: Instructions.h:880
static void RemoveInstInputs(Value *V, SmallVectorImpl< Instruction *> &InstInputs)
Hexagon Common GEP
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:300
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2238
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
Value * SimplifyGEPInst(Type *SrcTy, ArrayRef< Value *> Ops, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
#define LLVM_DUMP_METHOD
Definition: Compiler.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Value * getOperand(unsigned i) const
Definition: User.h:170
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:854
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:308
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
PHITransAddr - An address value which tracks and handles phi translation.
Definition: PHITransAddr.h:36
This is an important base class in LLVM.
Definition: Constant.h:42
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
This file contains the declarations for the subclasses of Constant, which represent the different fla...
void dump() const
Value * SimplifyAddInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
iterator erase(const_iterator CI)
Definition: SmallVector.h:445
size_t size() const
Definition: SmallVector.h:53
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1207
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag...
unsigned getNumOperands() const
Definition: User.h:192
Value * PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree &DT, SmallVectorImpl< Instruction *> &NewInsts)
PHITranslateWithInsertion - PHI translate this value into the specified predecessor block...
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
bool PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree *DT, bool MustDominate)
PHITranslateValue - PHI translate the current address up the CFG from CurBB to Pred, updating our state to reflect any needed changes.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
bool dominates(const Instruction *Def, const Use &U) const
Return true if Def dominates a use in User.
Definition: Dominators.cpp:249
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
typename SuperClass::iterator iterator
Definition: SmallVector.h:327
iterator_range< user_iterator > users()
Definition: Value.h:400
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1530
static bool CanPHITrans(Instruction *Inst)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass&#39;s ...
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
bool Verify() const
Verify - Check internal consistency of this data structure.
#define I(x, y, z)
Definition: MD5.cpp:58
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
bool IsPotentiallyPHITranslatable() const
IsPotentiallyPHITranslatable - If this needs PHI translation, return true if we have some hope of doi...
Value * getAddr() const
Definition: PHITransAddr.h:60
static bool VerifySubExpr(Value *Expr, SmallVectorImpl< Instruction *> &InstInputs)
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool isSafeToSpeculativelyExecute(const Value *V, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
static bool isInput(const StringSet<> &Prefixes, StringRef Arg)
Definition: OptTable.cpp:170
LLVM Value Representation.
Definition: Value.h:73
const BasicBlock * getParent() const
Definition: Instruction.h:67
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:1245