LLVM  8.0.1
LowerTypeTests.h
Go to the documentation of this file.
1 //===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines parts of the type test lowering pass implementation that
11 // may be usefully unit tested.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
16 #define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
17 
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/PassManager.h"
20 #include <cstdint>
21 #include <cstring>
22 #include <limits>
23 #include <set>
24 #include <vector>
25 
26 namespace llvm {
27 
28 class Module;
29 class ModuleSummaryIndex;
30 class raw_ostream;
31 
32 namespace lowertypetests {
33 
34 struct BitSetInfo {
35  // The indices of the set bits in the bitset.
36  std::set<uint64_t> Bits;
37 
38  // The byte offset into the combined global represented by the bitset.
39  uint64_t ByteOffset;
40 
41  // The size of the bitset in bits.
42  uint64_t BitSize;
43 
44  // Log2 alignment of the bit set relative to the combined global.
45  // For example, a log2 alignment of 3 means that bits in the bitset
46  // represent addresses 8 bytes apart.
47  unsigned AlignLog2;
48 
49  bool isSingleOffset() const {
50  return Bits.size() == 1;
51  }
52 
53  bool isAllOnes() const {
54  return Bits.size() == BitSize;
55  }
56 
57  bool containsGlobalOffset(uint64_t Offset) const;
58 
59  void print(raw_ostream &OS) const;
60 };
61 
62 struct BitSetBuilder {
65  uint64_t Max = 0;
66 
67  BitSetBuilder() = default;
68 
69  void addOffset(uint64_t Offset) {
70  if (Min > Offset)
71  Min = Offset;
72  if (Max < Offset)
73  Max = Offset;
74 
75  Offsets.push_back(Offset);
76  }
77 
78  BitSetInfo build();
79 };
80 
81 /// This class implements a layout algorithm for globals referenced by bit sets
82 /// that tries to keep members of small bit sets together. This can
83 /// significantly reduce bit set sizes in many cases.
84 ///
85 /// It works by assembling fragments of layout from sets of referenced globals.
86 /// Each set of referenced globals causes the algorithm to create a new
87 /// fragment, which is assembled by appending each referenced global in the set
88 /// into the fragment. If a referenced global has already been referenced by an
89 /// fragment created earlier, we instead delete that fragment and append its
90 /// contents into the fragment we are assembling.
91 ///
92 /// By starting with the smallest fragments, we minimize the size of the
93 /// fragments that are copied into larger fragments. This is most intuitively
94 /// thought about when considering the case where the globals are virtual tables
95 /// and the bit sets represent their derived classes: in a single inheritance
96 /// hierarchy, the optimum layout would involve a depth-first search of the
97 /// class hierarchy (and in fact the computed layout ends up looking a lot like
98 /// a DFS), but a naive DFS would not work well in the presence of multiple
99 /// inheritance. This aspect of the algorithm ends up fitting smaller
100 /// hierarchies inside larger ones where that would be beneficial.
101 ///
102 /// For example, consider this class hierarchy:
103 ///
104 /// A B
105 /// \ / | \
106 /// C D E
107 ///
108 /// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
109 /// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
110 /// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
111 /// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
112 /// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
113 ///
114 /// Add bsC, fragments {{C}}
115 /// Add bsD, fragments {{C}, {D}}
116 /// Add bsE, fragments {{C}, {D}, {E}}
117 /// Add bsA, fragments {{A, C}, {D}, {E}}
118 /// Add bsB, fragments {{B, A, C, D, E}}
119 ///
120 /// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
121 /// fewer) objects, at the cost of bsB needing to cover 1 more object.
122 ///
123 /// The bit set lowering pass assigns an object index to each object that needs
124 /// to be laid out, and calls addFragment for each bit set passing the object
125 /// indices of its referenced globals. It then assembles a layout from the
126 /// computed layout in the Fragments field.
128  /// The computed layout. Each element of this vector contains a fragment of
129  /// layout (which may be empty) consisting of object indices.
130  std::vector<std::vector<uint64_t>> Fragments;
131 
132  /// Mapping from object index to fragment index.
133  std::vector<uint64_t> FragmentMap;
134 
135  GlobalLayoutBuilder(uint64_t NumObjects)
136  : Fragments(1), FragmentMap(NumObjects) {}
137 
138  /// Add F to the layout while trying to keep its indices contiguous.
139  /// If a previously seen fragment uses any of F's indices, that
140  /// fragment will be laid out inside F.
141  void addFragment(const std::set<uint64_t> &F);
142 };
143 
144 /// This class is used to build a byte array containing overlapping bit sets. By
145 /// loading from indexed offsets into the byte array and applying a mask, a
146 /// program can test bits from the bit set with a relatively short instruction
147 /// sequence. For example, suppose we have 15 bit sets to lay out:
148 ///
149 /// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
150 /// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
151 /// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
152 ///
153 /// These bits can be laid out in a 16-byte array like this:
154 ///
155 /// Byte Offset
156 /// 0123456789ABCDEF
157 /// Bit
158 /// 7 HHHHHHHHHIIIIIII
159 /// 6 GGGGGGGGGGJJJJJJ
160 /// 5 FFFFFFFFFFFKKKKK
161 /// 4 EEEEEEEEEEEELLLL
162 /// 3 DDDDDDDDDDDDDMMM
163 /// 2 CCCCCCCCCCCCCCNN
164 /// 1 BBBBBBBBBBBBBBBO
165 /// 0 AAAAAAAAAAAAAAAA
166 ///
167 /// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
168 /// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
169 /// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
170 ///
171 /// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
172 /// because for one thing it gives us better packing (the more bins there are,
173 /// the less evenly they will be filled), and for another, the instruction
174 /// sequences can be slightly shorter, both on x86 and ARM.
176  /// The byte array built so far.
177  std::vector<uint8_t> Bytes;
178 
179  enum { BitsPerByte = 8 };
180 
181  /// The number of bytes allocated so far for each of the bits.
182  uint64_t BitAllocs[BitsPerByte];
183 
185  memset(BitAllocs, 0, sizeof(BitAllocs));
186  }
187 
188  /// Allocate BitSize bits in the byte array where Bits contains the bits to
189  /// set. AllocByteOffset is set to the offset within the byte array and
190  /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
191  /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
192  /// efficiently; the pass allocates bit sets in decreasing size order.
193  void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
194  uint64_t &AllocByteOffset, uint8_t &AllocMask);
195 };
196 
197 } // end namespace lowertypetests
198 
199 class LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> {
200 public:
204  const ModuleSummaryIndex *ImportSummary)
205  : ExportSummary(ExportSummary), ImportSummary(ImportSummary) {}
207 };
208 
209 } // end namespace llvm
210 
211 #endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
This class implements a layout algorithm for globals referenced by bit sets that tries to keep member...
This class is used to build a byte array containing overlapping bit sets.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents lattice values for constants.
Definition: AllocatorList.h:24
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
void push_back(const T &Elt)
Definition: SmallVector.h:218
void print(raw_ostream &OS) const
F(f)
std::vector< uint8_t > Bytes
The byte array built so far.
std::vector< uint64_t > FragmentMap
Mapping from object index to fragment index.
const ModuleSummaryIndex * ImportSummary
ModuleSummaryIndex * ExportSummary
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:366
bool containsGlobalOffset(uint64_t Offset) const
Class to hold module path string table and global value map, and encapsulate methods for operating on...
Error build(ArrayRef< Module *> Mods, SmallVector< char, 0 > &Symtab, StringTableBuilder &StrtabBuilder, BumpPtrAllocator &Alloc)
Fills in Symtab and StrtabBuilder with a valid symbol and string table for Mods.
Definition: IRSymtab.cpp:323
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:154
SmallVector< uint64_t, 16 > Offsets
LowerTypeTestsPass(ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary)
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
A container for analyses that lazily runs them and caches their results.
This header defines various interfaces for pass management in LLVM.
std::vector< std::vector< uint64_t > > Fragments
The computed layout.