LLVM  8.0.1
AMDGPUPerfHintAnalysis.cpp
Go to the documentation of this file.
1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Analyzes if a function potentially memory bound and if a kernel
12 /// kernel may benefit from limiting number of waves to reduce cache thrashing.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUPerfHintAnalysis.h"
18 #include "Utils/AMDGPUBaseInfo.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ValueMap.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "amdgpu-perf-hint"
35 
36 static cl::opt<unsigned>
37  MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
38  cl::desc("Function mem bound threshold in %"));
39 
40 static cl::opt<unsigned>
41  LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
42  cl::desc("Kernel limit wave threshold in %"));
43 
44 static cl::opt<unsigned>
45  IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
46  cl::desc("Indirect access memory instruction weight"));
47 
48 static cl::opt<unsigned>
49  LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
50  cl::desc("Large stride memory access weight"));
51 
52 static cl::opt<unsigned>
53  LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
54  cl::desc("Large stride memory access threshold"));
55 
56 STATISTIC(NumMemBound, "Number of functions marked as memory bound");
57 STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
58 
61 
63  "Analysis if a function is memory bound", true, true)
64 
65 namespace {
66 
67 struct AMDGPUPerfHint {
69 
70 public:
71  AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
72  const TargetLowering *TLI_)
73  : FIM(FIM_), DL(nullptr), TLI(TLI_) {}
74 
75  void runOnFunction(Function &F);
76 
77 private:
78  struct MemAccessInfo {
79  const Value *V;
80  const Value *Base;
81  int64_t Offset;
82  MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {}
83  bool isLargeStride(MemAccessInfo &Reference) const;
84 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
85  Printable print() const {
86  return Printable([this](raw_ostream &OS) {
87  OS << "Value: " << *V << '\n'
88  << "Base: " << *Base << " Offset: " << Offset << '\n';
89  });
90  }
91 #endif
92  };
93 
94  MemAccessInfo makeMemAccessInfo(Instruction *) const;
95 
96  MemAccessInfo LastAccess; // Last memory access info
97 
99 
100  const DataLayout *DL;
101 
102  const TargetLowering *TLI;
103 
104  void visit(const Function &F);
105  static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
106  static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
107 
108  bool isIndirectAccess(const Instruction *Inst) const;
109 
110  /// Check if the instruction is large stride.
111  /// The purpose is to identify memory access pattern like:
112  /// x = a[i];
113  /// y = a[i+1000];
114  /// z = a[i+2000];
115  /// In the above example, the second and third memory access will be marked
116  /// large stride memory access.
117  bool isLargeStride(const Instruction *Inst);
118 
119  bool isGlobalAddr(const Value *V) const;
120  bool isLocalAddr(const Value *V) const;
121  bool isConstantAddr(const Value *V) const;
122 };
123 
124 static const Value *getMemoryInstrPtr(const Instruction *Inst) {
125  if (auto LI = dyn_cast<LoadInst>(Inst)) {
126  return LI->getPointerOperand();
127  }
128  if (auto SI = dyn_cast<StoreInst>(Inst)) {
129  return SI->getPointerOperand();
130  }
131  if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
132  return AI->getPointerOperand();
133  }
134  if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) {
135  return AI->getPointerOperand();
136  }
137  if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
138  return MI->getRawDest();
139  }
140 
141  return nullptr;
142 }
143 
144 bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
145  LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
148  if (const Value *MO = getMemoryInstrPtr(Inst)) {
149  if (isGlobalAddr(MO))
150  WorkSet.insert(MO);
151  }
152 
153  while (!WorkSet.empty()) {
154  const Value *V = *WorkSet.begin();
155  WorkSet.erase(*WorkSet.begin());
156  if (!Visited.insert(V).second)
157  continue;
158  LLVM_DEBUG(dbgs() << " check: " << *V << '\n');
159 
160  if (auto LD = dyn_cast<LoadInst>(V)) {
161  auto M = LD->getPointerOperand();
162  if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) {
163  LLVM_DEBUG(dbgs() << " is IA\n");
164  return true;
165  }
166  continue;
167  }
168 
169  if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
170  auto P = GEP->getPointerOperand();
171  WorkSet.insert(P);
172  for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
173  WorkSet.insert(GEP->getOperand(I));
174  continue;
175  }
176 
177  if (auto U = dyn_cast<UnaryInstruction>(V)) {
178  WorkSet.insert(U->getOperand(0));
179  continue;
180  }
181 
182  if (auto BO = dyn_cast<BinaryOperator>(V)) {
183  WorkSet.insert(BO->getOperand(0));
184  WorkSet.insert(BO->getOperand(1));
185  continue;
186  }
187 
188  if (auto S = dyn_cast<SelectInst>(V)) {
189  WorkSet.insert(S->getFalseValue());
190  WorkSet.insert(S->getTrueValue());
191  continue;
192  }
193 
194  if (auto E = dyn_cast<ExtractElementInst>(V)) {
195  WorkSet.insert(E->getVectorOperand());
196  continue;
197  }
198 
199  LLVM_DEBUG(dbgs() << " dropped\n");
200  }
201 
202  LLVM_DEBUG(dbgs() << " is not IA\n");
203  return false;
204 }
205 
206 void AMDGPUPerfHint::visit(const Function &F) {
207  auto FIP = FIM.insert(std::make_pair(&F, AMDGPUPerfHintAnalysis::FuncInfo()));
208  if (!FIP.second)
209  return;
210 
211  AMDGPUPerfHintAnalysis::FuncInfo &FI = FIP.first->second;
212 
213  LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
214 
215  for (auto &B : F) {
216  LastAccess = MemAccessInfo();
217  for (auto &I : B) {
218  if (getMemoryInstrPtr(&I)) {
219  if (isIndirectAccess(&I))
220  ++FI.IAMInstCount;
221  if (isLargeStride(&I))
222  ++FI.LSMInstCount;
223  ++FI.MemInstCount;
224  ++FI.InstCount;
225  continue;
226  }
227  CallSite CS(const_cast<Instruction *>(&I));
228  if (CS) {
230  if (!Callee || Callee->isDeclaration()) {
231  ++FI.InstCount;
232  continue;
233  }
234  if (&F == Callee) // Handle immediate recursion
235  continue;
236 
237  visit(*Callee);
238  auto Loc = FIM.find(Callee);
239 
240  assert(Loc != FIM.end() && "No func info");
241  FI.MemInstCount += Loc->second.MemInstCount;
242  FI.InstCount += Loc->second.InstCount;
243  FI.IAMInstCount += Loc->second.IAMInstCount;
244  FI.LSMInstCount += Loc->second.LSMInstCount;
245  } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
247  auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
248  AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
249  AM.HasBaseReg = !AM.BaseGV;
250  if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
251  GEP->getPointerAddressSpace()))
252  // Offset will likely be folded into load or store
253  continue;
254  ++FI.InstCount;
255  } else {
256  ++FI.InstCount;
257  }
258  }
259  }
260 }
261 
263  if (FIM.find(&F) != FIM.end())
264  return;
265 
266  const Module &M = *F.getParent();
267  DL = &M.getDataLayout();
268 
269  visit(F);
270  auto Loc = FIM.find(&F);
271 
272  assert(Loc != FIM.end() && "No func info");
273  LLVM_DEBUG(dbgs() << F.getName() << " MemInst: " << Loc->second.MemInstCount
274  << '\n'
275  << " IAMInst: " << Loc->second.IAMInstCount << '\n'
276  << " LSMInst: " << Loc->second.LSMInstCount << '\n'
277  << " TotalInst: " << Loc->second.InstCount << '\n');
278 
279  auto &FI = Loc->second;
280 
281  if (isMemBound(FI)) {
282  LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
283  NumMemBound++;
284  }
285 
286  if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(FI)) {
287  LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
288  NumLimitWave++;
289  }
290 }
291 
292 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
293  return FI.MemInstCount * 100 / FI.InstCount > MemBoundThresh;
294 }
295 
296 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
297  return ((FI.MemInstCount + FI.IAMInstCount * IAWeight +
298  FI.LSMInstCount * LSWeight) *
299  100 / FI.InstCount) > LimitWaveThresh;
300 }
301 
302 bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
303  if (auto PT = dyn_cast<PointerType>(V->getType())) {
304  unsigned As = PT->getAddressSpace();
305  // Flat likely points to global too.
306  return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS;
307  }
308  return false;
309 }
310 
311 bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
312  if (auto PT = dyn_cast<PointerType>(V->getType()))
313  return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
314  return false;
315 }
316 
317 bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
318  LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
319 
320  MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
321  bool IsLargeStride = MAI.isLargeStride(LastAccess);
322  if (MAI.Base)
323  LastAccess = std::move(MAI);
324 
325  return IsLargeStride;
326 }
327 
328 AMDGPUPerfHint::MemAccessInfo
329 AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
330  MemAccessInfo MAI;
331  const Value *MO = getMemoryInstrPtr(Inst);
332 
333  LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
334  // Do not treat local-addr memory access as large stride.
335  if (isLocalAddr(MO))
336  return MAI;
337 
338  MAI.V = MO;
339  MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
340  return MAI;
341 }
342 
343 bool AMDGPUPerfHint::isConstantAddr(const Value *V) const {
344  if (auto PT = dyn_cast<PointerType>(V->getType())) {
345  unsigned As = PT->getAddressSpace();
346  return As == AMDGPUAS::CONSTANT_ADDRESS ||
348  }
349  return false;
350 }
351 
352 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
353  MemAccessInfo &Reference) const {
354 
355  if (!Base || !Reference.Base || Base != Reference.Base)
356  return false;
357 
358  uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
359  : Reference.Offset - Offset;
360  bool Result = Diff > LargeStrideThresh;
361  LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
362  << print() << "<=>\n"
363  << Reference.print() << "Result:" << Result << '\n');
364  return Result;
365 }
366 } // namespace
367 
369  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
370  if (!TPC)
371  return false;
372 
373  const TargetMachine &TM = TPC->getTM<TargetMachine>();
374  const TargetSubtargetInfo *ST = TM.getSubtargetImpl(F);
375 
376  AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
377  Analyzer.runOnFunction(F);
378  return false;
379 }
380 
382  auto FI = FIM.find(F);
383  if (FI == FIM.end())
384  return false;
385 
386  return AMDGPUPerfHint::isMemBound(FI->second);
387 }
388 
390  auto FI = FIM.find(F);
391  if (FI == FIM.end())
392  return false;
393 
394  return AMDGPUPerfHint::needLimitWave(FI->second);
395 }
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg If BaseGV is null...
This class represents lattice values for constants.
Definition: AllocatorList.h:24
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
bool needsWaveLimiter(const Function *F) const
static cl::opt< unsigned > LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden, cl::desc("Kernel limit wave threshold in %"))
Address space for 32-bit constant memory.
Definition: AMDGPU.h:263
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass...
STATISTIC(NumFunctions, "Total number of functions")
F(f)
Hexagon Common GEP
bool erase(const T &V)
Definition: SmallSet.h:208
LLVM_NODISCARD bool empty() const
Definition: SmallSet.h:156
const_iterator begin() const
Definition: SmallSet.h:224
Address space for constant memory (VTX2)
Definition: AMDGPU.h:259
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset...
static cl::opt< unsigned > LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden, cl::desc("Large stride memory access weight"))
static cl::opt< unsigned > LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden, cl::desc("Large stride memory access threshold"))
amdgpu Simplify well known AMD library false Value * Callee
static bool runOnFunction(Function &F, bool PostInlining)
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:423
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Address space for flat memory.
Definition: AMDGPU.h:255
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isEntryFunctionCC(CallingConv::ID CC)
char & AMDGPUPerfHintAnalysisID
Address space for local memory.
Definition: AMDGPU.h:260
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static cl::opt< unsigned > IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden, cl::desc("Indirect access memory instruction weight"))
INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE, "Analysis if a function is memory bound", true, true) namespace
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:181
Address space for global memory (RAT0, VTX0).
Definition: AMDGPU.h:256
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:213
static cl::opt< unsigned > MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden, cl::desc("Function mem bound threshold in %"))
Module.h This file contains the declarations for the Module class.
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target&#39;s TargetSubtargetInf...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
#define DEBUG_TYPE
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isMemoryBound(const Function *F) const
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
#define I(x, y, z)
Definition: MD5.cpp:58
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:206
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
IRTranslator LLVM IR MI
Simple wrapper around std::function<void(raw_ostream&)>.
Definition: Printable.h:38
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Analyzes if a function potentially memory bound and if a kernel kernel may benefit from limiting numb...
This file describes how to lower LLVM code to machine code.