LLVM  8.0.1
ValueMapper.cpp
Go to the documentation of this file.
1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include <cassert>
43 #include <limits>
44 #include <memory>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 // Out of line method to get vtable etc for class.
50 void ValueMapTypeRemapper::anchor() {}
51 void ValueMaterializer::anchor() {}
52 
53 namespace {
54 
55 /// A basic block used in a BlockAddress whose function body is not yet
56 /// materialized.
57 struct DelayedBasicBlock {
58  BasicBlock *OldBB;
59  std::unique_ptr<BasicBlock> TempBB;
60 
61  DelayedBasicBlock(const BlockAddress &Old)
62  : OldBB(Old.getBasicBlock()),
63  TempBB(BasicBlock::Create(Old.getContext())) {}
64 };
65 
66 struct WorklistEntry {
67  enum EntryKind {
68  MapGlobalInit,
69  MapAppendingVar,
70  MapGlobalAliasee,
72  };
73  struct GVInitTy {
74  GlobalVariable *GV;
75  Constant *Init;
76  };
77  struct AppendingGVTy {
78  GlobalVariable *GV;
79  Constant *InitPrefix;
80  };
81  struct GlobalAliaseeTy {
82  GlobalAlias *GA;
83  Constant *Aliasee;
84  };
85 
86  unsigned Kind : 2;
87  unsigned MCID : 29;
88  unsigned AppendingGVIsOldCtorDtor : 1;
89  unsigned AppendingGVNumNewMembers;
90  union {
91  GVInitTy GVInit;
92  AppendingGVTy AppendingGV;
93  GlobalAliaseeTy GlobalAliasee;
94  Function *RemapF;
95  } Data;
96 };
97 
98 struct MappingContext {
100  ValueMaterializer *Materializer = nullptr;
101 
102  /// Construct a MappingContext with a value map and materializer.
103  explicit MappingContext(ValueToValueMapTy &VM,
104  ValueMaterializer *Materializer = nullptr)
105  : VM(&VM), Materializer(Materializer) {}
106 };
107 
108 class Mapper {
109  friend class MDNodeMapper;
110 
111 #ifndef NDEBUG
112  DenseSet<GlobalValue *> AlreadyScheduled;
113 #endif
114 
115  RemapFlags Flags;
116  ValueMapTypeRemapper *TypeMapper;
117  unsigned CurrentMCID = 0;
121  SmallVector<Constant *, 16> AppendingInits;
122 
123 public:
124  Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
125  ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
126  : Flags(Flags), TypeMapper(TypeMapper),
127  MCs(1, MappingContext(VM, Materializer)) {}
128 
129  /// ValueMapper should explicitly call \a flush() before destruction.
130  ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
131 
132  bool hasWorkToDo() const { return !Worklist.empty(); }
133 
134  unsigned
135  registerAlternateMappingContext(ValueToValueMapTy &VM,
136  ValueMaterializer *Materializer = nullptr) {
137  MCs.push_back(MappingContext(VM, Materializer));
138  return MCs.size() - 1;
139  }
140 
141  void addFlags(RemapFlags Flags);
142 
143  void remapGlobalObjectMetadata(GlobalObject &GO);
144 
145  Value *mapValue(const Value *V);
147  void remapFunction(Function &F);
148 
149  Constant *mapConstant(const Constant *C) {
150  return cast_or_null<Constant>(mapValue(C));
151  }
152 
153  /// Map metadata.
154  ///
155  /// Find the mapping for MD. Guarantees that the return will be resolved
156  /// (not an MDNode, or MDNode::isResolved() returns true).
157  Metadata *mapMetadata(const Metadata *MD);
158 
159  void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
160  unsigned MCID);
161  void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
162  bool IsOldCtorDtor,
163  ArrayRef<Constant *> NewMembers,
164  unsigned MCID);
165  void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
166  unsigned MCID);
167  void scheduleRemapFunction(Function &F, unsigned MCID);
168 
169  void flush();
170 
171 private:
172  void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
173  void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
174  bool IsOldCtorDtor,
175  ArrayRef<Constant *> NewMembers);
176  void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
177  void remapFunction(Function &F, ValueToValueMapTy &VM);
178 
179  ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
180  ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
181 
182  Value *mapBlockAddress(const BlockAddress &BA);
183 
184  /// Map metadata that doesn't require visiting operands.
185  Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
186 
187  Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
188  Metadata *mapToSelf(const Metadata *MD);
189 };
190 
191 class MDNodeMapper {
192  Mapper &M;
193 
194  /// Data about a node in \a UniquedGraph.
195  struct Data {
196  bool HasChanged = false;
198  TempMDNode Placeholder;
199  };
200 
201  /// A graph of uniqued nodes.
202  struct UniquedGraph {
204  SmallVector<MDNode *, 16> POT; // Post-order traversal.
205 
206  /// Propagate changed operands through the post-order traversal.
207  ///
208  /// Iteratively update \a Data::HasChanged for each node based on \a
209  /// Data::HasChanged of its operands, until fixed point.
210  void propagateChanges();
211 
212  /// Get a forward reference to a node to use as an operand.
213  Metadata &getFwdReference(MDNode &Op);
214  };
215 
216  /// Worklist of distinct nodes whose operands need to be remapped.
217  SmallVector<MDNode *, 16> DistinctWorklist;
218 
219  // Storage for a UniquedGraph.
221  SmallVector<MDNode *, 16> POTStorage;
222 
223 public:
224  MDNodeMapper(Mapper &M) : M(M) {}
225 
226  /// Map a metadata node (and its transitive operands).
227  ///
228  /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
229  /// algorithm handles distinct nodes and uniqued node subgraphs using
230  /// different strategies.
231  ///
232  /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
233  /// using \a mapDistinctNode(). Their mapping can always be computed
234  /// immediately without visiting operands, even if their operands change.
235  ///
236  /// The mapping for uniqued nodes depends on whether their operands change.
237  /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
238  /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
239  /// added to \a DistinctWorklist with \a mapDistinctNode().
240  ///
241  /// After mapping \c N itself, this function remaps the operands of the
242  /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
243  /// N has been mapped.
244  Metadata *map(const MDNode &N);
245 
246 private:
247  /// Map a top-level uniqued node and the uniqued subgraph underneath it.
248  ///
249  /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
250  /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
251  /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
252  /// operands uses the identity mapping.
253  ///
254  /// The algorithm works as follows:
255  ///
256  /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
257  /// save the post-order traversal in the given \a UniquedGraph, tracking
258  /// nodes' operands change.
259  ///
260  /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
261  /// through the \a UniquedGraph until fixed point, following the rule
262  /// that if a node changes, any node that references must also change.
263  ///
264  /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
265  /// (referencing new operands) where necessary.
266  Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
267 
268  /// Try to map the operand of an \a MDNode.
269  ///
270  /// If \c Op is already mapped, return the mapping. If it's not an \a
271  /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
272  /// return the result of \a mapDistinctNode().
273  ///
274  /// \return None if \c Op is an unmapped uniqued \a MDNode.
275  /// \post getMappedOp(Op) only returns None if this returns None.
276  Optional<Metadata *> tryToMapOperand(const Metadata *Op);
277 
278  /// Map a distinct node.
279  ///
280  /// Return the mapping for the distinct node \c N, saving the result in \a
281  /// DistinctWorklist for later remapping.
282  ///
283  /// \pre \c N is not yet mapped.
284  /// \pre \c N.isDistinct().
285  MDNode *mapDistinctNode(const MDNode &N);
286 
287  /// Get a previously mapped node.
289 
290  /// Create a post-order traversal of an unmapped uniqued node subgraph.
291  ///
292  /// This traverses the metadata graph deeply enough to map \c FirstN. It
293  /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
294  /// metadata that has already been mapped will not be part of the POT.
295  ///
296  /// Each node that has a changed operand from outside the graph (e.g., a
297  /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
298  /// is marked with \a Data::HasChanged.
299  ///
300  /// \return \c true if any nodes in \c G have \a Data::HasChanged.
301  /// \post \c G.POT is a post-order traversal ending with \c FirstN.
302  /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
303  /// to change because of operands outside the graph.
304  bool createPOT(UniquedGraph &G, const MDNode &FirstN);
305 
306  /// Visit the operands of a uniqued node in the POT.
307  ///
308  /// Visit the operands in the range from \c I to \c E, returning the first
309  /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
310  /// where to continue the loop through the operands.
311  ///
312  /// This sets \c HasChanged if any of the visited operands change.
313  MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
314  MDNode::op_iterator E, bool &HasChanged);
315 
316  /// Map all the nodes in the given uniqued graph.
317  ///
318  /// This visits all the nodes in \c G in post-order, using the identity
319  /// mapping or creating a new node depending on \a Data::HasChanged.
320  ///
321  /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
322  /// their operands outside of \c G.
323  /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
324  /// operands have changed.
325  /// \post \a getMappedOp() returns the mapped node for every node in \c G.
326  void mapNodesInPOT(UniquedGraph &G);
327 
328  /// Remap a node's operands using the given functor.
329  ///
330  /// Iterate through the operands of \c N and update them in place using \c
331  /// mapOperand.
332  ///
333  /// \pre N.isDistinct() or N.isTemporary().
334  template <class OperandMapper>
335  void remapOperands(MDNode &N, OperandMapper mapOperand);
336 };
337 
338 } // end anonymous namespace
339 
340 Value *Mapper::mapValue(const Value *V) {
341  ValueToValueMapTy::iterator I = getVM().find(V);
342 
343  // If the value already exists in the map, use it.
344  if (I != getVM().end()) {
345  assert(I->second && "Unexpected null mapping");
346  return I->second;
347  }
348 
349  // If we have a materializer and it can materialize a value, use that.
350  if (auto *Materializer = getMaterializer()) {
351  if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
352  getVM()[V] = NewV;
353  return NewV;
354  }
355  }
356 
357  // Global values do not need to be seeded into the VM if they
358  // are using the identity mapping.
359  if (isa<GlobalValue>(V)) {
360  if (Flags & RF_NullMapMissingGlobalValues)
361  return nullptr;
362  return getVM()[V] = const_cast<Value *>(V);
363  }
364 
365  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
366  // Inline asm may need *type* remapping.
367  FunctionType *NewTy = IA->getFunctionType();
368  if (TypeMapper) {
369  NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
370 
371  if (NewTy != IA->getFunctionType())
372  V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
373  IA->hasSideEffects(), IA->isAlignStack());
374  }
375 
376  return getVM()[V] = const_cast<Value *>(V);
377  }
378 
379  if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
380  const Metadata *MD = MDV->getMetadata();
381 
382  if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
383  // Look through to grab the local value.
384  if (Value *LV = mapValue(LAM->getValue())) {
385  if (V == LAM->getValue())
386  return const_cast<Value *>(V);
388  }
389 
390  // FIXME: always return nullptr once Verifier::verifyDominatesUse()
391  // ensures metadata operands only reference defined SSA values.
392  return (Flags & RF_IgnoreMissingLocals)
393  ? nullptr
395  MDTuple::get(V->getContext(), None));
396  }
397 
398  // If this is a module-level metadata and we know that nothing at the module
399  // level is changing, then use an identity mapping.
400  if (Flags & RF_NoModuleLevelChanges)
401  return getVM()[V] = const_cast<Value *>(V);
402 
403  // Map the metadata and turn it into a value.
404  auto *MappedMD = mapMetadata(MD);
405  if (MD == MappedMD)
406  return getVM()[V] = const_cast<Value *>(V);
407  return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
408  }
409 
410  // Okay, this either must be a constant (which may or may not be mappable) or
411  // is something that is not in the mapping table.
412  Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
413  if (!C)
414  return nullptr;
415 
416  if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
417  return mapBlockAddress(*BA);
418 
419  auto mapValueOrNull = [this](Value *V) {
420  auto Mapped = mapValue(V);
421  assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
422  "Unexpected null mapping for constant operand without "
423  "NullMapMissingGlobalValues flag");
424  return Mapped;
425  };
426 
427  // Otherwise, we have some other constant to remap. Start by checking to see
428  // if all operands have an identity remapping.
429  unsigned OpNo = 0, NumOperands = C->getNumOperands();
430  Value *Mapped = nullptr;
431  for (; OpNo != NumOperands; ++OpNo) {
432  Value *Op = C->getOperand(OpNo);
433  Mapped = mapValueOrNull(Op);
434  if (!Mapped)
435  return nullptr;
436  if (Mapped != Op)
437  break;
438  }
439 
440  // See if the type mapper wants to remap the type as well.
441  Type *NewTy = C->getType();
442  if (TypeMapper)
443  NewTy = TypeMapper->remapType(NewTy);
444 
445  // If the result type and all operands match up, then just insert an identity
446  // mapping.
447  if (OpNo == NumOperands && NewTy == C->getType())
448  return getVM()[V] = C;
449 
450  // Okay, we need to create a new constant. We've already processed some or
451  // all of the operands, set them all up now.
453  Ops.reserve(NumOperands);
454  for (unsigned j = 0; j != OpNo; ++j)
455  Ops.push_back(cast<Constant>(C->getOperand(j)));
456 
457  // If one of the operands mismatch, push it and the other mapped operands.
458  if (OpNo != NumOperands) {
459  Ops.push_back(cast<Constant>(Mapped));
460 
461  // Map the rest of the operands that aren't processed yet.
462  for (++OpNo; OpNo != NumOperands; ++OpNo) {
463  Mapped = mapValueOrNull(C->getOperand(OpNo));
464  if (!Mapped)
465  return nullptr;
466  Ops.push_back(cast<Constant>(Mapped));
467  }
468  }
469  Type *NewSrcTy = nullptr;
470  if (TypeMapper)
471  if (auto *GEPO = dyn_cast<GEPOperator>(C))
472  NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
473 
474  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
475  return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
476  if (isa<ConstantArray>(C))
477  return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
478  if (isa<ConstantStruct>(C))
479  return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
480  if (isa<ConstantVector>(C))
481  return getVM()[V] = ConstantVector::get(Ops);
482  // If this is a no-operand constant, it must be because the type was remapped.
483  if (isa<UndefValue>(C))
484  return getVM()[V] = UndefValue::get(NewTy);
485  if (isa<ConstantAggregateZero>(C))
486  return getVM()[V] = ConstantAggregateZero::get(NewTy);
487  assert(isa<ConstantPointerNull>(C));
488  return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
489 }
490 
491 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
492  Function *F = cast<Function>(mapValue(BA.getFunction()));
493 
494  // F may not have materialized its initializer. In that case, create a
495  // dummy basic block for now, and replace it once we've materialized all
496  // the initializers.
497  BasicBlock *BB;
498  if (F->empty()) {
499  DelayedBBs.push_back(DelayedBasicBlock(BA));
500  BB = DelayedBBs.back().TempBB.get();
501  } else {
502  BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
503  }
504 
505  return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
506 }
507 
508 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
509  getVM().MD()[Key].reset(Val);
510  return Val;
511 }
512 
513 Metadata *Mapper::mapToSelf(const Metadata *MD) {
514  return mapToMetadata(MD, const_cast<Metadata *>(MD));
515 }
516 
517 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
518  if (!Op)
519  return nullptr;
520 
521  if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
522 #ifndef NDEBUG
523  if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
524  assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
525  M.getVM().getMappedMD(Op)) &&
526  "Expected Value to be memoized");
527  else
528  assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
529  "Expected result to be memoized");
530 #endif
531  return *MappedOp;
532  }
533 
534  const MDNode &N = *cast<MDNode>(Op);
535  if (N.isDistinct())
536  return mapDistinctNode(N);
537  return None;
538 }
539 
540 static Metadata *cloneOrBuildODR(const MDNode &N) {
541  auto *CT = dyn_cast<DICompositeType>(&N);
542  // If ODR type uniquing is enabled, we would have uniqued composite types
543  // with identifiers during bitcode reading, so we can just use CT.
544  if (CT && CT->getContext().isODRUniquingDebugTypes() &&
545  CT->getIdentifier() != "")
546  return const_cast<DICompositeType *>(CT);
548 }
549 
550 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
551  assert(N.isDistinct() && "Expected a distinct node");
552  assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
553  DistinctWorklist.push_back(
554  cast<MDNode>((M.Flags & RF_MoveDistinctMDs)
555  ? M.mapToSelf(&N)
556  : M.mapToMetadata(&N, cloneOrBuildODR(N))));
557  return DistinctWorklist.back();
558 }
559 
561  Value *MappedV) {
562  if (CMD.getValue() == MappedV)
563  return const_cast<ConstantAsMetadata *>(&CMD);
564  return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
565 }
566 
568  if (!Op)
569  return nullptr;
570 
571  if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
572  return *MappedOp;
573 
574  if (isa<MDString>(Op))
575  return const_cast<Metadata *>(Op);
576 
577  if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
578  return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
579 
580  return None;
581 }
582 
583 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
584  auto Where = Info.find(&Op);
585  assert(Where != Info.end() && "Expected a valid reference");
586 
587  auto &OpD = Where->second;
588  if (!OpD.HasChanged)
589  return Op;
590 
591  // Lazily construct a temporary node.
592  if (!OpD.Placeholder)
593  OpD.Placeholder = Op.clone();
594 
595  return *OpD.Placeholder;
596 }
597 
598 template <class OperandMapper>
599 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
600  assert(!N.isUniqued() && "Expected distinct or temporary nodes");
601  for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
602  Metadata *Old = N.getOperand(I);
603  Metadata *New = mapOperand(Old);
604 
605  if (Old != New)
606  N.replaceOperandWith(I, New);
607  }
608 }
609 
610 namespace {
611 
612 /// An entry in the worklist for the post-order traversal.
613 struct POTWorklistEntry {
614  MDNode *N; ///< Current node.
615  MDNode::op_iterator Op; ///< Current operand of \c N.
616 
617  /// Keep a flag of whether operands have changed in the worklist to avoid
618  /// hitting the map in \a UniquedGraph.
619  bool HasChanged = false;
620 
621  POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
622 };
623 
624 } // end anonymous namespace
625 
626 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
627  assert(G.Info.empty() && "Expected a fresh traversal");
628  assert(FirstN.isUniqued() && "Expected uniqued node in POT");
629 
630  // Construct a post-order traversal of the uniqued subgraph under FirstN.
631  bool AnyChanges = false;
633  Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
634  (void)G.Info[&FirstN];
635  while (!Worklist.empty()) {
636  // Start or continue the traversal through the this node's operands.
637  auto &WE = Worklist.back();
638  if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
639  // Push a new node to traverse first.
640  Worklist.push_back(POTWorklistEntry(*N));
641  continue;
642  }
643 
644  // Push the node onto the POT.
645  assert(WE.N->isUniqued() && "Expected only uniqued nodes");
646  assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
647  auto &D = G.Info[WE.N];
648  AnyChanges |= D.HasChanged = WE.HasChanged;
649  D.ID = G.POT.size();
650  G.POT.push_back(WE.N);
651 
652  // Pop the node off the worklist.
653  Worklist.pop_back();
654  }
655  return AnyChanges;
656 }
657 
658 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
659  MDNode::op_iterator E, bool &HasChanged) {
660  while (I != E) {
661  Metadata *Op = *I++; // Increment even on early return.
662  if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
663  // Check if the operand changes.
664  HasChanged |= Op != *MappedOp;
665  continue;
666  }
667 
668  // A uniqued metadata node.
669  MDNode &OpN = *cast<MDNode>(Op);
670  assert(OpN.isUniqued() &&
671  "Only uniqued operands cannot be mapped immediately");
672  if (G.Info.insert(std::make_pair(&OpN, Data())).second)
673  return &OpN; // This is a new one. Return it.
674  }
675  return nullptr;
676 }
677 
678 void MDNodeMapper::UniquedGraph::propagateChanges() {
679  bool AnyChanges;
680  do {
681  AnyChanges = false;
682  for (MDNode *N : POT) {
683  auto &D = Info[N];
684  if (D.HasChanged)
685  continue;
686 
687  if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
688  auto Where = Info.find(Op);
689  return Where != Info.end() && Where->second.HasChanged;
690  }))
691  continue;
692 
693  AnyChanges = D.HasChanged = true;
694  }
695  } while (AnyChanges);
696 }
697 
698 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
699  // Construct uniqued nodes, building forward references as necessary.
700  SmallVector<MDNode *, 16> CyclicNodes;
701  for (auto *N : G.POT) {
702  auto &D = G.Info[N];
703  if (!D.HasChanged) {
704  // The node hasn't changed.
705  M.mapToSelf(N);
706  continue;
707  }
708 
709  // Remember whether this node had a placeholder.
710  bool HadPlaceholder(D.Placeholder);
711 
712  // Clone the uniqued node and remap the operands.
713  TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
714  remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
715  if (Optional<Metadata *> MappedOp = getMappedOp(Old))
716  return *MappedOp;
717  (void)D;
718  assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
719  return &G.getFwdReference(*cast<MDNode>(Old));
720  });
721 
722  auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
723  M.mapToMetadata(N, NewN);
724 
725  // Nodes that were referenced out of order in the POT are involved in a
726  // uniquing cycle.
727  if (HadPlaceholder)
728  CyclicNodes.push_back(NewN);
729  }
730 
731  // Resolve cycles.
732  for (auto *N : CyclicNodes)
733  if (!N->isResolved())
734  N->resolveCycles();
735 }
736 
737 Metadata *MDNodeMapper::map(const MDNode &N) {
738  assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
739  assert(!(M.Flags & RF_NoModuleLevelChanges) &&
740  "MDNodeMapper::map assumes module-level changes");
741 
742  // Require resolved nodes whenever metadata might be remapped.
743  assert(N.isResolved() && "Unexpected unresolved node");
744 
745  Metadata *MappedN =
746  N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
747  while (!DistinctWorklist.empty())
748  remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
749  if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
750  return *MappedOp;
751  return mapTopLevelUniquedNode(*cast<MDNode>(Old));
752  });
753  return MappedN;
754 }
755 
756 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
757  assert(FirstN.isUniqued() && "Expected uniqued node");
758 
759  // Create a post-order traversal of uniqued nodes under FirstN.
760  UniquedGraph G;
761  if (!createPOT(G, FirstN)) {
762  // Return early if no nodes have changed.
763  for (const MDNode *N : G.POT)
764  M.mapToSelf(N);
765  return &const_cast<MDNode &>(FirstN);
766  }
767 
768  // Update graph with all nodes that have changed.
769  G.propagateChanges();
770 
771  // Map all the nodes in the graph.
772  mapNodesInPOT(G);
773 
774  // Return the original node, remapped.
775  return *getMappedOp(&FirstN);
776 }
777 
778 namespace {
779 
780 struct MapMetadataDisabler {
781  ValueToValueMapTy &VM;
782 
783  MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
784  VM.disableMapMetadata();
785  }
786 
787  ~MapMetadataDisabler() { VM.enableMapMetadata(); }
788 };
789 
790 } // end anonymous namespace
791 
792 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
793  // If the value already exists in the map, use it.
794  if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
795  return *NewMD;
796 
797  if (isa<MDString>(MD))
798  return const_cast<Metadata *>(MD);
799 
800  // This is a module-level metadata. If nothing at the module level is
801  // changing, use an identity mapping.
802  if ((Flags & RF_NoModuleLevelChanges))
803  return const_cast<Metadata *>(MD);
804 
805  if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
806  // Disallow recursion into metadata mapping through mapValue.
807  MapMetadataDisabler MMD(getVM());
808 
809  // Don't memoize ConstantAsMetadata. Instead of lasting until the
810  // LLVMContext is destroyed, they can be deleted when the GlobalValue they
811  // reference is destructed. These aren't super common, so the extra
812  // indirection isn't that expensive.
813  return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
814  }
815 
816  assert(isa<MDNode>(MD) && "Expected a metadata node");
817 
818  return None;
819 }
820 
821 Metadata *Mapper::mapMetadata(const Metadata *MD) {
822  assert(MD && "Expected valid metadata");
823  assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
824 
825  if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
826  return *NewMD;
827 
828  return MDNodeMapper(*this).map(*cast<MDNode>(MD));
829 }
830 
831 void Mapper::flush() {
832  // Flush out the worklist of global values.
833  while (!Worklist.empty()) {
834  WorklistEntry E = Worklist.pop_back_val();
835  CurrentMCID = E.MCID;
836  switch (E.Kind) {
837  case WorklistEntry::MapGlobalInit:
838  E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
839  remapGlobalObjectMetadata(*E.Data.GVInit.GV);
840  break;
841  case WorklistEntry::MapAppendingVar: {
842  unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
843  mapAppendingVariable(*E.Data.AppendingGV.GV,
844  E.Data.AppendingGV.InitPrefix,
845  E.AppendingGVIsOldCtorDtor,
846  makeArrayRef(AppendingInits).slice(PrefixSize));
847  AppendingInits.resize(PrefixSize);
848  break;
849  }
850  case WorklistEntry::MapGlobalAliasee:
851  E.Data.GlobalAliasee.GA->setAliasee(
852  mapConstant(E.Data.GlobalAliasee.Aliasee));
853  break;
855  remapFunction(*E.Data.RemapF);
856  break;
857  }
858  }
859  CurrentMCID = 0;
860 
861  // Finish logic for block addresses now that all global values have been
862  // handled.
863  while (!DelayedBBs.empty()) {
864  DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
865  BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
866  DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
867  }
868 }
869 
871  // Remap operands.
872  for (Use &Op : I->operands()) {
873  Value *V = mapValue(Op);
874  // If we aren't ignoring missing entries, assert that something happened.
875  if (V)
876  Op = V;
877  else
878  assert((Flags & RF_IgnoreMissingLocals) &&
879  "Referenced value not in value map!");
880  }
881 
882  // Remap phi nodes' incoming blocks.
883  if (PHINode *PN = dyn_cast<PHINode>(I)) {
884  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
885  Value *V = mapValue(PN->getIncomingBlock(i));
886  // If we aren't ignoring missing entries, assert that something happened.
887  if (V)
888  PN->setIncomingBlock(i, cast<BasicBlock>(V));
889  else
890  assert((Flags & RF_IgnoreMissingLocals) &&
891  "Referenced block not in value map!");
892  }
893  }
894 
895  // Remap attached metadata.
897  I->getAllMetadata(MDs);
898  for (const auto &MI : MDs) {
899  MDNode *Old = MI.second;
900  MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
901  if (New != Old)
902  I->setMetadata(MI.first, New);
903  }
904 
905  if (!TypeMapper)
906  return;
907 
908  // If the instruction's type is being remapped, do so now.
909  if (auto CS = CallSite(I)) {
911  FunctionType *FTy = CS.getFunctionType();
912  Tys.reserve(FTy->getNumParams());
913  for (Type *Ty : FTy->params())
914  Tys.push_back(TypeMapper->remapType(Ty));
915  CS.mutateFunctionType(FunctionType::get(
916  TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
917  return;
918  }
919  if (auto *AI = dyn_cast<AllocaInst>(I))
920  AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
921  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
922  GEP->setSourceElementType(
923  TypeMapper->remapType(GEP->getSourceElementType()));
924  GEP->setResultElementType(
925  TypeMapper->remapType(GEP->getResultElementType()));
926  }
927  I->mutateType(TypeMapper->remapType(I->getType()));
928 }
929 
930 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
932  GO.getAllMetadata(MDs);
933  GO.clearMetadata();
934  for (const auto &I : MDs)
935  GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
936 }
937 
938 void Mapper::remapFunction(Function &F) {
939  // Remap the operands.
940  for (Use &Op : F.operands())
941  if (Op)
942  Op = mapValue(Op);
943 
944  // Remap the metadata attachments.
945  remapGlobalObjectMetadata(F);
946 
947  // Remap the argument types.
948  if (TypeMapper)
949  for (Argument &A : F.args())
950  A.mutateType(TypeMapper->remapType(A.getType()));
951 
952  // Remap the instructions.
953  for (BasicBlock &BB : F)
954  for (Instruction &I : BB)
955  remapInstruction(&I);
956 }
957 
958 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
959  bool IsOldCtorDtor,
960  ArrayRef<Constant *> NewMembers) {
962  if (InitPrefix) {
963  unsigned NumElements =
964  cast<ArrayType>(InitPrefix->getType())->getNumElements();
965  for (unsigned I = 0; I != NumElements; ++I)
966  Elements.push_back(InitPrefix->getAggregateElement(I));
967  }
968 
969  PointerType *VoidPtrTy;
970  Type *EltTy;
971  if (IsOldCtorDtor) {
972  // FIXME: This upgrade is done during linking to support the C API. See
973  // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
974  VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
975  auto &ST = *cast<StructType>(NewMembers.front()->getType());
976  Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
977  EltTy = StructType::get(GV.getContext(), Tys, false);
978  }
979 
980  for (auto *V : NewMembers) {
981  Constant *NewV;
982  if (IsOldCtorDtor) {
983  auto *S = cast<ConstantStruct>(V);
984  auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
985  auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
986  Constant *Null = Constant::getNullValue(VoidPtrTy);
987  NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
988  } else {
989  NewV = cast_or_null<Constant>(mapValue(V));
990  }
991  Elements.push_back(NewV);
992  }
993 
995  cast<ArrayType>(GV.getType()->getElementType()), Elements));
996 }
997 
998 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
999  unsigned MCID) {
1000  assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1001  assert(MCID < MCs.size() && "Invalid mapping context");
1002 
1003  WorklistEntry WE;
1004  WE.Kind = WorklistEntry::MapGlobalInit;
1005  WE.MCID = MCID;
1006  WE.Data.GVInit.GV = &GV;
1007  WE.Data.GVInit.Init = &Init;
1008  Worklist.push_back(WE);
1009 }
1010 
1011 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1012  Constant *InitPrefix,
1013  bool IsOldCtorDtor,
1014  ArrayRef<Constant *> NewMembers,
1015  unsigned MCID) {
1016  assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1017  assert(MCID < MCs.size() && "Invalid mapping context");
1018 
1019  WorklistEntry WE;
1020  WE.Kind = WorklistEntry::MapAppendingVar;
1021  WE.MCID = MCID;
1022  WE.Data.AppendingGV.GV = &GV;
1023  WE.Data.AppendingGV.InitPrefix = InitPrefix;
1024  WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1025  WE.AppendingGVNumNewMembers = NewMembers.size();
1026  Worklist.push_back(WE);
1027  AppendingInits.append(NewMembers.begin(), NewMembers.end());
1028 }
1029 
1030 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
1031  unsigned MCID) {
1032  assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
1033  assert(MCID < MCs.size() && "Invalid mapping context");
1034 
1035  WorklistEntry WE;
1036  WE.Kind = WorklistEntry::MapGlobalAliasee;
1037  WE.MCID = MCID;
1038  WE.Data.GlobalAliasee.GA = &GA;
1039  WE.Data.GlobalAliasee.Aliasee = &Aliasee;
1040  Worklist.push_back(WE);
1041 }
1042 
1043 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1044  assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1045  assert(MCID < MCs.size() && "Invalid mapping context");
1046 
1047  WorklistEntry WE;
1048  WE.Kind = WorklistEntry::RemapFunction;
1049  WE.MCID = MCID;
1050  WE.Data.RemapF = &F;
1051  Worklist.push_back(WE);
1052 }
1053 
1054 void Mapper::addFlags(RemapFlags Flags) {
1055  assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1056  this->Flags = this->Flags | Flags;
1057 }
1058 
1059 static Mapper *getAsMapper(void *pImpl) {
1060  return reinterpret_cast<Mapper *>(pImpl);
1061 }
1062 
1063 namespace {
1064 
1065 class FlushingMapper {
1066  Mapper &M;
1067 
1068 public:
1069  explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1070  assert(!M.hasWorkToDo() && "Expected to be flushed");
1071  }
1072 
1073  ~FlushingMapper() { M.flush(); }
1074 
1075  Mapper *operator->() const { return &M; }
1076 };
1077 
1078 } // end anonymous namespace
1079 
1081  ValueMapTypeRemapper *TypeMapper,
1082  ValueMaterializer *Materializer)
1083  : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1084 
1086 
1087 unsigned
1089  ValueMaterializer *Materializer) {
1090  return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1091 }
1092 
1094  FlushingMapper(pImpl)->addFlags(Flags);
1095 }
1096 
1098  return FlushingMapper(pImpl)->mapValue(&V);
1099 }
1100 
1102  return cast_or_null<Constant>(mapValue(C));
1103 }
1104 
1106  return FlushingMapper(pImpl)->mapMetadata(&MD);
1107 }
1108 
1110  return cast_or_null<MDNode>(mapMetadata(N));
1111 }
1112 
1114  FlushingMapper(pImpl)->remapInstruction(&I);
1115 }
1116 
1118  FlushingMapper(pImpl)->remapFunction(F);
1119 }
1120 
1122  Constant &Init,
1123  unsigned MCID) {
1124  getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1125 }
1126 
1128  Constant *InitPrefix,
1129  bool IsOldCtorDtor,
1130  ArrayRef<Constant *> NewMembers,
1131  unsigned MCID) {
1132  getAsMapper(pImpl)->scheduleMapAppendingVariable(
1133  GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1134 }
1135 
1137  unsigned MCID) {
1138  getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
1139 }
1140 
1142  getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1143 }
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:152
static unsigned getMappedOp(unsigned PseudoOp)
uint64_t CallInst * C
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
bool isUniqued() const
Definition: Metadata.h:942
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:711
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata *> MDs)
Definition: Metadata.h:1133
bool empty() const
Definition: Function.h:662
bool isDistinct() const
Definition: Metadata.h:943
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
This class represents lattice values for constants.
Definition: AllocatorList.h:24
iterator begin() const
Definition: ArrayRef.h:137
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
Definition: Metadata.cpp:859
void RemapFunction(Function &F, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Remap the operands, metadata, arguments, and instructions of a function.
Definition: ValueMapper.h:264
Implements a dense probed hash-table based set.
Definition: DenseSet.h:250
Any global values not in value map are mapped to null instead of mapping to self. ...
Definition: ValueMapper.h:99
static ConstantAggregateZero * get(Type *Ty)
Definition: Constants.cpp:1332
This file contains the declarations for metadata subclasses.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
Metadata node.
Definition: Metadata.h:864
F(f)
void scheduleRemapFunction(Function &F, unsigned MappingContextID=0)
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1069
Hexagon Common GEP
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1417
void reserve(size_type N)
Definition: SmallVector.h:376
static Mapper * getAsMapper(void *pImpl)
static Constant * get(ArrayType *T, ArrayRef< Constant *> V)
Definition: Constants.cpp:983
TempMDNode clone() const
Create a (temporary) clone of this.
Definition: Metadata.cpp:522
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:265
static std::enable_if< std::is_base_of< MDNode, T >::value, T * >::type replaceWithDistinct(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a distinct one.
Definition: Metadata.h:994
Function * getFunction() const
Definition: Constants.h:866
The address of a basic block.
Definition: Constants.h:840
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
void setInitializer(Constant *InitVal)
setInitializer - Sets the initializer for this global variable, removing any existing initializer if ...
Definition: Globals.cpp:363
bool isResolved() const
Check if node is fully resolved.
Definition: Metadata.h:940
void remapInstruction(Instruction &I)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
Constant * mapConstant(const Constant &C)
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1200
Windows NT (Windows on ARM)
static StructType * get(LLVMContext &Context, ArrayRef< Type *> Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:342
void resolveCycles()
Resolve cycles.
Definition: Metadata.cpp:621
op_iterator op_begin() const
Definition: Metadata.h:1059
Key
PAL metadata keys.
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:889
Class to represent function types.
Definition: DerivedTypes.h:103
Metadata * mapMetadata(const Metadata &MD)
Instruct the remapper to move distinct metadata instead of duplicating it when there are module-level...
Definition: ValueMapper.h:95
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
op_range operands() const
Definition: Metadata.h:1067
bool isVarArg() const
Definition: DerivedTypes.h:123
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
BasicBlock * getBasicBlock() const
Definition: Constants.h:867
void enableMapMetadata()
Definition: ValueMap.h:125
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:73
Analysis containing CSE Info
Definition: CSEInfo.cpp:21
Class to represent pointers.
Definition: DerivedTypes.h:467
void remapInstruction(Instruction *I, ValueToValueMapTy &VMap)
Convert the instruction operands from referencing the current values into those specified by VMap...
Definition: LoopUnroll.cpp:66
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:335
static MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition: Metadata.cpp:106
static Metadata * cloneOrBuildODR(const MDNode &N)
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:51
static std::enable_if< std::is_base_of< MDNode, T >::value, T * >::type replaceWithUniqued(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a uniqued one.
Definition: Metadata.h:984
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1401
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
static ConstantAsMetadata * wrapConstantAsMetadata(const ConstantAsMetadata &CMD, Value *MappedV)
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1434
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:139
ArrayRef< Type * > params() const
Definition: DerivedTypes.h:130
void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MappingContextID=0)
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
static Constant * get(StructType *T, ArrayRef< Constant *> V)
Definition: Constants.cpp:1044
op_range operands()
Definition: User.h:238
void disableMapMetadata()
Definition: ValueMap.h:126
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1415
RemapFlags
These are flags that the value mapping APIs allow.
Definition: ValueMapper.h:67
size_t size() const
Definition: SmallVector.h:53
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1226
static ConstantAsMetadata * getConstant(Value *C)
Definition: Metadata.h:361
static ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:349
Constant * getValue() const
Definition: Metadata.h:418
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1394
iterator end() const
Definition: ArrayRef.h:138
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:381
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
void remapFunction(Function &F)
void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee, unsigned MappingContextID=0)
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Get all metadata attached to this Instruction.
Definition: Instruction.h:237
ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:394
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:38
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:91
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
void addFlags(RemapFlags Flags)
Add to the current RemapFlags.
static InlineAsm * get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack=false, AsmDialect asmDialect=AD_ATT)
InlineAsm::get - Return the specified uniqued inline asm string.
Definition: InlineAsm.cpp:43
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition: Value.h:604
const unsigned Kind
Value * mapValue(const Value &V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
unsigned registerAlternateMappingContext(ValueToValueMapTy &VM, ValueMaterializer *Materializer=nullptr)
Register an alternate mapping context.
void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef< Constant *> NewMembers, unsigned MappingContextID=0)
virtual Type * remapType(Type *SrcTy)=0
The client should implement this method if they want to remap types while mapping values...
IRTranslator LLVM IR MI
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1075
Root of the metadata hierarchy.
Definition: Metadata.h:58
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
static Constant * get(ArrayRef< Constant *> V)
Definition: Constants.cpp:1079
Type * getElementType() const
Definition: DerivedTypes.h:486
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:274
iterator_range< arg_iterator > args()
Definition: Function.h:689
MDNode * mapMDNode(const MDNode &N)
void resize(size_type N)
Definition: SmallVector.h:351