LLVM  8.0.1
DataFlowSanitizer.cpp
Go to the documentation of this file.
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
12 /// analysis.
13 ///
14 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
15 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
16 /// analysis framework to be used by clients to help detect application-specific
17 /// issues within their own code.
18 ///
19 /// The analysis is based on automatic propagation of data flow labels (also
20 /// known as taint labels) through a program as it performs computation. Each
21 /// byte of application memory is backed by two bytes of shadow memory which
22 /// hold the label. On Linux/x86_64, memory is laid out as follows:
23 ///
24 /// +--------------------+ 0x800000000000 (top of memory)
25 /// | application memory |
26 /// +--------------------+ 0x700000008000 (kAppAddr)
27 /// | |
28 /// | unused |
29 /// | |
30 /// +--------------------+ 0x200200000000 (kUnusedAddr)
31 /// | union table |
32 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
33 /// | shadow memory |
34 /// +--------------------+ 0x000000010000 (kShadowAddr)
35 /// | reserved by kernel |
36 /// +--------------------+ 0x000000000000
37 ///
38 /// To derive a shadow memory address from an application memory address,
39 /// bits 44-46 are cleared to bring the address into the range
40 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
41 /// account for the double byte representation of shadow labels and move the
42 /// address into the shadow memory range. See the function
43 /// DataFlowSanitizer::getShadowAddress below.
44 ///
45 /// For more information, please refer to the design document:
46 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/DenseSet.h"
53 #include "llvm/ADT/None.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Triple.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CallSite.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InlineAsm.h"
76 #include "llvm/IR/InstVisitor.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/MDBuilder.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstddef>
97 #include <cstdint>
98 #include <iterator>
99 #include <memory>
100 #include <set>
101 #include <string>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 
107 // External symbol to be used when generating the shadow address for
108 // architectures with multiple VMAs. Instead of using a constant integer
109 // the runtime will set the external mask based on the VMA range.
110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
111 
112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
113 // alignment requirements provided by the input IR are correct. For example,
114 // if the input IR contains a load with alignment 8, this flag will cause
115 // the shadow load to have alignment 16. This flag is disabled by default as
116 // we have unfortunately encountered too much code (including Clang itself;
117 // see PR14291) which performs misaligned access.
119  "dfsan-preserve-alignment",
120  cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
121  cl::init(false));
122 
123 // The ABI list files control how shadow parameters are passed. The pass treats
124 // every function labelled "uninstrumented" in the ABI list file as conforming
125 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
126 // additional annotations for those functions, a call to one of those functions
127 // will produce a warning message, as the labelling behaviour of the function is
128 // unknown. The other supported annotations are "functional" and "discard",
129 // which are described below under DataFlowSanitizer::WrapperKind.
131  "dfsan-abilist",
132  cl::desc("File listing native ABI functions and how the pass treats them"),
133  cl::Hidden);
134 
135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
136 // functions (see DataFlowSanitizer::InstrumentedABI below).
137 static cl::opt<bool> ClArgsABI(
138  "dfsan-args-abi",
139  cl::desc("Use the argument ABI rather than the TLS ABI"),
140  cl::Hidden);
141 
142 // Controls whether the pass includes or ignores the labels of pointers in load
143 // instructions.
145  "dfsan-combine-pointer-labels-on-load",
146  cl::desc("Combine the label of the pointer with the label of the data when "
147  "loading from memory."),
148  cl::Hidden, cl::init(true));
149 
150 // Controls whether the pass includes or ignores the labels of pointers in
151 // stores instructions.
153  "dfsan-combine-pointer-labels-on-store",
154  cl::desc("Combine the label of the pointer with the label of the data when "
155  "storing in memory."),
156  cl::Hidden, cl::init(false));
157 
159  "dfsan-debug-nonzero-labels",
160  cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
161  "load or return with a nonzero label"),
162  cl::Hidden);
163 
165  // Types of GlobalVariables are always pointer types.
166  Type *GType = G.getValueType();
167  // For now we support blacklisting struct types only.
168  if (StructType *SGType = dyn_cast<StructType>(GType)) {
169  if (!SGType->isLiteral())
170  return SGType->getName();
171  }
172  return "<unknown type>";
173 }
174 
175 namespace {
176 
177 class DFSanABIList {
178  std::unique_ptr<SpecialCaseList> SCL;
179 
180  public:
181  DFSanABIList() = default;
182 
183  void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
184 
185  /// Returns whether either this function or its source file are listed in the
186  /// given category.
187  bool isIn(const Function &F, StringRef Category) const {
188  return isIn(*F.getParent(), Category) ||
189  SCL->inSection("dataflow", "fun", F.getName(), Category);
190  }
191 
192  /// Returns whether this global alias is listed in the given category.
193  ///
194  /// If GA aliases a function, the alias's name is matched as a function name
195  /// would be. Similarly, aliases of globals are matched like globals.
196  bool isIn(const GlobalAlias &GA, StringRef Category) const {
197  if (isIn(*GA.getParent(), Category))
198  return true;
199 
200  if (isa<FunctionType>(GA.getValueType()))
201  return SCL->inSection("dataflow", "fun", GA.getName(), Category);
202 
203  return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
204  SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
205  Category);
206  }
207 
208  /// Returns whether this module is listed in the given category.
209  bool isIn(const Module &M, StringRef Category) const {
210  return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
211  }
212 };
213 
214 /// TransformedFunction is used to express the result of transforming one
215 /// function type into another. This struct is immutable. It holds metadata
216 /// useful for updating calls of the old function to the new type.
217 struct TransformedFunction {
218  TransformedFunction(FunctionType* OriginalType,
219  FunctionType* TransformedType,
220  std::vector<unsigned> ArgumentIndexMapping)
221  : OriginalType(OriginalType),
222  TransformedType(TransformedType),
223  ArgumentIndexMapping(ArgumentIndexMapping) {}
224 
225  // Disallow copies.
226  TransformedFunction(const TransformedFunction&) = delete;
227  TransformedFunction& operator=(const TransformedFunction&) = delete;
228 
229  // Allow moves.
230  TransformedFunction(TransformedFunction&&) = default;
231  TransformedFunction& operator=(TransformedFunction&&) = default;
232 
233  /// Type of the function before the transformation.
234  FunctionType *OriginalType;
235 
236  /// Type of the function after the transformation.
237  FunctionType *TransformedType;
238 
239  /// Transforming a function may change the position of arguments. This
240  /// member records the mapping from each argument's old position to its new
241  /// position. Argument positions are zero-indexed. If the transformation
242  /// from F to F' made the first argument of F into the third argument of F',
243  /// then ArgumentIndexMapping[0] will equal 2.
244  std::vector<unsigned> ArgumentIndexMapping;
245 };
246 
247 /// Given function attributes from a call site for the original function,
248 /// return function attributes appropriate for a call to the transformed
249 /// function.
250 AttributeList TransformFunctionAttributes(
251  const TransformedFunction& TransformedFunction,
252  LLVMContext& Ctx, AttributeList CallSiteAttrs) {
253 
254  // Construct a vector of AttributeSet for each function argument.
255  std::vector<llvm::AttributeSet> ArgumentAttributes(
256  TransformedFunction.TransformedType->getNumParams());
257 
258  // Copy attributes from the parameter of the original function to the
259  // transformed version. 'ArgumentIndexMapping' holds the mapping from
260  // old argument position to new.
261  for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
262  i < ie; ++i) {
263  unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
264  ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
265  }
266 
267  // Copy annotations on varargs arguments.
268  for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
269  ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
270  ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
271  }
272 
273  return AttributeList::get(
274  Ctx,
275  CallSiteAttrs.getFnAttributes(),
276  CallSiteAttrs.getRetAttributes(),
277  llvm::makeArrayRef(ArgumentAttributes));
278 }
279 
280 class DataFlowSanitizer : public ModulePass {
281  friend struct DFSanFunction;
282  friend class DFSanVisitor;
283 
284  enum {
285  ShadowWidth = 16
286  };
287 
288  /// Which ABI should be used for instrumented functions?
289  enum InstrumentedABI {
290  /// Argument and return value labels are passed through additional
291  /// arguments and by modifying the return type.
292  IA_Args,
293 
294  /// Argument and return value labels are passed through TLS variables
295  /// __dfsan_arg_tls and __dfsan_retval_tls.
296  IA_TLS
297  };
298 
299  /// How should calls to uninstrumented functions be handled?
300  enum WrapperKind {
301  /// This function is present in an uninstrumented form but we don't know
302  /// how it should be handled. Print a warning and call the function anyway.
303  /// Don't label the return value.
304  WK_Warning,
305 
306  /// This function does not write to (user-accessible) memory, and its return
307  /// value is unlabelled.
308  WK_Discard,
309 
310  /// This function does not write to (user-accessible) memory, and the label
311  /// of its return value is the union of the label of its arguments.
312  WK_Functional,
313 
314  /// Instead of calling the function, a custom wrapper __dfsw_F is called,
315  /// where F is the name of the function. This function may wrap the
316  /// original function or provide its own implementation. This is similar to
317  /// the IA_Args ABI, except that IA_Args uses a struct return type to
318  /// pass the return value shadow in a register, while WK_Custom uses an
319  /// extra pointer argument to return the shadow. This allows the wrapped
320  /// form of the function type to be expressed in C.
321  WK_Custom
322  };
323 
324  Module *Mod;
325  LLVMContext *Ctx;
326  IntegerType *ShadowTy;
327  PointerType *ShadowPtrTy;
328  IntegerType *IntptrTy;
329  ConstantInt *ZeroShadow;
330  ConstantInt *ShadowPtrMask;
331  ConstantInt *ShadowPtrMul;
332  Constant *ArgTLS;
333  Constant *RetvalTLS;
334  void *(*GetArgTLSPtr)();
335  void *(*GetRetvalTLSPtr)();
336  Constant *GetArgTLS;
337  Constant *GetRetvalTLS;
338  Constant *ExternalShadowMask;
339  FunctionType *DFSanUnionFnTy;
340  FunctionType *DFSanUnionLoadFnTy;
341  FunctionType *DFSanUnimplementedFnTy;
342  FunctionType *DFSanSetLabelFnTy;
343  FunctionType *DFSanNonzeroLabelFnTy;
344  FunctionType *DFSanVarargWrapperFnTy;
345  Constant *DFSanUnionFn;
346  Constant *DFSanCheckedUnionFn;
347  Constant *DFSanUnionLoadFn;
348  Constant *DFSanUnimplementedFn;
349  Constant *DFSanSetLabelFn;
350  Constant *DFSanNonzeroLabelFn;
351  Constant *DFSanVarargWrapperFn;
352  MDNode *ColdCallWeights;
353  DFSanABIList ABIList;
354  DenseMap<Value *, Function *> UnwrappedFnMap;
355  AttrBuilder ReadOnlyNoneAttrs;
356  bool DFSanRuntimeShadowMask = false;
357 
358  Value *getShadowAddress(Value *Addr, Instruction *Pos);
359  bool isInstrumented(const Function *F);
360  bool isInstrumented(const GlobalAlias *GA);
361  FunctionType *getArgsFunctionType(FunctionType *T);
362  FunctionType *getTrampolineFunctionType(FunctionType *T);
363  TransformedFunction getCustomFunctionType(FunctionType *T);
364  InstrumentedABI getInstrumentedABI();
365  WrapperKind getWrapperKind(Function *F);
366  void addGlobalNamePrefix(GlobalValue *GV);
367  Function *buildWrapperFunction(Function *F, StringRef NewFName,
368  GlobalValue::LinkageTypes NewFLink,
369  FunctionType *NewFT);
370  Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
371 
372 public:
373  static char ID;
374 
375  DataFlowSanitizer(
376  const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
377  void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
378 
379  bool doInitialization(Module &M) override;
380  bool runOnModule(Module &M) override;
381 };
382 
383 struct DFSanFunction {
384  DataFlowSanitizer &DFS;
385  Function *F;
386  DominatorTree DT;
387  DataFlowSanitizer::InstrumentedABI IA;
388  bool IsNativeABI;
389  Value *ArgTLSPtr = nullptr;
390  Value *RetvalTLSPtr = nullptr;
391  AllocaInst *LabelReturnAlloca = nullptr;
392  DenseMap<Value *, Value *> ValShadowMap;
393  DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
394  std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
395  DenseSet<Instruction *> SkipInsts;
396  std::vector<Value *> NonZeroChecks;
397  bool AvoidNewBlocks;
398 
399  struct CachedCombinedShadow {
400  BasicBlock *Block;
401  Value *Shadow;
402  };
403  DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
404  CachedCombinedShadows;
405  DenseMap<Value *, std::set<Value *>> ShadowElements;
406 
407  DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
408  : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
409  DT.recalculate(*F);
410  // FIXME: Need to track down the register allocator issue which causes poor
411  // performance in pathological cases with large numbers of basic blocks.
412  AvoidNewBlocks = F->size() > 1000;
413  }
414 
415  Value *getArgTLSPtr();
416  Value *getArgTLS(unsigned Index, Instruction *Pos);
417  Value *getRetvalTLS();
418  Value *getShadow(Value *V);
419  void setShadow(Instruction *I, Value *Shadow);
420  Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
421  Value *combineOperandShadows(Instruction *Inst);
422  Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
423  Instruction *Pos);
424  void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
425  Instruction *Pos);
426 };
427 
428 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
429 public:
430  DFSanFunction &DFSF;
431 
432  DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
433 
434  const DataLayout &getDataLayout() const {
435  return DFSF.F->getParent()->getDataLayout();
436  }
437 
438  void visitOperandShadowInst(Instruction &I);
439  void visitBinaryOperator(BinaryOperator &BO);
440  void visitCastInst(CastInst &CI);
441  void visitCmpInst(CmpInst &CI);
442  void visitGetElementPtrInst(GetElementPtrInst &GEPI);
443  void visitLoadInst(LoadInst &LI);
444  void visitStoreInst(StoreInst &SI);
445  void visitReturnInst(ReturnInst &RI);
446  void visitCallSite(CallSite CS);
447  void visitPHINode(PHINode &PN);
448  void visitExtractElementInst(ExtractElementInst &I);
449  void visitInsertElementInst(InsertElementInst &I);
450  void visitShuffleVectorInst(ShuffleVectorInst &I);
451  void visitExtractValueInst(ExtractValueInst &I);
452  void visitInsertValueInst(InsertValueInst &I);
453  void visitAllocaInst(AllocaInst &I);
454  void visitSelectInst(SelectInst &I);
455  void visitMemSetInst(MemSetInst &I);
456  void visitMemTransferInst(MemTransferInst &I);
457 };
458 
459 } // end anonymous namespace
460 
462 
463 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
464  "DataFlowSanitizer: dynamic data flow analysis.", false, false)
465 
466 ModulePass *
467 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
468  void *(*getArgTLS)(),
469  void *(*getRetValTLS)()) {
470  return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
471 }
472 
473 DataFlowSanitizer::DataFlowSanitizer(
474  const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
475  void *(*getRetValTLS)())
476  : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
477  std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
478  AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
479  ClABIListFiles.end());
480  ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
481 }
482 
483 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
484  SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
485  ArgTypes.append(T->getNumParams(), ShadowTy);
486  if (T->isVarArg())
487  ArgTypes.push_back(ShadowPtrTy);
488  Type *RetType = T->getReturnType();
489  if (!RetType->isVoidTy())
490  RetType = StructType::get(RetType, ShadowTy);
491  return FunctionType::get(RetType, ArgTypes, T->isVarArg());
492 }
493 
494 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
495  assert(!T->isVarArg());
496  SmallVector<Type *, 4> ArgTypes;
497  ArgTypes.push_back(T->getPointerTo());
498  ArgTypes.append(T->param_begin(), T->param_end());
499  ArgTypes.append(T->getNumParams(), ShadowTy);
500  Type *RetType = T->getReturnType();
501  if (!RetType->isVoidTy())
502  ArgTypes.push_back(ShadowPtrTy);
503  return FunctionType::get(T->getReturnType(), ArgTypes, false);
504 }
505 
506 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
507  SmallVector<Type *, 4> ArgTypes;
508 
509  // Some parameters of the custom function being constructed are
510  // parameters of T. Record the mapping from parameters of T to
511  // parameters of the custom function, so that parameter attributes
512  // at call sites can be updated.
513  std::vector<unsigned> ArgumentIndexMapping;
514  for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
515  Type* param_type = T->getParamType(i);
516  FunctionType *FT;
517  if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
518  cast<PointerType>(param_type)->getElementType()))) {
519  ArgumentIndexMapping.push_back(ArgTypes.size());
520  ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
521  ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
522  } else {
523  ArgumentIndexMapping.push_back(ArgTypes.size());
524  ArgTypes.push_back(param_type);
525  }
526  }
527  for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
528  ArgTypes.push_back(ShadowTy);
529  if (T->isVarArg())
530  ArgTypes.push_back(ShadowPtrTy);
531  Type *RetType = T->getReturnType();
532  if (!RetType->isVoidTy())
533  ArgTypes.push_back(ShadowPtrTy);
534  return TransformedFunction(
535  T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
536  ArgumentIndexMapping);
537 }
538 
539 bool DataFlowSanitizer::doInitialization(Module &M) {
540  Triple TargetTriple(M.getTargetTriple());
541  bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
542  bool IsMIPS64 = TargetTriple.isMIPS64();
543  bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
544  TargetTriple.getArch() == Triple::aarch64_be;
545 
546  const DataLayout &DL = M.getDataLayout();
547 
548  Mod = &M;
549  Ctx = &M.getContext();
550  ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
551  ShadowPtrTy = PointerType::getUnqual(ShadowTy);
552  IntptrTy = DL.getIntPtrType(*Ctx);
553  ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
554  ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
555  if (IsX86_64)
556  ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
557  else if (IsMIPS64)
558  ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
559  // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
560  else if (IsAArch64)
561  DFSanRuntimeShadowMask = true;
562  else
563  report_fatal_error("unsupported triple");
564 
565  Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
566  DFSanUnionFnTy =
567  FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
568  Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
569  DFSanUnionLoadFnTy =
570  FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
571  DFSanUnimplementedFnTy = FunctionType::get(
572  Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
573  Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
574  DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
575  DFSanSetLabelArgs, /*isVarArg=*/false);
576  DFSanNonzeroLabelFnTy = FunctionType::get(
577  Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
578  DFSanVarargWrapperFnTy = FunctionType::get(
579  Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
580 
581  if (GetArgTLSPtr) {
582  Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
583  ArgTLS = nullptr;
584  GetArgTLS = ConstantExpr::getIntToPtr(
585  ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
587  FunctionType::get(PointerType::getUnqual(ArgTLSTy), false)));
588  }
589  if (GetRetvalTLSPtr) {
590  RetvalTLS = nullptr;
591  GetRetvalTLS = ConstantExpr::getIntToPtr(
592  ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
594  FunctionType::get(PointerType::getUnqual(ShadowTy), false)));
595  }
596 
597  ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
598  return true;
599 }
600 
601 bool DataFlowSanitizer::isInstrumented(const Function *F) {
602  return !ABIList.isIn(*F, "uninstrumented");
603 }
604 
605 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
606  return !ABIList.isIn(*GA, "uninstrumented");
607 }
608 
609 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
610  return ClArgsABI ? IA_Args : IA_TLS;
611 }
612 
613 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
614  if (ABIList.isIn(*F, "functional"))
615  return WK_Functional;
616  if (ABIList.isIn(*F, "discard"))
617  return WK_Discard;
618  if (ABIList.isIn(*F, "custom"))
619  return WK_Custom;
620 
621  return WK_Warning;
622 }
623 
624 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
625  std::string GVName = GV->getName(), Prefix = "dfs$";
626  GV->setName(Prefix + GVName);
627 
628  // Try to change the name of the function in module inline asm. We only do
629  // this for specific asm directives, currently only ".symver", to try to avoid
630  // corrupting asm which happens to contain the symbol name as a substring.
631  // Note that the substitution for .symver assumes that the versioned symbol
632  // also has an instrumented name.
633  std::string Asm = GV->getParent()->getModuleInlineAsm();
634  std::string SearchStr = ".symver " + GVName + ",";
635  size_t Pos = Asm.find(SearchStr);
636  if (Pos != std::string::npos) {
637  Asm.replace(Pos, SearchStr.size(),
638  ".symver " + Prefix + GVName + "," + Prefix);
639  GV->getParent()->setModuleInlineAsm(Asm);
640  }
641 }
642 
643 Function *
644 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
645  GlobalValue::LinkageTypes NewFLink,
646  FunctionType *NewFT) {
647  FunctionType *FT = F->getFunctionType();
648  Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
649  NewFName, F->getParent());
650  NewF->copyAttributesFrom(F);
651  NewF->removeAttributes(
654 
655  BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
656  if (F->isVarArg()) {
658  AttrBuilder().addAttribute("split-stack"));
659  CallInst::Create(DFSanVarargWrapperFn,
660  IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
661  BB);
662  new UnreachableInst(*Ctx, BB);
663  } else {
664  std::vector<Value *> Args;
665  unsigned n = FT->getNumParams();
666  for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
667  Args.push_back(&*ai);
668  CallInst *CI = CallInst::Create(F, Args, "", BB);
669  if (FT->getReturnType()->isVoidTy())
670  ReturnInst::Create(*Ctx, BB);
671  else
672  ReturnInst::Create(*Ctx, CI, BB);
673  }
674 
675  return NewF;
676 }
677 
678 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
679  StringRef FName) {
680  FunctionType *FTT = getTrampolineFunctionType(FT);
681  Constant *C = Mod->getOrInsertFunction(FName, FTT);
682  Function *F = dyn_cast<Function>(C);
683  if (F && F->isDeclaration()) {
685  BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
686  std::vector<Value *> Args;
687  Function::arg_iterator AI = F->arg_begin(); ++AI;
688  for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
689  Args.push_back(&*AI);
690  CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB);
691  ReturnInst *RI;
692  if (FT->getReturnType()->isVoidTy())
693  RI = ReturnInst::Create(*Ctx, BB);
694  else
695  RI = ReturnInst::Create(*Ctx, CI, BB);
696 
697  DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
698  Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
699  for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
700  DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
701  DFSanVisitor(DFSF).visitCallInst(*CI);
702  if (!FT->getReturnType()->isVoidTy())
703  new StoreInst(DFSF.getShadow(RI->getReturnValue()),
704  &*std::prev(F->arg_end()), RI);
705  }
706 
707  return C;
708 }
709 
710 bool DataFlowSanitizer::runOnModule(Module &M) {
711  if (ABIList.isIn(M, "skip"))
712  return false;
713 
714  if (!GetArgTLSPtr) {
715  Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
716  ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
717  if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
718  G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
719  }
720  if (!GetRetvalTLSPtr) {
721  RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
722  if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
723  G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
724  }
725 
726  ExternalShadowMask =
727  Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
728 
729  DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
730  if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
736  }
737  DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
738  if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
744  }
745  DFSanUnionLoadFn =
746  Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
747  if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
751  }
752  DFSanUnimplementedFn =
753  Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
754  DFSanSetLabelFn =
755  Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
756  if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
758  }
759  DFSanNonzeroLabelFn =
760  Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
761  DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
762  DFSanVarargWrapperFnTy);
763 
764  std::vector<Function *> FnsToInstrument;
765  SmallPtrSet<Function *, 2> FnsWithNativeABI;
766  for (Function &i : M) {
767  if (!i.isIntrinsic() &&
768  &i != DFSanUnionFn &&
769  &i != DFSanCheckedUnionFn &&
770  &i != DFSanUnionLoadFn &&
771  &i != DFSanUnimplementedFn &&
772  &i != DFSanSetLabelFn &&
773  &i != DFSanNonzeroLabelFn &&
774  &i != DFSanVarargWrapperFn)
775  FnsToInstrument.push_back(&i);
776  }
777 
778  // Give function aliases prefixes when necessary, and build wrappers where the
779  // instrumentedness is inconsistent.
780  for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
781  GlobalAlias *GA = &*i;
782  ++i;
783  // Don't stop on weak. We assume people aren't playing games with the
784  // instrumentedness of overridden weak aliases.
785  if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
786  bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
787  if (GAInst && FInst) {
788  addGlobalNamePrefix(GA);
789  } else if (GAInst != FInst) {
790  // Non-instrumented alias of an instrumented function, or vice versa.
791  // Replace the alias with a native-ABI wrapper of the aliasee. The pass
792  // below will take care of instrumenting it.
793  Function *NewF =
794  buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
796  NewF->takeName(GA);
797  GA->eraseFromParent();
798  FnsToInstrument.push_back(NewF);
799  }
800  }
801  }
802 
803  ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
804  .addAttribute(Attribute::ReadNone);
805 
806  // First, change the ABI of every function in the module. ABI-listed
807  // functions keep their original ABI and get a wrapper function.
808  for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
809  e = FnsToInstrument.end();
810  i != e; ++i) {
811  Function &F = **i;
812  FunctionType *FT = F.getFunctionType();
813 
814  bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
815  FT->getReturnType()->isVoidTy());
816 
817  if (isInstrumented(&F)) {
818  // Instrumented functions get a 'dfs$' prefix. This allows us to more
819  // easily identify cases of mismatching ABIs.
820  if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
821  FunctionType *NewFT = getArgsFunctionType(FT);
822  Function *NewF = Function::Create(NewFT, F.getLinkage(),
823  F.getAddressSpace(), "", &M);
824  NewF->copyAttributesFrom(&F);
825  NewF->removeAttributes(
828  for (Function::arg_iterator FArg = F.arg_begin(),
829  NewFArg = NewF->arg_begin(),
830  FArgEnd = F.arg_end();
831  FArg != FArgEnd; ++FArg, ++NewFArg) {
832  FArg->replaceAllUsesWith(&*NewFArg);
833  }
834  NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
835 
836  for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
837  UI != UE;) {
838  BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
839  ++UI;
840  if (BA) {
841  BA->replaceAllUsesWith(
842  BlockAddress::get(NewF, BA->getBasicBlock()));
843  delete BA;
844  }
845  }
848  NewF->takeName(&F);
849  F.eraseFromParent();
850  *i = NewF;
851  addGlobalNamePrefix(NewF);
852  } else {
853  addGlobalNamePrefix(&F);
854  }
855  } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
856  // Build a wrapper function for F. The wrapper simply calls F, and is
857  // added to FnsToInstrument so that any instrumentation according to its
858  // WrapperKind is done in the second pass below.
859  FunctionType *NewFT = getInstrumentedABI() == IA_Args
860  ? getArgsFunctionType(FT)
861  : FT;
862 
863  // If the function being wrapped has local linkage, then preserve the
864  // function's linkage in the wrapper function.
865  GlobalValue::LinkageTypes wrapperLinkage =
866  F.hasLocalLinkage()
867  ? F.getLinkage()
869 
870  Function *NewF = buildWrapperFunction(
871  &F, std::string("dfsw$") + std::string(F.getName()),
872  wrapperLinkage, NewFT);
873  if (getInstrumentedABI() == IA_TLS)
874  NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
875 
876  Value *WrappedFnCst =
878  F.replaceAllUsesWith(WrappedFnCst);
879 
880  UnwrappedFnMap[WrappedFnCst] = &F;
881  *i = NewF;
882 
883  if (!F.isDeclaration()) {
884  // This function is probably defining an interposition of an
885  // uninstrumented function and hence needs to keep the original ABI.
886  // But any functions it may call need to use the instrumented ABI, so
887  // we instrument it in a mode which preserves the original ABI.
888  FnsWithNativeABI.insert(&F);
889 
890  // This code needs to rebuild the iterators, as they may be invalidated
891  // by the push_back, taking care that the new range does not include
892  // any functions added by this code.
893  size_t N = i - FnsToInstrument.begin(),
894  Count = e - FnsToInstrument.begin();
895  FnsToInstrument.push_back(&F);
896  i = FnsToInstrument.begin() + N;
897  e = FnsToInstrument.begin() + Count;
898  }
899  // Hopefully, nobody will try to indirectly call a vararg
900  // function... yet.
901  } else if (FT->isVarArg()) {
902  UnwrappedFnMap[&F] = &F;
903  *i = nullptr;
904  }
905  }
906 
907  for (Function *i : FnsToInstrument) {
908  if (!i || i->isDeclaration())
909  continue;
910 
912 
913  DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
914 
915  // DFSanVisitor may create new basic blocks, which confuses df_iterator.
916  // Build a copy of the list before iterating over it.
917  SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
918 
919  for (BasicBlock *i : BBList) {
920  Instruction *Inst = &i->front();
921  while (true) {
922  // DFSanVisitor may split the current basic block, changing the current
923  // instruction's next pointer and moving the next instruction to the
924  // tail block from which we should continue.
925  Instruction *Next = Inst->getNextNode();
926  // DFSanVisitor may delete Inst, so keep track of whether it was a
927  // terminator.
928  bool IsTerminator = Inst->isTerminator();
929  if (!DFSF.SkipInsts.count(Inst))
930  DFSanVisitor(DFSF).visit(Inst);
931  if (IsTerminator)
932  break;
933  Inst = Next;
934  }
935  }
936 
937  // We will not necessarily be able to compute the shadow for every phi node
938  // until we have visited every block. Therefore, the code that handles phi
939  // nodes adds them to the PHIFixups list so that they can be properly
940  // handled here.
941  for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
942  i = DFSF.PHIFixups.begin(),
943  e = DFSF.PHIFixups.end();
944  i != e; ++i) {
945  for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
946  ++val) {
947  i->second->setIncomingValue(
948  val, DFSF.getShadow(i->first->getIncomingValue(val)));
949  }
950  }
951 
952  // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
953  // places (i.e. instructions in basic blocks we haven't even begun visiting
954  // yet). To make our life easier, do this work in a pass after the main
955  // instrumentation.
956  if (ClDebugNonzeroLabels) {
957  for (Value *V : DFSF.NonZeroChecks) {
958  Instruction *Pos;
959  if (Instruction *I = dyn_cast<Instruction>(V))
960  Pos = I->getNextNode();
961  else
962  Pos = &DFSF.F->getEntryBlock().front();
963  while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
964  Pos = Pos->getNextNode();
965  IRBuilder<> IRB(Pos);
966  Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
967  BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
968  Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
969  IRBuilder<> ThenIRB(BI);
970  ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
971  }
972  }
973  }
974 
975  return false;
976 }
977 
978 Value *DFSanFunction::getArgTLSPtr() {
979  if (ArgTLSPtr)
980  return ArgTLSPtr;
981  if (DFS.ArgTLS)
982  return ArgTLSPtr = DFS.ArgTLS;
983 
984  IRBuilder<> IRB(&F->getEntryBlock().front());
985  return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {});
986 }
987 
988 Value *DFSanFunction::getRetvalTLS() {
989  if (RetvalTLSPtr)
990  return RetvalTLSPtr;
991  if (DFS.RetvalTLS)
992  return RetvalTLSPtr = DFS.RetvalTLS;
993 
994  IRBuilder<> IRB(&F->getEntryBlock().front());
995  return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {});
996 }
997 
998 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
999  IRBuilder<> IRB(Pos);
1000  return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
1001 }
1002 
1003 Value *DFSanFunction::getShadow(Value *V) {
1004  if (!isa<Argument>(V) && !isa<Instruction>(V))
1005  return DFS.ZeroShadow;
1006  Value *&Shadow = ValShadowMap[V];
1007  if (!Shadow) {
1008  if (Argument *A = dyn_cast<Argument>(V)) {
1009  if (IsNativeABI)
1010  return DFS.ZeroShadow;
1011  switch (IA) {
1012  case DataFlowSanitizer::IA_TLS: {
1013  Value *ArgTLSPtr = getArgTLSPtr();
1014  Instruction *ArgTLSPos =
1015  DFS.ArgTLS ? &*F->getEntryBlock().begin()
1016  : cast<Instruction>(ArgTLSPtr)->getNextNode();
1017  IRBuilder<> IRB(ArgTLSPos);
1018  Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
1019  break;
1020  }
1021  case DataFlowSanitizer::IA_Args: {
1022  unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1024  while (ArgIdx--)
1025  ++i;
1026  Shadow = &*i;
1027  assert(Shadow->getType() == DFS.ShadowTy);
1028  break;
1029  }
1030  }
1031  NonZeroChecks.push_back(Shadow);
1032  } else {
1033  Shadow = DFS.ZeroShadow;
1034  }
1035  }
1036  return Shadow;
1037 }
1038 
1039 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1040  assert(!ValShadowMap.count(I));
1041  assert(Shadow->getType() == DFS.ShadowTy);
1042  ValShadowMap[I] = Shadow;
1043 }
1044 
1045 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1046  assert(Addr != RetvalTLS && "Reinstrumenting?");
1047  IRBuilder<> IRB(Pos);
1048  Value *ShadowPtrMaskValue;
1049  if (DFSanRuntimeShadowMask)
1050  ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1051  else
1052  ShadowPtrMaskValue = ShadowPtrMask;
1053  return IRB.CreateIntToPtr(
1054  IRB.CreateMul(
1055  IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1056  IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
1057  ShadowPtrMul),
1058  ShadowPtrTy);
1059 }
1060 
1061 // Generates IR to compute the union of the two given shadows, inserting it
1062 // before Pos. Returns the computed union Value.
1063 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1064  if (V1 == DFS.ZeroShadow)
1065  return V2;
1066  if (V2 == DFS.ZeroShadow)
1067  return V1;
1068  if (V1 == V2)
1069  return V1;
1070 
1071  auto V1Elems = ShadowElements.find(V1);
1072  auto V2Elems = ShadowElements.find(V2);
1073  if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1074  if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1075  V2Elems->second.begin(), V2Elems->second.end())) {
1076  return V1;
1077  } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1078  V1Elems->second.begin(), V1Elems->second.end())) {
1079  return V2;
1080  }
1081  } else if (V1Elems != ShadowElements.end()) {
1082  if (V1Elems->second.count(V2))
1083  return V1;
1084  } else if (V2Elems != ShadowElements.end()) {
1085  if (V2Elems->second.count(V1))
1086  return V2;
1087  }
1088 
1089  auto Key = std::make_pair(V1, V2);
1090  if (V1 > V2)
1091  std::swap(Key.first, Key.second);
1092  CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
1093  if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1094  return CCS.Shadow;
1095 
1096  IRBuilder<> IRB(Pos);
1097  if (AvoidNewBlocks) {
1098  CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
1100  Call->addParamAttr(0, Attribute::ZExt);
1101  Call->addParamAttr(1, Attribute::ZExt);
1102 
1103  CCS.Block = Pos->getParent();
1104  CCS.Shadow = Call;
1105  } else {
1106  BasicBlock *Head = Pos->getParent();
1107  Value *Ne = IRB.CreateICmpNE(V1, V2);
1108  BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1109  Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1110  IRBuilder<> ThenIRB(BI);
1111  CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
1113  Call->addParamAttr(0, Attribute::ZExt);
1114  Call->addParamAttr(1, Attribute::ZExt);
1115 
1116  BasicBlock *Tail = BI->getSuccessor(0);
1117  PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1118  Phi->addIncoming(Call, Call->getParent());
1119  Phi->addIncoming(V1, Head);
1120 
1121  CCS.Block = Tail;
1122  CCS.Shadow = Phi;
1123  }
1124 
1125  std::set<Value *> UnionElems;
1126  if (V1Elems != ShadowElements.end()) {
1127  UnionElems = V1Elems->second;
1128  } else {
1129  UnionElems.insert(V1);
1130  }
1131  if (V2Elems != ShadowElements.end()) {
1132  UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1133  } else {
1134  UnionElems.insert(V2);
1135  }
1136  ShadowElements[CCS.Shadow] = std::move(UnionElems);
1137 
1138  return CCS.Shadow;
1139 }
1140 
1141 // A convenience function which folds the shadows of each of the operands
1142 // of the provided instruction Inst, inserting the IR before Inst. Returns
1143 // the computed union Value.
1144 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1145  if (Inst->getNumOperands() == 0)
1146  return DFS.ZeroShadow;
1147 
1148  Value *Shadow = getShadow(Inst->getOperand(0));
1149  for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1150  Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1151  }
1152  return Shadow;
1153 }
1154 
1155 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1156  Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1157  DFSF.setShadow(&I, CombinedShadow);
1158 }
1159 
1160 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1161 // Addr has alignment Align, and take the union of each of those shadows.
1162 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1163  Instruction *Pos) {
1164  if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1165  const auto i = AllocaShadowMap.find(AI);
1166  if (i != AllocaShadowMap.end()) {
1167  IRBuilder<> IRB(Pos);
1168  return IRB.CreateLoad(i->second);
1169  }
1170  }
1171 
1172  uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1174  GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
1175  bool AllConstants = true;
1176  for (Value *Obj : Objs) {
1177  if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1178  continue;
1179  if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1180  continue;
1181 
1182  AllConstants = false;
1183  break;
1184  }
1185  if (AllConstants)
1186  return DFS.ZeroShadow;
1187 
1188  Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1189  switch (Size) {
1190  case 0:
1191  return DFS.ZeroShadow;
1192  case 1: {
1193  LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
1194  LI->setAlignment(ShadowAlign);
1195  return LI;
1196  }
1197  case 2: {
1198  IRBuilder<> IRB(Pos);
1199  Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1200  ConstantInt::get(DFS.IntptrTy, 1));
1201  return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
1202  IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
1203  }
1204  }
1205  if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
1206  // Fast path for the common case where each byte has identical shadow: load
1207  // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1208  // shadow is non-equal.
1209  BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1210  IRBuilder<> FallbackIRB(FallbackBB);
1211  CallInst *FallbackCall = FallbackIRB.CreateCall(
1212  DFS.DFSanUnionLoadFn,
1213  {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1215 
1216  // Compare each of the shadows stored in the loaded 64 bits to each other,
1217  // by computing (WideShadow rotl ShadowWidth) == WideShadow.
1218  IRBuilder<> IRB(Pos);
1219  Value *WideAddr =
1220  IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1221  Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1222  Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1223  Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
1224  Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
1225  Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1226  Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1227 
1228  BasicBlock *Head = Pos->getParent();
1229  BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1230 
1231  if (DomTreeNode *OldNode = DT.getNode(Head)) {
1232  std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1233 
1234  DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1235  for (auto Child : Children)
1236  DT.changeImmediateDominator(Child, NewNode);
1237  }
1238 
1239  // In the following code LastBr will refer to the previous basic block's
1240  // conditional branch instruction, whose true successor is fixed up to point
1241  // to the next block during the loop below or to the tail after the final
1242  // iteration.
1243  BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1244  ReplaceInstWithInst(Head->getTerminator(), LastBr);
1245  DT.addNewBlock(FallbackBB, Head);
1246 
1247  for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
1248  Ofs += 64 / DFS.ShadowWidth) {
1249  BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1250  DT.addNewBlock(NextBB, LastBr->getParent());
1251  IRBuilder<> NextIRB(NextBB);
1252  WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1253  ConstantInt::get(DFS.IntptrTy, 1));
1254  Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1255  ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1256  LastBr->setSuccessor(0, NextBB);
1257  LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1258  }
1259 
1260  LastBr->setSuccessor(0, Tail);
1261  FallbackIRB.CreateBr(Tail);
1262  PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1263  Shadow->addIncoming(FallbackCall, FallbackBB);
1264  Shadow->addIncoming(TruncShadow, LastBr->getParent());
1265  return Shadow;
1266  }
1267 
1268  IRBuilder<> IRB(Pos);
1269  CallInst *FallbackCall = IRB.CreateCall(
1270  DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1272  return FallbackCall;
1273 }
1274 
1275 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1276  auto &DL = LI.getModule()->getDataLayout();
1277  uint64_t Size = DL.getTypeStoreSize(LI.getType());
1278  if (Size == 0) {
1279  DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1280  return;
1281  }
1282 
1283  uint64_t Align;
1284  if (ClPreserveAlignment) {
1285  Align = LI.getAlignment();
1286  if (Align == 0)
1287  Align = DL.getABITypeAlignment(LI.getType());
1288  } else {
1289  Align = 1;
1290  }
1291  IRBuilder<> IRB(&LI);
1292  Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
1294  Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1295  Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1296  }
1297  if (Shadow != DFSF.DFS.ZeroShadow)
1298  DFSF.NonZeroChecks.push_back(Shadow);
1299 
1300  DFSF.setShadow(&LI, Shadow);
1301 }
1302 
1303 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
1304  Value *Shadow, Instruction *Pos) {
1305  if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1306  const auto i = AllocaShadowMap.find(AI);
1307  if (i != AllocaShadowMap.end()) {
1308  IRBuilder<> IRB(Pos);
1309  IRB.CreateStore(Shadow, i->second);
1310  return;
1311  }
1312  }
1313 
1314  uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1315  IRBuilder<> IRB(Pos);
1316  Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1317  if (Shadow == DFS.ZeroShadow) {
1318  IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1319  Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1320  Value *ExtShadowAddr =
1321  IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1322  IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1323  return;
1324  }
1325 
1326  const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1327  uint64_t Offset = 0;
1328  if (Size >= ShadowVecSize) {
1329  VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1330  Value *ShadowVec = UndefValue::get(ShadowVecTy);
1331  for (unsigned i = 0; i != ShadowVecSize; ++i) {
1332  ShadowVec = IRB.CreateInsertElement(
1333  ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1334  }
1335  Value *ShadowVecAddr =
1336  IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1337  do {
1338  Value *CurShadowVecAddr =
1339  IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1340  IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1341  Size -= ShadowVecSize;
1342  ++Offset;
1343  } while (Size >= ShadowVecSize);
1344  Offset *= ShadowVecSize;
1345  }
1346  while (Size > 0) {
1347  Value *CurShadowAddr =
1348  IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1349  IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1350  --Size;
1351  ++Offset;
1352  }
1353 }
1354 
1355 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1356  auto &DL = SI.getModule()->getDataLayout();
1357  uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1358  if (Size == 0)
1359  return;
1360 
1361  uint64_t Align;
1362  if (ClPreserveAlignment) {
1363  Align = SI.getAlignment();
1364  if (Align == 0)
1365  Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
1366  } else {
1367  Align = 1;
1368  }
1369 
1370  Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1372  Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1373  Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1374  }
1375  DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
1376 }
1377 
1378 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1379  visitOperandShadowInst(BO);
1380 }
1381 
1382 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1383 
1384 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1385 
1386 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1387  visitOperandShadowInst(GEPI);
1388 }
1389 
1390 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1391  visitOperandShadowInst(I);
1392 }
1393 
1394 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1395  visitOperandShadowInst(I);
1396 }
1397 
1398 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1399  visitOperandShadowInst(I);
1400 }
1401 
1402 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1403  visitOperandShadowInst(I);
1404 }
1405 
1406 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1407  visitOperandShadowInst(I);
1408 }
1409 
1410 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1411  bool AllLoadsStores = true;
1412  for (User *U : I.users()) {
1413  if (isa<LoadInst>(U))
1414  continue;
1415 
1416  if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1417  if (SI->getPointerOperand() == &I)
1418  continue;
1419  }
1420 
1421  AllLoadsStores = false;
1422  break;
1423  }
1424  if (AllLoadsStores) {
1425  IRBuilder<> IRB(&I);
1426  DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1427  }
1428  DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1429 }
1430 
1431 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1432  Value *CondShadow = DFSF.getShadow(I.getCondition());
1433  Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1434  Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1435 
1436  if (isa<VectorType>(I.getCondition()->getType())) {
1437  DFSF.setShadow(
1438  &I,
1439  DFSF.combineShadows(
1440  CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
1441  } else {
1442  Value *ShadowSel;
1443  if (TrueShadow == FalseShadow) {
1444  ShadowSel = TrueShadow;
1445  } else {
1446  ShadowSel =
1447  SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1448  }
1449  DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
1450  }
1451 }
1452 
1453 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1454  IRBuilder<> IRB(&I);
1455  Value *ValShadow = DFSF.getShadow(I.getValue());
1456  IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1457  {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1458  *DFSF.DFS.Ctx)),
1459  IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1460 }
1461 
1462 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1463  IRBuilder<> IRB(&I);
1464  Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1465  Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1466  Value *LenShadow = IRB.CreateMul(
1467  I.getLength(),
1468  ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1469  Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1470  DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1471  SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1472  auto *MTI = cast<MemTransferInst>(
1473  IRB.CreateCall(I.getCalledValue(),
1474  {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
1475  if (ClPreserveAlignment) {
1476  MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8));
1477  MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8));
1478  } else {
1479  MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8);
1480  MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8);
1481  }
1482 }
1483 
1484 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1485  if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1486  switch (DFSF.IA) {
1487  case DataFlowSanitizer::IA_TLS: {
1488  Value *S = DFSF.getShadow(RI.getReturnValue());
1489  IRBuilder<> IRB(&RI);
1490  IRB.CreateStore(S, DFSF.getRetvalTLS());
1491  break;
1492  }
1493  case DataFlowSanitizer::IA_Args: {
1494  IRBuilder<> IRB(&RI);
1495  Type *RT = DFSF.F->getFunctionType()->getReturnType();
1496  Value *InsVal =
1498  Value *InsShadow =
1499  IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1500  RI.setOperand(0, InsShadow);
1501  break;
1502  }
1503  }
1504  }
1505 }
1506 
1507 void DFSanVisitor::visitCallSite(CallSite CS) {
1508  Function *F = CS.getCalledFunction();
1509  if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1510  visitOperandShadowInst(*CS.getInstruction());
1511  return;
1512  }
1513 
1514  // Calls to this function are synthesized in wrappers, and we shouldn't
1515  // instrument them.
1516  if (F == DFSF.DFS.DFSanVarargWrapperFn)
1517  return;
1518 
1519  IRBuilder<> IRB(CS.getInstruction());
1520 
1522  DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1523  if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1524  Function *F = i->second;
1525  switch (DFSF.DFS.getWrapperKind(F)) {
1526  case DataFlowSanitizer::WK_Warning:
1527  CS.setCalledFunction(F);
1528  IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1529  IRB.CreateGlobalStringPtr(F->getName()));
1530  DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1531  return;
1532  case DataFlowSanitizer::WK_Discard:
1533  CS.setCalledFunction(F);
1534  DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1535  return;
1536  case DataFlowSanitizer::WK_Functional:
1537  CS.setCalledFunction(F);
1538  visitOperandShadowInst(*CS.getInstruction());
1539  return;
1540  case DataFlowSanitizer::WK_Custom:
1541  // Don't try to handle invokes of custom functions, it's too complicated.
1542  // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1543  // wrapper.
1544  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1545  FunctionType *FT = F->getFunctionType();
1546  TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
1547  std::string CustomFName = "__dfsw_";
1548  CustomFName += F->getName();
1549  Constant *CustomF = DFSF.DFS.Mod->getOrInsertFunction(
1550  CustomFName, CustomFn.TransformedType);
1551  if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1552  CustomFn->copyAttributesFrom(F);
1553 
1554  // Custom functions returning non-void will write to the return label.
1555  if (!FT->getReturnType()->isVoidTy()) {
1556  CustomFn->removeAttributes(AttributeList::FunctionIndex,
1557  DFSF.DFS.ReadOnlyNoneAttrs);
1558  }
1559  }
1560 
1561  std::vector<Value *> Args;
1562 
1564  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1565  Type *T = (*i)->getType();
1566  FunctionType *ParamFT;
1567  if (isa<PointerType>(T) &&
1568  (ParamFT = dyn_cast<FunctionType>(
1569  cast<PointerType>(T)->getElementType()))) {
1570  std::string TName = "dfst";
1571  TName += utostr(FT->getNumParams() - n);
1572  TName += "$";
1573  TName += F->getName();
1574  Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1575  Args.push_back(T);
1576  Args.push_back(
1577  IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1578  } else {
1579  Args.push_back(*i);
1580  }
1581  }
1582 
1583  i = CS.arg_begin();
1584  const unsigned ShadowArgStart = Args.size();
1585  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1586  Args.push_back(DFSF.getShadow(*i));
1587 
1588  if (FT->isVarArg()) {
1589  auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1590  CS.arg_size() - FT->getNumParams());
1591  auto *LabelVAAlloca = new AllocaInst(
1592  LabelVATy, getDataLayout().getAllocaAddrSpace(),
1593  "labelva", &DFSF.F->getEntryBlock().front());
1594 
1595  for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
1596  auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1597  IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1598  }
1599 
1600  Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1601  }
1602 
1603  if (!FT->getReturnType()->isVoidTy()) {
1604  if (!DFSF.LabelReturnAlloca) {
1605  DFSF.LabelReturnAlloca =
1606  new AllocaInst(DFSF.DFS.ShadowTy,
1607  getDataLayout().getAllocaAddrSpace(),
1608  "labelreturn", &DFSF.F->getEntryBlock().front());
1609  }
1610  Args.push_back(DFSF.LabelReturnAlloca);
1611  }
1612 
1613  for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
1614  Args.push_back(*i);
1615 
1616  CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1617  CustomCI->setCallingConv(CI->getCallingConv());
1618  CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
1619  CI->getContext(), CI->getAttributes()));
1620 
1621  // Update the parameter attributes of the custom call instruction to
1622  // zero extend the shadow parameters. This is required for targets
1623  // which consider ShadowTy an illegal type.
1624  for (unsigned n = 0; n < FT->getNumParams(); n++) {
1625  const unsigned ArgNo = ShadowArgStart + n;
1626  if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
1627  CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
1628  }
1629 
1630  if (!FT->getReturnType()->isVoidTy()) {
1631  LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1632  DFSF.setShadow(CustomCI, LabelLoad);
1633  }
1634 
1635  CI->replaceAllUsesWith(CustomCI);
1636  CI->eraseFromParent();
1637  return;
1638  }
1639  break;
1640  }
1641  }
1642 
1643  FunctionType *FT = cast<FunctionType>(
1645  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1646  for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1647  IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1648  DFSF.getArgTLS(i, CS.getInstruction()));
1649  }
1650  }
1651 
1652  Instruction *Next = nullptr;
1653  if (!CS.getType()->isVoidTy()) {
1654  if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1655  if (II->getNormalDest()->getSinglePredecessor()) {
1656  Next = &II->getNormalDest()->front();
1657  } else {
1658  BasicBlock *NewBB =
1659  SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1660  Next = &NewBB->front();
1661  }
1662  } else {
1663  assert(CS->getIterator() != CS->getParent()->end());
1664  Next = CS->getNextNode();
1665  }
1666 
1667  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1668  IRBuilder<> NextIRB(Next);
1669  LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1670  DFSF.SkipInsts.insert(LI);
1671  DFSF.setShadow(CS.getInstruction(), LI);
1672  DFSF.NonZeroChecks.push_back(LI);
1673  }
1674  }
1675 
1676  // Do all instrumentation for IA_Args down here to defer tampering with the
1677  // CFG in a way that SplitEdge may be able to detect.
1678  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1679  FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1680  Value *Func =
1681  IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1682  std::vector<Value *> Args;
1683 
1684  CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1685  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1686  Args.push_back(*i);
1687 
1688  i = CS.arg_begin();
1689  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1690  Args.push_back(DFSF.getShadow(*i));
1691 
1692  if (FT->isVarArg()) {
1693  unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1694  ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1695  AllocaInst *VarArgShadow =
1696  new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
1697  "", &DFSF.F->getEntryBlock().front());
1698  Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1699  for (unsigned n = 0; i != e; ++i, ++n) {
1700  IRB.CreateStore(
1701  DFSF.getShadow(*i),
1702  IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1703  Args.push_back(*i);
1704  }
1705  }
1706 
1707  CallSite NewCS;
1708  if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1709  NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1710  Args);
1711  } else {
1712  NewCS = IRB.CreateCall(Func, Args);
1713  }
1714  NewCS.setCallingConv(CS.getCallingConv());
1716  *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
1718 
1719  if (Next) {
1720  ExtractValueInst *ExVal =
1721  ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1722  DFSF.SkipInsts.insert(ExVal);
1723  ExtractValueInst *ExShadow =
1724  ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1725  DFSF.SkipInsts.insert(ExShadow);
1726  DFSF.setShadow(ExVal, ExShadow);
1727  DFSF.NonZeroChecks.push_back(ExShadow);
1728 
1729  CS.getInstruction()->replaceAllUsesWith(ExVal);
1730  }
1731 
1733  }
1734 }
1735 
1736 void DFSanVisitor::visitPHINode(PHINode &PN) {
1737  PHINode *ShadowPN =
1738  PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1739 
1740  // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1741  Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1742  for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1743  ++i) {
1744  ShadowPN->addIncoming(UndefShadow, *i);
1745  }
1746 
1747  DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1748  DFSF.setShadow(&PN, ShadowPN);
1749 }
size_t size() const
Definition: Function.h:661
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:177
uint64_t CallInst * C
Return a value (possibly void), from a function.
Value * getValueOperand()
Definition: Instructions.h:410
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:213
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:199
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
static cl::list< std::string > ClABIListFiles("dfsan-abilist", cl::desc("File listing native ABI functions and how the pass treats them"), cl::Hidden)
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:240
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional &#39;br Cond, TrueDest, FalseDest&#39; instruction.
Definition: IRBuilder.h:854
const GlobalObject * getBaseObject() const
void ReplaceInstWithInst(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
Value * CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name="")
Definition: IRBuilder.h:1516
static bool isConstant(const MachineInstr &MI)
bool hasLocalLinkage() const
Definition: GlobalValue.h:436
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This instruction extracts a struct member or array element value from an aggregate value...
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Definition: IRBuilder.h:1344
Base class for instruction visitors.
Definition: InstVisitor.h:81
unsigned arg_size() const
Definition: CallSite.h:219
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1843
CallingConv::ID getCallingConv() const
Get the calling convention of the call.
Definition: CallSite.h:312
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:140
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
adds the attribute to the list of attributes for the given arg.
Definition: Function.cpp:386
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve &#39;CreateLoad(Ty, Ptr, "...")&#39; correctly, instead of converting the string to &#39;bool...
Definition: IRBuilder.h:1357
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align, const char *Name)
Provided to resolve &#39;CreateAlignedLoad(Ptr, Align, "...")&#39; correctly, instead of converting the strin...
Definition: IRBuilder.h:1393
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Implements a dense probed hash-table based set.
Definition: DenseSet.h:250
void push_back(const T &Elt)
Definition: SmallVector.h:218
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
bool removeUnreachableBlocks(Function &F, LazyValueInfo *LVI=nullptr, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Remove all blocks that can not be reached from the function&#39;s entry.
Definition: Local.cpp:2201
This class represents a function call, abstracting a target machine&#39;s calling convention.
unsigned getSourceAlignment() const
const Value * getTrueValue() const
Value * getValue() const
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1760
This instruction constructs a fixed permutation of two input vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
bool isTerminator() const
Definition: Instruction.h:129
This class wraps the llvm.memset intrinsic.
BasicBlock * getSuccessor(unsigned i) const
arg_iterator arg_end()
Definition: Function.h:680
static cl::opt< bool > ClCombinePointerLabelsOnStore("dfsan-combine-pointer-labels-on-store", cl::desc("Combine the label of the pointer with the label of the data when " "storing in memory."), cl::Hidden, cl::init(false))
Metadata node.
Definition: Metadata.h:864
F(f)
param_iterator param_end() const
Definition: DerivedTypes.h:129
An instruction for reading from memory.
Definition: Instructions.h:168
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:177
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
void addAttribute(unsigned i, Attribute::AttrKind Kind)
adds the attribute to the list of attributes.
Definition: InstrTypes.h:1261
Value * getLength() const
INITIALIZE_PASS(DataFlowSanitizer, "dfsan", "DataFlowSanitizer: dynamic data flow analysis.", false, false) ModulePass *llvm
static PointerType * getInt64PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:232
static std::unique_ptr< SpecialCaseList > createOrDie(const std::vector< std::string > &Paths)
Parses the special case list entries from files.
void eraseFromParent()
eraseFromParent - This method unlinks &#39;this&#39; from the containing module and deletes it...
Definition: Globals.cpp:456
block_iterator block_end()
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
StoreInst * CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align, bool isVolatile=false)
Definition: IRBuilder.h:1430
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:269
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Split the edge connecting specified block.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, Instruction *InsertBefore=nullptr)
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1135
static cl::opt< bool > ClArgsABI("dfsan-args-abi", cl::desc("Use the argument ABI rather than the TLS ABI"), cl::Hidden)
The address of a basic block.
Definition: Constants.h:840
Definition: BitVector.h:938
This class represents the LLVM &#39;select&#39; instruction.
Type * getPointerElementType() const
Definition: Type.h:376
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
Class to represent struct types.
Definition: DerivedTypes.h:201
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:244
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:652
IterTy arg_end() const
Definition: CallSite.h:575
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
This file contains the simple types necessary to represent the attributes associated with functions a...
AttributeSet getRetAttributes() const
The attributes for the ret value are returned.
InstrTy * getInstruction() const
Definition: CallSite.h:92
void setModuleInlineAsm(StringRef Asm)
Set the module-scope inline assembly blocks.
Definition: Module.h:287
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:285
unsigned getDestAlignment() const
block_iterator block_begin()
static StructType * get(LLVMContext &Context, ArrayRef< Type *> Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:342
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1386
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1727
ValTy * getCalledValue() const
Return the pointer to function that is being called.
Definition: CallSite.h:100
Key
PAL metadata keys.
Class to represent function types.
Definition: DerivedTypes.h:103
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1732
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
LLVM_NODISCARD AttributeList removeAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &AttrsToRemove) const
Remove the specified attributes at the specified index from this attribute list.
ArchType getArch() const
getArch - Get the parsed architecture type of this triple.
Definition: Triple.h:290
Class to represent array types.
Definition: DerivedTypes.h:369
AttributeSet getParamAttributes(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
bool isVarArg() const
Definition: DerivedTypes.h:123
BasicBlock * getBasicBlock() const
Definition: Constants.h:867
An instruction for storing to memory.
Definition: Instructions.h:321
LinkageTypes getLinkage() const
Definition: GlobalValue.h:451
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
iterator begin()
Definition: Function.h:656
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
Value * getOperand(unsigned i) const
Definition: User.h:170
Class to represent pointers.
Definition: DerivedTypes.h:467
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1182
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:176
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1773
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:141
const BasicBlock & getEntryBlock() const
Definition: Function.h:640
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:854
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:750
void setAttributes(AttributeList PAL)
Set the parameter attributes of the call.
Definition: CallSite.h:333
Same, but only replaced by something equivalent.
Definition: GlobalValue.h:52
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
This instruction inserts a single (scalar) element into a VectorType value.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:136
Value * getCalledValue() const
Definition: InstrTypes.h:1174
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
Conditional or Unconditional Branch instruction.
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1434
This function has undefined behavior.
This is an important base class in LLVM.
Definition: Constant.h:42
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition: Function.cpp:484
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const Instruction & front() const
Definition: BasicBlock.h:281
static const char *const kDFSanExternShadowPtrMask
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:139
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
param_iterator param_begin() const
Definition: DerivedTypes.h:128
void addAttribute(unsigned i, Attribute::AttrKind Kind)
adds the attribute to the list of attributes.
Definition: Function.cpp:368
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:161
void splice(iterator where, iplist_impl &L2)
Definition: ilist.h:329
static cl::opt< bool > ClDebugNonzeroLabels("dfsan-debug-nonzero-labels", cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " "load or return with a nonzero label"), cl::Hidden)
unsigned getAddressSpace() const
Definition: Globals.cpp:111
void setCallingConv(CallingConv::ID CC)
Definition: InstrTypes.h:1229
void setCallingConv(CallingConv::ID CC)
Set the calling convention of the call.
Definition: CallSite.h:316
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
size_t arg_size() const
Definition: Function.h:698
Value * getPointerOperand()
Definition: Instructions.h:285
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:100
arg_iterator arg_begin()
Definition: Function.h:671
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1839
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
self_iterator getIterator()
Definition: ilist_node.h:82
Class to represent integer types.
Definition: DerivedTypes.h:40
void setAlignment(unsigned Align)
const Value * getCondition() const
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
size_t size() const
Definition: SmallVector.h:53
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:220
const std::string & getModuleIdentifier() const
Get the module identifier which is, essentially, the name of the module.
Definition: Module.h:210
MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight)
Return metadata containing two branch weights.
Definition: MDBuilder.cpp:38
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1048
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1655
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
ConstantInt * getVolatileCst() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * CreateGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1458
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
Definition: InstrTypes.h:1275
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:192
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the generic address space (address sp...
Definition: DerivedTypes.h:482
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
ValTy * getArgument(unsigned ArgNo) const
Definition: CallSite.h:186
iterator end()
Definition: BasicBlock.h:271
IterTy arg_begin() const
Definition: CallSite.h:571
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Module.h This file contains the declarations for the Module class.
Value * CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2054
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
Type * getReturnType() const
Definition: DerivedTypes.h:124
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.cpp:636
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
std::string utostr(uint64_t X, bool isNeg=false)
Definition: StringExtras.h:224
unsigned getNumIncomingValues() const
Return the number of incoming edges.
BBTy * getParent() const
Get the basic block containing the call site.
Definition: CallSite.h:97
void setLinkage(LinkageTypes LT)
Definition: GlobalValue.h:445
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
The access may modify the value stored in memory.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:941
static cl::opt< bool > ClPreserveAlignment("dfsan-preserve-alignment", cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, cl::init(false))
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:164
Class to represent vector types.
Definition: DerivedTypes.h:393
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
unsigned getNumAttrSets() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:48
iterator_range< user_iterator > users()
Definition: Value.h:400
static void DFS(BasicBlock *Root, SetVector< BasicBlock *> &Set)
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1103
const Value * getFalseValue() const
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:394
Instruction * SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
void removeAttributes(unsigned i, const AttrBuilder &Attrs)
removes the attributes from the list of attributes.
Definition: Function.cpp:416
This class wraps the llvm.memcpy/memmove intrinsics.
unsigned getAlignment() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:241
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
static cl::opt< bool > ClCombinePointerLabelsOnLoad("dfsan-combine-pointer-labels-on-load", cl::desc("Combine the label of the pointer with the label of the data when " "loading from memory."), cl::Hidden, cl::init(true))
Value * CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name="")
Definition: IRBuilder.h:1595
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
const NodeList & List
Definition: RDFGraph.cpp:210
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
user_iterator_impl< User > user_iterator
Definition: Value.h:369
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:225
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:581
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1248
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
Type * getValueType() const
Definition: GlobalValue.h:276
This instruction extracts a single (scalar) element from a VectorType value.
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:633
uint32_t Size
Definition: Profile.cpp:47
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value *> Args=None, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1974
void eraseFromParent()
eraseFromParent - This method unlinks &#39;this&#39; from the containing module and deletes it...
Definition: Function.cpp:214
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:408
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
unsigned getAlignment() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:366
static StringRef GetGlobalTypeString(const GlobalValue &G)
Type * getType() const
Return the type of the instruction that generated this call site.
Definition: CallSite.h:264
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1164
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1722
const std::string & getModuleInlineAsm() const
Get any module-scope inline assembly blocks.
Definition: Module.h:248
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:206
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
void GetUnderlyingObjects(Value *V, SmallVectorImpl< Value *> &Objects, const DataLayout &DL, LoopInfo *LI=nullptr, unsigned MaxLookup=6)
This method is similar to GetUnderlyingObject except that it can look through phi and select instruct...
iterator_range< df_iterator< T > > depth_first(const T &G)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:376
aarch64 promote const
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
uint64_t getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type...
Definition: DataLayout.h:419
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional &#39;br label X&#39; instruction.
Definition: IRBuilder.h:848
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:606
AttrBuilder typeIncompatible(Type *Ty)
Which attributes cannot be applied to a type.
AttributeSet getFnAttributes() const
The function attributes are returned.
ModulePass * createDataFlowSanitizerPass(const std::vector< std::string > &ABIListFiles=std::vector< std::string >(), void *(*getArgTLS)()=nullptr, void *(*getRetValTLS)()=nullptr)
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1124
Invoke instruction.
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it...
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
AttributeList getAttributes() const
Get the parameter attributes of the call.
Definition: CallSite.h:329
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2091
Value * getPointerOperand()
Definition: Instructions.h:413
void setCalledFunction(Value *V)
Set the callee to the specified value.
Definition: CallSite.h:126
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:274
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute >> Attrs)
Create an AttributeList with the specified parameters in it.
Definition: Attributes.cpp:873
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
This instruction inserts a struct field of array element value into an aggregate value.
user_iterator user_end()
Definition: Value.h:384